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Abstract

While a considerable amount of semantic pars-
ing approaches have employed RNN architec-
tures for code generation tasks, there have been
only few attempts to investigate the applicabil-
ity of Transformers for this task. Including hier-
archical information of the underlying program-
ming language syntax has proven to be effective
for code generation. Since the positional encod-
ing of the Transformer can only represent posi-
tions in a flat sequence, we have extended the
encoding scheme to allow the attention mecha-
nism to also attend over hierarchical positions
in the input. Furthermore, we have realized a
decoder based on a restrictive grammar graph
model to improve the generation accuracy and
ensure the well-formedness of the generated
code. While we did not surpass the state of
the art, our findings suggest that employing a
tree-based positional encoding in combination
with a shared natural-language subword vocab-
ulary improves generation performance over
sequential positional encodings. !

1 Introduction

Automatically generating source code from instruc-
tions in natural language can reduce the human-
machine language barrier. Efforts on overcoming
this barrier have led to numerous semantic pars-
ing approaches ranging from statistical semantic
parsing with focus on inducing rules (Zelle and
Mooney, 1996) or probabilistic grammars (Zettle-
moyer and Collins, 2005) to neural semantic pars-
ing approaches based on encoder-decoder architec-
tures, which have proven to be effective in map-
ping natural language into a formal meaning rep-
resentation such as logical forms (Jia and Liang,
2016; Suhr et al., 2018) or general-purpose pro-
gramming languages (GPPL) (Ling et al., 2016;
Iyer et al., 2018; Yin and Neubig, 2017, 2018; Iyer
etal., 2019).
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Recent syntax-driven neural semantic parsing
approaches integrated compositional structures of
logical forms (Dong and Lapata, 2016) or, in the
case of GPPL, the underlying syntax (Rabinovich
et al., 2017; Yin and Neubig, 2017; Hayati et al.,
2018; Sun et al., 2019; Xu et al., 2020), which
substantially improved generation accuracy. How-
ever, existing grammar-constrained decoding ap-
proaches for a GPPL like Python either use a man-
ually defined list of production rules (Yin and Neu-
big, 2017) or the ASDL (Wang et al., 1997) ab-
stract grammar definition (Python Software Foun-
dation, 2018) used by the CPython implementation
of the Python language (Rabinovich et al., 2017;
Yin and Neubig, 2018). The manual approach al-
lows for flexibility in modeling, but requires man-
ually checking and possibly re-modeling the rules
with every new release, which is prone to human
error. Although the ASDL eliminates these draw-
backs, it is not sufficiently restrictive and therefore
cannot guarantee the generation of well-formed,
i.e., parsable code. In compilers and interpreters,
this is not problematic because some component
in the pipeline consisting of parser, static checker
and dynamic checker catches each of these types of
error (Aho et al., 2007). In neural semantic parsing,
however, it unnecessarily allows the generation of
invalid code.

Building on this finding, we propose a syntax-
driven neural semantic parsing approach employing
a more restrictive grammar model for the task of
generating well-formed code from instructions or
descriptions in natural language as depicted in Ta-
ble 1. Most syntax-driven neural semantic parsing
approaches employ encoder-decoder architectures
based on RNNs (Dong and Lapata, 2016; Rabi-
novich et al., 2017; Hayati et al., 2018; Iyer et al.,
2019, i.a.). With the Transformer (Vaswani et al.,
2017), a more powerful generation of neural ar-
chitectures was introduced, surpassing RNNs in a
variety of NLP tasks, including machine transla-



Dataset NL Specification Formal Meaning Representation
Atis flight from ci0 mn0 dn0 ( lambda $0 e ( and ( flight $0 ) ( from $0 ci0 )
( day_number $0 dn0 ) ( month $0 mn0 ) )
Geo What is the area of the state with  ( area:i ( argmin \$0
the smallest population density? ( state:t \30 ) ( density:i \30 ) ) )
CoNaLa How to load a csv file? import csv
with open(’file.csv’) as csvfile:
reader = csv.DictReader(csvfile)
Hearthstone Treant NAME_END 2 ... class Treant(MinionCard):

Minion TYPE_END

Druid PLAYER_CLS_END
NIL RACE_END NIL
RARITY _END NIL

def __init__(self):

super().__init__("Treant”, 1,
CHARACTER_CLASS.DRUID,
CARD_RARITY.COMMON)

def create_minion(self, _):

return Minion(2, 2)

Table 1: Examples of natural language specifications or questions and their corresponding formal meaning representation from
the datasets used in this work: Atis (Dahl et al., 1994), Geo (Tang and Mooney, 2001), Hearthstone (Ling et al., 2016) and
CoNal.a (Yin et al., 2018)

tion (Nguyen et al., 2020; Chen et al., 2018) and
constituency parsing (Wang et al., 2019; Harer
et al., 2019). Unlike RNNs, Transformers rely
solely on self-attention and therefore can capture
long-range context dependencies while being easy
to parallellize.

Since the Transformer is invariant to sequence
ordering, it is of particular importance to explic-
itly include position information of sequence to-
kens through learned or fixed positional encoding
schemes (Vaswani et al., 2017; Shiv and Quirk,
2019) or biased attention weights (Shaw et al.,
2018; Nguyen et al., 2020). While the inclusion
of hierarchical information has proven to be effec-
tive for code generation, the positional encoding
by (Vaswani et al., 2017) can only represent posi-
tions in a flat sequence. Taking up this thought, we
propose a position encoding scheme for the Trans-
former which allows the attention mechanism to
also attend over hierarchical positions in the input.
Similar to (Shiv and Quirk, 2019), we also rely
on paths in an abstract tree representation of input
code snippets to encode hierarchical code structure.
However, (Shiv and Quirk, 2019)’s encoding, can-
not be applied to trees of variable width since the
depth and width of the encoding is limited.

Our contributions are the following:

1) A restrictive grammar graph model, which
can be automatically generated from any tree-
like data, not requiring an ASDL with the
only condition that ordered typed trees are

available as input. The grammar model is
used to determine the hierarchical relations
for the tree encoding, but can also be used for
constrained decoding, ensuring the generation
of parsable code.

2) A tree encoding scheme based on the sinu-
soidal encoding introduced by (Vaswani et al.,
2017) to enable the Transformer model to
learn hierarchical relations in an ordered tree
of arbitrary width.

We evaluated our approach on several benchmark
datasets for code generation including Hearth-
stone (Ling et al., 2016), CoNaLa (Yin et al., 2018),
Atis (Dahl et al., 1994) and Geo (Tang and Mooney,
2001). Experimental results show that he tree
encoding performs better than the sequential en-
coding used by the original Transformer architec-
ture on the Hearthstone dataset. On the CoNaLa
dataset, we achieve improvements when employing
a separate subword vocabulary for the string liter-
als extracted from the code snippets. Our code is
publicly available at https://github.com/
SmartDataAnalytics/codeCAT.

2 Related Work

A large variety of syntax-driven neural semantic
parsing approaches generate abstract syntax trees
(ASTs) by predicting a sequence of grammar rules.
Yin et al. (Yin and Neubig, 2017, 2018), Rabi-
novich et al. (Rabinovich et al., 2017) and Sun
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et al. (Sun et al., 2019) define a grammar model
that captures the syntax of the target programming
language and generate ASTs based on a series of
predicted actions, i.e., apply a production rule to
expand a non-terminal node or populate a termi-
nal node. Most of these approaches derive the un-
derlying grammar model from the official Python
abstract grammar definition (ASDL). However, ab-
stract grammar definitions are designed for compi-
lation or interpretation (Aho et al., 2007) and not
for code generation and therefore, as in the case
of the Python grammar, allow syntax trees that do
not correspond to parsable code. We counteract
this drawback by creating a more restrictive gram-
mar model from the parsable code samples of the
training dataset. Based on this grammar model, we
generate ASTs by predicting the next AST node on
the input tree path in depth-first preorder.

To capture the compositional structure of logi-
cal forms, (Dong and Lapata, 2016) propose a tree
decoder that recursively generates sub-trees, con-
veying hierarchical information by feeding the par-
ent node’s hidden representation as an additional
input. Expanding on this, (Rabinovich et al., 2017)
realize a grammar-based modular decoder with a
dynamically determined composition of modules
that reflect the structure of ASTs. (Sun et al., 2020)
propose a grammar dependent Transformer archi-
tecture for code generation and use convolutional
layers to process natural language input and model
hierarchical structure. In contrast, we convey the
compositional structure through the attention mech-
anism aided by a hierarchical positional encoding,
not through parent feeding. Since we do not em-
ploy a grammar dependent architecture, with con-
strained decoding disabled, our approach can be
applied to any other tree-structured data for which
no abstract grammar is available.

For encoding nodes in a tree, we use the same
notion of path as (Shiv and Quirk, 2019), and like
theirs, our tree encoding for a path can be de-
scribed as a composition of affine transformations.
However, with (Shiv and Quirk, 2019)’s encoding,
there is only one affine transformation per path seg-
ment encoding, which might limit the robustness
of the encoding. While their tree encoding of a
node results from concatenating the one-hot en-
codings of the node’s reversed path segments and
weighting the encodings using a learned parameter,
we employ the parameter-free sinusoidal encoding
by (Vaswani et al., 2017) to encode each path seg-

ment. Since the tree depth and width of (Shiv and
Quirk, 2019) encoding is fixed, it is not possible to
apply it on arbitrarily wide trees, and sibling rela-
tionships can only be represented in binary trees.
These limitations do not apply to our encoding
scheme, which can be applied to ordered trees of
variable width.

3 Data Representation

3.1 Input Data

As input for training, we use several Python code
corpora (Ling et al., 2016; Yin et al., 2018; Oda
et al., 2015) consisting of pairs of natural language
instructions and corresponding code snippets. We
parse the Python code snippets into abstract syn-
tax trees (ASTs) and generate a sequence of AST
tokens in depth-first preorder, as depicted in Fig-
ure la. The AST consists of object nodes (e.g. Mod-
ule) and attribute nodes visualised by small squares
and circles in the figure. An attribute node is
either a singleton (e.g. value) or an attribute list
(e.g. body) that can point to several object nodes.
We integrated a special node for marking an at-
tribute list end (le) and special nodes for marking
the start (sos) and the end (eos) of the code frag-
ment. An object node can be an inner node (e.g.
Module) or a leaf node (e.g. ’a’) and can have none,
one or more attribute nodes. Each attribute node
has a defined order in its object node’s list of at-
tribute nodes. An edge from an object node to an
attribute indicates that the attribute belongs to that
object node, and an edge from an attribute to an ob-
ject node means that instances of that object node
are allowed to appear as the value of the attribute.
We create the sequential representation of an
AST by traversing the AST in depth-first preorder
and adding the names of the object nodes to the
AST sequence. An AST sequence consists of ob-
ject node tokens and special nodes tokens. If an ob-
ject node is the last or the only node in an attribute
list, we add a list end token after the object node’s
token in the AST sequence. From the ASTs of the
code samples corpora only used for training, we
create a grammar model that captures the Python
programming language syntax. From the natural
language input and the string literals extracted from
the ASTs we create a common subword vocabu-
lary using the BPE implementation of (Kudo and
Richardson, 2018). From the tokens from the AST
sequence, we generate a different word vocabulary
without string literals. Using a BPE segmentation



(a) AST

Node Path

SOS [0,0,0,0,0,0,0,0,0, 0]
Module [1,1,0,0,0,0,0,0,0,0]
Assign  [1,1,1,1,0,0,0,0,0, 0]
Name [1,1,1,1,1,1,0,0, 0, 0]
a’ [1,1,1,1,1,1,1, 1,0, 0]
le 2,1,1,1,1,1,0,0, 0, 0]
Num [1,2,1,1,1,1,0,0,0, 0]
10 [1,1,1,2,1,1,1, 1,0, 0]
le [2,1,1,1,0,0,0,0,0, 0]
€os [1,2,0,0,0,0,0,0,0, 0]

(b) Edge paths

Figure 1: (a) Example of the abstract syntax tree (AST) of the code snippet a=10. We create the AST sequence by adding

the names of the object nodes in depth-first preorder: [sos, Module, Assign, Name,

"a’”, le, Num, 10, 1le,

eos]. (b) Object node edge paths for the AST of the snippet a=10. All edge paths have the same length. Each edge path

consists of the path segments of its predecessor nodes.

for string literals has the advantage that we can
effectively adjust the vocabulary size and reduce
the number of tokens required to encode the input
sequences (Kudo, 2018).

3.2 Grammar Model

An ASDL grammar does not necessarily specify
the exact set of valid ASTs, but only a context-
free, parsing-optimized superset of ASTs. As a
result, the grammar is not sufficiently restrictive
and therefore allows the generation of ASTs that do
not correspond to any parsable program, or ASTs
that are parsable but would not withstand simple
static checks. For instance, the Python ASDL al-
lows spaces within variable identifiers or constant
string or number literals on the left side of an as-
signment, which is an invalid syntax. CPython’s
parser (3.7) still allows constructs such as function
calls or index operations with constants as targets
to be parsed into ASTs, e.g. ”1[2] = 3()”, resulting
in a static check error.

As an improvement, we propose to generate a re-
stricted grammar model that allows only AST com-
positions (i.e. attribute-child combinations) that oc-
cur in a corpus of Python code samples, e.g. the
train dataset of a task. The construction of the
grammar graph essentially induces a context-free
generalization of the ASTs from the training dataset
containing only parsable code samples. This way,
the likelihood of generating invalid ASTs can be
reduced significantly. The grammar graph defines a
sub-language of the language defined by the ASDL
by construction, so the knowledge contained in

the ASDL is still preserved in the grammar graph
and not discarded. Indeed, the set of ASTs is re-
stricted to what occurs in the training data, but this
will more likely prevent the model from predicting
invalid rather than valid AST compositions. The
advantage of the restrictive grammar graph is that
the model can only learn what it has seen in the
data, ensuring the generation of parsable ASTs. In
any case, the model does not allow the prediction
of AST combinations that it has not seen, i.e., that
did not occur in the training data.

We define the grammar model as a bipartite la-
beled directed graph, whose nodes are the AST
object nodes and attribute nodes. The grammar
graph, is used to compute edge paths for the tree
encoding and can also be used to create constraint
masks for limiting possible candidates from the
current prediction during inference.

4 Tree Encoding

Since the Transformer model is invariant to the in-
put order, due to its attention-based architecture,
required position information needs to be explicitly
included in the input sequence. Thus, (Vaswani
et al., 2017) encode positions in a sequence with a
parameter-free scheme using sinusoidal functions
of different frequencies and add these position en-
codings to the embeddings of the input sequence
tokens of the first encoder and decoder layer.
However, flattening ASTs into an input sequence
of AST tokens does not preserve the hierarchical
order between the tree nodes. In particular, nodes
whose tokens are next to each other in the AST



sequence can be far apart in the tree, namely if the
preceding token in the AST sequence is the last
node of a deep subtree. Conversely, the tokens of
two neighboring nodes in the AST are far apart in
the sequence when the first of two direct siblings is
the root of a large subtree.

To counteract this problem, we propose a tree-
based positional encoding built on (Vaswani et al.,
2017)’s sinusoidal encoding scheme, which allows
the attention mechanism to also attend over hierar-
chical positions in the input AST sequence.

4.1 Edge Paths

To define the tree encoding, we interpret the AST as
an ordered tree T' = (V, E, r7) consisting of a
set of nodes V1 with n object nodes and m attribute
nodes, a set of edges F/7 and root rr.

A node v € Vr is uniquely identified by an edge
path p,, of a configurable length L if the depth of
T is at most L. An edge path is not a path as in
graph theory, i.e., a sequence of neighboring nodes,
but rather structured like a path in a file system.
For each object and attribute node in the AST, the
outgoing edges receive a consecutively numbered
edge index ¢dx. For example in Figure 1la, the
first edge of the object node Assign to the attribute
node farget has index 1 and the second edge to the
attribute node value has index 2.

The edge path of a node consists of the edge
indices of the edges on the path from the node to
the root node. Edge paths shorter than L are padded
with zeros and the root node’s edge path consists
only of zeros. For example, the edge path of Assign
consists of the indices of the four edges on the path
to the root node sos.

Formally, each edge path p, = (idz;;)}_ /-,
consists of edge indices that lead from the target
node upwards to the root node. The [/-th edge in-
dex of the edge path refers to the [-th edge of the
(reverse) path from the target node up to the root.

4.2 Encoding Scheme

To encode the position of a node v in a tree 7', we
apply the sinusoidal encoding by (Vaswani et al.,
2017) to each edge index of the node’s edge path p,,
and compute the positional tree encoding T'E; ;| =
(EEidmN’i’)ile{l,...,didz} with j € {1,...,n} and
le{l,...,L} as follows:

EFEig; 2 = sin(wj - idz; ;)

EFEig; , 2i+1 = cos(w; - idz; ;)

with w; = 1/10000%% fori € {1,..., %=},

The parameter d;q4, is the dimension of the po-
sitional encoding of an edge index idz;; and de-
termines the number of encodings per edge index,
ie., dizdm € N sine and cosine pairs. This results
in an encoding of length d;4, * L for an edge path,
which also corresponds to d,,, the size of the node’s
embedding.

The tree encoding T'E,,; of a node v; is the con-

catenation of the encodings of its edge path indices:

TE,, =TE;1l|...|TE;L

with j € {1,...,n}.

4.3 Encoding Properties

The tree encoding entails the following properties,
which result from the composition of the edge paths
and the sine and cosine functions used to encode
the edge paths:

Uniqueness property The concatenation of the
edge indices encodings of a edge path results in
a unique tree encoding for a node v;. This is be-
cause for a node v;, the combination of its edge
path indices idx;; is unique and the sine (and co-
sine) function is injective on the products of its
edge path indices and each frequency w;s due to the
transcendality of 7.

Shifting property The tree encoding of a child
node v; contains the first (L — 1) * d;4,, dimensions
of its parent node’s tree encoding, shifted to the
right by d;4, dimensions. Two nodes are siblings
if these shifted parent dimensions contain identical
values for both nodes. Similar to (Shiv and Quirk,
2019), the shifting property is intended to enable
the attention mechanism to identify whether a node
is an ancestor or a sibling of a node v;. However,
relative distances between sibling nodes cannot be
represented by shifting alone.

Linear combination property Due to the math-
ematical properties of the sine and cosine func-
tions (Vaswani et al., 2017) hypothesizes that it
is possible for the attention mechanism to attend
to sequential order relationships, i.e., to learn rel-
ative positions. We make use of this property to
allow attending to sibling nodes by their relative
positions. From the positional encoding of an edge
index idz;;, the positional encoding of another



edge index idx; + k can be computed for any inte-
ger offset k, using the sum rules for trigonometric
functions. The positional encoding of a siblings of
a node v; with an offset ¥ < 0 and 1 =1 can be
expressed as a linear combination of the sine and
cosine values of the node v; edge encoding.

5 Evaluation

5.1 Datasets

For the evaluation we use the Python code gener-
ation benchmarks CoNalLa (Yin et al., 2018) and
Hearthstone (HS) (Ling et al., 2016) and for se-
mantic parsing we use the datasets GEO (Tang and
Mooney, 2001) and Atis (Dahl et al., 1994).
Hearthstone is a corpus for the automatic gen-
eration of code for cards in the trading card
game HearthStone and consists of 665 Python
classes, each representing one card. CoNala is
a Python corpus containing 2,379 curated and
593,891 mined NL-code pairs mined from the de-
veloper forum Stack Overflow. CoNalLa contains
as NL intent real-world questions to diverse imple-
mentation topics instead of pseudo-code annota-
tions. GEO is a corpus of natural language ques-
tions about US geography and consists of 600 train-
ing and 280 test examples of NL-Prolog queries
pairs. Atis is a corpus of natural language queries
for a flights database featuring 4473 training and
448 test examples of NL-lamba-calculus pairs.

5.2 Maetrics

As evaluation metrics, we use the BLEU score as
implemented by (Yin et al., 2018), the exact match
accuracy and the token- and sequence-level prefix
precision and recall.

The BLEU score measures the similarity be-
tween the generated code and the reference code
in terms of n-grams. We compute the token-level
BLEU score on normalized and tokenized code by
determining the precision on n-grams, then take
the geometric mean of the precisions, and apply
a brevity penalty for predictions shorter than the
expected code.

Exact match accuracy measures the ratio of pre-
dictions that were predicted without a single error.
This ensures the semantic correctness of the code,
but it is very conservative in that it doesn‘t allow
the slightest syntactic variation, and that no distinc-
tion is made between a prediction that is 0% correct
and one that is 99% correct.

Token- and sequence-level prefix precision and
recall interpolate exact match accuracies based on
the idea that if some prefix was predicted correctly,
the model didn‘t make a mistake up to that point,
so it is alright to give the model some credit for
that. On token level, it measures the ratio of tokens
in correct prefixes, while on sequence level, it mea-
sures the average percentage of the longest correct
prefix, ignoring snippet length. The prefix-based
metrics also partially measure semantical correct-
ness because the expected snippet is by definition
semantically correct.

5.3 Experimental Setup

We performed the experiments on a cluster of IBM
AC922 nodes with dual Power9 CPUs (2.80-3.10
GHz, 22 cores each), 256 GB RAM and 6 Nvidia
Volta V100 accelerators with 32 GB RAM. And on
nodes with AMD EPYC CPUs (2.3 GHz, 24 cores
each), 1 TB RAM and 8 A100 GPUs with 40 GB
RAM per node.

In the following experiments, unless specified
otherwise, we train each task for 500 epochs with
batch size 15, learning rate 0.0001, 6 encoder and 6
to 8 decoder layers, 16 attention heads, model di-
mension 512, maximum tree height 32 and feed-
forward dimension 2048. For inference, we set the
number of beams to £ = 30 and use a maximum
beam length of 250 tokens.

5.4 Evaluation Results

We performed the evaluation on two tasks, namely
semantic parsing on GEO and ATIS and code gen-
eration on CoNaLa and Hearthstone. In both cases,
the goal is to generate formal meaning representa-
tions from natural language input, that is, lambda-
calculus expressions or Python code.

We scored about 18% and 70% BLEU score for
the CoNaLa and Hearthstone benchmarks, respec-
tively (cf. table 2). State of the art approaches have
more sophisticated implementations that include
dynamic composite neural architecture, additional
embedded information, pre-training, or re-ranking.

Our results on the semantic parsing datasets
GEO and ATIS are listed in table 3. On ATIS we
achieved an exact match accuracy of 86,1%, which
is comparable to all our baselines except for the
leading approach. The exact match accuracy on
GEO is below the baselines, which we conjecture
to be caused by the small amount of training data.

To test whether the tree-encoded Transformer
learns to predict the AST structure correctly, we



Authors Name BLEU Authors Name BLEU
Yinetal. 2019  tranX 24.4% Yin et al. 2019 tranX 75,8%
Yinetal 2019  U3X 30,1% Hayatietal. 2018  ReCode  78,4%
+ rerank
tranX .
Xu et al. 2020 . 32,3% Rabinovich et al. 2017ASNs 79,2%
+ pre-trained
Sun et al. 2020 TreeGen-B  81,8%
Our system 18,1% Our system 70,7%
(a) CoNaLa (b) Hearthstone
Table 2: Comparison BLEU score with the state of the art on CoNalLa and Hearthstone.
Authors Name GEO Atis
Rabinovich et al. 2017 ASNs 87,1% 85,9%
Yin & Neubig 2018 tranX 88,2% 86,2%
Dong & Lapata 2018  oracle sketch 93,9% 95,1%
Shiv et al. 2019 Seq2Tree Tform 84,6% 86,4%
Our system 80,4% 86,1%
Table 3: Comparison EM accuracy with the state of the art on GEO and Atis.
Pos. ISIEI EM 3:q Seq. 3:q Token sgq Seq. isq Token isq
Enc. Lit. Acc. Tree Recall Tree Recall Tree Prec. Tree Prec. Tree
Seq  yes 4,5% 26,9% 23,0% 28,4% 26,4%
Seq no 10,6% 48,9% 42,5% 52,2% 48,7%
Tree yes 7,6% +3,0% 289% +2,0% 23,7% +0,7% 30,5% +2,1% 279% +1,4%
Tree no 12,1% +1,5% 50,0% +1,1% 43,7% +12% 53,9% +1,7% 51,3% +2,7%

Table 4: Exact match accuracy and longest common prefix on Hearthstone.



looked at the exact match accuracy and token- and
sequence-level precision and recall, as shown in
table 4.

We masked all string literals and computed the
longest common prefix between the best predicted
and the expected AST sequence for each sample
from the test dataset. We do this on a model we
trained with tree encoding and then on a model we
trained with sequential encoding.

With the exclusion of string literals, the prefix
precision and recall jump from about 25% to about
50% with both sequential and tree encoding. From
the prefix analysis, we can take away that the string
literals have a significant impact on the quality of
the prediction and that longer sequences are more
difficult to predict. What we also found is that tree
encoding gives an improvement of up to 3.0% when
excluding string literals over sequential encoding.

6 Conclusion

We propose a Transformer-based architecture with
a tree-based positional encoding and constrained
decoding based on a grammar model derived from
training data. We evaluate it on four different
datasets. While we do not surpass state-of-the-art
methods, we see relative improvement of applying
tree encoding over sequential encoding.

In the future, we will work on improved ver-
sions of training with constraint masks and gram-
mar models that respect larger contexts than only
the immediate containing attribute. Also, we will
further investigate attention-based mechanisms for
generating tree structures, also in the context of
domain-specific languages as generation target.
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