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Abstract

Respiratory diseases remain a leading cause
of global mortality, where timely and accurate
diagnosis is critical to improving patient out-
comes and reducing healthcare burdens. While
prior work has explored audio-based models for
respiratory disease detection, such unimodal
approaches often suffer from limited gener-
alizability and diagnostic precision. In this
paper, we propose RespiraMFM, a Multi-
modal Foundation Model that integrates res-
piratory sounds with patient medical history
and symptoms to enhance diagnostic accuracy
and disease detection capabilities. We intro-
duce an effective contrastive alignment strategy
for audio-text multimodal integration, allow-
ing the model to learn better cross-modal rep-
resentations between respiratory sounds and
corresponding textual clinical information. We
evaluate Re spiraMFM across five major respi-
ratory diseases using seven real-world datasets
in both supervised fine-tuning and zero-shot set-
tings, achieving a 14.4% improvement in AU-
ROC on supervised tasks and a 13.4% gain on
zero-shot tasks over existing baselines. These
findings underscore the potential of our frame-
work to advance early diagnosis and improve
clinical decision-making in respiratory disease
management.

1 Introduction

Respiratory diseases, such as COVID-19, tubercu-
losis (TB), chronic obstructive pulmonary disease
(COPD), asthma, and pneumonia, remain a lead-
ing cause of morbidity and mortality worldwide
(Weinberger et al., 2020). Most existing works
(Baur et al., 2024; Zhang et al., 2024a) on detect-
ing those respiratory diseases rely solely on au-
dio inputs such as coughing sounds or stethoscope
recordings. However, their performance is often
constrained by the limited information that audio
data alone can provide.

To mitigate the constraints of relying solely

on audio inputs, researchers have proposed mul-
timodal methods (Kim et al., 2024; Zhang et al.,
2024b) that combine respiratory audio with rele-
vant clinical information, such as symptoms (e.g.,
fever, fatigue, chest pain) and lifestyle factors
such as smoking history. For instance, BTS (Kim
et al., 2024) proposes an audio-text model that
uses metadata associated with respiratory sounds.
This model concatenates learned representation
from audio and text encoders to improve respira-
tory disease identification. Moreover, RespLLM
(Zhang et al., 2024b) utilizes a large language
model (LLM) as the text encoder alongside a sep-
arate audio encoder, with a linear projector for
matching dimensions. Despite these efforts, ex-
isting methods still face two major limitations: (1)
they lack effective fusion mechanisms for deep
cross-modal interaction, as they often rely on sim-
ple concatenation or linear projection to combine
modalities, which fails to capture complex seman-
tic relationships between audio and text features.
and (2) their zero-shot performance reveals limited
generalization capability, leading to suboptimal per-
formance on novel or unseen diseases. Since the
audio and text encoders are typically trained inde-
pendently, their resulting representations may not
be well-aligned, hindering the model’s ability to
exploit complementary cross-modal information.
To address these challenges, we introduce
RespiraMFM, a Multimodal Foundation Model
that effectively bridges audio and textual represen-
tations for respiratory disease identification. Specif-
ically, we improve existing multimodal systems
with a two-stage learning framework. First, we use
a contrastive learning-based module to align the
representation from both audio and text modalities.
This process facilitates the second stage, where
LLMs can effectively leverage the aligned audio-
text representation, instead of modality-specific fea-
tures, to accurately identify the respiratory disease.
We evaluate RespiraMFM using seven real-



world datasets that cover five of the most com-
mon respiratory diseases: COVID-19, TB, COPD,
asthma, and pneumonia. We highlight four of our
findings: (1) RespiraMFM consistently outper-
forms state-of-the-art multimodal baselines on res-
piratory disease identification by achieving a 14.4%
improvement in AUROC on supervised tasks and
a 13.4% improvement on zero-shot tasks. (2)
RespiraMFM achieves superior generalization ca-
pabilities and effectively detects unseen respiratory
diseases without requiring any training samples of
those diseases. (3) RespiraMFM significantly re-
duces the training data requirement, achieving com-
parable performance with an order of magnitude
less training data compared to the baselines. (4)
Our contrastive alignment module effectively uni-
fies audio and text modalities, leading to consistent
AUROC improvements across all tasks compared
to models without this module.

2 Related Work

2.1 Single-Modal Models

The majority of existing respiratory disease identifi-
cation methods (Yang et al., 2020; Ma et al., 2020;
Chang et al., 2022) rely solely on audio inputs such
as cough sounds or stethoscope recordings. Bae
et al. (2023) introduce a contrastive learning frame-
work to enhance respiratory sound classification
using Audio Spectrogram Transformer (AST). By
mixing spectrogram patches generated from raw
audio data and applying contrastive loss, the model
learns robust and discriminative features, which are
subsequently passed to a linear classifier for respi-
ratory disease identification. OPERA (Zhang et al.,
2024a) curates large-scale unlabeled respiratory au-
dio datasets and pretrains three foundational mod-
els using self-supervised learning. Among them,
OPERA-CT, the best-performing model, is a con-
trastive learning—based transformer model, which
is used as general-purpose feature extractors for res-
piratory disease classification tasks. HeAR (Health
Acoustic Representations) (Baur et al., 2024) intro-
duces a self-supervised generative learning-based
framework trained on a large corpus of health-
related audio data. By leveraging generative objec-
tives during pretraining, HeAR learns generalizable
audio representations which is utilized for down-
stream disease diagnosis tasks via simple linear
probes. Despite the promising results of single-
modal models, their performance is limited by the
information available from audio data alone.

2.2 Multimodal Models

Unlike single-modal models, multimodal models
combine audio data with textual information such
as patient symptoms and medical history, leading
to more accurate diagnoses. BTS (Kim et al., 2024)
introduces a text-audio model that combines res-
piratory sounds with metadata transformed into
descriptive text. It uses the Contrastive Language-
Audio Pretraining (CLAP) (Elizalde et al., 2023)
model to extract features from both modalities, fol-
lowed by a linear classifier for respiratory disease
classification. However, the use of a basic linear
classifier limits its ability to generalize in zero-shot
scenarios or when encountering new diseases. To
date, RespLLLM (Zhang et al., 2024b) is one of the
early efforts that applies a multimodal LLM frame-
work integrating text and audio representations for
respiratory disease prediction. Their approach uti-
lizes a pretrained encoder to extract audio and text
features and a trainable linear projector to align the
feature dimensions with LLM. However, since each
modality encoder is trained separately, the result-
ing representations are often distinct and may not
be directly compatible across modalities. While a
linear projector can align the encoder output dimen-
sions with those expected by the LLM, it does not
ensure semantic alignment between modalities. To
address these limitations, we propose a contrastive
alignment module that facilitates more effective in-
tegration by aligning audio and text representations
in a shared semantic space. Our approach goes
beyond mere dimensional alignment, aiming to es-
tablish a shared representation space that enables
effective integration of multimodal information.

3 RespiraMFM

3.1 Overview

Figure 1 provides an overview of the proposed
RespiraMFM framework. In the data curation
stage shown in Figure 1(a), given the multimodal
respiratory datasets, we extract and pre-process
the raw audio data and the corresponding patient
symptoms to construct the instruction tuning data
for respiratory disease identification. As shown in
Figure 1(b), the curated multimodal data are first
processed by the audio and text encoders to get au-
dio and text representations, respectively. One key
component of our framework is the alignment mod-
ule that reduces the domain mismatches between
audio features and the language model embeddings.
The alignment module is trained separately via con-
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Figure 1: Overview of RespiraMFM.

trastive learning. Upon completion of training, the
alignment module is frozen and incorporated into
the instruction tuning stage. During instruction
tuning, the curated data are passed through each
encoder to obtain modality-specific representations,
which are then fused by concatenating them. The
resulting multimodal representation is subsequently
fed into the LLM to generate predictions for respi-
ratory disease classification.

3.2 Data Curation

The multimodal respiratory datasets consist of both
respiratory audio recordings and the correspond-
ing patient-reported symptoms in either JSON or
tabular format. The objective of data curation is to
create the instruction tuning data by pre-processing
the respiratory audio recordings, generating in-
struction prompts, and converting patient-reported
symptoms into structured textual representations.
For audio recordings, each recording was normal-
ized to 8 seconds in length by either truncating
longer recordings or padding shorter ones through
repetition. The audio signals are then processed
with a 64ms Hann window with a 32ms step size,
and subsequently converted into mel spectrograms
denoted as z, using the features extracted from
a pre-trained OPERA-CT encoder (Zhang et al.,
2024a). Patient metadata varies across datasets in
terms of structure and format. As shown in Fig-
ure 1(a), we select relevant symptoms (Table 5)
from the tabular data and apply a standardized tem-
plate to generate a textual representation x.. We
utilize task-specific prompts x,, such as - "Classify
whether the participant has COVID-19 given the
following information.The 2 classes are: healthy,
COVIDI9. Please output 0 for healthy and 1 for
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Figure 2: Illustration of contrastive learning-based
audio-text alignment.

COVID19" to guide the LLM in producing disease
classification outputs.

3.3 Contrastive Learning-based Audio-Text
Aligning

We introduce a contrastive learning-based audio-
text alignment module to align audio features with
language model embeddings effectively. Specifi-
cally, we employ a pre-trained audio encoder that
generates 768-dimensional embeddings from the
input audio. In contrast, large language models typ-
ically operate with higher-dimensional input em-
beddings (e.g., 2048 or 4096, depending on the
model). Therefore, it is necessary to match the au-
dio dimension to use as input into the LLM. Prior
work (Zhang et al., 2024b) addresses this by intro-
ducing a trainable linear projector to map audio
embeddings into the higher-dimensional space re-
quired by the LLM. However, given the fundamen-
tal differences between the audio and text encoders
in both architecture and representational semantics,
simple dimensional alignment may be insufficient
to achieve effective multimodal fusion (Lyu et al.,
2023, 2024). To enable more effective cross-modal
alignment between audio and text, we adopt a con-



trastive learning strategy—an approach shown to
yield powerful multimodal representations in mod-
els like CLIP (Radford et al., 2021). As shown in
Figure 2, we compute text embeddings e; € R?
using a frozen LLaMA model, where e, = fr(x.),
fr is the text encoder (LLM), z.. is the textual con-
text, and d is the embedding dimension of LLM.
Similarly, audio embeddings e, € R"%® are ex-
tracted using a frozen OPERA encoder, where
e, = fo(za), fo is the pre-trained Opera-CT au-
dio encoder, and z, is the mel-spectrogram of the
raw audio data.

A lightweight projection head fy : R7%® — R¢
is trained to map audio embeddings into the same
semantic space as the text embeddings. The train-
ing objective minimizes a contrastive loss that en-
courages matched audio-text pairs to be close while
pushing unmatched pairs apart.

Formally, for a batch of N paired samples, we
define the normalized embeddings as:

a f@(e?) t elz?
a
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The contrastive loss (Chen et al., 2020) is given by:
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where 7 is a temperature scaling factor. By training
this projection head with contrastive supervision,
we achieve better semantic alignment across modal-
ities while keeping the audio and text encoders
frozen. The model architecture and additional train-
ing details about the aligner module are presented
in Appendix D.

3.4 Instruction Tuning

We employ instruction tuning to guide the LLM in
understanding and following task-specific prompts
that connect the multi-modal input and the corre-
sponding diagnostic outcomes. The core compo-
nents of instruction tuning are described below.

Multimodal Fusion: The audio and text features
are fused at the embedding level by concatena-
tion. During this stage, we utilize the contrastively
trained alignment module (fy) from the previous
step (§3.3), keeping its weights frozen to preserve
the learned representations. Similarly, the text en-
coder (fr) and the audio encoder (fp) are also
kept frozen during this stage. The inputs include
mel-spectrogram (z,), curated patient symptom

descriptions as contextual information (x.), and
a task-specific prompt (z,). Audio embeddings
2o € RY are extracted via the audio encoder and
subsequently projected to match the input dimen-
sionality of the LLM.

za = fo(fo(wa))

Simultaneously, the prompt and contextual text
are processed through the LLM’s encoder to obtain
their respective representations, denoted as z, €
R? and 2, € RY, corresponding to the prompt and
context embeddings.

Zp = fT(xp)y Ze = fT(JL'C).

Finally, we concatenate the audio (z,), prompt

(zp), and context (z.) embeddings to get a com-
bined embedding of a longer sequence:

% fusion = %a H Zp ” Zc

where | denotes concatenation operation and
Z fusion € Rd-

Large Language Model: We utilize Bio-Medical-
LLaMA-8B!, a domain-adapted version of
LLaMA-3-8B-Instruct fine-tuned on a specialized
biomedical dataset, as the backbone LLM. To adapt
it for our classification task, we extend the model
by appending a linear classification head atop the
transformer architecture. We first form the multi-
modal fusion embeddings by concatenating audio
and text representations. These fused embeddings
are then fed into the LLM to produce a sequence
of hidden states. A pooling layer is then applied
to obtain the latent representation zp,. Specifically,
we adopt the default pooling strategy used in
LlamaForSequenceClassification,
which selects the hidden state corresponding
to the final token in the sequence. Finally, a
linear classification head is applied to the pooled
representation to produce prediction scores for
different respiratory disease identification tasks.

Zh = POOlfinal(fLLM(zfusion>)

This vector z is then passed through a classi-
fication head comprising fully connected layers,
followed by a softmax function to produce class
probability distributions. The model is trained us-
ing cross-entropy loss:

"https://huggingface.co/ContactDoctor/Bio-Medical-
Llama-3-8B



Table 1: Summary of the datasets and tasks.

Task ID  Dataset Disease #Train/Test

T1 UK COVID-19 (Coppock et al., 2024) COVID-19  20717/11121
T2 Coughvid (Orlandic et al., 2021) COVID-19  7958/2464
T3 TBscreen (Sharma et al., 2024) TB 20302/8051
T4 ICBHI (Rocha et al., 2019) COPD 462/366

TS5 Coswara (Bhattacharya et al., 2023) COVID-19  -/1747

T6 CodaTB (Huddart et al., 2024) TB -/12053

T7 KAUH (Fraiwan et al., 2022) COPD -/132

T8 KAUH (Fraiwan et al., 2022) Asthma -1201

T9 KAUH (Fraiwan et al., 2022) Pneumonia  -/120

c
Leg=—> yilog(fi)

i=1
where y; and g; are the true and predicted probabil-
ities for class 7, respectively.
Training Details: The instruction tuning process
combines task-specific instructions z;, with multi-
modal audio (z,) and text (z.) inputs to ensure the
model generates outputs that align with the desired
response format. Additionally, we use LoRA (Low-
Rank Adaptation) (Hu et al., 2021), a parameter-
efficient fine-tuning (PEFT) technique designed to
preserve the inherent knowledge of a pre-trained
LLM. The model was trained for 40 epochs, and
the training configuration further optimizes LoRA
with parameters like a rank (r) of 16, scaling factor
(av) of 32, and a dropout of 0.1.

4 Experimental Setup

4.1 Datasets and Tasks

We evaluate the performance of RespiraMFM us-
ing seven real-world datasets, covering five of
the most common respiratory diseases: COVID-
19, TB, COPD, asthma, and pneumonia. These
datasets include both respiratory audio recordings
(e.g., coughing sound, stethoscope sound) and the
associated metadata, such as patient-reported symp-
toms and medical history. Based on these datasets,
we construct nine respiratory disease identification
tasks as summarized in Table 1. Datasets associ-
ated with tasks T1 through T4 are used for training
and in-domain evaluation using held-out test sets,
while datasets associated with tasks T5 through
T9 are reserved for zero-shot evaluation. For each
task, the model is trained on the combined train-
ing data from T1 to T4. For example, in TS5, the
model is trained using all data from T1 to T4 and
evaluated on the TS5 test set. Notably, T8 and T9
involve entirely new diseases (asthma and pneumo-

nia) not seen during training, allowing us to assess
the model’s generalization ability to previously un-
seen conditions in a zero-shot setting. Details of
each dataset and task are provided in Appendix A.

4.2 Baselines and Evaluation Metrics

Baselines: We compare RespiraMFM against two
state-of-the-art multimodal baselines: BTS (Kim
et al., 2024) and RespLLM (Zhang et al., 2024b).
More details about the baselines are included in
Appendix C.

Evaluation Metrics: To ensure fair comparison,
we follow prior works on respiratory disease de-
tection to use the Area Under the Receiver Op-
erating Characteristic Curve (AUROC) (Janssens
and Martens, 2020) as the evaluation metric for all
the tasks. To ensure robust evaluation, each result
was obtained through three independent runs. The
mean and standard deviation of the AUROC scores
across these runs are reported.

4.3 Implementation Details

We utilized PyTorch 2.3.0, transformers 4.47.1
(Wolf et al., 2020), and accelerated on four
NVIDIA A100-80G GPUs. The training process
uses a batch size of 16.

5 Results

5.1 Overall Performance

First, we compare the performance of
RespiraMFM with the baselines under the
supervised learning setting on the held-out test sets
of the training datasets on tasks T1 through T4.
The results are summarized in Table 2. As shown,
RespiraMFM consistently outperforms both BTS
and RespLLM across all four tasks. Overall, the
average AUROC RespiraMFM has achieved over
tasks T1 through T4 is 0.895, representing 12.3%
improvement over BTS (average AUROC: 0.797)
and 14.7% gain (average AUROC: 0.780) over
RespLLM. These results demonstrate the strong
performance of RespiraMFM in identifying a
wide range of respiratory diseases, advancing the
state of the arts.

5.2 Zero-Shot Performance

Next, we evaluate the zero-shot performance of
RespiraMFM under the following two scenarios.

Unseen Datasets: Regarding the unseen datasets
condition, we compare RespiraMFM with BTS
and RespLLM in performing tasks T5-T7. In these



Table 2: AUROC comparison for respiratory disease recognition task. Results are shown in mean + std format of
three individual runs. The light teal color indicates the second highest results, and heavy teal color indicates the
highest results. The values in parentheses represent the relative improvement (%) of RespiraMFM over the strongest

baseline for each task.

Task ID  Dataset ‘ Disease ‘ BTS ‘ RespLLM ‘ RespiraMFM (ours)
T1 UK COVID-19 | COVID-19 | 0.909 +0.012  0.903 £ 0.002 0.914 £ 0.002 (T 1.14 %)
T2 Coughvid COVID-19 | 0.617 +£0.014  0.627 & 0.008 0.722 £ 0.013 (1 15.15 %)
T3 TBscreen TB 0.670 + 0.015 ‘ 0.593 + 0.015 0.946 £ 0.013 (1 41.19 %)
T4 ICBHI COPD 0.993 +0.004  0.997 £ 0.001 1.000 + 0.000 (1 0.3 %)

tasks, the datasets used for evaluation are not seen
during training, though the target diseases remain
the same. Specifically, the models are trained on
one or more datasets for a given disease and eval-
uated on a different, unseen dataset for the same
condition. For example, in task TS5, the training
data includes other COVID-19 datasets such as
UKCOVID-19 and CoughVid, and is evaluated on
the unseen Coswara dataset. As shown in Table 3,
the proposed RespiraMFM consistently outper-
forms both multi-modal baselines on these unseen
datasets. Specifically, our average AUROC over
these tasks is 0.827, outperforming BTS by 14.3%
(average 0.723) and RespLLM by 12.5% (aver-
age 0.735) on average AUROC. For example, our
model trained on the UKCovid-19 and CoughVid
datasets also show strong performance in classify-
ing COVID-19 disease within the Coswara dataset.
Moreover, RespiraMFM demonstrates a 38% rel-
ative performance improvement in COPD detection
on the KAUH dataset compared to the other multi-
modal baselines.

Unobserved Respiratory Diseases: Regarding
the unobserved respiratory diseases, we further
compare RespiraMFM with BTS and RespLLM
on the prediction of asthma (T8) and pneumonia
(T9). In both tasks, the models are trained on
datasets from T1 to T4, none of which include
instances of asthma or pneumonia. As shown in
Table 3, despite having no disease-specific training
data for these conditions, RespiraMFM consis-
tently outperforms both baselines. Specifically, it
achieves an 19.8% relative improvement in pneu-
monia prediction over BT S and Re spLLM. Overall,
these results suggest that RespiraMFM general-
izes effectively across datasets and to previously
unseen respiratory diseases.

5.3 Effects of Data and Model Scaling

Effect of Data Scaling: To assess how the training
dataset size impacts the model performance, we
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Figure 3: Effect of dataset scaling.

conducted experiments on Task T1 by systemati-
cally varying the number of training examples. In
this experiment, the model was trained on a com-
bined set of UKCOVID-19, Coughvid, TBscreen,
and ICBHI datasets and evaluated on the held-out
test of the UKCOVID-19 dataset. Starting with a
full training set of 49,439 samples, we randomly
sampled subsets at varying fractions and compared
our model with the baselines on the same test set.
We explored two configurations for this experiment:
a single-modal setup using only audio features as
input, and a multi-modal setup that integrates both
audio and textual features as input. The results are
shown in Figure 3. Figure 3a, which corresponds
to the single-modal setting using only audio input,
shows a clear trend of improved performance with
increasing training samples, indicating that larger
datasets lead to better performance. Our model
consistently outperforms both BTS and RespLLM
across all data fractions, with notably strong per-
formance even at low data availability. While all
models benefit from more data, ours maintains a
consistent lead. In contrast, Figure 3b illustrates
the multi-modal configuration, where both audio
and text features are used as input. Here, our model
rapidly approaches peak performance with mini-
mal training data and significantly outperforms the
baselines across nearly all data scales. These re-
sults highlight the strength of multi-modal integra-



Table 3: AUROC comparison for respiratory disease recognition task of zero-shot prediction on new dataset. Results
are shown in mean =+ std format of three individual runs. The light teal color indicates the second highest results,

and heavy teal color indicates the highest results. The values in parentheses represent the relative improvement
(%) of RespiraMFM over the strongest baseline for each task.

ID Dataset Task BTS RespLLM RespiraMFM (ours)
T5 Coswara Covid 0.905 £ 0.008 | 0.925 £ 0.008 0.927 + 0.006 (1 0.22 %)
T6 CodaTB TB 0.645 £ 0.016 | 0.649 £ 0.018 0.681 £ 0.013 (1 4.93 %)
T7 KAUH COPD 0.619 £ 0.013 | 0.633 +0.012 0.874 + 0.005 (1 38.07 %)
T8 KAUH Asthma 0.632 £ 0.015 | 0.596 £ 0.011 0.658 £ 0.011 (1 4.11 %)
T9 KAUH pneumonia | 0.542 £+ 0.025 | 0.604 + 0.015 0.724 + 0.010 (1 19.85 %)
101 Mild or No Moderate Healthy Total
symptoms symptoms
0.8
006 Audio 0.3576 0.3571 0.7266  0.6102
go
= 04 Text 0.3294 0.619 0.9766  0.7934
0.2 Audio+Text 0.4047 0.6587 0.9849  0.8203
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Figure 4: Performance comparison of BiomedLLaMA
models with different scales (1B vs. 8B) across all tasks.
The 8B model consistently outperforms the 1B model,
with larger gains observed on tasks involving unseen
diseases.

tion, especially in clinical contexts where labeled
data is often limited. The findings suggest that
multi-modal models are particularly well-suited for
deployment in resource-constrained healthcare set-
tings, offering high diagnostic performance even
with sparse training data.

Scaling Law of Model Size: To investigate
whether respiratory instruction-tuning on larger-
scale models yields better results, we validate 1B
and 8B versions of BiomedLLaMA across all tasks.
As shown in Figure 4, the 8B model matches or out-
performs the 1B model on nearly all tasks, demon-
strating the benefits of scaling model size in respi-
ratory disease recognition. Notably, Performance
gains are more substantial in tasks involving new
and unseen diseases (T6-T9), suggesting that larger
models possess stronger generalization capabilities
and are better equipped to handle distribution shifts
in real-world clinical settings. However, the 1B
model performs competitively compared to the 8B
model, suggesting it remains a viable option for
deployment on resource-constrained devices such
as mobile platforms.

Table 4: Performance comparison of audio-only, text-
only, and multimodal (audio+text) models across differ-
ent patient groups in the Coswara dataset. Bold indi-
cates the best performance and underlined indicates the
second-best.

5.4 Ablation Study

Uni-Modality vs. Multi-Modality: To assess the
effectiveness of multimodal integration compared
to unimodal inputs, we conducted experiments on
Task TS5, aiming to understand whether combin-
ing audio and textual information offers comple-
mentary benefits that improve diagnostic perfor-
mance beyond what a single modality can achieve
alone. In this experiment, the model is trained
on the combined data from all available training
datasets and evaluated in a zero-shot setting on the
Coswara dataset. We select the Coswara dataset
for this experiment because it provides both dis-
ease labels and additional metadata describing pa-
tient health status, including severity levels such
as asymptomatic (no symptoms), mild, moderate,
and healthy. We group these into three broad cate-
gories—mild or no symptoms, moderate symptoms,
and healthy—and evaluate models in three config-
urations: audio-only input (uni-modal), text-only
input (uni-modal), and multimodal input combin-
ing both audio and text. Accuracy is used as the
evaluation metric for all configurations. As shown
in Table 4, for cases with mild or no symptoms, the
audio-only model outperforms the text-only model
based on the symptom information. Conversely,
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the text-only model performs better compared to
the audio-only model for symptomatic and healthy
individuals. On the other hand, the multimodal
model, which integrates both audio and text infor-
mation, consistently outperforms both unimodal
models across all severity levels and on the overall
dataset. In summary, these results demonstrate the
clear advantage of combining multiple modalities
for improved disease prediction.

Contrastive Alignment: To assess the effective-
ness of the contrastive alignment module intro-
duced in §3.3, we conducted a comparative study
on tasks T1-T6 by training the model with and
without this component. We evaluated two config-
urations: (a) using audio-only input to isolate the
impact on unimodal audio data, and (b) combining
audio and text to evaluate performance in a mul-
timodal setting. For the baseline (w/o alignment),
we employed a standard linear projector commonly
used in prior work (Zhang et al., 2024b). Results
are presented in Figure 5. As shown in the left plot
(Audio Only), the alignment module consistently
yields higher AUC scores across all tasks, indicat-
ing more informative audio representations for in-
struction tuning. Similarly, in the multimodal con-
figuration (right plot), the aligned model matches
or outperforms the baseline in every case. These
findings suggest that contrastive alignment not only
strengthens unimodal audio features but also con-
tributes positively to overall representation quality
in multimodal scenarios.

Generic vs. In-Domain LLM: In this experiment,
we evaluate the contribution of specialized medi-
cal domain knowledge in the in-domain BiomedL-
LaMA model compared to the general-purpose
base LLaMA model for disease detection. We use
both the 1B and 8B variants of BiomedLLaMA to
compare against the corresponding base LLaMA
models across all tasks in multimodal settings. The

LLama-3.2-1B
—— BiomedLLama-1B

—— LLama-3.2-8B
—— BiomedLLama-8B

T3

T8

(a) 1B model (b) 8B model

Figure 6: Performance comparison of general-purpose
(LLaMA-3.2) and domain-specific (BiomedLLaMA)
LLMSs across various tasks. (a) shows results for 1B
models, while (b) shows results for 8B models.

results are presented in Figure 6, where subfigure
(a) corresponds to the 1B variant and subfigure (b)
corresponds to the 8B variant. In both cases, in-
domain BiomedLLaMA models consistently match
or outperform their general-purpose counterparts,
with more pronounced gains observed in larger 8B
model variants. This suggests the effectiveness of
using in-domain LLMs, particularly in complex
multimodal tasks where domain-specific knowl-
edge plays a critical role in disease detection.

6 Conclusion

In this paper, we introduced RespiraMFM, a multi-
modal foundation model designed to detect respi-
ratory diseases by integrating respiratory sound
recordings with patient-reported symptoms and
medical history. We also proposed an effective
method for multimodal alignment of text and au-
dio input, demonstrating strong performance across
nine tasks involving five major respiratory diseases
using diverse real-world datasets. We also showed
that the model can maintain high diagnostic ac-
curacy even with limited training data, making it
suitable for deployment in data-scarce healthcare
environments. Overall, RespiraMFM offers a scal-
able, non-invasive, and clinically relevant solution
for early and accurate respiratory disease detection,
with the potential to support medical professionals
and improve decision-making across a variety of
healthcare settings.

7 Limitation

While our proposed multimodal foundation model
shows strong performance across various respira-
tory disease detection tasks, it has some limitations.



The model’s effectiveness depends on the qual-
ity and consistency of symptom metadata, which
can differ significantly between datasets and clin-
ical environments. For instance, in Task T2, the
model performs relatively lower compared to other
COVID-19 detection tasks (T1 and T5), likely due
to the limited or less informative symptom data
available in the Coswara dataset, making accurate
diagnosis more challenging. Additionally, although
the model integrates audio and symptom data, in-
corporating additional modalities such as medical
imaging or wearable sensor data could further im-
prove its diagnostic accuracy and robustness.

8 Ethics Statement

We foresee no ethical concerns with our work. All
the datasets used in this study were anonymized
and excluded any participant identity information.
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A Additional Details on Datasets

In this study, we used the following datasets:
UK COVID-19: The UK COVID-19 Vocal Au-
dio Dataset (Coppock et al., 2024) represents the
largest collection of SARS-CoV-2 PCR-referenced
audio recordings to date, compiled in the United
Kingdom. The dataset features PCR test results
linked to 70,794 out of 72,999 participants, with
24,155 of the 25,776 confirmed positive cases accu-
rately documented. Notably, respiratory symptoms
were reported by 45.62% of the participants, pro-
viding valuable symptomatic metadata for analysis.
All the audio recordings were captured in the .wav
format. In our study, we adopt the official train-test
split released with the dataset.

29.2%

70.8%
911%

Non-Covid

(a) Class Distribution in covid datasets (UK covid-19,
coughvid and coswara)

rrrrrrrr

309% dted

@S 731%

i)

(b) Class Distribution in TB datasets (TBscreen and Coda TB)

312%

28.6%
copD
Healthy

Asthma

(c) Class Distribution in ICBHI and KAUH datasets

Figure 7: Class Distribution Across Datasets

Coswara: The Coswara dataset (Bhattacharya
et al., 2023) is a diverse collection of respiratory
sounds and detailed metadata, recorded between
April 2020 and February 2022 from 2,635 individ-
uals, including 1,819 SARS-CoV-2 negative, 674
positive, and 142 recovered cases. It features nine
categories of respiratory sounds, covering varia-
tions of breathing, coughing, and speech, providing
a rich dataset for analyzing respiratory health. In
addition to audio recordings, the dataset includes
comprehensive metadata, capturing demographic
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Figure 8: Symptom Occurrence Distribution by COVID-
19 Test Result in UK COVID-19 and Coswara Datasets.

details such as age, gender, and geographic lo-
cation, along with health-related information like
symptoms, pre-existing respiratory conditions, co-
morbidities, and COVID-19 test status. We follow
the official data split, which contains 70% sam-
ples for training, 15% for validation, and 15% for
testing.

COUGHYVID: The COUGHYVID dataset (Orlandic
et al., 2021) is a large-scale, publicly available col-
lection of over 25,000 crowdsourced cough record-
ings, covering a diverse range of ages, genders,
geographic locations, and COVID-19 statuses. The
database contains approximately 35 hours of audio
recordings, comprising around 37,000 segmented
cough samples. An automatic cough classifier was
used to filter recordings, retaining only those with
a minimum probability of 0.8 of containing cough
sounds. The final distribution of labeled recordings
was as follows: 25% COVID-positive cases, 35%
symptomatic cases, 25% healthy individuals, and
15% with no reported health status.

TBscreen: The TBscreen dataset (Sharma et al.,
2024) was collected in Nairobi and comprises
cough recordings from 149 subjects diagnosed with
pulmonary tuberculosis (TB) and 46 control sub-
jects with other respiratory illnesses. The dataset
includes a total of 33,000 passive coughs and 1,600
forced coughs, all recorded in a controlled setting
to ensure consistency across subjects with similar
demographics. To standardize the data for applica-



tions, each cough recording was processed to have
a fixed duration of one second. Longer recordings
were segmented into multiple one-second audio
files, while shorter recordings were centered and
padded with zeros to maintain uniformity.

CodaTB: The CodaTB dataset (Huddart et al.,
2024) is a large, multi-country collection of cough
sounds from individuals undergoing evaluation for
tuberculosis (TB). It comprises over 700,000 cough
recordings from 2,143 participants, along with de-
tailed demographic, clinical, and microbiological
diagnostic information. The dataset was collected
as part of broader TB research studies, where partic-
ipants underwent a baseline questionnaire, clinical
examination, and sputum collection for TB testing
at the time of enrollment. Comprehensive meta-
data accompanies the cough recordings, including
age, gender, height, weight, smoking status, and
duration of cough. Additionally, HIV status was
determined either through self-reported diagnosis
or confirmed positive test results. The dataset was
split into training (n = 1,105) and validation (n =
1,038) subsets.

ICBHI: The ICBHI Respiratory Sound Database
(Rocha et al., 2019) was originally compiled to sup-
port the International Conference on Biomedical
Health Informatics (ICBHI) 2017 scientific chal-
lenge and is now publicly available for research.
It consists of a combination of public and private
datasets collected independently by two research
teams across two different countries over several
years. The dataset contains 5.5 hours of respira-
tory sound recordings, comprising 6,898 respira-
tory cycles from 126 subjects. The 920 audio sam-
ples in the dataset have been manually annotated
by respiratory experts, classifying them based on
the presence of crackles, wheezes, both, or no ad-
ventitious respiratory sounds. Additionally, the
dataset provides diagnostic labels for chronic ob-
structive pulmonary disease (COPD), pneumonia,
and asthma, enabling the development of machine-
learning models for disease classification.

KAUH: The KAUH (King Abdulaziz University
Hospital) dataset (Fraiwan et al., 2022) is a col-
lection of respiratory sound recordings from 112
subjects, including 35 healthy individuals and 77
patients with pulmonary conditions. Lung sounds
were recorded using a Electronic Stethoscope,
which was placed at multiple points on the chest
wall to capture respiratory sounds while avoiding
heart sounds. The recordings were processed and
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extracted using Heart and Lung Sound Visualiza-
tion software, which allows exporting data with
three different filter settings (Bell, Diaphragm, and
Extended) to emphasize different frequency ranges
relevant to lung sounds.

B More Details of Audio Encoder

We utilized the Opera-CT encoder (Zhang et al.,
2024a), to extract audio features from raw au-
dio signals. Opera-CT is a contrastive learning-
based hierarchical token-semantic audio trans-
former (Chen et al., 2022). It operates by dividing
the mel-spectrogram into patches, which are em-
bedded as input tokens for the transformer. The
model leverages a hierarchical architecture with
window attention, optimizing both computational
efficiency and memory usage by restricting atten-
tion to localized windows. The transformer has 31
million parameters and produces output features of
size D, = 768.

C Baselines

We compared RespiraMFM with the following
sate-of-the-art multimodal baselines:

BTS: BTS (Kim et al., 2024) proposes a mod-
ule called Bridging Text and Sound (BTS), which
aligns respiratory audio and text metadata by utiliz-
ing CLAP (Elizalde et al., 2023) as a dual-purpose
encoder for both modalities. In this approach,
CLAP independently processes text and audio data
through separate encoders. The resulting embed-
dings are then concatenated and passed through a
linear classifier to perform the disease prediction.

RespLLM: RespLLM (Zhang et al., 2024b) intro-
duces a multimodal approach using a pre-trained
audio encoder and a Large Language Model for
diagnosing respiratory diseases using audio record-
ings and patient metadata. RespLLM employs a
trainable linear projector to align audio embeddings
with the language model’s input space. In contrast,
our method adopts a contrastively trained projec-
tion head, which enables more effective alignment
between audio and text modalities.

D Additional Details on Contrastive
Aligner

D.1 Model Architecture

The contrastive alignment module is implemented
as a multi-layer perceptron (MLP) with normaliza-
tion and regularization components. Specifically,



Table 5: Dataset-wise patient symptoms and medical history selection

Dataset Patient information
Uk covid-19 Age, sex, cough, new continuous cough, runny or blocked nose, shortness of breath, sore
throat, abdominal pain, diarrhea, fatigue, fever, headache, changes to sense of smell or
taste, loss of taste, asthma, other symptoms
Coughvid Age, sex, fever and muscle pain, other respiratory symptoms
TBscreen Age, sex, fever, cough, night sweats, cough with blood, smoking status, previous TB
history, HIV status, cough duration
ICBHI Age, sex, BMI, child weight, child height, recording device placement
Coswara Age, sex, cold, cough, diarrhea, fever, loss of smell and taste, muscle pain, breathing
difficulties, fatigue, sore throat
CodaTB Age, sex, fever, weight loss, night sweats, cough with blood, previous TB history, HIV
status, cough duration
KAUH Age, sex, recording device placement, sound type

the projection head maps an input embedding of di-
mension 768 into a higher-dimensional contrastive
space of 2048 through an intermediate hidden layer
of size 1024. The architecture consists of a linear
transformation followed by Layer Normalization,
ReLU activation, and dropout (rate = 0.1). A final
linear layer produces the output embeddings used
for contrastive supervision.

D.2 Training

We trained the alignment module using the same
dataset employed during instruction-tuning. The
model was optimized for 100 epochs with learning
rate 0.001.

D.3 Embeddings Visualization

Figure 9 presents t-SNE visualizations of audio
embeddings from the UK-COVID-19 and Coswara
datasets, both before and after applying contrastive
alignment with text. The post-alignment visual-
ization (on the right) shows significantly improved
class-wise clustering, indicating that the contrastive
alignment strategy effectively enhances the discrim-
inative power of the audio features with respect to
the respiratory disease categories.

Hyperparameters Value
Instruction tuning epochs 40
LoRA alpha 32
LoRA rank 16
LoRA dropout 0.1
Total batch size 16
Maximum sequence length 256
Learning rate 2e-4
Learning rate optimizer AdamW
Schedule linear
Weight decay 0.1

Table 6: Training hyperparameters

E Additional Details on
Instruction-Tuning

MODELS Embedding Dimension
LLaMA-3.2 (1B) 2048
LLaMA-3.2 (8B) 4096
BioMedLLaMA (1B) 2048
BioMedLLaMA (8B) 4096

Table 7: Embedding dimension of different language
models used in RespiraMFM.
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