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Abstract

Continual Learning is important for real-world natural language processing applications,
where computational systems are required to interact with continuous streams of tasks
and language over time. When forced to adapt to new tasks and inputs, language models
experience catastrophic forgetting. The current generative replay-based algorithms are not
scalable to many tasks, and their performance may degrade from a change in the task order.
In this paper, we propose a model based on network growth - a pre-trained Transformer
with Adapter modules for each task - that sequentially learns new NLP tasks in various
domains and prevents catastrophic forgetting without retraining the model from scratch.
We train and maintain lightweight adapter modules sequentially for each task. Without
increasing network growth by more than 15% and avoiding replay and task order bias,
the current design allows us to increase average task accuracy by 4.1% over the baseline
models.

Keywords: Continual Learning; Lifelong Language Learning; Adapter Transformer; LAMOL

1. Introduction

Humans can continuously accumulate, develop, and transfer knowledge and skills through-
out their lifetimes, giving rise to lifelong learning principles. Continuous learning is crucial
in real-world natural language processing applications, where computer systems must inter-
act with ongoing streams of data and language across time. Isolated learning is currently
the most used paradigm in machine learning. In isolated learning, the model experiences
catastrophic forgetting or interference due to non-stationary data distribution that biases
the model, making it unable to remember the information it has previously learned on a
stream of tasks joined to be trained sequentially.

In comparison, continual learning focuses on the ability of the model to learn continu-
ously and adaptively over time, which allows it to learn new information without forgetting
the past knowledge. In this work, we focus on lifelong language learning (LLL) on a con-
tinuous stream of NLP tasks. The performance of LLL is typically viewed as having an
upper bound provided by multi-task learning. There is still a performance gap between
other frameworks for LLL (Sun et al., 2019; Huang et al., 2021; Kanwatchara et al., 2021)
and multi-task learning. In these previous works, continual learning is maintained through
generative replay, which limits its application to a large number of tasks and the model
performance changes as the task order changes (Sun et al., 2019).
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We enhance the current LLL strategies by proposing a novel approach - Adapter based
Transformer - a dynamic architecture based on network growth. Particularly, we propose
to use task-specific adapters for each task, which equips the framework to learn new tasks
while retaining information about older tasks and thus, avoiding catastrophic forgetting.

Our main contributions are :

• We present Adapter based Transformers, our framework is space efficient. Due to the
adapters being lightweight, very little extra memory is utilized.

• Number of tasks to be trained need not be known in advance, we can always learn
new tasks by adding new adapter modules.

• The performance of our framework is independent of the order of the tasks.

2. Background and Related Work

2.1. Continual Learning

Among existing continual learning approaches for LLL, replay-based methods (Sun et al.,
2019) and regularization-based methods (Huang et al., 2021) have been widely applied to
NLP tasks to enable large pre-trained models to acquire knowledge from streams of textual
data without forgetting the already learned knowledge. LAMOL (Sun et al., 2019) is a
data-based LLL approach that simultaneously learns to solve a new task, while generating
pseudo samples for previous tasks to train alongside the new task. A single model is used
here, and no extra generator is used. Rational LAMOL (Kanwatchara et al., 2021) is an
enhancement of LAMOL. This framework applies freezing to critical components, identified
by rationales, which are part of input texts that best explain the prediction or class labels, in
transformer based language models, to maintain previously learned knowledge while being
trained on a new task. This is done as pseudo-sample generation may not be sufficient
to prevent catastrophic forgetting. In Information Disentanglement based Regularization
(Huang et al., 2021), the framework focuses on how to generalize models to new tasks,
rather than just focusing on preserving knowledge from previous tasks. It uses a multi-
layer encoder for a given sentence, that outputs hidden representations which contains
generic as well as task-specific information, and two disentanglement networks to extract
the generic and specific representations. While training on new tasks, the model regularizes
both these representations to different extents, to better remember previous knowledge as
well as transfer to new tasks.

2.2. Adapters

In a large pre-trained model with parameters Θ, adapters (Houlsby et al., 2019) are neural
modules with a limited number of newly added parameters Φ. While keeping Θ constant,
the parameters Φ are learned on a target task; as a result, Φ learns to encode the task-
specific representations in the pre-trained model’s intermediate layers. When compared to
the amount of parameters in a pre-trained model, the number of parameters in adapters is
parameter-efficient, comprising only 1% to 3% of those parameters. Due to their modularity
and small size, they accelerate training iterations and are shareable and composable (Pfeiffer



et al., 2020). Different adapter architectures are tested in (Houlsby et al., 2019), and the
results empirically demonstrate the effectiveness of a two-layer feed-forward neural network
with a bottleneck as an adapter. A schematic representation of the adapter module is
provided in 1.

3. Continual Learning with Adapter based Transformers

Figure 1: Adapter Model

We formalize our problem as a lifelong
learning problem on a set of NLP tasks
{T1, . . . , TN} taken sequentially, where the
number of tasks may be unknown. We pro-
pose Adapter based Transformers, a frame-
work that contains adapter modules spe-
cific to each task. Our framework sequen-
tially learns new NLP tasks from differ-
ent domains and avoids catastrophic forget-
ting by storing relevant information of older
tasks in respective task-specific adapters.
We used a pre-trained GPT-2 model (Rad-
ford et al., 2018) as the language model.
Whenever a new task comes, we add two
new adapters specific to the task, to each
layer of the transformer. The task-specific
adapter is then trained, keeping the weights
of the underlying language model and pre-
vious task specific adapters frozen. There-
fore, the model remembers previous tasks
perfectly, while simultaneously being able
to learn the new task. Since adapters have smaller number of parameters than the original
network, the model size growth will be minimal as the number of tasks grows.

We denote Θ as the parameters of pre-trained GPT-2 , and Φi as the parameters corre-
sponding to task-specific Adapter Ai associated with Task Ti.

For each new task Ti, the parameters of the pre-trained transformer Θ as well as older
task-specific adapters A1, . . . , Ai−1are kept frozen, and the adapter corresponding to the
new task is trained. The parameters Φi of Adapter Ai associated with task Ti are randomly
initialized, and Ai is then trained on the new task Ti. Freezing of the pre-trained transformer
parameters and older task specific parameters enables our framework to retain knowledge of
older tasks while simultaneously learning new tasks. The task specific adapter parameters
are learned by optimizing the loss function Li() corresponding to the task Ti, for instance
the cross-entropy loss for many NLP tasks.

Φ∗
i = argmin

Φi

Li(Θ,Φi) (1)

Please note that there is no language model (LM) loss to be used to train the proposed
adapter transformer based CL model unlike prior replay based CL models such as LAMOL.



Khan Agarwal P.K.

Dataset Train Test Metric

SST 6920 1821 EM
SRL 6414 2201 nF1
WOZ 2536 1646 dsEM

Table 1: Details of dataset size and metrics. nF1
- normalized F1 score; EM - exact match
between texts; dsEM - turn-based dia-
logue state exact match

Model Train Time

Adapter-Transformer 2650 secs
LAMOL 2919 secs

Table 2: Training time taken for
our proposed Adapter-
Transformer method and
baseline LAMOL

This is because we don’t have to generate pseudo samples from the previous tasks to train
the transformer to remember previous tasks.

4. Experimental Setup

4.1. Dataset Details

We conducted experiments on the following datasets to evaluate our proposed framework.
Table 1 summarizes the datasets, dataset sizes, and metrics.
Stanford Sentiment Treebank(SST) (Socher et al., 2013) - which is a sentiment analysis
task consisting of sentiments (binary - positive or negative) corresponding to a movie review.
Semantic Role Labeling (SRL) (He et al., 2015) - which is a role labeling task where
Wikipedia domain of QA-SRL 1.0 is used, and the task is to assign labels that assign
semantic meaning to a phrase or sentence.
Goal-oriented dialogue (WOZ) (Mrkšić et al., 2017) - which is a reservation task from
English Wizard of Oz restaurant, and it comes with predefined information that will assist
an agent to make a reservation for the customer.

4.2. Data Formatting

Following the process used in decaNLP (McCann et al., 2018) and LAMOL (Sun et al.,
2019), samples from the datasets we use are framed into a SQuAD-like scheme, consisting
of context, question, and answer. Special tokens are also added: ANS is inserted between
question and answer. As the context and question are known during inference, decoding
starts after inputting ANS. EOS is the last token of every example. Decoding stops when
EOS is encountered.

5. Results

We compare the performance of Adapter-Transformers with the LAMOL (Sun et al., 2019)
as the baseline. The training and inference of both models are done on the NVIDIA Tesla
V100 Graphics cards of 32 Gbs. Both the models are trained sequentially on the train
samples from the three data sets SST, SRL, and WOZ and their performance is obtained
on the test samples of these data sets after completing the sequential training. The results
are provided in Table 3. The proposed transformer adapter model sees a 1.3% increase in



Dataset Metrics Adapter- LAMOL
Trans-
former

SST EM 90.88 90.94
SRL nF1 67.96 68.38
WOZ dsEM 88.54 85.75

Table 3: Details of averaged met-
ric scores for our proposed
Adapter-Transformer method
and baseline LAMOL

Dataset Task Order Task Order
(SRL,SST, (SRL,WOZ,
WOZ) SST)

SST 90.6 90.8
SRL 67.3 67.7
WOZ 88.3 88.1

Table 4: Details of average metric scores
for different task ordering

average task accuracy compared to baseline, as seen in Table 3. In another experiment
we conducted, as we added another task (Amazon Review (d’Autume et al., 2019) along
with SST, SRL, and WOZ), our framework performed better than LAMOL on 2 out of
4 tasks (WOZ and amazon), the EM score was 62.41 on the amazon review dataset while
LAMOL was 52.50. This shows that as we add more tasks the CL capability of the proposed
approach becomes better. Task order doesn’t have much effect on model performance, as
seen in Table 4.

As our proposed model is light-weight and avoids replay, we observe in Table 2 that it
has faster training time compared to baseline, with less than a 15% increase in network
growth, as can be seen in Table 5.

6. Parameter Growth Study

Table 5 compares the parameters of our proposed model and baseline model LAMOL. For
a particular task, we train 11,822,592 adapter parameters which leads to around 13.9%
growth in the network.

Adapter-Transformer LAMOL Increase Increase%

1 layer 8,072,320 7,087,104 985,216 13.90
12 layers 96,867,840 85,045,248 11,822,592 13.90
Total(Layerwise+Fix)1 136,254,720 124,432,128 11,822,592 9.50

Table 5: Summary of Parameter increase in proposed model vs baseline

7. Conclusion

We propose Adapter-Transformers, a framework for LLL, that can efficiently learn informa-
tion of new tasks without forgetting older tasks. With the current design, we can improve
average task accuracy by 4.1% over LAMOL without increasing the network growth by
more than 15% and avoiding replay and task order bias.

1. In ”Layerwise + Fix”, Fix refers to the embedding that is only needed once, the word embedding layer
parameters (3,860,448) and positional embedding layer parameters (768,432); Layerwise for GPT-2 refers
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Baseline LAMOL: We wanted to compare the best version of LAMOL (Sun et al., 2019)
with our model; hence LAMOL’s best-performing hyper-parameters were used. We have
set k = 20 in top-k sampling and λ = 0.2 for the weight of the LM loss. The learning rate is
set up as 6.25e−5 and is scheduled to be linear with a warmup. Each task is trained for five
epochs with loss as a summation of Question Answering (QA) and Language model (LM)
loss and the optimizer is AdamW (Loshchilov and Hutter, 2019).

Adapter Transformer: To have a fair comparison with LAMOL, we used almost
similar hyper-parameters. We have set k = 20 in top-k sampling and there is no LM loss to
be used in the adapter transformer. The learning rate is set up as 6.25e−5 for all the tasks
and is scheduled to be linear with a warmup. Each task is trained for 12 epochs with loss
as only Question Answering (QA) loss and the optimizer is AdamW.
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