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Abstract

We study a variant of the bandit problem where side information in the form of bounds
on the mean of each arm is provided. We prove that these translate to tighter estimates
of subgaussian factors and develop novel algorithms that exploit these estimates. In the
linear setting, we present the Restricted-set OFUL (R-OFUL) algorithm that additionally
uses the geometric properties of the problem to (potentially) restrict the set of arms being
played and reduce exploration rates for suboptimal arms. In the stochastic case, we propose
the non-optimistic Global Under-Explore (GLUE) algorithm which employs the inferred
subgaussian estimates to adapt the rate of exploration for the arms. We analyze the regret
of R-OFUL and GLUE, showing that our regret upper bounds are never worse than that of
the standard OFUL and UCB algorithms respectively. Further, we also consider a practically
motivated setting of learning from confounded logs where mean bounds appear naturally.

1 Introduction

We study the problem of bandits with mean bounds and bounded rewards where an agent is presented with a
set of K arms, along with side-information in the form of upper and lower bounds on the average reward for
each of the arms. The agent is then asked to successively choose arms based on previous observations in
order to maximize the cumulative reward. As is standard in MABs, the agent’s performance is compared to
that of a genie that always chooses the arm that gives the largest reward in expectation. We consider this in
the commonly studied frameworks of stochastic Multi-Armed Bandits (MABs) and the Linear Bandit. In the
former, rewards of each arm are drawn independently from its associated distribution and are uncorrelated
with rewards of other arms. The linear setting couples the rewards from all arms through an unknown, but
fixed latent vector that is used to paramterize the mean rewards. We seek to design arm selection policies that
efficiently utilize the provided mean bounds in offering both improve regret performance and computational
complexity.

Our setting is motivated by the problem of inferring efficacy of interventions from confounded logs. As a
concrete example, consider the following healthcare example: Interavenous tissue plasminogen (tPA) activators
are known to be highly effective in treating acute ischemic strokes if administered within 3 hours of the onset
of symptoms. Otherwise, a less-effective medical therapy is recommended, as tPA causes higher chances of
adverse side effects and hemorrhages Powers et al. (2019). If a log is then generated without recording the
time since the onset of symptoms, it would present tPA to be better than the alternative. Naively using such
a log to infer tPA to be the best intervention could lead to unfavourable outcomes in areas with poor access
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to healthcare, where patients take longer to reach the hospital after symptoms appear. Inferring the optimal
decision in the presence partial contextual information is non-trivial in general, however, one can extract
bounds on the mean of the treatments using these logs.

The offline problem of extracting bounds on mean effects of interventions is well-studied by works such
as Robins et al. (2000); Brumback et al. (2004); Richardson et al. (2014); Zhang & Bareinboim (2017);
Yadlowsky et al. (2022). We are interested in using these bounds to aid the online learning of optimal actions,
also studied in Zhang & Bareinboim (2017); Combes et al. (2017) for the Bernoulli MABs (the latter also
treats gaussian rewards). In this work, we show that using the mean bounds in non-trivial ways can lead to
improvements in regret performance over existing methods in the case of linear bandits and stochastic MABs
with this side information.

The key intuition for our improvements comes from the notion of subgaussian factors of bounded random
variables. A random variable taking values in [0, 1] is known to be 1/2−subgaussian, which is tight for a
Bernoulli random variable with mean 1

2 . Given additional information about the location of its mean (in an
interval, say), tighter estimates of the variance can be inferred. However, whether such information provides
a sharper subgaussian factor, which in itself is an upper bound to the variance, is not known. The worst-case
factor above is commonly used in the bandit setting, to characterize the concentration behavior of (bounded)
random variables around their mean. Further, the jump from estimation to decision-making means that
estimates can be incorrect (e.g., biased, poor confidence) so long as it does not alter the decision. In a bandit
setting, this observation has been classically used to explore sub-optimal actions at a lower rate than that for
the best action; this leads to a worse accuracy bound for the reward estimates of sub-optimal actions but does
not affect decision-making. In this paper, we go beyond this intuition: we show that, surprisingly, known
bounds on mean rewards for some actions (side information) enable us to explore other possibly unrelated
actions at lower-rates, thus improving overall cumulative regret. Our contributions are detailed below:

Contribution 1: Improved Subgaussian Factors with Mean Bounds: We provide a characterization
of the subgaussian factor σ ≤ 1

2 of any random variable bounded in [0, 1] when upper and lower bounds on
its mean are known. Specifically, in Theorem 3 and Corollary 3.1, we show that when the mean is known to
be towards either half of this interval, one can infer factors that are strictly less than 0.5. These immediately
imply tighter concentration bounds for bounded random variables. This result could be of independent
interest, however, we study the effects of such information in bandit learning.

Contribution 2: Linear Bandits: We present the Restricted-set Optimism in the Face of Uncertainty for
Linear bandits (R-OFUL) algorithm for bounded rewards. R-OFUL first uses the structure imposed by the
linear rewards to refine the given side information and produces the tightest possible mean bounds for each
arm in the action set before online interaction. Then, at each time, it leverages the geometry of the problem
to restrict the set of arms to be considered. Finally, it reduces exploration by using the sharp estimates of
subgaussian factors above for arms in the restricted set and chooses actions much like the standard OFUL
algorithm of Abbasi-Yadkori et al. (2011).

We show that the lower bounds are key to our improvements in the online phase of the algorithm. First, the
restricted set is constructed as a cone around the arm with the largest lower bound. Combining the lower
bounds of the arms that remain with the boundedness of rewards then leads to our reduced exploration
rates. Our analysis in Theorem 4 shows that using side information, R-OFUL can improve over the regret
guarantees of standard OFUL by a constant factor. It also improves the computational cost due to the
restriction of arms. To the best of our knowledge, this is the first investigation on Linear Bandits with Mean
bounds.

Contribution 3: Stochastic MABs: We develop GLobal Under-Explore (GLUE)—an index based policy
which, unlike the UCB Auer et al. (2002) and kl-UCB Cappé et al. (2013) algorithms, is not optimistic; i.e.
the indices do not serve as high-probability upper bounds to true means of each arm. We use the fact that
violating the upper bound property for the indices of suboptimal arms does not adversely affect the regret as
long as the property is maintained for the (unknown) best arm. In particular, our indices for an arm are
formed using a quantity that can be strictly lesser than the true subgaussian factor of the arm only if the
arm is sub-optimal. This causes the sub-optimal arms to be under-explored which leads to improvement in
regret performance.
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This problem is a specific form of the Structured Bandit framework of Combes et al. (2017) where the authors
develop OSSB, a non-optimistic algorithm to balance exploration across arms in structured spaces. In the
case of Bernoulli rewards, OSSB reduces to the B-kl-UCB algorithm of Zhang & Bareinboim (2017) that
uses the kl-UCB index for each arm truncated at the corresponding upper bound. In both B-kl-UCB and
OSSB, the lower bounds on arm means are only used initially to prune away arms that can be identified as
suboptimal, and the upper bounds are used to clip the arm indices at each time.

For general bounded rewards, the upper bound on s.g-factor of the optimal arm can be inferred from the
highest lower bound of arm means. Therefore, we define the exploration rates of the arms to be the minimum
of the individual arm subgaussian factors and the aforementioned upper bound. Our analysis in Theorem 6
shows that in instances with non-informative mean bounds, we recover the performance of UCB. However,
using our adapted rates in instances with rich side information leads to GLUE significant improvements over
vanilla UCB. Empirically, we see that our performance is comparable to B-KL-UCB when it is known that
one of the arms has a mean close to 1.

Contribution 4: Mean bounds from confounded logs: We develop techniques to extract upper and
lower bounds on the means of arm rewards from partially confounded logged data. Specifically, we consider
a dataset that has been collected by an oracle that observes the full context, takes the optimal action and
receives the corresponding rewards. However, the log only contains some parts of the context along with the
corresponding (action, reward) pair, generalizing the work of Zhang & Bareinboim (2017), where none of the
contexts are recorded. In the stochastic case, using bounds on the gap between the means of the best and
second best arms as observed by the oracle, as well as the corresponding gap between best and worst arms,
we derive upper and lower bounds on the mean rewards of arms to be used by an agent that acts only based
only on the recorded parts of the context. We show that these are tight, i.e. there are instances that meet
both the upper and lower bounds. We also show that these bounds can be inferred in a linear setting without
the knowledge of gaps. We validate our work through synthetic and semi-synthetic experiments with the
Movielens 1M dataset Harper & Konstan (2015).

1.1 Related Work

Bandit problems have seen a lot of interest over the past few decades (see Bubeck et al. (2012); Lattimore
& Szepesvári (2020) for comprehensive surveys). A vein of generalization for the same has seen numerous
advances in incorporating several forms of side information to induce further structure into this setting.
Notable among them are graph-structures information (Buccapatnam et al., 2014; Valko et al., 2014; Amin
et al., 2012), latent models (Li et al., 2010; Bareinboim et al., 2015; Lattimore et al., 2016; Sen et al., 2017),
expert models (Auer et al., 1995; Mannor & Shamir, 2011), smoothness of the search space (Kleinberg et al.,
2008; Srinivas et al., 2010; Bubeck et al., 2011), among several others. We assume side information in the
form of mean bounds and study how such information affects the decision making process.

In the stochastic setting, our bandit problem has connections to the works by Zhang & Bareinboim (2017)
and Combes et al. (2017). An in-depth comparison with these can be found in Section 5.3. Along another
thread, Bubeck et al. (2013) provide algorithms with bounded regret if the mean of the best arm and a lower
bound on the minimum suboptimality gap is known. These techniques, however, do not apply in our setting
as the side information we consider does not allow us to extract such quantities in general. In the linear
setting, with time-varying action sets, the works of Li et al. (2010); Abbasi-Yadkori et al. (2011) are inspired
by the upper confidence bound-type arguments of Auer et al. (2002) for the stochastic case. When action sets
remain fixed over time, arm-elimination type algorithms like ones in Valko et al. (2014) improve dependence
on the dimension of the arms. We study the novel setting of linear bandits with mean bounds and varying
action sets in this work.

The extraction of mean bounds from confounded logs has been studied in the context of estimating treatment
effects in the presence of confounders. Here, actions are treatments, and the rewards capture the effects of
this choice. A line of existing work performs sensitivity analysis by varying a model on the latents, measured
variables, treatments and outcomes in a way that is consistent with the observed data (Robins et al., 2000;
Brumback et al., 2004; Richardson et al., 2014). Recently in (Yadlowsky et al., 2022; Zhao et al., 2019), a
universal bound on the ratio of selection bias due to the unobserved confounder is assumed. This means that
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the treatment choice has a bounded sensitivity on the unknown context (i.e., mostly irrelevant). We deal with
the other extreme, where we assume that the outcomes in the log are recorded using an unknown optimal
policy (under complete information), and that the knowledge of worst case sub-optimality gaps for the given
latent context space is known. Our assumption allows for strong dependence on the unknown context.

The use of logged data to improve online learning has been studied recently by (Zhang & Bareinboim, 2017;
Zhang et al., 2019; Ye et al., 2020). The first assumes that the log contains no information of the variables
that affect reward generation, while the others assumes that all such variables are present. We consider
the middle ground, by assuming that a fraction of these variables are included in the logs. the authors of
Tennenholtz et al. (2020) studied a related linear bandit problem where the agent is provided with partial
observations collected offline according to a fixed behavioral policy which can be sampled from. These are
then used to aid online decision making after the agent observes the full context. In contrast, we consider the
case where the agent can only observe the partial context at each time and is provided with confounded logs
collected from a policy (to which we do not assume sampling access) that is optimal under the full context.

2 Bandits with Mean Bounds

We consider the round-based interaction of a learning agent with a stochastic environment through a set of
K0 actions (or arms). At each round, the agent chooses one of the provided arms and observes a stochastic
reward. To aid its decision making, the agent is also provided with side information in the form of bounds on
the mean reward of each arm. The goal of the agent is to choose arms such that the cumulative reward is
competitive with respect that obtained by a genie that only chooses the ‘best’ arm in each round.

In this work, we concentrate on two commonly studied formulations of this problem: Stochastic Multi-armed
Bandits and Linear Bandits. We detail the notations, structure of rewards, and notions of the best arm for
each of these below.

Stochastic Multi-armed Bandit: The agent is provided with K0 arms indexed by the set [K0] = {1, 2, ...K0},
with each arm being associated with a fixed and unknown reward distribution supported over the interval
[0, 1]. The mean reward of arm k ∈ [K0] is denoted by µk. For each arm k ∈ [K0], the side information is
given by a tuple (lk(t), uk(t)) such that µk ∈ [lk(t), uk(t)] and lk(t), uk(t) ∈ [0, 1]. These tuples thus specify
upper and lower bounds on the mean reward for each of the arms and can be different for each arm. With this
knowledge, at round t, the agent chooses an arm At and observes a reward Yt sampled from the distribution
associated with the chosen arm. We define k∗ = arg maxk∈[K0] µk be the (unique) best arm with µk∗ = µ∗

and the genie chooses this arm at each round.

The agent thus aims to minimize its average cumulative regret, which at round T is given by RT =∑T
t=1 µ

∗ − E[Yt]. The expectation here is over the randomness of the rewards and the choice of arms of
the agent. If we have that for all k ∈ [K0], lk = 0, uk = 1, then our setting matches that of the standard
Multi-armed Bandit with bounded rewards.

Linear Bandit: In this case, in each round t, the agent is provided a (possibly different) set of action At ⊆ A
sampled from a (possibly infinite) set of actions A such that ‖At‖ = K0 . Each arm a ∈ A is a vector in Rd.
At round t, the agent chooses an arm At ∈ At and observes a reward Yt = 〈At, θ∗〉+ ηt where θ∗ ∈ Rd is a
fixed unknown vector. The noise ηt is a conditionally σ(At)−subgaussian random variable with respect to
the filtration Ft = σ (A1, Y1, ..., At−1, Yt−1, At}). This arm-specific subguassian factor is not revealed to the
agent. As in the case above, for all rounds t, Yt ∈ [0, 1] and the agent is provided with tuples (la, ua) for each
a ∈ A such that θTa ∈ [la, ua] and la, ua ∈ [0, 1]. We also assume that ‖θ∗‖ ∈ [m,M ] and that ‖a‖ = 1 (‖ · ‖
is the Euclidean norm) for a ∈ A.

As before, the agent aims to maximize its cumulative reward in order to remain competitive with a genie
that chooses the arm with highest mean reward at each round. Equivalently, the agent aims to minimize the
regret, which at round T is given by RT =

∑T
t=1 maxa∈At〈a−At, θ∗〉. In contrast to the setting above, RT

is a random variable due to the randomness in At. With la = 0, ua = 1 for a ∈ A, our setting becomes that
of the standard Linear Bandit with bounded rewards.
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For both the settings above, we note three things: a) The agent is allowed to use the all historical information
and accumulated rewards to inform future arm choices, b) The provided bounds do not restrict the range
of observed rewards, but only their mean, c) Our discussion can be easily generalized to bounded rewards
supported over any interval [a, b] by appropriate shifting and scaling. Our methods will also apply when
bounds were known on the norm of the actions instead of the strict equality in the linear bandit case.

In the standard versions of both the above settings, Optimism-based policies have been well-studied. In the
stochastic case, the standard UCB algorithm in Auer et al. (2002) and the KL-UCB algorithm in Cappé et al.
(2013) achieve provably optimal performance for specific families of reward distributions. However, with
non-trivial mean bounds, it is shown in Zhang & Bareinboim (2017) that one can outperform these methods
by leveraging the information that is provided by these bounds. In the linear case, the OFUL algorithm
of Abbasi-Yadkori et al. (2011) (or LinUCB of Li et al. (2010)) provides optimal regret guarantees up to
logarithmic factors (see Chapter 24 in Lattimore & Szepesvári (2020)). To the best of our knowledge, the
linear bandit problem with mean bounds has not been considered before. These naive algorithms that do not
use the knowledge of the provided side information will serve as baselines to the methods that we develop.

Before we propose our methods, we will first spend time developing improved concentration bounds for
empirical means of random variables given mean bounds. These concentrations will be crucial in analyzing
our arm selection policies for both the settings above.

3 Improved Concentrations with Mean Bounds

A random variable X is said to be σ−subgaussian if and only if E [exp(s(X − E[X])] ≤ exp
(
s2σ2

2

)
. As a

consequence, we have the following Chernoff-Hoeffding concentration inequality for σ−subgaussian variables:

P(X ≥ t) ≤ exp
(
− t2

2σ2

)
.

Further, it is well known that any random variable that is bounded in an interval [a, b] is b−a
2 −subguassian.

With no additional information about this variable, we can not improve this factor. Suppose the mean of the
random variable were known. We ask the question ‘Does this additional information lead to a tighter (< 1

2 )
estimate of the subgaussian factor?’. This is important because a tighter subgaussian parameter would lead
to faster concentrations of the random variable.

Suppose now that the random variable X ∈ [0, 1] has mean m that is known. Since it is bounded, the variance
of this random variable is bounded by that of a Bernoulli random variable with the same mean. Further, the
square of the subgaussian factor for any random variable is an upper bound on its variance (See Lemma 5.4
in Lattimore & Szepesvári (2020)). Therefore, we have that var(X) ≤ m(1−m) ≤ sg(Bernoulli(m))2 ≤ 1

2
where var(·) is the variance and sg(·) is the subgaussian factor of the argument. We will now show that
there indeed exist σ ∈ (m(1 − m), 1

2 ) such that any random variable X ∈ [0, 1] with mean m ∈ (0, 1) is
σ−subgaussian (the cases when m = 0, 1 are trivial).

For this to hold, we require that

E
[
es(X−m)

]
≤ m exp (s(1−m)) + (1−m) exp (−ms) ≤ exp

(
s2σ2

2

)
=⇒ σ2 ≥ 2

s2 log
(

(1−m)e−ms + µes(1−m)
)
≥ max

s∈R

2
s2 log

(
mes(1−m) + (1−m)e−ms

)
(1)

Thus, it is sufficient to prove that there exist a unique maximizer to the RHS of Equation 1 and that the
achieved maxima is < 1

2 . Below, we give the steps involved in proving this. The full proof is deferred to
Appendix A.

We will use a sequence of lemmas to establish our result. For simplicity, we define fm(x) = mex(1−m) + (1−
m)e−mx and begin by proving the following facts:
Lemma 1. For all m ∈ (0, 1) and x ∈ R , fm(x) > 1. Further, fm(x) = f1−m(−x) and
limx→0

2
x2 log (fm(x)) = m(1−m).
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Given these properties of fm(x), we then prove the following Lemmas:
Lemma 2. The following are true:

1. When m ∈ (0.5, 1), the function 2
x2 log (fm(x)) is not maximized at any x > 0.

2. For all m ∈ (0, 0.5), x > 0, we have that with x1 as defined in Lemma 15

a) For all x ∈ (0, x1), 2
x2 log (fm(x)) > m(1−m),

b) For all x > 2
m , 2

x2 log (fm(x)) < m(1−m).

Combining these two Lemmas, we have our final result:
Theorem 3. Let X ∈ [0, 1] be a random variable with mean m ∈ (0, 1), m 6= 0.5. Then, X is σ-subgaussian
for σ2 = maxx∈R 2

x2 log
(
me(1−m)x + (1−m)e−mx

)
. Additionally,

√
m(1−m) < σ < 1

2 .

Figure 1: Improved Subgaussian factor vs. Bernoulli variance

The lower bound of
√
m(1−m) on σ implies that it increases in (0, 0.5) and decreases in (0.5, 1). In Figure

1, we plot the values of σ2 and m(1−m), the variance of a Bernoulli with mean m, for different values of m
in (0, 1) to verify this trend. This leads to the following corollary:
Corollary 3.1 (Improved Subgaussian factors with mean bounds). Let X be a random variable over [0, 1]
such that E[X] ∈ [l, u] for some l, u ∈ [0, 1]. For any m ∈ (0, 1), let c(m) = maxs∈R 2

s2 log(fm(s)) with
fm(x) = mex(1−m) + (1−m)e−mx. Then, the following are true:

1. If l > 0.5, we have that X is
√
c(l)-subgaussian.

2. If u < 0.5, we have that X is
√
c(u)-subgaussian.

Thus, bounds on the mean of the random variable that do not contain the worst-case value of 0.5 always lead
to improved estimates of its subgaussian factor. We call such mean bounds to be ‘non-trivial’.

4 Restricted-set Optimism under Uncertainty for Linear Bandits with Mean Bounds

Now that we know the implications of non-trivial mean bounds on the concentration behavior of a random
variable, we move on to studying the effects of such information on the regret of a linear bandit agent. Recall
that at each round t, the agent is given an action set At of K0 vectors in Rd sampled from a set A and
must learn to choose actions At ∈ At. Observing Yt = 〈At, θ∗〉+ ηt, where θ∗ is an unknown vector and ηt a
conditionally σ(At)-subgaussian random variable with respect to the filtration generated by all observations
up to t − 1 and the choice of arm At, the agent competes with a genie that always picks the arm in the
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Algorithm 1 Rrestricted-set Optimism in the Face of Uncertainty for Linear bandits with mean bounds
1: Inputs: Action set A, bound tuples (la, ua) for each a ∈ A
2: Tightening bounds: Update the tuples (la, ua) as in Equation 2.
3: for t = 1,2,3,... do
4: Receive set At, identify ât and lmax(t).
5: Restricting instantaneous action sets:
6: Prune out all arms a with ua < lmax(t).
7: Form set Ar(t) defined in Equation 3.
8: Reduced exploration:
9: Compute σt as in Equation 4.

10: With Et defined in Equation 5, choose at to be arg maxa∈Ar(t),θ∈Et〈a, θ〉, observe reward Yt.
11: end for

provided set with largest mean reward. That is, the agent aims to minimize its regret at round T given by
RT =

∑T
t=1 maxa∈At〈a − At, θ∗〉. As is standard in Linear Bandits, this regret RT is random due to the

randomness in the choice of AT and thus, we seek to minimize this regret with high probability. Specifically,
we use δ to be the user-specified failure probability and develop a policy that minimizes regret with probability
at least 1− δ.

The agent is also provided with tuples (la, ua) for each arm a ∈ A which can be used to aid its decision making.
Further, it is known that ‖θ∗‖ ∈ [m,M ] and that for all a ∈ A, ‖a‖ = 1. We propose the Restricted-set
Optimism under Uncertainty for Linear Bandits (R-OFUL) algorithm (summarized in Algorithm 1) that uses
these mean bounds and the linear structure of rewards to minimize regret. At each round, the agent performs
three steps: a) Tightening the mean bounds, b) Restricting the instantaneous action set, and c) Invoking the
update similar to the OFUL algorithm of Abbasi-Yadkori et al. (2011) with potentially improved subgaussian
factors that leads to reduced exploration. We describe each of these steps below.

Tightening the Mean Bounds: Since all rewards are obtained using the same parameter θ∗, bounds on
the mean of some action give us non-trivial information about the mean reward of all other actions. This
fact is used to tighten the provided upper and lower bounds on arm means. Formally, define Cb = {θ : ‖θ‖ ∈
[m,M ],∀a ∈ A, 〈a, θ〉 ∈ [la, ua]} be the set of feasible parameter vectors. Then, the tight bounds la, ua (we
abuse notation by representing both the provided and tighter bounds by the same variables) are computed
for each arm a ∈ A as

la ← min
θ∈Cb
〈a, θ〉, ua ← max

θ∈Cb
〈a, θ〉. (2)

After these tight bounds are computed, the set of feasible vectors Cb is recomputed with these updated
versions of the mean bounds.

Restricting instantaneous action sets: This phase is carried out after receiving the set At at time t
and chooses a subset of arms to be considered at each round. First the agent prunes away deterministically
suboptimal arms used lmax(t) = maxa∈At la. This restricts the set of arms in consideration to Ap(t) = {a :
ua ≥ lmax(t)}.

Now we denote by ât = arg maxa∈At la the ‘most promising arm’ at time t and use ang(a, a′) =
cos−1 (〈a,a′〉/‖a‖‖a′‖) as the angle between the vectors a and a′. With αt = cos−1 (lmax(t)/M), the restricted
set of actions at time t is given by

Ar(t) = {a ∈ Ap(t) : ang(a, ât) ≤ 2αt} (3)

Reduced Exploration: In this phase, the agent computes an upper bound on the s.g-factors of arms in the
set Ar(t) and uses this to reduce exploration in its arm selection strategy. Recall that for any y ∈ (0, 1) we
use c(y) = maxs∈R 2

s2 log(fy(s)) where fy(x) = ye(1−y)x + (1− y)e−yx. For each arm a ∈ At with (tightened)
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mean bounds la, ua, we define

ψ2(la, ua) =


c(la) if la > 0.5
c(ua) if ua < 0.5
0.25 otherwise

to be the function that maps the upper and lower bounds to the reduced s.g-factor as a result of Corollary
3.1. Then, upper bound on the s.g-factor of any arm in Ar(t) is given by

σt = min
{
ψ(m cos(3αt), b), max

a∈Ar(t)
ψ(la, ua)

}
. (4)

The agent forms the ridge regression estimate of the parameter θ∗ at time t as θ̂t = V
−1
t

(∑t
n=1 anYn

)
with

V t =
∑t
n=1 ana

T
n + λId. Here Id is the d-dimensional identity matrix and λ > 0 is a regularization parameter.

It then defines the following set around θ∗:

Ct =
{
θ ∈ Cb :

∥∥∥θ̂t − θ∥∥∥
V t−1

≤ βt−1(δ)
}
,

√
βt(δ) =

√
λM + γ

√
2 log

(
1
δ

)
+ d log

(
1 + t

dλ

)
. (5)

Here γ = maxn≤t σn and δ is the user-specified failure probability. The choice of arm At is given by

At = arg max
a∈Ar(t),θ∈Ct

〈a, θ〉. (6)

This selection rule is similar to that of vanilla OFUL in Abbasi-Yadkori et al. (2011). The difference here, we
restrict a) the set Ct with the feasible set Cb, b) the set of arms that can be played at time t with Ar(t) and
c) the confidence width βt(δ) using the tighter subgaussian estimate of γ.

4.1 Key Ideas

1. Deriving the restricted set: The boundedness and linearity of rewards implies that if there exists an
arm that promises a high mean (in our case, ât), its angle with the parameter θ∗ is upper bounded. This is
captured by the quantity αt. Further, it also implies that the angle between the best arm in the set Ar(t) and
θ∗ can be no more than αt. Combining these, we get that the best arm lies in a cone of angle 2αt around ât.
2. Tight s.g-factors: Since the goal is to minimize regret, the worst-case arm that can be played (one with
the lowest mean reward) in Ar(t) is one that is at an angle 3αt away from θ∗. As rewards are bounded, this
lower bound on the mean reward of the worst arm can be translated into an upper bound on the s.g-factor of
arms in Ar(t) using the function ψ. If the side information of arms in Ar(t) can provide sharper estimates on
this upper bound, we use those instead. This is reflected in our definition of σt in Equation 4

4.2 Regret of R-OFUL

We now present our high-probability regret guarantees for Algorithm 1.
Theorem 4. With probability at least 1− δ, the regret of R-OFUL suffers a worst-case regret of

Rt ≤

√
8dtβt−1(δ) log

(
1 + t

dλ

)
.

Proof Sketch. First, we establish the following lemma:

Lemma 5. Let a∗t = arg maxa∈At〈a, θ
∗〉 be the best arm at time t. Then, a∗t ∈ Ar(t). Further, for any arm

a ∈ At, the s.g-factor σ(a) satisfies σa ≤ σt.
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(a) 5 arms per round (b) 10 arms per round (c) 15 Arms per round

Figure 2: Comparing R-OFUL (Algorithm 1) with vanilla OFUL with arms in R10 and bounded rewards. Results are
averaged over 200 runs and error bars for one standard deviation are displayed. R-OFUL restricts arms and only
chooses between 2-3 arms per round on average and thus, its average regret is comparable over all three figures, while
OFUL suffers regret that grows with the number of arms per round. We also observe that R-OFUL computes arm
updates 6− 6.7× faster on average.

Using this lemma, we generalize the concentration arguments of Abbasi-Yadkori et al. (2011) to prove that
with probability at least 1 − δ, the parameter vector satisfies θ∗ ∈ Cb. The result then follows using the
standard arguments for bounding regret in linear bandits.

The full proof can be found in Appendix B.

4.3 Comparisons and Discussions

R-OFUL vs OFUL: The regret of the OFUL algorithm is of the order Õ
(√

dtσmax(d+ log(1/δ))
)
with

σmax = (b−a)/2 as the universal upper bound on the s.g-factor of the arms in the set A. If no informative
bounds are present (the worst case) our R-OFUL algorithm matches the performance of OFUL exactly.
However, richer side information can lead to a constant factor improvement in the finite-time regret guarantees
as γ ≤ σmax. Further, in cases where ‖Ar(t)‖ = 1, the instance-dependent regret of R-OFUL is 0, while any
linear bandit algorithm that does not perform this arm restriction will suffer non-zero regret on average.

We also improve on the computation complexity of OFUL. Specifically, to compute At (Equation 6), the
usual practice is to solve the optimization problem for all a individually for all arms and then choose one
with the maximum objective value. If the mean bounds are such that |Ar(t)| < |At|, that is, if the set of
arms is restricted by R-OFUL, then, so is the number of optimization sub-problems to solve, which speeds up
computation.

Optimality: We study a generalization of OFUL which is known to be optimal up to logarithmic factors in
the worst case. However, it is known that optimality in general linear bandit problems is achieved by complex
non-optimistic policies. The study of regret lower bounds and policies that match them are left open.

Empirical Evaluations: We compare the regret performance of R-OFUL with the vanilla OFUL algorithm
empirically in Figure 2. For this, we sample a random set of 100 arms in R10 and sample 5, 10, 15 of these in
each round. We set θ∗ as the vector

[
0, 1

10 ,
2
10 , ...

9
10
]
and normalize it. To generate rewards, for each arm

a ∈ At, we first sample a Gaussian random variable with mean 〈a, θ∗〉 and variance 0.8, and clip this to be in
[0, 1] ([−1, 0]) if 〈a, θ∗〉 > 0(≤ 0) to form our bounded rewards. The upper and lower bounds on the rewards
are generated separately to be away from the mean by a uniform random variable in [0, 0.5] and these are
also clipped the same way as the rewards. That is, arms with positive (non-positive) mean reward are forced
to have bounds in [0, 1] ([−1, 0]). The subgaussian upper bound for OFUL is provided as 0.5, the worst-case
subgaussian factor for any random variable bounded in either [0, 1] or [−1, 0] while R-OFUL computes tighter
subgaussian factors based on the mean bounds and uses γ as in Equation 5 to choose arms. We also use
the norm bounds on θ∗ to m = 0,M = 1. We average our results over 200 independent runs. We see that
R-OFUL consistently achieves much lower regret than the vanilla variant. Further, we also observe that
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Algorithm 2 GLobal Under-Explore (GLUE) for MABs with Mean Bounds
1: Inputs: Upper and lower bounds for each arm k ∈ [K0] : uk, lk.
2: Pruning Phase:
3: Define lmax = maxk∈K0 lk and eliminate all arms i ∈ [K0] with ui < lmax.
4: Reindex the remaining arms to be in {1, 2, ...,K}.
5: Learning Phase:
6: Set UCB index scaling parameters ψk for each arm as in Equation (7).
7: for t = 1, 2, 3, ... do
8: Play arm At = arg maxk∈[K] Uk(t− 1) and observe reward Yt.
9: Increment TAt(t) and update µ̂At(t).

10: Update Uk(t) as in Equation (8).
11: end for

empirically, R-OFUL restricts arms and only chooses between 2-3 arms per round on average. This leads to a
6− 6.7× computation speed up compared to vanilla OFUL.

5 Global Under-exploration for Stochastic Multi-armed Bandits with Mean Bounds

Now we move on to the stochastic Multi-armed Bandit (MAB) setting. We recall that in this case, there is
no linear structure on the rewards. At each time, the agent picks one of K0 arms, and observes a reward
that is randomly sampled from the distribution that is associated with this arm. The agent can also access
the tuples (lk, uk) for all arms k ∈ [K0] to inform its choices. At round T , the agent aims to minimize the
expected cumulative regret RT =

∑T
t=1 E[µ∗ − Yt].

Prior work in the Zhang & Bareinboim (2017); Combes et al. (2017) have investigated this problem before,
the for Bernoulli rewards, and the latter as a structured bandit problem. The B-KL-UCB algorithm of the
former sets arms indices as the clipped version (using the provided bounds) of the the standard KL-UCB
indices from Cappé et al. (2013). The latter proposes OSSB for general reward distributions where the agent
decides arms at each round by solving a distribution-dependent, semi-infinite optimization problem. The
authors also prove that OSSB achieves asymptotically optimal regret for Bernoulli and Gaussian rewards
when reward distributions are known apriori. In the special case of Bernoulli rewards, OSSSB and B-KL-UCB
are equivalent (see Appendix D), and are thus optimal.

However, it is often not practical to assume that the reward distributions are known apriori. Further, even
with this knowledge, it is unclear how computationally tractable the per-round optimization problem of
OSSB is. While the Bernoulli version in B-KL-UCB is still applicable in this case, the KL-UCB indices for
each arm in each round are themselves optimization problems with no known closed form solution. As the
number of arms grow, computing these indices efficiently poses a challenge.

The UCB algorithm of Auer et al. (2002) provides an index-based solution that is inexpensive to compute,
albeit at the cost of the optimal regret performance. Specifically, it is well known that in the vanilla MAB
setting, KL-UCB always outperforms UCB for bounded reward distributions, with larger gains when the
mean rewards are closer to the extremities. This is mainly due to the fact that UCB chooses the worst-case
exploration rate for any bounded distribution, while KL-UCB adapts its rate according to the (unknown)
value of the mean rewards. Works such as Liu et al. (2018) address the computation issue by using a set of
semi-distance functions to boost the UCB index. This leads to a trade-off between optimal performance and
efficient compute.

We propose Global Under-Exploration (GLUE) for Stochastic MABs with Mean Bounds in Algorithm 2. It
draws inspiration from KL-UCB, adapting its exploration rate to the location of the arm means using the
provided mean bounds but like UCB, provides arm indices that are inexpensive to compute. We note that
unlike B-KL-UCB, GLUE is not the clipped version of vanilla UCB. In particular, GLUE is not optimistic,
i.e, its arm indices are not high-probability upper bounds to the true mean of the arm. The algorithm works
in two phases:

10
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Pruning Phase: Before the start of the online learning process, GLUE examines the provided mean bounds
of each of the K0 arms are prunes out any deterministically suboptimal arms. Specifically, we compute
lmax = maxk∈[K0] lk and discard any arm k with uk < lmax. Such a strategy is also followed by B-KL-UCB
of Zhang & Bareinboim (2017).

Learning Phase: Let [K] = {1, 2, ...,K} be the (re-indexed) set of pruned arms, with K ≤ K0. For each of
the arm k ∈ [K], we compute

σ2
k =


c(lk) if l > 0.5
c(uk) if u < 0.5
0.25 otherwise

, ψk =
{
σkmax if lkmax > 0.5
σk otherwise.

(7)

Here, kmax = arg maxk∈[K] lk, and c(y) = maxs∈R 2
s2 fy(s) with fy(x) = ye(1−y)x + (1 − y)e−yx. Let

Tk(n) =
∑n
t=1 1{At = k} and µ̂k(n) = 1

Tk(n)
∑n
t=1 Yt1{At = k} be the number of plays and the empirical

mean reward obtained from arm k up to time n respectively. The index of arm k at time t is then set to be

Uk(t) = min

{
uk, µ̂k(t) +

√
2ψ2

k log(f(t+ 1))
Tk(t)

}
with f(t) = 1 + t log2(t). (8)

We observe two key things here. First, for each arm k, Uk(t) is set using the quantity ψk rather than the true
subgaussian factor σ2

k. When lmax > 0.5, ψk for all arms is set as the subgaussian factor of the arm with the
largest lower bound kmax which is strictly lower than σ2

k for k 6= kmax. Thus in general, ψk ≤ σ2
k. Second,

arm indices are clipped at the respective upper bounds, which is sensible as these indices are a representation
of our belief of true arm means. We also note that using ψk = 0.25 and setting Uk(t) without clipping at uk
recovers the standard Upper Confidence Bound (UCB) algorithm in Auer et al. (2002).

5.1 Key Ideas

1. Sharper subgaussian factors: As we saw in Section 3, bounds on the mean of a random variable (here,
the arm rewards), provide tighter estimates of its subgausssian factor (Corollary 3.1). This is reflected in our
definition of σk in Equation 7.

2. Underexploring suboptimal arms using ψk: Consider a standard MAB instance with K arms where
it is known that arm k provides rewards with a subgaussian factor of σ2

k. The standard UCB algorithm would
then explore arm k at the rate dictated by the corresponding subgaussian factor. Now suppose additionally,
that it was known that the (unknown) best arm produced rewards with subgaussian factor σ2

best. We construct
the algorithm A which sets the index of arm k analogous to UCB, but with exploration rate dictated by
min{σ2

k, σ
2
best}. As a result, A potentially assumes incorrect s.g-factors for suboptimal arms. Consequently,

the indices of A are no longer upper confidence bounds to the arm means, i.e., A is not optimistic. The
key difference in the dynamics of UCB and A is that the latter potentially explores suboptimal arms less
frequently than the former. This would lead to A incurring lower regret than standard UCB.

In GLUE, min{σ2
k, σ

2
best} is analogous to ψk. Specifically, when lmax > 0.5, the side information allows us

to estimate an upper bound on the subgaussian factor of the best arm. We note that this upper bound is
computed using the arm kmax; the identity of the best arm is still unknown. Thus, the regret minimization
problem remains non-trivial in this case.

5.2 Regret Upper Bounds for GLUE

In this section, we study the regret performance of GLUE. We regard improvements from pruning as trivial
and analyze regret for the set of arms that remain after pruning. We assume without loss of generality
that after pruning the arms are indexed in non-decreasing order of mean, i.e., µ∗ = µ1 > µ2 ≥ ... ≥ µK ,
where K ≤ K0. We also define the sub-optimality gap of an arm k as ∆k = µ∗ − µk. The following theorem
bounds the regret of GLUE, and also presents its asymptotic regret scaling which is an upper bound to
lim supn→∞ Rn

log(n) . This quantity captures the long-term (logarithmic) contribution of arms towards regret.
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(a) lmax > 0.5; Arm 3 is meta-pruned (b) Non-Informative Bounds; Arm 2 is meta-pruned

(c) lmax < 0.5; ImprovedUCB and GLUE are equivalent (d) Non-informative bounds; Clipping only

Figure 3: Empirical validation for Stochastic MABs with Mean Bounds under Clipped Uniform and Bernoulli rewards:
Each row corresponds to a different specification of arm means and mean bounds shown in the left subplot. Regret
performance under clipped uniform and Bernoulli rewards are shown in the latter two. The regret is averaged over 200
runs and error bars of one standard deviation are shown. In Figure 3a, for each arm, ψk = σ1. In Figure 3b, the bounds
reveal no non-trivial information, however, Arm 2 is meta-pruned. In Figure 3c, we set ψk = σk since lmax < 0.5 and
thus, ImprovedUCB and GLUE coincide. In Figure 3d, the bounds do not provide non-trivial information about
subgaussian factors and are only used to clip rewards. B-UCB, UCBImproved and GLUE compute arm choices 11×
faster than B-KL-UCB on average.

Theorem 6. Let K1(δ) = {k ∈ [K] : µ∗ > uk + δ, k > 1} and K2(δ) = {k ∈ [K] : µ∗ ≤ uk + δ, k > 1}, for
any δ > 0. Then, the expected cumulative regret of Algorithm 2 satisfies Rn ≤ infδ>0Rn(δ) with

Rn(δ) ≤
∑

k∈K1(δ)

5ψ2
1∆k

(max{δ, µ∗ − uk})2 +
∑

k∈K2(δ)

(
∆k(1 + q(n)) + 5ψ2

1 + 2ψ2
k log f(n)

∆k

)
.

Here, the function q(n) ∼ Θ
(

log(f(n)) 2
3

)
. Further, the asymptotic regret of GLUE satisfies

lim sup
n→∞

Rn

log(n) ≤
∑

k∈K2(0)

2ψ2
k

∆k
. (9)

Proof Sketch for Theorem 6. As is usual in the regret analysis of stochastic MABs, we upper bound the
number of times a suboptimal arm is played, which translates to a bound on the cumulative regret. In
contrast however, we can not rely on the UCB property of the indices any longer.

Recall that we only need to consider the set of K arms that remain after pruning. Theorem 3 and Corollary
3.1 gives us that σk is an upper bound on the true s.g-factor for arm k. We first show that the best arm k∗ is
always ψk−subgaussian. Then, we establish that the asymptotic contribution to regret of any arm in K1(δ) is
a constant. We deem these arms to be “meta-pruned”. For K2(δ), we show that the use of pseudo-variances
is sufficient to explore these arms at a logarithmic rate. The theorem then follows by combining these two
results, with the full proof in Appendix C.

5.3 Comparison and Discussions

Regret Upper Bounds: GLUE vs Existing Algorithms: We compare the regret upper bound of GLUE
to a slew of baselines in Table 1. Here, B-UCB is the clipped version of the vanilla UCB algorithm of Auer
et al. (2002). It is equivalent to using GLUE with ψk = 0.25, the worst-case subgaussian factor for each arm
k. Further, d(p, q) = p log (p/q) + (1− p) log ((1−p)/(1−q)) is the Bernoulli Kullback-Liebler divergence.
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Table 1: Asymptotic Regret Comparisons: Columns list the algorithm, the (bounded) distribution of rewards,
whether it displays meta-pruning, and the asymptotic regret upper bound.

Algorithm Reward dist. Meta- Asymptotic
(bounded) pruning Regret

UCB Any No
∑

k∈[K],k 6=1

2
∆k
· (b−a)2

4

B-UCB Any Yes
∑

k∈K2(0)

2
∆k
· (b−a)2

4

KL-UCB Any No
∑

k∈[K],k 6=1

∆k

d(µk,µ∗)

B-KL-UCB Any Yes
∑

k∈K2(0)

∆k

d(µk,µ∗)

OSSB Bernoulli Yes
∑

k∈K2(0)

∆k

d(µk,µ∗)

GLUE Any Yes
∑

k∈K2(0)

2ψ2
k

∆k

The vanilla UCB and KL-UCB algorithms do not display meta-pruning as they do not use the mean bounds.
The regret bound of OSSB in Combes et al. (2017) matches that of B-KL-UCB for Bernoulli rewards (see
Appendix D) and is optimal.

The UCB, B-UCB and GLUE algorithms require O(K0) compute per iteration in the worst-case (when no
arms are pruned). KL-UCB, B-KL-UCB (and OSSB for Bernoulli rewards) require O(αoptK0) computational
complexity, with αopt the cost of solving the index optimization problem for each arm.

Uncertain mean bounds: Our focus in this work has been the case when the provided mean bounds hold
with probability 1. The immediate follow-up would be the case where these bounds only hold for each arm k
with some probability pk < 1. Practically, such settings occur when we are given historical data about plays
from each arm (this is the setting studied in Shivaswamy & Joachims (2012)). The following corollary gives a
horizon-dependent regret bound for GLUE in this case.

Corollary 6.1. Let µk ∈ [lk, uk] hold with probability (1− pk) for each arm k ∈ [K]. Then by time n, GLUE
suffers an additional regret of n

∑
k∈[K]

pk over Theorem 6.

If we know the horizon to be T and each arm is observed O(log T ) times in the provided history, using
standard Chernoff-type arguments, we easily see that

∑
k∈[K] pk = O(1/T ). Thus, the additional regret

incurred by time T is simply a constant. However, the cases when the number of samples for an arm are
sub-logarithmic in the horizon and that with an unknown horizon are left open.

Lack of global under-exploration in R-OFUL: In the stochastic MAB with bounds, we used GLUE to
explore all arms at rate ψ2

k — the subgaussian factor of the best arm (when lmax > 0.5). This was possible
because the estimate of the best arm remained a ψ2

k-subgaussian random variable, and was thus explored at
the correct rate. In the linear case, the estimates for each arm uses all samples collected so far in θ̂t, the ridge
regression estimate of θ∗. The estimate of the best arm is thus no longer ψ2

k-subgaussian and under-exploring
arms in the set Ar(t) using ψ(lmax, b), for example, would lead to poor estimates even for the best arm and
thus larger regret.

Empirical Comparisons: We compare GLUE with B-UCB, ImprovedUCB (GLUE with σk instead of ψk
in Uk(t)) and B-KL-UCB for clipped uniform distributions (drawn from a uniform distribution in an interval
around the mean that is fully contained in [0, 1]) and Bernoulli rewards. We chose not to compare with OSSB
since it is unclear how the associated optimization problem can be solved for this distributions. We drop
UCB and KL-UCB since the clipped variants in B-UCB and B-KL-UCB, respectively, are never worse then
the vanilla counterprats. All plots are averaged over 200 independent runs.

When lmax is close to 1, we see that GLUE outperforms the optimistic UCB-based baselines (B-UCB and
ImprovedUCB) and is comparable to B −KL−UCB. We note that this is the case where KL variants enjoy
maximum improvements over UCB variants, but GLUE competes with the optimal in this case. In the case
when all upper bounds are lesser than 0.5, GLUE matches the performance of ImprovedUCB, thus improving
over B-UCB. However, since there is no information about the best arm in this case, B-KL-UCB outperforms
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GLUE. We also note that each of B-UCB, ImprovedUCB and GLUE compute each iteration 11× faster than
B-KL-UCB on average.

6 A Use Case: Learning from Confounded Logs

Up to this point, we have assumed that the learning agent has access to a tuple of mean bounds for each arm
before the start of the online learning process. In this section, we describe a practically motivated scenario in
which such mean bounds arise naturally. Specifically, we consider the task of extracting non-trivial bounds
on means from partially confounded data from an optimal oracle. We show that under mild assumptions,
this problem leads to the stochastic MAB problem (and a Linear Bandit) with mean bounds.

6.1 Confounded Logs for Stochastic Multi-armed Bandits

The Oracle Environment: We consider a contextual environment, where nature samples a context vector
(z, u) ∈ C = Z ×U from an unknown but fixed distribution P. We assume that sets Z and U are both discrete.
At each time any of the K0 actions from the set A = {1, 2, ...,K0} can be taken. The reward of each arm
k ∈ A for a context (z, u) ∈ C has mean µk,z,u and support [0, 1] (with appropriate shifting and scaling, this
can be generalized for any finite interval [a, b]). For each context (z, u) ∈ C, let there be a unique best arm
k∗z,u and let µ∗z,u be the mean of this arm.

Confounded Logs: The oracle observes the complete context (zt, ut) ∈ C at each time t and also knows
the optimal arm k∗zt,ut for this context. She picks this arm and observes an independently sampled reward
yt with mean value µk∗zt,ut ,zt,ut = µ∗zt,ut . She logs the information in a data set while omitting the partial
context ut. In particular, she creates the data set D = {(zt, kt, yt) : t ∈ N}.

The Agent Environment: A new agent is provided with the oracle’s log. In this paper, we consider the
infinite data setting. The agent makes sequential decisions about the choice of arms having observed the
context zt ∈ Z at each time t = {1, 2, ...}, while the part of the context u ∈ U is hidden from this agent. Let
at be the arm that is chosen, zt be the context, and Yt be the reward at time t. Define the average reward of
arm k ∈ A under the observed context z ∈ Z as µk,z =

∑
u∈U µk,z,uP(u|z).

The optimal reward of the agent under context z ∈ Z is defined as µ∗z = maxk∈A µk,z. The agent aims to
minimize its cumulative regret for each context separately. The cumulative reward for each z ∈ Z at time T
is defined as: Rz(T ) = E [

∑
t I(zt = z)(µ∗z − Yt)]

6.1.1 Transferring Knowledge through Bounds

The agent is interested in the quantities µk,z, the mean reward of arm k under the partial context z, for all
arms k ∈ A and contexts z ∈ Z, to minimize its cumulative regret. As the oracle only plays an optimal arm
after seeing the hidden context u, the log provided by the oracle is biased and thus µk,z can not be recovered
from the log in general. However, it is possible to extract non-trivial upper and lower bounds on the average
µk,z. In a binary reward and action setting, similar observations have been made in Zhang & Bareinboim
(2017). Alternative approaches to this problem, that include assuming bounds on the inverse probability
weighting among others, are discussed in Section 1.1.

Our assumption below is different, and in a setting where there are more than two arms. We specify that the
logs have been collected using a policy that plays an optimal arm for each (z, u) ∈ C, but do not explicitly
impose conditions on the distributions. Instead, in Assumption 1, we impose a separation condition on the
means of the arms conditioned on the full context. We define:
Definition 1. Let us define δz, δz for each z ∈ Z as follows:

δz ≤ min
u∈U

[
µ∗z,u − max

k∈A,k 6=k∗z,u
µk,z,u

]
, δz ≥ max

u∈U

[
µ∗z,u − min

k∈A,k 6=k∗z,u
µk,z,u

]
.

Thus, for each observed context z, these quantities specify the sub-optimality gaps between the best and
second best arms, as well as the best and the worst arms, respectively and which hold uniformly over the
hidden contexts u ∈ U .
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Assumption 1 (Separation Assumption). The vectors {δz, δz : z ∈ Z} are provided as a part of the log.
Additionally, for each z ∈ Z, we have that δz > 0.

Remarks on Model and Assumption 1:

• Relation to Gap in Agent Space: We note that these gaps in the latent space do not allow us to infer the
gap in the agent space. However, due to optimal play by oracle, these gaps help in obtaining mean bounds for
all arms, even those which have not been recorded in the log (Theorem 7).

• Interpretation: The gap δz gives us information about the hardest arm to differentiate in the latent space
when the full context was observed (δz analogously is for the easiest arm to discredit). We also note that our
approach can still be applied when the trivial bound δz = 1, or universal bounds not depending on context
δ ≥ δz, δ ≤ δz are used, leading to bounds that are not as tight.

• Motivating Healthcare Example: Often, hospital medical records contain information zt about the patient,
the treatment given kt, and the corresponding reward yt that is obtained (in terms of patient’s health outcome).
However, a good doctor looks at some other information ut (that is not recorded) during consultation and
prescribes the best action kt under the full context (zt, ut). If one is now tasked with developing a machine
learning algorithm (an agent) to automate prescriptions given the medical record z, this agent algorithm
needs to find the best treatment k(z) on average over P(u|z). Furthermore, the gaps on treatments effects
can potentially be inferred from other data sets like placebo-controlled trials.

• Existing alternate assumptions: Studies in Yadlowsky et al. (2022); Zhao et al. (2019) impose conditions on
bounded sensitivity of the effects with respect to the hidden/unrecorded context (effectively, that this context
does not significantly alter the effect). In our work, we explore the other alternative where the treatment has
been chosen optimally with respect to the hidden/unrecorded context, and allows strong dependence on this
hidden context.

Quantities computed from log data: The following quantities can now be computed by the agent from
the observed log for each arm k ∈ [K0] and each visible context z ∈ Z:

1. pz(k) : The probability of picking arm k under each context z is denoted as pz(k). Mathematically,
pz(k) =

∑
u∈U :k=k∗z,u

P(u|z).

2. µz : The average reward observed under each context z is defined as µz. It can be computed by averaging
observed rewards for all the entries with context z. This can be written as µz =

∑
u∈U

µ∗z,uP(u|z).

3. µz(k): The contribution from arm k to the average reward µz. Thus we have that µz(k) =∑
u∈U :k=k∗z,u

µ∗z.uP(u|z).

4. K>(k, z): Finally, we identify the set of arms with "large rewards" K>(k, z) = {k′ ∈ [K0] : k′ 6= k, µz(k′) >
δzpz(k′)} for each k ∈ [K] and z ∈ Z.

To see that these quantities can indeed be inferred, assume that the logs are given as an infinite table with
columns Z,A, Y . Now, we collapse rows that share Z = z,A = k into a single row with Y now being the
mean reward of all such rows in the original table.

With this new finite table, to compute pz(k), we fix all rows with Z = z and compute the fraction of these
that have A = k. µz(k) is the average reward in all rows that have Z = z,A = k, and µz =

∑
k∈A µz(k).

Finally, the set K>(k, z) can be computed from µz(k), pz(k) and the upper bound on the latent suboptimality
gap δz.

Bounds in terms of computed quantities: Using the quantities defined above, the following theorem
describes how one can compute lower and upper bounds on the arm rewards in the agent space.

Theorem 7. The following statements are true for each k ∈ [K0] and z ∈ Z:

1. Upper Bound: µk,z ≤ uk,z := µz − δz(1− pz(k)).
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2. Lower Bound: µk,z ≥ lk,z := µz(k) +
∑

k′∈K>(k,z)

[
µz(k′)− δzpz(k′)

]
.

Note that these bounds can be provided for all arms k ∈ [K0] and contexts z ∈ Z. Specifically, bounds can
also be extracted for the arms that are never played in the log. This comes as a result of the gaps defined in
Definition 1. Proving this results requires a careful use of the total probability theorem which can be found
in Appendix E

Remarks:
1. Finite Log: While we study the case of infnite logs, our approach can be readily extended to finite logs
by replacing the quantities µz, µz(k), pz(k) with empirical estimates and using standard Chernoff bounds to
augment the bounds in Theorem 7 to hold with a probability which is a function of the size of the log. Then,
the performance of the learning algorithm is as in Corollary 6.1 and the discussion that follows.
2. Distribution shifts: Our results can also be used in the case where under a fixed visible context, the
conditional distribution of the hidden contexts changes from oracle to the learner. In particular, for some
z ∈ Z, suppose that ψz ≥ maxu∈U |Po(u|z)− Pl(u|z)|, where Po and Pl are used to differentiate the oracle
and learner environments respectively. Using ψz, we can readily modify our results in Theorem 7 to produce
upper and lower bounds for arm rewards under the context z when the distributions are no longer the same.

Now, we show the existence of instances for which our bounds are tight. We say an instance is admissible if
and only if it satisfies all the statistics generated by the log data. The following proposition shows all the
bounds defined in Theorem 7 are partially tight.

Proposition 8 (Tightness of Transfer). For any log with uk,z, lk,z as defined in Theorem 7 the following
statements hold:
1. There exists an admissible instance where upper bounds µk,z = uk,z, for all k ∈ [K0] and z ∈ Z.
2. For each k ∈ [K0], there exists a (separate) admissible instance such that µk,z = lk,z for each z ∈ Z.

The learning procedure is then carried out by using the bounds of Theorem 7 to instantiate GLUE (Algorithm
2, with regret as in Theorem 6) for each partial context z ∈ Z with uk = uk,z and lk = lk,z.

6.2 Confounded Logs for Linear Bandits

The Oracle Environment: Consider a linear bandit environment with K arms ak = (ak,z, ak,u) for i ∈ [K]
and (random) latent vector θ∗ = (θ∗z , Tu) such that θ∗z is fixed. Suppose a, θ∗ ∈ Rp, and for all k ∈ [K],
au,k, Tu ∈ Rd Further, we assume that Tu is such that each entry of the vector is always between [m,M ], and
‖ak‖ = 1 for all k ∈ [K] (the equality can be generalized to bounds on the norm). At each round t, Tu(t)
is drawn independently from some distribution C and the full vector θ∗(t) = (θ∗z , Tu(t)) is revealed to the
oracle, based on which the arm At = arg maxk∈[K]〈ak, θ∗(t)〉 is played. The oracle then observes the reward
Yt = 〈At, θ∗(t)〉+ ηt where ηt is the conditionally σ(At) subgaussian bounded random variable with respect
to the filtration generated by the reward observations up to time t− 1 and arm choices up to time t.

Confounded Logs: We define k̂(T ) to be the index of the best arm when the random realization of Tu was
T , i.e., k̂(T ) = arg maxk∈[K],Tu=T 〈ak, θ∗〉 . The oracle records the tuple (k̂(Tu(t)), θ∗z , Yt) at the end of each
round and omits the explicit information about Tu(t). These tuples are collected over an infinite horizon to
form the dataset D = {(k̂(Tu(t)), θ∗z , Yt) : t ∈ N}.

The Agent Environment: The agent is provided with the infinite log generated by the oracle and needs
to interact with the same environment with no other information about θ∗ being revealed at each time.
Specifically, at each round t, the agent chooses an arm At ∈ {ak : k ∈ [K]} and observes Yt = 〈At, θ∗〉+ ηt
with Tu(t) being drawn independently according to C and ηt the conditionally σ(At)-subgaussian noise as
before. Since the latent vector θ∗ is hidden and is random at each round, the agent seeks to minimize the
average regret given by

RT =
T∑
t=1

max
k∈[K]

E[〈ak −At, θ∗〉]
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=
T∑
t=1

max
k∈[K]

〈ak,z −At,z, θ∗z〉+ E[〈ak,u −At,u, Tu〉]

:=
T∑
t=1

max
k∈[K]

〈ak,z −At,z, θ∗z〉+ 〈ak,u −At,u, θ∗u〉

In the above, θ∗u us the average value of the vector Tu under the distribution C and At,z, At,u are the parts of
the arm At corresponding to parameters θ∗z , θ∗u respectively. Note that the first term in the sum is known fully
to the agent as θ∗z is recorded in the oracle logs and thus, the learning problem of the agent now reduces to a
Linear Bandit over d dimensions (the dimension of θ∗u) using the ‘pseudo-rewards’ Y ′t = Yt − 〈At, θ∗z〉 for the
chosen arm At. The genie policy in this case is to always play the arm k∗ = arg maxk∈[K]〈ak,z, θ∗z〉+ 〈ak,u, θ∗u〉.
We note that this definition averages out the randomness in Tu and in general can not be inferred by knowing
k̂(Tu) from the logs.

Mapping these back to our running healthcare example, the seen context θ∗z are the known effects of each
intervention in {ak : k ∈ [K]} on the patient that have been established using medical trials, while Tu
represents the responses patient to the intervention based on biomarkers that have not been explored in the
trials. Thus, θ∗u is the average of these unknown effects over the population of patients.

Further, the following quantities can be inferred from the logs:

1. pk: The probability that arm k was best in the oracle environment defined as pk = PC
(
k̂(Tu(t)) = k

)
.

2. νk: The average reward obtained when arm k was optimal. This can be written as νk = E
[
Yt|k̂(Tu(t)) = k

]
.

Using these quantities, the following result suggests the mean bounds that the agent can infer from the logs:
Theorem 9. For all arms ak : k ∈ [K], let pk, νk be as defined above and 1d be the vector of all 1’s in d
dimensions. Then, we have that

E[〈ak, θ∗〉]− νkpk − (1− pk)〈ak,z, θ∗z〉 ∈ [md〈1d, ak,u〉,Md〈1d, ak,u〉] .

Using these bounds, the agent can then employ R-OFUL (Algorithm 1) in order to minimize its regret.
Contrary to the stochastic setting, due to the linearity of rewards, we need not make any assumptions on the
suboptimality gaps in the oracle environment to provide these mean bounds.

6.3 Empirical Validation

Confounded Logs for Stochastic MABs:

We present a recommendation systems example where an agent is tasked with learning the best movie to
recommend to users in an online manner: the agent observes the user’s occupation at each round and solves
an independent bandit instance for each occupation. To assist in its learning, logs collected from an oracle
are provided to this agent. The oracle has access to more information about users and observes occupation,
age and gender in order to recommend movies, but only records the occupation for each user. We assume
that environments do not change between the oracle and the agent, i.e., users are drawn randomly from the
same population in both cases.

For this set of experiments, we use the Movielens 1M dataset of Harper & Konstan (2015). This data set
consists of 6040 users, from whom over 1 million ratings of 3952 movies are collected. Each user is associated
with a gender, age, occupation and zip-code. In this work, we ignore the zip-code. The ratings (or rewards) lie
in the interval [1, 5]. These are normalized to [0, 1] through normal shifting and scaling. The reward matrix of
size 6040× 3952 is then completed using the SoftImpute algorithm from Mazumder et al. (2010). Post matrix
completion, we delete all users who’s total reward across all movies is below 1500. We also further cluster
the age attribute to have 4 classes: 0− 17, 18− 25, 25− 49, 50+. We also combine the occupation attributes
appropriately to have 8 classes namely: Student, Academic, Scientific, Office, Arts, Law, Retired and Others.
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After the above, the Occupation attribute is treated as the visible one, age and gender are hidden. We form
meta-users by averaging all the users according to the tuple of attributes (gender,age). The reward matrix is
also modified to now have each row represent a particular (gender, age) realization (for example, (‘M’, 0-17)).
These reward matrices are separately computed for each of the 8 occupations. We then sample a random
collection of 15 movies for each occupation to be considered as arms. Theorem 7 is then employed in order to
form the confounded logs for each occupation class. The realized upper and lower bounds after this process
are shown in Figure 6 in the appendix. In Figure 4, we provide the online learning behavior for two of these
instances.

(a) Visible Context: LAW (b) Visible Context: ACADEMIC

Figure 4: Online Learning Behavior of two instances from the experiments using the Movielens 1M dataset. The
visible context is displayed in the captions.

(a) Setting 1 (b) Setting 2

Figure 5: Online Learning Behavior of two instances from the synthetic Linear Bandit setup. In each of the figures,
the left figure summarizes the inferred bounds on 〈θ∗u, ak〉 for each k ∈ [12]. The right figure displays the online
experiment. Results are averaged over 200 independent runs and one standard deviation error bars are displayed.
In the first setting, the bounds do not provide any improved subgaussian estimates, however, the restriction helps
improve regret. In the second setting, the bounds provide improved exploration rates.

Confounded Logs for Linear Bandits: For this set of experiments, we use a synthetic setup: We first
fix θ∗z , θ∗u = (1, 2, 3, 4, 5)T ∈ R5. We normalize θ∗z to have norm 1, and θ∗u to have norm 0.9. For the arms,
for each of the 12 arms, we draw ak,z to from a Folded Normal Distribution (|X| is folded normal if X is
normally distributed) in R5. We set a1,u to be in a ball of radius 0.1 around θ∗u at random and for all other k,
ak,u is set to be a normalized 2-sparse vector in R5. With these, we generate logs by uniformly sampling Tu(t)
in a ball of radius 0.1 around θ∗u independently for each t, then picking the best arm for this Tu(t). Then
we sample a noisy latent reward uniformly at random from a symmetric interval around 〈Tu(t), ak̂(Tu(t)),u〉,
ensuring that it is in [0, 1]. The reward at each time is given by the sum of this noisy latent reward and
〈θ∗z , ak̂(Tu(t)),u〉. We collect logs of size 105 to approximate the infinite logs.

We invoke Theorem 9 in order to infer upper and lower bounds on each of the 12 arms. Then, we spawn
variants of the R-OFUL (Algorithm 1 and vanilla OFUL from Abbasi-Yadkori et al. (2011) and run an online
linear bandit algorithm on our setting for 5000 iterations. The results are averaged over 200 independent runs.
In Figure 5, we present out results. We see that when the bounds do no help in restricting the arms under
consideration, R-OFUL matches vanilla OFUL (improvements here are from clipping the optimisitc indices
for each arm). When non-trivial information can be gathered from the mean bounds, R-OFUL significatntly
outperforms the vanilla variant.
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7 Conclusion

In this work, we treated the problem of bandit learning with mean bounds in the linear and stochastic settings.
Beginning with the study of how mean bounds lead to inference of sharp subgaussian factors when rewards
are bounded, we present the R-OFUL algorithm for the linear setting and the GLUE algorithm for stochastic
bandits that use these sharper factors to reduce exploration. In the linear case, by restricting the set of arms
being considered at each round, we show that R-OFUL enjoys not only improved regret, but also increased
compute efficiency in comparison to vanilla OFUL. In the stochastic setting, GLUE can offer comparable
performance to the optimal B-KL-UCB algorithm when rich side information is available, and is never worse
than the vanilla UCB policy. Further, we studied the practical use case of learning from (infinite) confounded
logs where such mean bounds on rewards of actions can be inferred under mild assumptions on the latent
environment.

Several avenues of future work were discussed over the course of exposition, chief among which is the question
of lower bounds for the linear setting. While we present a compute-efficient baseline for the case of linear
bandits with mean bounds, drawing from intuition in standard linear bandits, the lower bound is likely
achieved by a complex, non-optimistic algorithm that further leverages the side information. Studying
the optimality would also help characterize the environments in which the mean bounds improve regret
performance. Further, the case of learning from finitely many confounded observations, which manifests as a
problem of learning from probabilistic mean bounds remains open. In Corollary 6.1, we provide a natural
a regret upper bound to the performance of GLUE in this case (which can also be extended to R-OFUL
for linear bandits) which serves as a baseline. Finally, our assumption of bounded rewards led to tighter
subgaussian factors and regret improvements. Identifying other use cases and modes of side information with
arbitrary, potentially unbounded, reward distributions from which such improved factors can be computed
also serves an an interesting direction.
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A Extreme bounds imply tighter subgaussian bounds

Proof of Lemma 1. Since e−mx and e(1−m)x are both convex, so is f(x) (since m, 1 −m ≥ 0). Thus, f is
minimized when

f ′(x) = m(1−m)
(
e(1−m)x − e−mx

)
= 0

⇐⇒ e(1−m)x = e−mx

⇐⇒ (1−m)x = −mx
⇐⇒ x = 0

Therefore, the minimum value is f(0) = 1.

Now, we have

f1−m(x) = (1−m)e(1−(1−m))x + (1− (1−m))e−(1−m)x = (1−m)e−m(−x) +me(1−m)(−x) = fm(−x).

Finally, the limit at x = 0 can be computed by using L’Hopital’s rule.

We now prove each of the facts in Lemma 2 separately. Together, these two facts and Lemma 1, we have that
there exist a σ < 0.5 for all m 6= 0.5.

A.1 Non-existence of Positive Maximizer for Large Means

We begin with the case when m > 0.5 and prove some useful Lemmas that will help establish our result.
Lemma 10. Let A = mx+ m(1−m)x2

2 , B = x+ log(m). Then, A > B for all m ∈ (0.5, 1) and x ∈ R

Proof. We have that

mx+ m(1−m)x2

2 − (x+ log(m)) > 0 ⇐⇒ m(1−m)x2 + 2(m− 1)x− 2 log(m) > 0

Call m(1 −m)x2 + 2(m − 1)x − 2 log(m) = h(x), differentiating and setting it to 0 gives 2m(1 −m)x =
2(1−m) = =⇒ x = 1

m . Thus, minx h(x) = h
( 1
m

)
= m−1

m − 2 log(m). Since log(1 + y) < y for all y > −1,
with m > 0.5, we can write

m− 1
m

− 2 log(m) > m− 1
m

− 2(m− 1) = (m− 1)(1− 2m)
m

> 0.

Lemma 11. With A and B as defined in Lemma 10, the function eA − eB is non-decreasing for m ∈ (0.5, 1)
and x ∈

[ 1
m ,∞ ).

Proof. We have that

eA − eBnon-decreasing ⇐⇒ d(eA − eB)
dx

≥ 0

≡ dA

dx
eA − dB

dx
eB ≥ 0

≡ (m+m(1−m)x) eA − eB ≥ 0.

From Lemma 10,

(m+m(1−m)x) eA − eB > eB (m+m(1−m)x− 1)
∴ eA − eBnon-decreasing ⇐= eB (m+m(1−m)x− 1) ≥ 0

≡ m(1−m)x− (1−m) ≥ 0 ≡ x ≥ 1
m
.
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Lemma 12. With A and B as defined in Lemma 10, the function eA − eB is increasing for m ∈ (0.5, 1) and
x ∈

(
0, 1

m

)
.

Proof. We begin with

eA − eB increasing ⇐⇒ d(eA − eB)
dx

> 0

≡ dA

dx
eA − dB

dx
eB > 0

≡ (m+m(1−m)x) eA − eB > 0
≡ eB

(
(m+m(1−m)x) eA−B − 1

)
> 0

≡ (m+m(1−m)x) eA−B > 1
≡ eB−A < (m+m(1−m)x)

Note that at x = 0, both sides of this equation compute to m. Thus, the inequality holds if d(eB−A)
dx <

d(m+m(1−m)x)
dx for x > 0. We have that d(eB−A)

dx = eB−A · d(B−A)
dx = (1−m)(1−mx)eB−A and d(m+m(1−m)x)

dx =
m(1−m). Thus, we require that (1−mx)eB−A < m. Let k(x) = (1−mx)eB−A. Then, we have that

k′(x) = (1−mx)
d
(
eB−A

)
dx

−meB−A = eB−A
(
(1−m)(1−mx)2 −m

)
.

Note that (1−mx)2 decreases from 1 to 0 in (0, 1
m ). Therefore, (1−mx)2 < maxx∈(0, 1

m )(1−mx)2 = 1 < m
1−m

for m > 0.5. Therefore, (1−m)(1−mx)2 −m < 0 in (0, 1
m ). Since eB−A > 0, k(x) is also decreasing in this

range.

Thus, we have that for m ∈ (0, 1
m ),

(1−mx)eB−A < max
x∈(0, 1

m )
(1−mx)eB−A = 1−m.

Lemma 13. For all m ∈ (0.5, 1) and x > 0, we have that log (fm(x)) < m(1−m)x2

2 .

Proof. With A,B as defined in Lemma 10, we require that

log (fm(x)) < m(1−m)x2

2

≡ mex + 1−m < exp
(
mx+ m(1−m)x2

2

)
= eA

≡ 1−m < eA −mex = eA − ex+log(m) = eA − eB .

From Lemmas 11 and 12, we have that eA− eB is non-decreasing in (0,∞). Thus, eA− eB > minx∈(0,∞) e
A−

eB = 1−m, giving us the result.

Lemma 14 (Part 1 of Lemma 2). When m ∈ (0.5, 1), the function 2
x2 log (fm(x)) is not maximized at any

x > 0.

Proof. Using 13, we have for any m ∈ (0.5, 1), x > 0,

2
x2 log (fm(x)) < 2

x2 ·
m(1−m)x2

2 = m(1−m).

However, Lemma 1 shows that limx→0
2
x2 log (fm(x)) = m(1−m). Therefore, the function is not maximized

when x > 0.
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A.2 Existence of Positive Maximizer for Small Means

We now move on to the case when m < 0.5. As before, we will establish the result using some useful lemmas.

Lemma 15. Let A = mx+ m(1−m)x2

2 and B = x+ log(m). Then, for m ∈ (0, 0.5), we have that the function
eA − eB is

a) decreasing for x ∈ (0, x1) where x1 = 1
m −

1√
m(1−m)

.

b) increasing for x > 2
m .

Proof. Part a:
We require that in the given range,

dA

dx
eA − dB

dx
eB < 0

(m+m(1−m)x) < eB−A.

Both sides of the above inequality compute to m at x = 0. Therefore, the inequality holds for x ∈ (0, x1) if

d(m+m(1−m)x)
dx

= m(1−m) < (1−m)(1−mx)eB−A = d(eB−A)
dx

That is, m < (1−mx)eB−A.

Let k(x) = (1 − mx)eB−A. Then, we have k′(x) = eB−A
(
(1−m)(1−mx)2 −m

)
> 0 ⇐⇒(

(1−m)(1−mx)2 −m
)
> 0. Let p(x) = (1 − m)(1 − mx)2 − m. Then, we have that p(x) = 0 at

x = 1
m ±

1√
m(1−m)

. Therefore, p(x) > 0 for x < x1.

Thus, k(x) is increasing in (0, x1) and hence k(x) > k(0) = m. This implies that (m+m(1−m)x) < eB−A

in (0, x1) which leads to the result.

Part b.
We first note that at x = 2

m , A = 2
m > B = 2

m +log(m) since m < 1. Further, dAdx = m+m(m−1)x > 1 = dB
dx

for all x > 1
m . Thus, A > B for x > 2

m .

Thus, we get that

dA

dx
eA − dB

dx
eB = (m+m(1−m)x) eA − eB > eB (m+m(1−m)x− 1) > 0 for x > 1

m

And thus, eA − eB is increasing in this range.

Lemma 16 (Part 2 in lemma 2). For all m ∈ (0, 0.5), x > 0, we have that with x1 as defined in Lemma 15

a) For all x ∈ (0, x1), 2
x2 log (fm(x)) > m(1−m),

b) For all x > 2
m , 2

x2 log (fm(x)) < m(1−m).

Proof. Part a.
For this, we require that in (0, x1),

log (fm(x)) > m(1−m)x2

2

⇐⇒ e−mx (mex + 1−m) > exp
(
m(1−m)x2

2

)
⇐⇒ 1−m > eA − eB
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with A,B as in Lemma 15. Using part a of this Lemma, the inequality holds since eA − eB is decreasing in
(0, x1) and is maximized at x = 0 with value 1−m.

Part b.
To see this, we require that

log (fm(x)) < m(1−m)x2

2 ⇐⇒ 1−m < eA − eB

This holds since eA − eB is increasing when x > 2
m (Lemma 15 part b) and is hence minimized at x = 2

m

with value (1−m)e2/m > (1−m) since m < 1.

A.3 Putting it all together

The following lemma will help us prove our final result.

Lemma 17. Define C = mx + x2

8 and D = x + log(m). Then, eC − eD is increasing in (0,∞) for any
m ∈ (0, 0.5).

Proof. This hold if and only if dCdx e
C − dD

dx e
D > 0 for all x > 0. That is,(

m+ x

4

)
eC − eD > 0 ⇐⇒ m+ x

4 > exp(D − C).

For x = 0, both sides of this inequality compute to m. Thus, the inequality holds if

d

dx

(
m+ x

4

)
>
d(D − C)

dx
exp(D − C) ≡ 1

4 >
(

1−m− x

4

)
exp(D − C).

Since exp(D − C) > 0 for all x, the inequality is trivially true for x > (1−m). To see that this is true for
x ∈ (0, 4(1 −m)), define k(x) =

(
1−m− x

4
)

exp(D − C). Since k′(x) =
((

1−m− x
4
)2 − 1

4

)
exp(D − C),

we have that

k′(x) = 0 ⇐⇒
((

1−m− x

4

)2
− 1

4

)
= 0 ⇐⇒ x = 4(1−m)± 2.

Therefore, in (0, 4(1−m)), k(x) = 0 ⇐⇒ x = 4(1−m)− 2 = 2(1− 2m). Further, since 1−m− x
4 > 0 for

x < 4(1−m), x = 2(1− 2m) must be a maximizer of k(x). We are now left to prove that k(2(1− 2m)) < 1
4

for any m < 1
2 . For this we have

k(2(1− 2m)) =
(

1−m− 1− 2m
2

)
exp

(
2(1− 2m) + log(m)− 2m(1− 2m)− (1− 2m)2

2

)
= 1

2 exp
(

log(m) + (1− 2m)
(

2− 2m− 1− 2m
2

))
= m

2 exp
(

(1− 2m)(3− 2m)
2

)
.

Let q(x) = x
2 exp

(
(1−2m)(3−2m)

2

)
. We have that

q′(x) = exp
(

(1− 2m)(3− 2m)
2

)(
1
2 + x

4 (8x− 8)
)

= exp
(

(1− 2m)(3− 2m)
2

)(
4x2 − 4x+ 1

2

)
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= (1− 2x)2

2 exp
(

(1− 2m)(3− 2m)
2

)
> 0 ∀x

Thus, q(x) is increasing for all x. Specifically, we have that for anym ∈ (0, 1
2 ), k(2(1−2m)) = q(m) < q( 1

2 ) = 1
4 .

Thus, k(2(1− 2m)) < 1
4 for any m ∈ (0, 1

2 ) and x ∈ (0, 4(1−m)). Therefore, 1
4 >

(
1−m− x

4
)

exp(D − C)
and thus, eC − eD is increasing for all x > 0.

We are now ready to present our final result.

Proof of Theorem 3. Subgaussianity

Let gm(x) = 2
x2 log (fm(x)). For m < 0.5, part b of Lemma 1 and Theorem 14 imply that the maximum of

gm(x) is not achieved at any negative x. Further, Theorem 16 implies that there exists x > 0 : gm(x) >
m(1−m). Additionally, since gm(x) < m(1−m) for x > 2

m , we have that the function of interest is maximized
at some 0 < x < 2

m .

Analogously, for m > 0.5, this function is maximized at some −2
m < x < 0.

Thus, for any random variable X ∈ [0, 1] with mean m ∈ (0, 1),m 6= 0.5, we have E[exp (s(X −m))] ≤
exp

(
s2σ2

2

)
. Thus, X is σ-subgaussian.

Bounds on σ

From Part 2 of Lemma 2 (Lemma 16), we have that

σ2 ≥ lim
x→0

2
x2 log(fm(x)) = m(1−m).

Thus, we are left with showing that σ < 1
2 when m < 0.5. Exploiting part b of Lemma 1 implies the result

for m < 0.5.

We require that maxx∈R 2
x2 log (fm(x)) < 1

4 . However, since we have already shown that this maximum is
achieved at a positive x, it is sufficient to show maxx>0

2
x2 log (fm(x)) < 1

4 . That is, for all x > 0,

2
x2 log (fm(x)) < 1

4

≡ log (fm(x)) < x2

8

≡ mex + 1−m < exp
(
mx+ x2

8

)
≡ 1−m < exp

(
mx+ x2

8

)
− exp(x+ log(m))

From Lemma 17, we have that the RHS is increasing in (0,∞) and is thus minimized when x = 0 with
minimum value 1

4 . This gives us the result.

B Linear Bandits with Mean Bounds

Now we concentrate on the setting of Section 4 and provide proofs for the result of Theorem 4. First, we
will show that the tight bounds we propose in Equation 2 are valid and tight. Then, we prove that the best
instantaneous arm at each time is always contained in the restricted set at each time. Next, we show that
the quantity σt is a valid upper bound on the subgaussian factor for all arms in the restricted set. This
culminates in our final regret result. We begin with the bounds.
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Claim 1. The solutions to the optimization problems in Equation 2 is tight, that is, 6 ∃θ′ ∈ Cb such that for
any a ∈ A, 〈a, θ′〉 < la or 〈a, θ′〉 > ua

Proof. First we note that the constraint set Cb is non-empty since θ∗ ∈ Cb and thus the quantities la, ua
are well-defined for each a ∈ A. Suppose ∃θ′ ∈ Cb with 〈a, θ′〉 < la for some action a. This implies that
la 6= minθ∈Cb〈a, θ〉 which is a contradiction. A similar argument for the upper bound completes the proof.

Note that at this point, Cb is redefined to be the set {θ : ‖θ‖ ∈ [m,M ],∀a ∈ A, 〈a, θ〉 ∈ [la, ua]}. We now
show that the best arm is always in contention at any time.
Lemma 18. Let a∗t = arg maxa∈At〈a, θ

∗〉 be the instantaneous best arm. Then, a∗t ∈ Ar(t).

Proof. First, we show that a∗t ∈ Ap(t). Suppose that ua∗t < lmax(t) =⇒ 〈a, θ∗〉 ≤ ua∗t < lmax(t) ≤ 〈ât, θ∗〉,
that is, 〈a∗t , θ∗〉 < 〈ât, θ∗〉. This is a contradiction to the definition of a∗t and thus, a∗t ∈ Ap(t).

To show that a∗t ∈ Aprune(t), we first observe that

lmax(t) ≤ 〈ât, θ∗〉
= ‖â‖‖θ∗‖ cos(ang(ât, θ∗))
≤M cos(ang(ât, θ∗)) ∵ ‖θ∗‖ ≤M, ‖a‖ = 1

=⇒ ang(ât, θ∗) ≤ cos−1
(
lmax(t)
M

)
= αt.

Further, since lmax(t) ≤ 〈a∗t , θ∗〉, we get that ang(a∗t , θ∗) ≤ αt. Combining these two, we get that ang(ât, a∗t ) ≤
2αt and thus, a∗t ∈ Ar(t).

The following lemma proves that the quantity σt is a valid upper bound to the s.g-factor of any arm in the
restricted set.
Lemma 19. For any arm a ∈ Ar(t), σ(a) ≤ σt.

Proof. From Corollary 3.1, we have that σ(a) ≤ ψ(la, ua) for any arm a ∈ Ar(t). Therefore, it follows that
σ(a) ≤ maxa′∈Ar(t) ψ(l′a, u′a).

We are only left to prove that σ(a) ≤ mψ(3αt). For this, we note that the arm in Ar(t) with lowest
mean reward is at most 3αt away from θ∗. This happens when θ∗ is at an angle αt away from ât and
there exists some arm abad at an angle αt on the opposite side of ât. For this fictitious arm abad, we have
〈abad, θ∗〉 = ‖abad‖‖θ∗‖ cos(3αt) ≥ m cos(3αt). Now, there are two cases:
1. Ifm cos(3αt) < 0.2178a+0.7822b: Then, ψ(m cos(3αt), b) = (b−a)2

4 and ∀a ∈ Ar(t), σ(a) ≤ ψ(m cos(3αt), b)
follows by definition.
2. If m cos(3αt) ≥ 0.2178a+ 0.7822b: Then any arm a ∈ Ar(t), 〈a, θ∗〉 ≥ 〈abad, θ∗〉 ≥ m cos(3αt). Using this
as a lower bound for the arm a, we can write σ(a) ≤ ψ(m cos(3αt), ua) = ψ(m cos(3αt), b).
This completes the proof.

We now prove our final regret result.

Proof of Theorem 4. Let S′t =
∑t
n=1

ηnan
σn

, where the random variable ηt is conditionally σat-subgaussian.
From Lemma 19, σat ≤ σt and thus, ηt is also conditionally σt-subgaussian.

We claim that Mt(x) = exp
(
〈x, S′t〉 −

‖x‖2
Vt

2

)
with M0(x) := 1 is a supermartingale with respect to the

filtration Ft−1 = σ(a1, Y1, ..., at−1, Yt−1, at). To see this, observe that

Mt(x) = exp
(

t∑
n=1

(
ηn〈x, an〉

σn
+
‖x‖anaTn

2

))
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=⇒ E [Mt−1|Ft−1] = Mt−1(x) · E
[

exp
(
ηn〈x, at〉

σt
+
‖x‖ataTt

2

)]
≤Mt−1(x) ∵ ηt is conditionally σt-s.g.

Now let H = λId and h ∼ N (0, H−1). With some linear algebra, we can write

M t :=
∫
Rd
Mt(x)dh(x) =

√
λd

detV t
exp

(
‖S′t‖V −1

t

2

)

Since Mt(x) is a supermartingale, so is M t. Therefore, using the Maximal inequality for non-negative
supermartingales, we get that

δ ≥ P
(
∃t : ‖S′t‖

2
V
−1
t
≥ 2 log

(
1
δ

)
+ log

(
detV t
λd

))

≥ P

∃t :

∥∥∥∥∥
t∑

n=1
ηnan

∥∥∥∥∥
2

V
−1
t

≥ γ2
(

2 log
(

1
δ

)
+ log

(
detV t
λd

)) (10)

The last step uses the fact that
∑t
n=1

ηnan
σt
≥ 1

maxn≤t σn
∑t
n=1 ηnan = 1

γ

∑t
n=1 ηnan. Now, with Vt =∑t

n=1 ana
T
n , we have

∥∥∥θ̂t − θ∗∥∥∥
V t

=

∥∥∥∥∥V −1
t

t∑
n=1

ηnan +
(
V
−1
t Vt − Id

)
θ∗

∥∥∥∥∥
V t

≤

∥∥∥∥∥
t∑

n=1
ηnan

∥∥∥∥∥
V
−1
t

+
√
λθ∗T

(
I − V −1

t Vt

)
θ∗

≤

∥∥∥∥∥
t∑

n=1
ηnan

∥∥∥∥∥
V
−1
t

+
√
λ‖θ∗‖ ≤

∥∥∥∥∥
t∑

n=1
ηnan

∥∥∥∥∥
V
−1
t

+
√
λM. (11)

Combining Equations 10 and 11, we get that with probability at least 1− δ,

‖θ̂t − θ∗‖V −1
t
≤
√
λM + γ

√
2 log

(
1
δ

)
+ log

(
detV t
λd

)

≤ βt(δ) ∵
detV t
λd

≤
(
trace

(
V t
λd

))d
≤
(

1 + t

λd

)d
Now, with Et =

{
θ : ‖θ̂t − θ‖V −1

t
≤ βt(δ)

}
observe that Ct = Cb ∩ Et. Thus,

P(∃t : θ∗ 6∈ Ct) ≤ P(∃t : θ∗ 6∈ Et) ≤ δ.

The result of the theorem follows by using the standard arguments of Theorem 3 in Abbasi-Yadkori et al.
(2011).

C GLUE for stochastic Multi-Armed Bandits with Mean Bounds

We begin with a few useful lemmas.
Lemma 20. Any arm k is σk−subgaussian. The best arm is always ψk-subgaussian.
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Proof. Both these are an application of Corollary 3.1. The first one follows using bounds lk, uk for the
suboptimal arm k. For the second, observe that µ∗ ∈ [lmax, uk∗ ], which are used to form ψk.

The next lemma proves that meta-pruned arms are only played a constant number of times asymptotically.
Lemma 21. Let arm k ∈ K1(δ) := {k ∈ [K] : µ∗ ≥ uk + δ, k 6= 1}. Then, for all n ≥ 1,

E[Tk(n)] ≤ 5ψ2
1

(max{δ, µ∗ − uk})2 .

Proof. Since k ∈ K1(δ) =⇒ ∆k > 0, we have that {At = k} ⊆ {U1(t) ≤ uk}. Thus,

E[Tk(n)] = E

[
n∑
t=1

1{At = k}

]

≤ E

[
n∑
t=1

1{U1(t− 1) ≤ uk}
]

≤ E

[
n∑
t=1

1

{
µ̂1(t)− µ∗ ≤ uk − µ∗ −

√
2ψ2

1 log(f(t))
T1(t− 1)

}]

≤
n∑
t=1

n∑
r=1

exp

− r

2ψ2
1

(√
2ψ2

1 log(f(t))
r

+ µ∗ − uk

)2


(Using Union Bound, Lemma 20)

≤
n∑
t=1

1
f(t)

n∑
r=1

exp
(
−r(µ

∗ − uk)2

2ψ2
1

)

≤ 2ψ2
1

(µ∗ − uk)2

n∑
t=1

1
f(t)

≤ 5ψ2
1

(µ∗ − uk)2

≤ 5ψ2
1

(max{δ, µ∗ − uk})2

where the last inequality follows from the assumption on uk.

The next lemma is a restatement of Lemma 8.2 in Lattimore & Szepesvári (2020) for standard subgaussian
variables. It will be used to bound the number of plays of a suboptimal arm that is not meta-pruned.
Lemma 22 (Lemma 8.2 in Lattimore & Szepesvári (2020)). Let {Xi} be a sequence of zero mean, independent
σ-subgaussian random variables. Let µ̂t = 1

t

∑t
r=1Xr, δ > 0, a > 0, u = 2aδ−2 and

κ =
n∑
t=1

1

{
µ̂t +

√
2a
t
≥ δ

}

κ′ = u+
n∑

t=due

1

{
µ̂t +

√
2a
t
≥ δ

}

Then, E[κ] ≤ E[κ′] ≤ 1 + 2δ−2
(
a+
√
σ2πa+ σ2

)
for each n ≥ 1.

Proof. This is a restatement of the lemma for the general case of σ-subgaussian random variables.
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Clearly, we have that E[κ] ≤ E[κ′]. Thus,

E[κ′] = E

u+
n∑

t=due

1

{
µ̂t +

√
2a
t
≥ δ

}
= u+

n∑
t=due

P

(
µ̂t +

√
2a
t
≥ δ

)

≤ u+
n∑

t=due

exp
(
− t

2σ2

(
δ −

√
2a/t
)2
)

(Xi ∼ σ − subgaussian)

≤ 1 + u+
∫ ∞
u

exp
(
− t

2σ2

(
δ −

√
2a/t
)2
)
dt

Now, using x2 = (δ
√
t−
√

2a)2

2σ2 , we have

t = (
√

2σ2x+
√

2a)2

δ2 =⇒ dt = 2
√

2σ2

δ2

(√
2σ2x+

√
2a
)
dx

Note that the definition of u = 2a
δ2 gives t = u =⇒ x = 0. Thus, we get

E[κ′] ≤ 1 + 2a
ε2

+
∫ ∞

0

2
√

2σ2

δ2 e−x
2
(√

2σ2x+
√

2a
)
dx

≤ 1 + 2a
δ2 + 4σ2

δ2

∫ ∞
0

xe−x
2
dx+ 4

√
σ2a

δ2

∫ ∞
0

e−x
2
dx

= 1 + 2a
δ2 +

(
4σ2

δ2 ×
1
2

)
+
(

4
√
σ2a

δ2 ×
√
π

2

)

= 1 + 2
δ2

(
a+
√
πaσ2 + σ2

)
.

Where we use that
∫∞

0 xe−x
2
dx = 1

2 and
∫∞

0 e−x
2
dx =

√
π/2.

Lemma 23. For the best arm, E [
∑n
t=1 1{U1(t− 1) ≤ µ∗ − ε}] ≤ 5ψ2

1
ε2 for any ε > 0.

Proof. We have

E

[
n∑
t=1

1{U1(t− 1) ≤ µ∗ − ε}
]

= E

[
n∑
t=1

1{U1(t− 1) ≤ µ∗ − ε}
]

= E

[
n∑
t=1

1

{
µ̂1(t)− µ∗ ≤ −ε−

√
2ψ2

1 log(f(t))
T1(t− 1)

}]

≤ 5ψ2
1

ε2

This follows by using the union bound and Lemma 20 for Arm 1 (See Theorem 8.1 in Lattimore & Szepesvári
(2020) for more details on the inequality).

Lemma 24. If k ∈ K2(δ) := {k ∈ [K] : µ∗ ≤ uk + δ, k 6= 1} for an arbitrary δ > 0, then,

E[Tk(n)] ≤ 1 + 5ψ2
1

∆2
k

+ 2
∆2
k

(
ψ2
k log(f(n)) +

√
ψ2
kσ

2
kπ log(f(n)) + σ2

k

)
+ h(n).

Where h(n) = Ω
(
log(f(n))2/3).
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Proof. Since k 6= 1, {At = k} ⊆ {U1(t− 1) ≤ µ∗ − ε} ∪ {Uk(t− 1) > µ∗ − ε, At = k} for any ε ∈ (0,∆k).

Thus, we have that

E[Tk(n)] ≤ E

[
n∑
t=1

1{U1(t− 1) ≤ µ∗ − ε}
]

+ E

[
n∑
t=1

1{Uk(t− 1) > µ∗ − ε, At = k}

]

≤ 5ψ2
1

ε2
+ E[

n∑
t=1

1{Uk(t− 1) > µ∗ − ε, At = k}] (Using Lemma 23)

For the second term, following the steps in the Proof of Theorem 8.1 in Lattimore & Szepesvári (2020) and
using Lemma 22 above, we get

E[
n∑
t=1

1{Uk(t− 1) > µ∗ − ε, At = k}]

= E

[
n∑
t=1

1

{
µ̂k(t− 1) +

√
2ψ2

k log(f(t))
Tk(t− 1) > µ∗ − ε, At = k

}]

≤ E

[
n∑
r=1

1

{
µ̂kr − µk > ∆k − ε−

√
2ψ2

k log(f(n))
r

}]

≤ 1 + 2
(∆k − ε)2

(
ψ2
k log(f(n)) +

√
ψ2
kσ

2
kπ log(f(n)) + σ2

k

)

Here, µ̂kt is the empirical mean of t i.i.d samples from arm k. The last inequality follows from Lemma 22 with
a = ψ2

k log(f(n)), δ = (∆k − ε) and σ = σk(using Lemma 20). Substituting this into the original expression,
we get

E[Tk(n)] ≤ 5ψ2
1

ε2
+ 1 + 2

(∆k − ε)2

(
ψ2
k log(f(n)) +

√
ψ2
kσ

2
kπ log(f(n)) + σ2

k

)
≤ inf
ε∈(0,∆k)

5ψ2
1

ε2
+ 1 + 2

(∆k − ε)2

(
ψ2
k log(f(n)) +

√
ψ2
kσ

2
kπ log(f(n)) + σ2

k

)
(12)

Now, let g(n) =
(
ψ2
k log(f(n)) +

√
ψ2
kσ

2
kπ log(f(n)) + σ2

k

)
, and 0 < ε = ∆k

αg(n)1/3+1 < ∆k for α = (2/5ψ2
1)1/3.

We have the following:

inf
ε∈(0,∆k)

5ψ2
1

ε2
+ 1 + 2

(∆k − ε)2 g(n)

≤ 1 + 5ψ2
1

∆2
k

(αg(n)1/3 + 1)2 + 2
∆2
k

(αg(n)1/3 + 1)2

α2g(n)2/3 g(n)

= 1 + 5ψ2
1

∆2
k

(
α2g(n)2/3 + 2αg(n)1/3 + 1

)
+ 2g(n)

∆2
k

(αg(n)1/3 + 1)2

α2g(n)2/3

= 1 + 5ψ2
1

∆2
k

+ 2g(n)
∆2
k

+ g(n)2/3

∆2
k

(
5ψ2

1α
2 + 4

α

)
+ g(n)1/3

∆2
k

(
10ψ2

1α+ 2
α2

)
= 1 + 5ψ2

1
∆2
k

+ 2g(n)
∆2
k

+ (20ψ2
1)1/3g(n)2/3

∆2
k

(
1 + (20ψ2

1)1/3
)

+ 3g(n)1/3

∆2
k

(
5
√

2ψ2
1

)2/3

︸ ︷︷ ︸
=h(n)

The result follows with h(n) being defined as the last two terms of the expression above.

We are now ready to prove the theorem.
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Proof of Theorem 6. The theorem now follows immediately using Lemmas 21 and 24. This is because we can
decompose regret as

Rn =
n∑
t=1

E[µ∗ − Yt] =
∑
K1(δ)

∆kE[Tk(n)] +
∑
K2(δ)

∆kE[Tk(n)],

where K1(δ) = {k ∈ [K] : µ∗ > uk + δ, k > 1} and K2(δ) = {k ∈ [K] : µ∗ ≤ uk + δ, k > 1}, for any δ > 0.

The first part of the theorem follows by bounding the two summations using Lemmas 21 and 24 respectively.
To prove the asymptotic part, we simply take δ → 0 and n→∞ in the above expression.

D OSSB for MABs with mean bounds and Bernoulli Rewards

Here, we derive closed form expressions for the semi-infinite optimization problem in Combes et al. (2017) in
the case of Bernoulli rewards and bandits with mean bounds. In this section, we follow the notation in their
paper. An instance θ is represented by a vector of arm means (θ1, θ2, ...θK). We say an instance θ is feasible
if for each k ∈ [K], we have that θk ∈ [lk, uk]. Let Θ be the set of all feasible instances. With Θ as above,
ν(θk) ∼ Bernoulli(θk) and the mapping k, θ 7→ µ(k, θ) as µ(k, θ) = θk, our setting of Bernoulli bandits with
mean bounds can hence be viewed as a Structured Bandit.

Define for any α, β ∈ Θ, D(α, β, k) = d(αk, βk) where d(·, ·) is the Bernoulli kl-divergence function. Let
µ∗(θ) = maxk∈[K]µ(k, θ). Then, the optimization problem that determines the regret lower bound in our
case can be given as:

min
η(k)≥0

∑
k∈[K]

η(k) (µ∗(θ)− µ(k, θ))

s.t.
∑
k∈[K]

η(k)D(θ, λ, k) ≥ 1 ∀λ ∈ Λ(θ)

Λ(θ) = {λ ∈ Θ : D(θ, λ, k∗θ) = 0, k∗(θ) 6= k∗(λ)}

We now present the solution of the above optimization for a given instance θ.

For simplicity, consider the case with 2 arms: Arm 1 and Arm k. Let the instance θ ∈ Θ be such that
µ(1, θ) = µ∗(θ). We now have two cases:

1. µ∗(θ) > uk: In this case, the set Λ(θ) is empty since there is can be no other instance λ ∈ Θ with
µ(1, λ) = µ(1, θ) = µ∗(θ) and Arm k as optimal (since µ(k, θ) ≤ uk < µ∗(θ)). Thus, the optimal
solution to the optimization problem is η∗ = (0, 0).

2. µ∗θ ≤ uk(θ): In this case, we note that to satisfy the constraint over all instances in Λ(θ), it it
sufficient to set η(k) = 1

minµ∈[µ∗(θ),uk] d(µ(k,θ),µ) = 1
d(µ(k,θ),µ∗(θ)) . This uses the fact that d(a, x) as a

function of x is increasing in [a, 1]. Thus, the optimal solution in this case is η∗ =
(

0, 1
d(µ(k,θ),µ∗(θ))

)
.

Generalizing this to the case with K arms, we get that the solution to this problem for a given θ ∈ Θ is given
by

η∗(k) =
{

0 if µ∗(θ) > uk or if k = k∗(θ)
1

d(µ(k,θ),µ∗(θ)) otherwise

Finally, using this as the optima of the problem above, we have that the value at this optima is given by

C(θ) =
∑

k∈K2(θ)

µ∗(θ)− µ(k, θ)
d (µ(k, θ), µ∗(θ)) =

∑
k∈K2(θ)

∆k(θ)
d (µ(k, θ), µ∗(θ))

Thus, the asymptotic regret of OSSB reduces to C(θ) as ε, γ → 0. We note that in our case the OSSB
algorithm uses the solution to the above optimization at the t-th round with θ replaced with the truncated
empirical means, i.e. {min(uk,max(lk, µ̂k(t))) ∀k ∈ [K]}.
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E Confounded Logs

E.1 Stochastic Multi-armed Bandit Setting

We begin with the proof of Theorem 7

Proof of Theorem 7. For the upper bound, we split the expectation into two parts: (z, u) where k is optimal,
and (z, u) where k is not optimal. We have

µk,z =
∑
u∈U

µk,z,uP(u|z)

=
∑

u∈U :k=k∗z,u

µ∗z,uP(u|z) +
∑

u∈U :k 6=k∗z,u

µk,z,uP(u|z)

(Splitting the sum into parts based on the optimality of k)

≤
∑

u∈U :k=k∗z,u

µ∗z,uP(u|z) +
∑

u∈U :k 6=k∗z,u

(
µ∗z,u − δz

)
P(u|z)

(If k 6= k∗z,u, then its reward is at most µ∗z,u − δz)

=
∑
u∈U

µ∗z,uP(u|z)− δZ

 ∑
u∈U :k 6=k∗z,u

P(u|z)


= µz − δZ(1− pz(k)) (Using the definitions of µz and pz(k))

The inequality follows since the logs are assumed to be collected under an optimal policy. This completes the
proof of the upper bound.

To prove the lower bound, we fix an arbitratry k ∈ [K0] and z ∈ Z. Recall that K>(k, z) = {k′ : k′ 6=
k, µz(k′) > δ̄zpz(k′)} and let K≤(k, z) := [K0]\K>(k, z) = {k′ : k′ 6= k, µz(k′) ≤ δ̄zpz(k′)}. We note that
these sets can be identified from the logged data because µz(k′) and pz(k′) can be derived for any k′ and z.
Now we define the sets U>(k, z),U≤(k, z) as U>(k, z) = {u ∈ U : k∗z,u ∈ K>(k, z)},U≤(k, z) = {u ∈ U : k∗z,u ∈
K≤(k, z)}

We now expand the mean of the arm k under partial context z as follows.

µk,z =
∑

u∈U :k=k∗z,u

µ∗z,uP(u|z) +
∑

u∈U :k 6=k∗z,u

µk,z,uP(u|z)

= µz(k) +
∑

u∈U≤(k,z)

µk,z,uP(u|z) +
∑

u∈U>(k,z)

µk,z,uP(u|z)

≥ µz(k) +
∑

u∈U>(k,z)

(µ∗z,u − δ̄z)P(u|z)

= µz(k) +
∑

k′∈K>(k,z)

µz(k′)− δ̄z
∑

k′∈K>(k,z)

pz(k′).

The inequality holds because, firstly, we have µk,z,u ≥ 0 which we use for u ∈ U≤(k, z). Secondly, we have
µk,z,u ≥ (µ∗z,u − δ̄z) by definition of δ̄z, which we use for u ∈ U>(k, z). Since this holds for any arbitrary k, z,
this proves the lower bound.

Now we move on to the proof of our tightness claim

Proof of 8. Upper Bound Tightness:

For the tightness of the upper bound, notice that

uk,z =
∑
u∈U

µ∗z,uP(u|z)− δz
∑

u∈U :k 6=k∗z,u

P(u|z)
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=
∑

u∈U :k=k∗z,u

µk,z,uP(u|z) +
∑

u∈U :k 6=k∗z,u

(µ∗z,u − δz)P(u|z).

Which is the same as the quantity µk,z =
∑
u∈U µk,z,uP(u|z) when

µk,z,u = µ∗z,u − δz ∀u ∈ U : k 6= k∗z,u

If the above equality holds for all k ∈ [K0] and all z ∈ Z, we have that µk,z = uk,z. This instance is admissible
since it maintains the means of the best arms are unchanged, and thus do not affect the quantities µz and
pz(k) for any k. Thus, there exists an admissible instance where the upper bounds for each arm is tight.

Lower Bound Tightness:

Fix an arm k, and a partial context z. For the tightness of the lower bound for this particular arm k and
partial context z, we present an instance now. We assign µk,z,u = 0 for all u ∈ U≤(k, z), and µk,z,u = µ∗z,u− δ̄z
for all u ∈ U≤(k, z). For this particular choice, it is easy to see that the above lower bound is tight. We now
need to prove that this instance is admissible.

1. By construction we know µk,z,u ≥ 0 as µ∗z,u ≥ δ̄z for all partial contexts u ∈ U>(k, z). That µk,z,u ≤ 1, is
easy to check.

2. We know that (µ∗z,u − µk,z,u) ≤ δ̄z by construction for all partial contexts u ∈ U>(k, z), and due to the
fact that µ∗z,u ≤ δ̄z and µk,z,u = 0 for all partial contexts u ∈ U≤(k, z).

3. We know that (µ∗z,u − µk,z,u) ≥ δz by construction for all partial contexts u ∈ U>(k, z), and due to the
fact that µ∗z,u ≥ δz and µk,z,u = 0 for all partial contexts u ∈ U≤(k, z). Here, µ∗z,u ≥ δz due to non-negativity
of the mean-rewards and by definition of δz (the smallest gaps).

4. Finally, k is never optimal for any partial contexts u ∈ U≤(k, z) ∪ U>(k, z). Indeed, for all the partial
contexts u ∈ U≤(k, z), we have µk,z,u = 0 and µ∗z,u ≥ δz > 0. For all the partial contexts u ∈ U>(k, z) we
have µk,z,u = (µ∗z,u − δ̄z) < µ∗z,u. Therefore, for this instance we never observe k for any partial contexts
u ∈ U≤(k, z) ∪ U>(k, z), which ensures the log statistics does not change.

This concludes that the instance is admissible, and it proves that the lower bound is tight.

E.2 Confounded Logs for Linear Bandits with Fixed Arms

We now prove our result for mean bounds from confounded logs in the linear bandit case.

Proof of Theorem 9. Let Ek =
{
k = k̂(Tu)

}
be the event that arm k was optimal under the full context θ∗

when Tu was drawn according to the distribution C. By definition, we have pk = P(Ek) and

E[〈ak, θ∗〉] = 〈ak,z, θ∗z〉+ E[〈ak,u, Tu〉]
= 〈ak,z, θ∗z〉+ pkE [〈ak,u, Tu〉|Ek] + (1− pk)E

[
〈ak,u, Tu〉|ECk

]
= pkνk + (1− pk)

(
〈ak,z, θ∗z〉+ E

[
〈ak,u, Tu〉|ECk

])
Since Tu is such that the values of each of its entries are in [m,M ], we can write dm〈1d, ak,u〉 ≤
E
[
〈ak,u, Tu〉|ECk

]
≤ dM〈1d, ak,u〉. Rearranging the above equation then gives us the required result.

E.3 More Empirical Results

In Figure 6, we present the instances extracted out of each of the visible contexts of Occupation. The bounds
are calculated as suggested by Theorem 7.
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(a) Academic (b) Art (c) Law (d) Office

(e) Others (f) Retired (g) Scientific (h) Student

Figure 6: Instances with Occupation as visible context: The occupations are listed in the caption.
The data filtration and movie selection process is explained in Section 6.3.
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