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Abstract

Respiratory diseases remain a leading cause001
of global mortality, where timely and accurate002
diagnosis is critical to improving patient out-003
comes and reducing healthcare burdens. While004
prior work has explored audio-based models for005
respiratory disease detection, such unimodal006
approaches often suffer from limited gener-007
alizability and diagnostic precision. In this008
paper, we propose RespiraMFM, a Multi-009
modal Foundation Model that integrates res-010
piratory sounds with patient medical history011
and symptoms to enhance diagnostic accuracy012
and disease detection capabilities. We intro-013
duce an effective contrastive alignment strategy014
for audio-text multimodal integration, allow-015
ing the model to learn better cross-modal rep-016
resentations between respiratory sounds and017
corresponding textual clinical information. We018
evaluate RespiraMFM across five major respi-019
ratory diseases using seven real-world datasets020
in both supervised fine-tuning and zero-shot set-021
tings, achieving a 14.4% improvement in AU-022
ROC on supervised tasks and a 13.4% gain on023
zero-shot tasks over existing baselines. These024
findings underscore the potential of our frame-025
work to advance early diagnosis and improve026
clinical decision-making in respiratory disease027
management.028

1 Introduction029

Respiratory diseases, such as COVID-19, tubercu-030

losis (TB), chronic obstructive pulmonary disease031

(COPD), asthma, and pneumonia, remain a lead-032

ing cause of morbidity and mortality worldwide033

(Weinberger et al., 2020). Most existing works034

(Baur et al., 2024; Zhang et al., 2024a) on detect-035

ing those respiratory diseases rely solely on au-036

dio inputs such as coughing sounds or stethoscope037

recordings. However, their performance is often038

constrained by the limited information that audio039

data alone can provide.040

To mitigate the constraints of relying solely041

on audio inputs, researchers have proposed mul- 042

timodal methods (Kim et al., 2024; Zhang et al., 043

2024b) that combine respiratory audio with rele- 044

vant clinical information, such as symptoms (e.g., 045

fever, fatigue, chest pain) and lifestyle factors 046

such as smoking history. For instance, BTS (Kim 047

et al., 2024) proposes an audio-text model that 048

uses metadata associated with respiratory sounds. 049

This model concatenates learned representation 050

from audio and text encoders to improve respira- 051

tory disease identification. Moreover, RespLLM 052

(Zhang et al., 2024b) utilizes a large language 053

model (LLM) as the text encoder alongside a sep- 054

arate audio encoder, with a linear projector for 055

matching dimensions. Despite these efforts, ex- 056

isting methods still face two major limitations: (1) 057

they lack effective fusion mechanisms for deep 058

cross-modal interaction, as they often rely on sim- 059

ple concatenation or linear projection to combine 060

modalities, which fails to capture complex seman- 061

tic relationships between audio and text features. 062

and (2) their zero-shot performance reveals limited 063

generalization capability, leading to suboptimal per- 064

formance on novel or unseen diseases. Since the 065

audio and text encoders are typically trained inde- 066

pendently, their resulting representations may not 067

be well-aligned, hindering the model’s ability to 068

exploit complementary cross-modal information. 069

To address these challenges, we introduce 070

RespiraMFM , a Multimodal Foundation Model 071

that effectively bridges audio and textual represen- 072

tations for respiratory disease identification. Specif- 073

ically, we improve existing multimodal systems 074

with a two-stage learning framework. First, we use 075

a contrastive learning-based module to align the 076

representation from both audio and text modalities. 077

This process facilitates the second stage, where 078

LLMs can effectively leverage the aligned audio- 079

text representation, instead of modality-specific fea- 080

tures, to accurately identify the respiratory disease. 081

We evaluate RespiraMFM using seven real- 082
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world datasets that cover five of the most com-083

mon respiratory diseases: COVID-19, TB, COPD,084

asthma, and pneumonia. We highlight four of our085

findings: (1) RespiraMFM consistently outper-086

forms state-of-the-art multimodal baselines on res-087

piratory disease identification by achieving a 14.4%088

improvement in AUROC on supervised tasks and089

a 13.4% improvement on zero-shot tasks. (2)090

RespiraMFM achieves superior generalization ca-091

pabilities and effectively detects unseen respiratory092

diseases without requiring any training samples of093

those diseases. (3) RespiraMFM significantly re-094

duces the training data requirement, achieving com-095

parable performance with an order of magnitude096

less training data compared to the baselines. (4)097

Our contrastive alignment module effectively uni-098

fies audio and text modalities, leading to consistent099

AUROC improvements across all tasks compared100

to models without this module.101

2 Related Work102

2.1 Single-Modal Models103

The majority of existing respiratory disease identifi-104

cation methods (Yang et al., 2020; Ma et al., 2020;105

Chang et al., 2022) rely solely on audio inputs such106

as cough sounds or stethoscope recordings. Bae107

et al. (2023) introduce a contrastive learning frame-108

work to enhance respiratory sound classification109

using Audio Spectrogram Transformer (AST). By110

mixing spectrogram patches generated from raw111

audio data and applying contrastive loss, the model112

learns robust and discriminative features, which are113

subsequently passed to a linear classifier for respi-114

ratory disease identification. OPERA (Zhang et al.,115

2024a) curates large-scale unlabeled respiratory au-116

dio datasets and pretrains three foundational mod-117

els using self-supervised learning. Among them,118

OPERA-CT, the best-performing model, is a con-119

trastive learning–based transformer model, which120

is used as general-purpose feature extractors for res-121

piratory disease classification tasks. HeAR (Health122

Acoustic Representations) (Baur et al., 2024) intro-123

duces a self-supervised generative learning-based124

framework trained on a large corpus of health-125

related audio data. By leveraging generative objec-126

tives during pretraining, HeAR learns generalizable127

audio representations which is utilized for down-128

stream disease diagnosis tasks via simple linear129

probes. Despite the promising results of single-130

modal models, their performance is limited by the131

information available from audio data alone.132

2.2 Multimodal Models 133

Unlike single-modal models, multimodal models 134

combine audio data with textual information such 135

as patient symptoms and medical history, leading 136

to more accurate diagnoses. BTS (Kim et al., 2024) 137

introduces a text-audio model that combines res- 138

piratory sounds with metadata transformed into 139

descriptive text. It uses the Contrastive Language- 140

Audio Pretraining (CLAP) (Elizalde et al., 2023) 141

model to extract features from both modalities, fol- 142

lowed by a linear classifier for respiratory disease 143

classification. However, the use of a basic linear 144

classifier limits its ability to generalize in zero-shot 145

scenarios or when encountering new diseases. To 146

date, RespLLM (Zhang et al., 2024b) is one of the 147

early efforts that applies a multimodal LLM frame- 148

work integrating text and audio representations for 149

respiratory disease prediction. Their approach uti- 150

lizes a pretrained encoder to extract audio and text 151

features and a trainable linear projector to align the 152

feature dimensions with LLM. However, since each 153

modality encoder is trained separately, the result- 154

ing representations are often distinct and may not 155

be directly compatible across modalities. While a 156

linear projector can align the encoder output dimen- 157

sions with those expected by the LLM, it does not 158

ensure semantic alignment between modalities. To 159

address these limitations, we propose a contrastive 160

alignment module that facilitates more effective in- 161

tegration by aligning audio and text representations 162

in a shared semantic space. Our approach goes 163

beyond mere dimensional alignment, aiming to es- 164

tablish a shared representation space that enables 165

effective integration of multimodal information. 166

3 RespiraMFM 167

3.1 Overview 168

Figure 1 provides an overview of the proposed 169

RespiraMFM framework. In the data curation 170

stage shown in Figure 1(a), given the multimodal 171

respiratory datasets, we extract and pre-process 172

the raw audio data and the corresponding patient 173

symptoms to construct the instruction tuning data 174

for respiratory disease identification. As shown in 175

Figure 1(b), the curated multimodal data are first 176

processed by the audio and text encoders to get au- 177

dio and text representations, respectively. One key 178

component of our framework is the alignment mod- 179

ule that reduces the domain mismatches between 180

audio features and the language model embeddings. 181

The alignment module is trained separately via con- 182
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{'sex': 'Male', 
'age': 27, 'height': 
173.3,'weight': 63.0, 
'tb prior': 'No',  
'hemoptysis': 'No', 
'heart rate': 99, 
'temperature': 37.2, 
'weight loss': 'Yes', 
'smoke lweek': 
'No','fever': 'Yes', 
'night sweats': 
'Yes','tb_status': 0, 
'HIVstatus': 'Negative'}

Classify whether the participant has COVID-19 given the following 
information.The 2 classes are: healthy, COVID19. Please output 0 for 
healthy and 1 for COVID19.

  Prompt 

The patient is male and his age 
range is 25-34. The patient 
reported the following symptoms: 
fever, weight loss, night sweats, 
No prior TB record found, No HIV 
record. cough duration in weeks: 
4.3 weeks.The patient has a heart 
rate of 99 and temperature 37.2

Audio Recording

Large Language Model

Text
Encoder

Detected Disease

LoRA

Context Prompt

Text
Encoder

Classification 
Head

Layout-1

Mel-Spectrogram

Multimodal Fusion

(a) Data Curation (b) Multimodal foundation model for 
respiratory disease identification.

   Context

Mel-Spectrogram

Patient Metadata

Audio
Encoder

Aligner

Figure 1: Overview of RespiraMFM.

trastive learning. Upon completion of training, the183

alignment module is frozen and incorporated into184

the instruction tuning stage. During instruction185

tuning, the curated data are passed through each186

encoder to obtain modality-specific representations,187

which are then fused by concatenating them. The188

resulting multimodal representation is subsequently189

fed into the LLM to generate predictions for respi-190

ratory disease classification.191

3.2 Data Curation192

The multimodal respiratory datasets consist of both193

respiratory audio recordings and the correspond-194

ing patient-reported symptoms in either JSON or195

tabular format. The objective of data curation is to196

create the instruction tuning data by pre-processing197

the respiratory audio recordings, generating in-198

struction prompts, and converting patient-reported199

symptoms into structured textual representations.200

For audio recordings, each recording was normal-201

ized to 8 seconds in length by either truncating202

longer recordings or padding shorter ones through203

repetition. The audio signals are then processed204

with a 64ms Hann window with a 32ms step size,205

and subsequently converted into mel spectrograms206

denoted as xa using the features extracted from207

a pre-trained OPERA-CT encoder (Zhang et al.,208

2024a). Patient metadata varies across datasets in209

terms of structure and format. As shown in Fig-210

ure 1(a), we select relevant symptoms (Table 5)211

from the tabular data and apply a standardized tem-212

plate to generate a textual representation xc. We213

utilize task-specific prompts xp such as - "Classify214

whether the participant has COVID-19 given the215

following information.The 2 classes are: healthy,216

COVID19. Please output 0 for healthy and 1 for217

Projection

Contrastive 
Loss

Audio 
Encoder

Text 
Encoder

Mel-spectrogram

Context

Aligner

Contrastive 
Loss

Audio 
Encoder

Text 
Encoder

The patient is male and his age range is 
25-34. The patient reported the 
following symptoms: fever, weight loss, 
night sweats, No prior TB record found, 
No HIV record. cough duration in weeks: 
4.3 weeks.The patient has a heart rate 
of 99 and temperature 37.2

Normalize

 Mel-Spectrogram

 Context

Figure 2: Illustration of contrastive learning-based
audio-text alignment.

COVID19" to guide the LLM in producing disease 218

classification outputs. 219

3.3 Contrastive Learning-based Audio-Text 220

Aligning 221

We introduce a contrastive learning-based audio- 222

text alignment module to align audio features with 223

language model embeddings effectively. Specifi- 224

cally, we employ a pre-trained audio encoder that 225

generates 768-dimensional embeddings from the 226

input audio. In contrast, large language models typ- 227

ically operate with higher-dimensional input em- 228

beddings (e.g., 2048 or 4096, depending on the 229

model). Therefore, it is necessary to match the au- 230

dio dimension to use as input into the LLM. Prior 231

work (Zhang et al., 2024b) addresses this by intro- 232

ducing a trainable linear projector to map audio 233

embeddings into the higher-dimensional space re- 234

quired by the LLM. However, given the fundamen- 235

tal differences between the audio and text encoders 236

in both architecture and representational semantics, 237

simple dimensional alignment may be insufficient 238

to achieve effective multimodal fusion (Lyu et al., 239

2023, 2024). To enable more effective cross-modal 240

alignment between audio and text, we adopt a con- 241
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trastive learning strategy—an approach shown to242

yield powerful multimodal representations in mod-243

els like CLIP (Radford et al., 2021). As shown in244

Figure 2, we compute text embeddings et ∈ Rd245

using a frozen LLaMA model, where et = fT (xc),246

fT is the text encoder (LLM), xc is the textual con-247

text, and d is the embedding dimension of LLM.248

Similarly, audio embeddings ea ∈ R768 are ex-249

tracted using a frozen OPERA encoder, where250

ea = fO(xa), fO is the pre-trained Opera-CT au-251

dio encoder, and xa is the mel-spectrogram of the252

raw audio data.253

A lightweight projection head fθ : R768 → Rd254

is trained to map audio embeddings into the same255

semantic space as the text embeddings. The train-256

ing objective minimizes a contrastive loss that en-257

courages matched audio-text pairs to be close while258

pushing unmatched pairs apart.259

Formally, for a batch of N paired samples, we260

define the normalized embeddings as:261

zai =
fθ(e

a
i )

∥fθ(eai )∥
, zti =

eti
∥eti∥

.262

The contrastive loss (Chen et al., 2020) is given by:263

Lcontrast = − 1

N

N∑
i=1

log
exp(zai · zti/τ)∑N
j=1 exp(z

a
i · ztj/τ)

,264

where τ is a temperature scaling factor. By training265

this projection head with contrastive supervision,266

we achieve better semantic alignment across modal-267

ities while keeping the audio and text encoders268

frozen. The model architecture and additional train-269

ing details about the aligner module are presented270

in Appendix D.271

3.4 Instruction Tuning272

We employ instruction tuning to guide the LLM in273

understanding and following task-specific prompts274

that connect the multi-modal input and the corre-275

sponding diagnostic outcomes. The core compo-276

nents of instruction tuning are described below.277

Multimodal Fusion: The audio and text features278

are fused at the embedding level by concatena-279

tion. During this stage, we utilize the contrastively280

trained alignment module (fθ) from the previous281

step (§3.3), keeping its weights frozen to preserve282

the learned representations. Similarly, the text en-283

coder (fT ) and the audio encoder (fO) are also284

kept frozen during this stage. The inputs include285

mel-spectrogram (xa), curated patient symptom286

descriptions as contextual information (xc), and 287

a task-specific prompt (xp). Audio embeddings 288

za ∈ Rd are extracted via the audio encoder and 289

subsequently projected to match the input dimen- 290

sionality of the LLM. 291

za = fθ(fO(xa)) 292

Simultaneously, the prompt and contextual text 293

are processed through the LLM’s encoder to obtain 294

their respective representations, denoted as zp ∈ 295

Rd and zc ∈ Rd, corresponding to the prompt and 296

context embeddings. 297

zp = fT (xp), zc = fT (xc). 298

Finally, we concatenate the audio (za), prompt 299

(zp), and context (zc) embeddings to get a com- 300

bined embedding of a longer sequence: 301

zfusion = za ∥ zp ∥ zc 302

where ∥ denotes concatenation operation and 303

zfusion ∈ Rd. 304

Large Language Model: We utilize Bio-Medical- 305

LLaMA-8B1, a domain-adapted version of 306

LLaMA-3-8B-Instruct fine-tuned on a specialized 307

biomedical dataset, as the backbone LLM. To adapt 308

it for our classification task, we extend the model 309

by appending a linear classification head atop the 310

transformer architecture. We first form the multi- 311

modal fusion embeddings by concatenating audio 312

and text representations. These fused embeddings 313

are then fed into the LLM to produce a sequence 314

of hidden states. A pooling layer is then applied 315

to obtain the latent representation zh. Specifically, 316

we adopt the default pooling strategy used in 317

LlamaForSequenceClassification, 318

which selects the hidden state corresponding 319

to the final token in the sequence. Finally, a 320

linear classification head is applied to the pooled 321

representation to produce prediction scores for 322

different respiratory disease identification tasks. 323

zh = Poolfinal(fLLM (zfusion)) 324

This vector zh is then passed through a classi- 325

fication head comprising fully connected layers, 326

followed by a softmax function to produce class 327

probability distributions. The model is trained us- 328

ing cross-entropy loss: 329

1https://huggingface.co/ContactDoctor/Bio-Medical-
Llama-3-8B

4



Table 1: Summary of the datasets and tasks.

Task ID Dataset Disease #Train/Test

T1 UK COVID-19 (Coppock et al., 2024) COVID-19 20717/11121

T2 Coughvid (Orlandic et al., 2021) COVID-19 7958/2464

T3 TBscreen (Sharma et al., 2024) TB 20302/8051

T4 ICBHI (Rocha et al., 2019) COPD 462/366

T5 Coswara (Bhattacharya et al., 2023) COVID-19 -/1747

T6 CodaTB (Huddart et al., 2024) TB -/2053

T7 KAUH (Fraiwan et al., 2022) COPD -/132

T8 KAUH (Fraiwan et al., 2022) Asthma -/201

T9 KAUH (Fraiwan et al., 2022) Pneumonia -/120

LCE = −
C∑
i=1

yi log(ŷi)330

where yi and ŷi are the true and predicted probabil-331

ities for class i, respectively.332

Training Details: The instruction tuning process333

combines task-specific instructions xp with multi-334

modal audio (xa) and text (xc) inputs to ensure the335

model generates outputs that align with the desired336

response format. Additionally, we use LoRA (Low-337

Rank Adaptation) (Hu et al., 2021), a parameter-338

efficient fine-tuning (PEFT) technique designed to339

preserve the inherent knowledge of a pre-trained340

LLM. The model was trained for 40 epochs, and341

the training configuration further optimizes LoRA342

with parameters like a rank (r) of 16, scaling factor343

(α) of 32, and a dropout of 0.1.344

4 Experimental Setup345

4.1 Datasets and Tasks346

We evaluate the performance of RespiraMFM us-347

ing seven real-world datasets, covering five of348

the most common respiratory diseases: COVID-349

19, TB, COPD, asthma, and pneumonia. These350

datasets include both respiratory audio recordings351

(e.g., coughing sound, stethoscope sound) and the352

associated metadata, such as patient-reported symp-353

toms and medical history. Based on these datasets,354

we construct nine respiratory disease identification355

tasks as summarized in Table 1. Datasets associ-356

ated with tasks T1 through T4 are used for training357

and in-domain evaluation using held-out test sets,358

while datasets associated with tasks T5 through359

T9 are reserved for zero-shot evaluation. For each360

task, the model is trained on the combined train-361

ing data from T1 to T4. For example, in T5, the362

model is trained using all data from T1 to T4 and363

evaluated on the T5 test set. Notably, T8 and T9364

involve entirely new diseases (asthma and pneumo-365

nia) not seen during training, allowing us to assess 366

the model’s generalization ability to previously un- 367

seen conditions in a zero-shot setting. Details of 368

each dataset and task are provided in Appendix A. 369

4.2 Baselines and Evaluation Metrics 370

Baselines: We compare RespiraMFM against two 371

state-of-the-art multimodal baselines: BTS (Kim 372

et al., 2024) and RespLLM (Zhang et al., 2024b). 373

More details about the baselines are included in 374

Appendix C. 375

Evaluation Metrics: To ensure fair comparison, 376

we follow prior works on respiratory disease de- 377

tection to use the Area Under the Receiver Op- 378

erating Characteristic Curve (AUROC) (Janssens 379

and Martens, 2020) as the evaluation metric for all 380

the tasks. To ensure robust evaluation, each result 381

was obtained through three independent runs. The 382

mean and standard deviation of the AUROC scores 383

across these runs are reported. 384

4.3 Implementation Details 385

We utilized PyTorch 2.3.0, transformers 4.47.1 386

(Wolf et al., 2020), and accelerated on four 387

NVIDIA A100-80G GPUs. The training process 388

uses a batch size of 16. 389

5 Results 390

5.1 Overall Performance 391

First, we compare the performance of 392

RespiraMFM with the baselines under the 393

supervised learning setting on the held-out test sets 394

of the training datasets on tasks T1 through T4. 395

The results are summarized in Table 2. As shown, 396

RespiraMFM consistently outperforms both BTS 397

and RespLLM across all four tasks. Overall, the 398

average AUROC RespiraMFM has achieved over 399

tasks T1 through T4 is 0.895, representing 12.3% 400

improvement over BTS (average AUROC: 0.797) 401

and 14.7% gain (average AUROC: 0.780) over 402

RespLLM. These results demonstrate the strong 403

performance of RespiraMFM in identifying a 404

wide range of respiratory diseases, advancing the 405

state of the arts. 406

5.2 Zero-Shot Performance 407

Next, we evaluate the zero-shot performance of 408

RespiraMFM under the following two scenarios. 409

Unseen Datasets: Regarding the unseen datasets 410

condition, we compare RespiraMFM with BTS 411

and RespLLM in performing tasks T5-T7. In these 412
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Table 2: AUROC comparison for respiratory disease recognition task. Results are shown in mean± std format of
three individual runs. The light teal color indicates the second highest results, and heavy teal color indicates the
highest results. The values in parentheses represent the relative improvement (%) of RespiraMFM over the strongest
baseline for each task.

Task ID Dataset Disease BTS RespLLM RespiraMFM (ours)

T1 UK COVID-19 COVID-19 0.909 ± 0.012 0.903 ± 0.002 0.914 ± 0.002 (↑ 1.14 %)

T2 Coughvid COVID-19 0.617 ± 0.014 0.627 ± 0.008 0.722 ± 0.013 (↑ 15.15 %)

T3 TBscreen TB 0.670 ± 0.015 0.593 ± 0.015 0.946 ± 0.013 (↑ 41.19 %)

T4 ICBHI COPD 0.993 ± 0.004 0.997 ± 0.001 1.000 ± 0.000 (↑ 0.3 %)

tasks, the datasets used for evaluation are not seen413

during training, though the target diseases remain414

the same. Specifically, the models are trained on415

one or more datasets for a given disease and eval-416

uated on a different, unseen dataset for the same417

condition. For example, in task T5, the training418

data includes other COVID-19 datasets such as419

UKCOVID-19 and CoughVid, and is evaluated on420

the unseen Coswara dataset. As shown in Table 3,421

the proposed RespiraMFM consistently outper-422

forms both multi-modal baselines on these unseen423

datasets. Specifically, our average AUROC over424

these tasks is 0.827, outperforming BTS by 14.3%425

(average 0.723) and RespLLM by 12.5% (aver-426

age 0.735) on average AUROC. For example, our427

model trained on the UKCovid-19 and CoughVid428

datasets also show strong performance in classify-429

ing COVID-19 disease within the Coswara dataset.430

Moreover, RespiraMFM demonstrates a 38% rel-431

ative performance improvement in COPD detection432

on the KAUH dataset compared to the other multi-433

modal baselines.434

Unobserved Respiratory Diseases: Regarding435

the unobserved respiratory diseases, we further436

compare RespiraMFM with BTS and RespLLM437

on the prediction of asthma (T8) and pneumonia438

(T9). In both tasks, the models are trained on439

datasets from T1 to T4, none of which include440

instances of asthma or pneumonia. As shown in441

Table 3, despite having no disease-specific training442

data for these conditions, RespiraMFM consis-443

tently outperforms both baselines. Specifically, it444

achieves an 19.8% relative improvement in pneu-445

monia prediction over BTS and RespLLM. Overall,446

these results suggest that RespiraMFM general-447

izes effectively across datasets and to previously448

unseen respiratory diseases.449

5.3 Effects of Data and Model Scaling450

Effect of Data Scaling: To assess how the training451

dataset size impacts the model performance, we452
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(a) Single-Modal
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(b) Multimodal

Figure 3: Effect of dataset scaling.

conducted experiments on Task T1 by systemati- 453

cally varying the number of training examples. In 454

this experiment, the model was trained on a com- 455

bined set of UKCOVID-19, Coughvid, TBscreen, 456

and ICBHI datasets and evaluated on the held-out 457

test of the UKCOVID-19 dataset. Starting with a 458

full training set of 49,439 samples, we randomly 459

sampled subsets at varying fractions and compared 460

our model with the baselines on the same test set. 461

We explored two configurations for this experiment: 462

a single-modal setup using only audio features as 463

input, and a multi-modal setup that integrates both 464

audio and textual features as input. The results are 465

shown in Figure 3. Figure 3a, which corresponds 466

to the single-modal setting using only audio input, 467

shows a clear trend of improved performance with 468

increasing training samples, indicating that larger 469

datasets lead to better performance. Our model 470

consistently outperforms both BTS and RespLLM 471

across all data fractions, with notably strong per- 472

formance even at low data availability. While all 473

models benefit from more data, ours maintains a 474

consistent lead. In contrast, Figure 3b illustrates 475

the multi-modal configuration, where both audio 476

and text features are used as input. Here, our model 477

rapidly approaches peak performance with mini- 478

mal training data and significantly outperforms the 479

baselines across nearly all data scales. These re- 480

sults highlight the strength of multi-modal integra- 481
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Table 3: AUROC comparison for respiratory disease recognition task of zero-shot prediction on new dataset. Results
are shown in mean± std format of three individual runs. The light teal color indicates the second highest results,

and heavy teal color indicates the highest results. The values in parentheses represent the relative improvement
(%) of RespiraMFM over the strongest baseline for each task.

ID Dataset Task BTS RespLLM RespiraMFM (ours)

T5 Coswara Covid 0.905 ± 0.008 0.925 ± 0.008 0.927 ± 0.006 (↑ 0.22 %)

T6 CodaTB TB 0.645 ± 0.016 0.649 ± 0.018 0.681 ± 0.013 (↑ 4.93 %)

T7 KAUH COPD 0.619 ± 0.013 0.633 ± 0.012 0.874 ± 0.005 (↑ 38.07 %)

T8 KAUH Asthma 0.632 ± 0.015 0.596 ± 0.011 0.658 ± 0.011 (↑ 4.11 %)

T9 KAUH pneumonia 0.542 ± 0.025 0.604 ± 0.015 0.724 ± 0.010 (↑ 19.85 %)

T1 T2 T3 T4 T5 T6 T7 T8 T9
0.0

0.2

0.4

0.6

0.8

1.0

AU
C

BioMedicalLLama-1B BioMedicalLLama-8B

Figure 4: Performance comparison of BiomedLLaMA
models with different scales (1B vs. 8B) across all tasks.
The 8B model consistently outperforms the 1B model,
with larger gains observed on tasks involving unseen
diseases.

tion, especially in clinical contexts where labeled482

data is often limited. The findings suggest that483

multi-modal models are particularly well-suited for484

deployment in resource-constrained healthcare set-485

tings, offering high diagnostic performance even486

with sparse training data.487

Scaling Law of Model Size: To investigate488

whether respiratory instruction-tuning on larger-489

scale models yields better results, we validate 1B490

and 8B versions of BiomedLLaMA across all tasks.491

As shown in Figure 4, the 8B model matches or out-492

performs the 1B model on nearly all tasks, demon-493

strating the benefits of scaling model size in respi-494

ratory disease recognition. Notably, Performance495

gains are more substantial in tasks involving new496

and unseen diseases (T6-T9), suggesting that larger497

models possess stronger generalization capabilities498

and are better equipped to handle distribution shifts499

in real-world clinical settings. However, the 1B500

model performs competitively compared to the 8B501

model, suggesting it remains a viable option for502

deployment on resource-constrained devices such503

as mobile platforms.504

Mild or No
symptoms

Moderate
symptoms Healthy Total

Audio 0.3576 0.3571 0.7266 0.6102

Text 0.3294 0.619 0.9766 0.7934

Audio+Text 0.4047 0.6587 0.9849 0.8203

Table 4: Performance comparison of audio-only, text-
only, and multimodal (audio+text) models across differ-
ent patient groups in the Coswara dataset. Bold indi-
cates the best performance and underlined indicates the
second-best.

5.4 Ablation Study 505

Uni-Modality vs. Multi-Modality: To assess the 506

effectiveness of multimodal integration compared 507

to unimodal inputs, we conducted experiments on 508

Task T5, aiming to understand whether combin- 509

ing audio and textual information offers comple- 510

mentary benefits that improve diagnostic perfor- 511

mance beyond what a single modality can achieve 512

alone. In this experiment, the model is trained 513

on the combined data from all available training 514

datasets and evaluated in a zero-shot setting on the 515

Coswara dataset. We select the Coswara dataset 516

for this experiment because it provides both dis- 517

ease labels and additional metadata describing pa- 518

tient health status, including severity levels such 519

as asymptomatic (no symptoms), mild, moderate, 520

and healthy. We group these into three broad cate- 521

gories—mild or no symptoms, moderate symptoms, 522

and healthy—and evaluate models in three config- 523

urations: audio-only input (uni-modal), text-only 524

input (uni-modal), and multimodal input combin- 525

ing both audio and text. Accuracy is used as the 526

evaluation metric for all configurations. As shown 527

in Table 4, for cases with mild or no symptoms, the 528

audio-only model outperforms the text-only model 529

based on the symptom information. Conversely, 530
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Figure 5: Performance comparison between single
modal and multimodal models on different Tasks.

the text-only model performs better compared to531

the audio-only model for symptomatic and healthy532

individuals. On the other hand, the multimodal533

model, which integrates both audio and text infor-534

mation, consistently outperforms both unimodal535

models across all severity levels and on the overall536

dataset. In summary, these results demonstrate the537

clear advantage of combining multiple modalities538

for improved disease prediction.539

Contrastive Alignment: To assess the effective-540

ness of the contrastive alignment module intro-541

duced in §3.3, we conducted a comparative study542

on tasks T1-T6 by training the model with and543

without this component. We evaluated two config-544

urations: (a) using audio-only input to isolate the545

impact on unimodal audio data, and (b) combining546

audio and text to evaluate performance in a mul-547

timodal setting. For the baseline (w/o alignment),548

we employed a standard linear projector commonly549

used in prior work (Zhang et al., 2024b). Results550

are presented in Figure 5. As shown in the left plot551

(Audio Only), the alignment module consistently552

yields higher AUC scores across all tasks, indicat-553

ing more informative audio representations for in-554

struction tuning. Similarly, in the multimodal con-555

figuration (right plot), the aligned model matches556

or outperforms the baseline in every case. These557

findings suggest that contrastive alignment not only558

strengthens unimodal audio features but also con-559

tributes positively to overall representation quality560

in multimodal scenarios.561

Generic vs. In-Domain LLM: In this experiment,562

we evaluate the contribution of specialized medi-563

cal domain knowledge in the in-domain BiomedL-564

LaMA model compared to the general-purpose565

base LLaMA model for disease detection. We use566

both the 1B and 8B variants of BiomedLLaMA to567

compare against the corresponding base LLaMA568

models across all tasks in multimodal settings. The569

T1

T2

T3

T5

T6

T7

T8

T9

0.20.40.60.8

LLama-3.2-1B
BiomedLLama-1B

(a) 1B model

T1

T2

T3

T5

T6

T7

T8

T9

0.20.40.60.8

LLama-3.2-8B
BiomedLLama-8B

(b) 8B model

Figure 6: Performance comparison of general-purpose
(LLaMA-3.2) and domain-specific (BiomedLLaMA)
LLMs across various tasks. (a) shows results for 1B
models, while (b) shows results for 8B models.

results are presented in Figure 6, where subfigure 570

(a) corresponds to the 1B variant and subfigure (b) 571

corresponds to the 8B variant. In both cases, in- 572

domain BiomedLLaMA models consistently match 573

or outperform their general-purpose counterparts, 574

with more pronounced gains observed in larger 8B 575

model variants. This suggests the effectiveness of 576

using in-domain LLMs, particularly in complex 577

multimodal tasks where domain-specific knowl- 578

edge plays a critical role in disease detection. 579

6 Conclusion 580

In this paper, we introduced RespiraMFM, a multi- 581

modal foundation model designed to detect respi- 582

ratory diseases by integrating respiratory sound 583

recordings with patient-reported symptoms and 584

medical history. We also proposed an effective 585

method for multimodal alignment of text and au- 586

dio input, demonstrating strong performance across 587

nine tasks involving five major respiratory diseases 588

using diverse real-world datasets. We also showed 589

that the model can maintain high diagnostic ac- 590

curacy even with limited training data, making it 591

suitable for deployment in data-scarce healthcare 592

environments. Overall, RespiraMFM offers a scal- 593

able, non-invasive, and clinically relevant solution 594

for early and accurate respiratory disease detection, 595

with the potential to support medical professionals 596

and improve decision-making across a variety of 597

healthcare settings. 598

7 Limitation 599

While our proposed multimodal foundation model 600

shows strong performance across various respira- 601

tory disease detection tasks, it has some limitations. 602
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The model’s effectiveness depends on the qual-603

ity and consistency of symptom metadata, which604

can differ significantly between datasets and clin-605

ical environments. For instance, in Task T2, the606

model performs relatively lower compared to other607

COVID-19 detection tasks (T1 and T5), likely due608

to the limited or less informative symptom data609

available in the Coswara dataset, making accurate610

diagnosis more challenging. Additionally, although611

the model integrates audio and symptom data, in-612

corporating additional modalities such as medical613

imaging or wearable sensor data could further im-614

prove its diagnostic accuracy and robustness.615

8 Ethics Statement616

We foresee no ethical concerns with our work. All617

the datasets used in this study were anonymized618

and excluded any participant identity information.619
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A Additional Details on Datasets761

In this study, we used the following datasets:762

UK COVID-19: The UK COVID-19 Vocal Au-763

dio Dataset (Coppock et al., 2024) represents the764

largest collection of SARS-CoV-2 PCR-referenced765

audio recordings to date, compiled in the United766

Kingdom. The dataset features PCR test results767

linked to 70,794 out of 72,999 participants, with768

24,155 of the 25,776 confirmed positive cases accu-769

rately documented. Notably, respiratory symptoms770

were reported by 45.62% of the participants, pro-771

viding valuable symptomatic metadata for analysis.772

All the audio recordings were captured in the .wav773

format. In our study, we adopt the official train-test774

split released with the dataset.775

Covid
35.3%

Non-Covid
64.7%

Uk covid-19

Covid

8.9%

Non-Covid

91.1%

Coughvid

Covid

29.2%
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70.8%
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(a) Class Distribution in covid datasets (UK covid-19,
coughvid and coswara)
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Figure 7: Class Distribution Across Datasets

Coswara: The Coswara dataset (Bhattacharya776

et al., 2023) is a diverse collection of respiratory777

sounds and detailed metadata, recorded between778

April 2020 and February 2022 from 2,635 individ-779

uals, including 1,819 SARS-CoV-2 negative, 674780

positive, and 142 recovered cases. It features nine781

categories of respiratory sounds, covering varia-782

tions of breathing, coughing, and speech, providing783

a rich dataset for analyzing respiratory health. In784

addition to audio recordings, the dataset includes785

comprehensive metadata, capturing demographic786

0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8
Percentage Occurrence

none
cough any

new continuous cough
runny or blocked nose

shortness of breath
sore throat

abdominal pain
diarrhoea

fatigue
fever high temperature

headache
change to sense of smell or taste

loss of taste
other

respiratory condition asthma
respiratory condition other

Symptom Occurrence by COVID Result
Positive
Negative

(a) UK-covid19 dataset
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Figure 8: Symptom Occurrence Distribution by COVID-
19 Test Result in UK COVID-19 and Coswara Datasets.

details such as age, gender, and geographic lo- 787

cation, along with health-related information like 788

symptoms, pre-existing respiratory conditions, co- 789

morbidities, and COVID-19 test status. We follow 790

the official data split, which contains 70% sam- 791

ples for training, 15% for validation, and 15% for 792

testing. 793

COUGHVID: The COUGHVID dataset (Orlandic 794

et al., 2021) is a large-scale, publicly available col- 795

lection of over 25,000 crowdsourced cough record- 796

ings, covering a diverse range of ages, genders, 797

geographic locations, and COVID-19 statuses. The 798

database contains approximately 35 hours of audio 799

recordings, comprising around 37,000 segmented 800

cough samples. An automatic cough classifier was 801

used to filter recordings, retaining only those with 802

a minimum probability of 0.8 of containing cough 803

sounds. The final distribution of labeled recordings 804

was as follows: 25% COVID-positive cases, 35% 805

symptomatic cases, 25% healthy individuals, and 806

15% with no reported health status. 807

TBscreen: The TBscreen dataset (Sharma et al., 808

2024) was collected in Nairobi and comprises 809

cough recordings from 149 subjects diagnosed with 810

pulmonary tuberculosis (TB) and 46 control sub- 811

jects with other respiratory illnesses. The dataset 812

includes a total of 33,000 passive coughs and 1,600 813

forced coughs, all recorded in a controlled setting 814

to ensure consistency across subjects with similar 815

demographics. To standardize the data for applica- 816
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tions, each cough recording was processed to have817

a fixed duration of one second. Longer recordings818

were segmented into multiple one-second audio819

files, while shorter recordings were centered and820

padded with zeros to maintain uniformity.821

CodaTB: The CodaTB dataset (Huddart et al.,822

2024) is a large, multi-country collection of cough823

sounds from individuals undergoing evaluation for824

tuberculosis (TB). It comprises over 700,000 cough825

recordings from 2,143 participants, along with de-826

tailed demographic, clinical, and microbiological827

diagnostic information. The dataset was collected828

as part of broader TB research studies, where partic-829

ipants underwent a baseline questionnaire, clinical830

examination, and sputum collection for TB testing831

at the time of enrollment. Comprehensive meta-832

data accompanies the cough recordings, including833

age, gender, height, weight, smoking status, and834

duration of cough. Additionally, HIV status was835

determined either through self-reported diagnosis836

or confirmed positive test results. The dataset was837

split into training (n = 1,105) and validation (n =838

1,038) subsets.839

ICBHI: The ICBHI Respiratory Sound Database840

(Rocha et al., 2019) was originally compiled to sup-841

port the International Conference on Biomedical842

Health Informatics (ICBHI) 2017 scientific chal-843

lenge and is now publicly available for research.844

It consists of a combination of public and private845

datasets collected independently by two research846

teams across two different countries over several847

years. The dataset contains 5.5 hours of respira-848

tory sound recordings, comprising 6,898 respira-849

tory cycles from 126 subjects. The 920 audio sam-850

ples in the dataset have been manually annotated851

by respiratory experts, classifying them based on852

the presence of crackles, wheezes, both, or no ad-853

ventitious respiratory sounds. Additionally, the854

dataset provides diagnostic labels for chronic ob-855

structive pulmonary disease (COPD), pneumonia,856

and asthma, enabling the development of machine-857

learning models for disease classification.858

KAUH: The KAUH (King Abdulaziz University859

Hospital) dataset (Fraiwan et al., 2022) is a col-860

lection of respiratory sound recordings from 112861

subjects, including 35 healthy individuals and 77862

patients with pulmonary conditions. Lung sounds863

were recorded using a Electronic Stethoscope,864

which was placed at multiple points on the chest865

wall to capture respiratory sounds while avoiding866

heart sounds. The recordings were processed and867

extracted using Heart and Lung Sound Visualiza- 868

tion software, which allows exporting data with 869

three different filter settings (Bell, Diaphragm, and 870

Extended) to emphasize different frequency ranges 871

relevant to lung sounds. 872

B More Details of Audio Encoder 873

We utilized the Opera-CT encoder (Zhang et al., 874

2024a), to extract audio features from raw au- 875

dio signals. Opera-CT is a contrastive learning- 876

based hierarchical token-semantic audio trans- 877

former (Chen et al., 2022). It operates by dividing 878

the mel-spectrogram into patches, which are em- 879

bedded as input tokens for the transformer. The 880

model leverages a hierarchical architecture with 881

window attention, optimizing both computational 882

efficiency and memory usage by restricting atten- 883

tion to localized windows. The transformer has 31 884

million parameters and produces output features of 885

size Da = 768. 886

C Baselines 887

We compared RespiraMFM with the following 888

sate-of-the-art multimodal baselines: 889

BTS: BTS (Kim et al., 2024) proposes a mod- 890

ule called Bridging Text and Sound (BTS), which 891

aligns respiratory audio and text metadata by utiliz- 892

ing CLAP (Elizalde et al., 2023) as a dual-purpose 893

encoder for both modalities. In this approach, 894

CLAP independently processes text and audio data 895

through separate encoders. The resulting embed- 896

dings are then concatenated and passed through a 897

linear classifier to perform the disease prediction. 898

RespLLM: RespLLM (Zhang et al., 2024b) intro- 899

duces a multimodal approach using a pre-trained 900

audio encoder and a Large Language Model for 901

diagnosing respiratory diseases using audio record- 902

ings and patient metadata. RespLLM employs a 903

trainable linear projector to align audio embeddings 904

with the language model’s input space. In contrast, 905

our method adopts a contrastively trained projec- 906

tion head, which enables more effective alignment 907

between audio and text modalities. 908

D Additional Details on Contrastive 909

Aligner 910

D.1 Model Architecture 911

The contrastive alignment module is implemented 912

as a multi-layer perceptron (MLP) with normaliza- 913

tion and regularization components. Specifically, 914
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Table 5: Dataset-wise patient symptoms and medical history selection

Dataset Patient information

Uk covid-19 Age, sex, cough, new continuous cough, runny or blocked nose, shortness of breath, sore
throat, abdominal pain, diarrhea, fatigue, fever, headache, changes to sense of smell or
taste, loss of taste, asthma, other symptoms

Coughvid Age, sex, fever and muscle pain, other respiratory symptoms

TBscreen Age, sex, fever, cough, night sweats, cough with blood, smoking status, previous TB
history, HIV status, cough duration

ICBHI Age, sex, BMI, child weight, child height, recording device placement

Coswara Age, sex, cold, cough, diarrhea, fever, loss of smell and taste, muscle pain, breathing
difficulties, fatigue, sore throat

CodaTB Age, sex, fever, weight loss, night sweats, cough with blood, previous TB history, HIV
status, cough duration

KAUH Age, sex, recording device placement, sound type

the projection head maps an input embedding of di-915

mension 768 into a higher-dimensional contrastive916

space of 2048 through an intermediate hidden layer917

of size 1024. The architecture consists of a linear918

transformation followed by Layer Normalization,919

ReLU activation, and dropout (rate = 0.1). A final920

linear layer produces the output embeddings used921

for contrastive supervision.922

D.2 Training923

We trained the alignment module using the same924

dataset employed during instruction-tuning. The925

model was optimized for 100 epochs with learning926

rate 0.001.927

D.3 Embeddings Visualization928

Figure 9 presents t-SNE visualizations of audio929

embeddings from the UK-COVID-19 and Coswara930

datasets, both before and after applying contrastive931

alignment with text. The post-alignment visual-932

ization (on the right) shows significantly improved933

class-wise clustering, indicating that the contrastive934

alignment strategy effectively enhances the discrim-935

inative power of the audio features with respect to936

the respiratory disease categories.937

E Additional Details on938

Instruction-Tuning939

Hyperparameters Value

Instruction tuning epochs 40

LoRA alpha 32

LoRA rank 16

LoRA dropout 0.1

Total batch size 16

Maximum sequence length 256

Learning rate 2e-4

Learning rate optimizer AdamW

Schedule linear

Weight decay 0.1

Table 6: Training hyperparameters

MODELS Embedding Dimension

LLaMA-3.2 (1B) 2048

LLaMA-3.2 (8B) 4096

BioMedLLaMA (1B) 2048

BioMedLLaMA (8B) 4096

Table 7: Embedding dimension of different language
models used in RespiraMFM .
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(a) Uk-covid-19 dataset

40 20 0 20 40

40

20

0

20

40

Raw 768-D Embeddings
Label 0
Label 1

40 20 0 20 40

30

20

10

0

10

20

30

40

Projected 2048-D Embeddings
Label 0
Label 1

(b) Coswara dataset

Figure 9: t-SNE visualization of audio features across different datasets. The left panel represents the raw output
from the Opera-CT encoder, while the right panel shows the embeddings generated by the contrastively trained
projector.
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