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Abstract

In this paper, we introduce Latent Go-Explore
(LGE), a simple and general approach based on
the Go-Explore paradigm for exploration in rein-
forcement learning (RL). Go-Explore was initially
introduced with a strong domain knowledge con-
straint for partitioning the state space into cells.
However, in most real-world scenarios, drawing
domain knowledge from raw observations is com-
plex and tedious. If the cell partitioning is not
informative enough, Go-Explore can completely
fail to explore the environment. We argue that the
Go-Explore approach can be generalized to any
environment without domain knowledge and with-
out cells by exploiting a learned latent representa-
tion. Thus, we show that LGE can be flexibly com-
bined with any strategy for learning a latent repre-
sentation. Our results indicate that LGE, although
simpler than Go-Explore, is more robust and out-
performs state-of-the-art algorithms in terms of
pure exploration on multiple hard-exploration en-
vironments including Montezuma’s Revenge. The
LGE implementation is available as open-source
athttps://github.com/ggallouedec/
lge.

1. Introduction

RL algorithms aim to learn a policy by maximizing a reward
signal. In some cases, the rewards from the environment
are sufficiently informative for the agent to learn a complex
policy, and therefore achieve impressive results, including
world level in Go (Silver et al.l [2016), StarCraft (Vinyals
et al., |2019), or learning sophisticated robotic tasks (Lee
et al.| 2019). However, many real-world environments pro-
vide extremely sparse (Bellemare et al.,|[2016), deceptive
(Lehman & Stanley, [2011) rewards, or none at all. In such
environments, random exploration, on which many current
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RL approaches rely, may not be sufficient to collect data
that is diverse and informative enough for the agent to learn
anything. In these cases, the agent must adopt an efficient
exploration strategy to reach high reward areas, which may
require a significant amount of interactions.

Recently, Ecoffet et al.|(2021) introduced a new paradigm
in which a goal-conditioned agent is trained to reach states
it has already encountered, and then explore from there.
The agent thus iteratively pushes back the frontier of its
knowledge of the environment. We call this family of al-
gorithms return-then-explore. Ecoffet et al.[(2021)) provide
Go-Explore, an algorithm of this new family, that outper-
forms by several orders of magnitude the state-of-the-art
scores on the game Montezuma’s Revenge, known as a hard-
exploration problem. Go-Explore relies on a grouping of
observations into cells. These cells are used both to select
target observations at the frontier of yet undiscovered states
and to build a subgoal trajectory for the agent to follow to
reach the final goal cell. As |Ecoffet et al.| (2021)) initially
spotted, the cell design is not obvious. It requires detailed
knowledge of the observation space, the dynamics of the
environment, and the subsequent task. If any important in-
formation about the dynamics of the environment is missing
from the cell representation, the agent may fail to explore at
all. For example, in Montezuma’s Revenge, possession of
a key is a crucial piece of information that when included
in the cell representation increases exploration by several
orders of magnitude. We also demonstrate in Appendix [B]
that the cell design has a major influence on the results.

In this paper, we present Latent Go-Explore (LGE), a new
algorithm derived from Go-Explore which operates without
cells. This new algorithm meets the definition of a refurn-
then-explore family of algorithms since the agent samples
a final goal state at the frontier of the achieved states, re-
turns to it, and then explores further from it. Our main
contribution consists of three major improvements.

* A latent representation is learned simultaneously with
the exploration of the agent to provide the most up-to-
date and informative representation possible.

» Sampling of the final goal is based on a non-parametric
density model in latent space. This leverages the
learned latent representation for sampling the states
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Figure 1. LGE exploration workflow. The encountered observations are encoded in a latent space. A latent density is estimated. A final
goal is sampled from the states already reached, by skewing the distribution with the density. A goal-conditioned agent is trained to reach
this goal by pursuing a sequence of subgoals, derived from the experiment that led to the final goal. Once the agent has reached the final

goal, it explores from it with any exploration strategy.

of interest to be reached.

» The subgoal path pursued by the agent is reduced using
a characteristic latent distance.

These three modifications, detailed in Section[3] allow us to
generalize the Go-Explore approach to any continuous high-
dimensional environment. It also enables the automation
of the encoding of observations into an informative latent
representation, eliminating the need for manual cell design.
The full LGE exploration workflow is presented in Figure|T}

To evaluate LGE, we conducted experiments in the con-
text of reward-free exploration in various hard-exploration
environments including a maze, a robotic arm interacting
with an object, and two Atari games known for their high
exploration difficulty: Montezuma’s Revenge and Pitfall.

LGE can use various types of latent representation learning
methods. In this study, we demonstrate the use of three such
methods, including inverse dynamics, forward dynamics,
and auto-encoding mechanism. We show in Section [4.4] that
for the environments studied, LGE outperforms all state-of-
the-art algorithms studied in this paper, and in particular
Go-Explore for the exploration task.

2. Preliminaries and Related Work
2.1. Preliminaries

Markow Decision Process This paper uses the standard
formalism of a discounted Markov Decision Process (MDP)
defined as the tuple (S, .4, P, R,~, po) where S is the set
of states, A is the set of actions, P : S x A — S is the
(unknown) transition function providing the probability dis-
tribution of the next state given a current state and action,
R : Sx AxS — Ris the reward function, + is the discount
factor and pg is the initial distribution of states. A policy, de-
noted 7 : S x A — R™ is the probability distribution such
that (als) is the probability of choosing action « in state s.

We denote the previously defined values with discrete time
t such that s;, a; and r,; denote respectively the state, action,
and reward at timestep ¢. The goal is to learn a policy 7 that

maximizes the long-term expected reward E [Z;og ~ry).

Goal-conditioned MDP We note that every MDP can
be augmented into a goal-conditioned MDP with a goal
space G and an initial goal distribution p,. At each timestep,
the observation is augmented with a goal and the reward
function depends on this goal. A goal-conditioned policy
(Kaelbling} |1993), denoted 7 (+|-, -) also depends on the goal.

2.2. Related Work

Exploration in RL can be divided into three types (Ladosz
et al., [2022): unstructured exploration'| intrinsic rewards-
based methods, and goal-based methods.

Unstructured exploration In unstructured exploration,
the agent does not adhere to a predetermined exploration
plan and instead takes actions randomly or according to a
simple heuristic. These actions may be sampled uniformly
from the action space, or in the continuous case, they may
be augmented by exploration noise that is parametrized by
the current state (Haarnoja et al 2018) or not (Lillicrap
et al.,[2016). Unstructured exploration can be effective in
some environments, but it may not be sufficient to explore
more complex or sparsely rewarded environments.

Intrinsic rewards-based methods Intrinsic rewards-
based methods are inspired by the concept of intrinsic moti-
vation in cognitive science (Oudeyer & Kaplan|,|2009). They
involve the addition of an additional reward signal, called
intrinsic, to the reward signal from the environment, called
extrinsic. This intrinsic reward is designed to encourage

'We replace the terminology of [F.adosz et al.| (2022) random
exploration by unstructured exploration that we think is more
accurate.
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Algorithm 1 LGE

Input: Number of iterations in the exploration phase 7T'.
Initialize: Replay buffer D = (); Encoding module; Goal-
conditioned policy 7
while ¢ < T do
Sample a final goal state with Equation (3).
Build the subgoal trajectory 79 using Equation ().
Initialize the subgoal index: ¢ < O.
while the last goal of 79 is not reached do
Collect interaction using 7(-|-, 77) and store it into
dataset D.
if subgoal 77 is reached, i.e. ||¢(s:) — &(77)|| < d
then
Move to the next subgoal: ¢ <— ¢ + 1.
end if
end while
Explore until the end of the episode with any explo-
ration strategy.
Update 7 with any off-policy algorithm and HER.
Every update_encoder_freq timesteps, update en-
coder ¢ with any representation learning algorithm.
end while
return the goal-conditioned policy 7 and the dataset D.

exploration. It can be based on the state visitation count
(Bellemare et al.| [2016; Machado et al., [2020) or on the
prediction error of a model learned from the collected data
(Houthooft et al., [2016; |Pathak et al., 2017; /Achiam & Sas-
try}, 2017; [Pathak et al., 2019; [Burda et al., [2019; Tao et al.,
2020).

Goal-based methods Methods that modify the reward of
the environment provide no mechanism for distilling the
knowledge gained from visiting various states. Agents may
visit new states, but they quickly forget about them when
other states become newer. To address this issue, recent
work has suggested the use of a goal-conditioned autotelic
agent specifically trained for the exploration task. This
approach allows for the use of the knowledge gained dur-
ing exploration to realize new user-specified goals (Levinel
2021} |Colas et al., 2022). During the exploration phase, the
reward signal is ignored, and after the exploration phase,
the data collected by the agent is used to learn one or more
subsequent tasks (Jin et al., 2020). Goal-based methods con-
dition the agent with a goal that is used to guide exploration
towards unknown areas. These methods rely on a goal gen-
erator to create goals for the agent. We divide goal-based
methods into two categories: exploratory goal methods and
goals to explore from methods (called post-exploration in
(Yang et al.;, |2022)).

Exploratory goal methods follow the intuition that the agent
discovers new areas of the observation space by pursuing

goals that have been little or not achieved before. The
challenge of these methods is to choose the goal to be neither
too easy nor too hard. The literature contains several ways
to approach this trade-off. Some methods sample goals
that either maximize Learning Progress (Colas et al., 2019;
Portelas et al., [2020) or value disagreement (Zhang et al.,
2020). Other methods sample goals from the least visited
areas using a parametric density model on the visited states
(Pong et al.,2020). It is also possible to imagine goals that
have never been reached using a language model (Colas
et al.,[2020), a generative model (Racaniere et al., 2020) or
a GAN (Florensa et al.,[2018).

In goals to explore from methods the agent samples a goal
from previously visited states. It returns to it, either by
teleportation (Ecoffet et al., [2019; Matheron et al., [2020),
or using a goal-conditioned policy (Ecoffet et al., 2021).
The challenge of these methods is to choose a goal that
is of high exploratory interest. Similarly, some methods
estimate the density of the encountered states, using either
parametric methods (Pitis et al., |2020) or non-parametric
methods (Ecoffet et al., [2021; [Matheron et al., [2020), to
target the low-density areas.

In summary, methods based on a goal reaching policy should
facilitate scalable RL. The stunning results of Go-Explore
illustrate this point but remain circumscribed to few envi-
ronments and require a lot of domain knowledge to work.
By bridging with concepts already used in the intrinsic re-
ward literature, we show a way to make this approach more
general and simpler.

3. Latent Go-Explore

LGE meets the definition of the return-then-explore family
of algorithms. First, a final goal state is sampled from the
replay buffer, then the agent learns a goal-conditioned policy
to reach this goal. When the agent reaches the goal, the
agent starts to explore. LGE learns a latent representation
of observations and samples the goal pursued by the goal-
conditioned agent in priority in low latent density areas.
In Section [3.1] we present how the latent representation
of observations is learned. In Section [3.2] we show how
the latent density is estimated and how the final goal state
pursued by the agent is sampled. Finally, in Section[3.3] we
show how to build a subgoal trajectory from the final goal to
increase the agent’s performance, in particular in far-away
goal situations. The pseudo-code of the resulting algorithm
is presented in Algorithm ]

3.1. Learning a Latent Representation

The literature contains several latent representation learning
methods for RL. Learning such a representation is orthogo-
nal to our approach. Hence, LGE can be combined with any
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learning method without the need for further modifications.
Choosing the best representation learning method given the
environment is out of the scope of this paper. In this pa-
per, we present three methods of representation learning
that have been found to work well with our test environ-
ments. Two of these methods are inspired by the literature
on intrinsic reward-based methods,

Inverse dynamic representation learning |Pathak et al.
(2017) proposed an intrinsic reward calculated based on
the agent’s prediction error of the consequence of its own
actions. The representation is learned using two submodules.
The first encodes the observation into a latent representation
®(s¢). The second takes as input ¢(s;) and ¢(s; + 1) and
outputs the prediction of the action taken by the agent at
time step ¢. The parameters 6 of the inverse model P;"" are
optimized by minimizing the loss function:

1 1 inv
L = W Z iHat—,Pg (St75t+1)H§ (M

(st,at,5¢41)~D

The inverse dynamics representation learning allows get-
ting a latent representation of the states containing only the
aspects of the state on which the agent can have an influence.

Forward dynamic representation learning In|Achiam
& Sastry|(2017), the intrinsic reward is calculated based on
the prediction error of a model approximating the transition
probability function of the MDP. Two submodules are used.
The first one encodes the observation to a latent represen-
tation ¢(s;). The second takes as input ¢(s;) and a; and
outputs the prediction of the next state 5;41. The model
parameters 6 are optimized by minimizing the loss function:

_WIIZ

(st,at,5¢41)~D

L= IOg P9(5t+1 | St, at) (2)

Vector Quantized Variational Autoencoder (VQ-VAE)
Autoencoding (Hinton & Salakhutdinov, [2006)) aims to train
a neural network to reconstruct its input by learning a com-
pressed representation of the data. This approach is known
to be effective in extracting useful features from the input,
especially images. For Atari environments, we use a VQ-
VAE (van den Oord et al., [2017), a technique that combines
autoencoding with vector quantization, and has shown good
results, while being simple to train. We use the coordinates
of the embeddings in the embeddings table as the latent
representation.

3.2. Density Estimation for Intrinsic Goal Sampling

The success of the proposed method relies on the agent’s
ability to generate for itself goals that it will be able to reach

and then explore from there. For the agent to progress in the
exploration of the environment, these goals must be at the
edge of the yet unexplored areas. To identify these areas,
we use an estimator of the density of latent representations
of the encountered states. Moreover, we require the goal to
be reachable. The set of reachable states is a subset of the
state space that we assume to be unknown. The easiest way
to satisfy the previous requirement is therefore to sample
among the states that have already been reached.

We estimate the density of latent representations of the en-
countered states (called latent density) using the particle-
based entropy estimator originally proposed by (Kung et al.
2012) and used in the literature on intrinsically motivated
RL (Liu & Abbeel, [2021bga). This estimator has the ad-
vantage of being nonparametric and thus does not hinge on
the learning capabilities of a learned model. Appendix
describes the details of the implementation of this estimator,
denoted f .

The sampling of the final goal state follows a geometric law
on the rank in the latent density sort R;. The probability to
draw s; as the final goal state is

P(G=s;)=(1-p)" 'p )

where G is the random variable corresponding to the final
goal state, and 0 < p < 1 is a hyperparameter controlling
the bias towards states with a low latent density.

This method has the advantage of being robust to approxi-
mation errors in the density evaluation, which can be par-
ticularly important in low density areas. In doing so, we
only focus on the ability of the model to correctly order the
observations according to their latent density.

The representation is jointly learned with the exploration of
the agent. Therefore, the latent density must be regularly
recomputed to take into account the most recent representa-
tion on the one hand, and the recently visited states on the
other hand. However, considering the slow evolution of this
value, we choose to recompute the latent density only once
every 5k timesteps for maze and robotic environments, and
every 500k timesteps for Atari environments. This allows us
to significantly reduce the computation needs while having
a low empirical impact on the results.

3.3. Subgoal Trajectory

As learning progresses, the sampled final goal states are
increasingly distant. However, reaching a distant goal is
challenging because it implies a sparse reward problem.

To overcome this problem, we condition the agent to suc-
cessive intermediate goals 79 = (g, ¢1..., g1,) that should
guide it to the final goal state g;,. These intermediate goals
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are chosen from the trajectory that led the agent to the final
goal state (sg, S1,. .., ST).

The trajectory that led the agent to the final goal state is
unlikely to be optimal. Plus, if the agent is conditioned by
the whole trajectory, it may fail to reach all of them, even
though some of them may not be necessary to reach the final
goal state. To allow the agent to find a better path to the final
goal state, we remove some subgoals from this trajectory.
To decide whether a subgoal should be removed from the
trajectory, we evaluate the latent distance to the previous
subgoal. If the distance is less than the threshold, then the
goal is removed.

Vi< L—1, [[¢(gi) — dgira)ll > d ©)
Unlike Go-Explore, LGE don’t use the best known trajectory
that leads to the sampled goal area (cell). The main reason is
that the best known trajectory may be particularly difficult to
reproduce, due to the dynamics and the stochasticity of the
environment, or cause the early termination of the episode.
For example, in Montezuma’s Revenge, there are two ways
to reach the bottom of the left ladder (a necessary step to
get the first key). The first one consists in jumping right
from the promontory, but causes the death of Panama Joe
(the character) and as a result ends of the episode. The
second one, longer, consists in going around by the right
ladder. Therefore, if the agent always chooses the shortest
path (like Go-Explore), it will most likely fail to reach the
first key and to further explore the environment.

Once the goal is reached, the agent explores using any ex-
ploration strategy. For the sake of simplicity, we choose
a random exploration strategy for our experiments. We
also impose that the agent repeats the previous action with
a probability of 90%. This technique has been shown to
increase the results significantly (Ecoffet et al.,[2021]).

4. Experiments

To demonstrate the effectiveness of our method, we apply it
to a range of pure exploration tasks. We focus on environ-
ments for which naive random exploration is not sufficient
to explore the rich variety of reachable states. We com-
pare the results obtained with LGE with the results obtained
using several algorithms based on intrinsic curiosity and
others based on goal-directed strategies. For each environ-
ment, LGE uses the representation method that empirically
gives the best results. Consequently, we use the forward
dynamics for the maze environment, the inverse dynamics
for the robotic environment, and the VQ-VAE for Atari.

In terms of infrastructure, each run was performed on a
single worker machine equipped with one CPU and one
NVIDIA® V100 GPU + 120 Gb of RAM.

4.1. Environments

Continuous maze We train an agent to navigate in a con-
tinuous 2D maze. The corresponding configuration is shown
in Figure[2] The agent starts every episode in the center of
the maze. At each timestep, the agent receives the current
coordinates as an observation and chooses an action that
controls its location change. If the agent collides with a
wall, it returns to its previous position. The reachable space
is a square of 12 x 12 and the agent’s action is limited to
[—1, 1] horizontally and vertically. The agent can interact
100 times with the environment (which is just enough to
explore all the maze), after which the episode ends.

Robotic environment Robotic environments are interest-
ing and challenging application cases of RL, especially since
the reward is often sparse. We simulate a Franka robot under
the PyBullet physics engine using panda-gym (Gallouédec
et al.,|2021). The robot can move and interact with an object.
The agent has access to the position of the end-effector and
the position of the object, as well as to the opening of the
gripper. The agent interacts 50 times with the environment
and then the object and the robot arm are reset to their initial
position.

Atari We train LGE on two high-dimensional Atari 2600
environments simulated through the Arcade Learning Envi-
ronment (ALE, Bellemare et al.|(2013))) that are known to be
particularly challenging for exploration: Montezuma’s Re-
venge and Pitfall. Details of the settings used are presented
in Appendix [A]

4.2. Baselines
4.2.1. RANDOM EXPLORATION

Most RL methods from the literature do not follow any
structured exploration strategy. In a reward-free context, the
performance of the latter is often equivalent to a random
walk. We take as a reference a random agent, whose actions
are uniformly sampled over the action space at each time
step, Soft Actor-Critic (SAC, |Haarnoja et al.|(2018))) and
Deep Deterministic Policy Gradient (DDPG, [Lillicrap et al.
(2016)) for continuous action space environments.

4.2.2. INTRINSIC REWARD-BASED EXPLORATION

In this paper, we take as reference two widely used intrinsic
reward-based methods combined with either SAC or DDPG.
These methods stand out from the others because, despite
their simplicity, they have demonstrated good performance
on a wide variety of tasks.

Intrinsic Curiosity Module (ICM, |Pathak et al.[|(2017))
The intrinsic reward is computed as the mean square error
between the true latent representation and the one predicted
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Figure 2. Space coverage of the maze environment after 100k timesteps. In[(T)} the different colors are the different skills.

by a learned dynamic model given the action taken. The
encoder is trained jointly with an inverse dynamics model.

Surprise (Achiam & Sastry, [2017) The intrinsic reward is
the approximation of the KL divergence between the actual

transition probabilities and a learned transition model.

4.2.3. GOAL-DIRECTED EXPLORATION

Go-Explore The agent divides the observation space into
cells, prioritizes the cells that have been visited the least,
returns to them using a goal-conditioned policy, and then
continues exploring from that point. This is the policy-based
and without domain knowledge variant of Go-Explore, but
we refer to it simply as Go-Explore. The observations in
continuous environments are converted into cell representa-
tions by discretizing them. In the maze environment, we use
a 24 x 24 grid, and in the robotic environment, we use a grid
with a 0.1m resolution for the position of the gripper and ob-
ject. For Atari, we use the same fixed cell representation as
proposed by (Ecoffet et al} 2021)) in the policy-based case:
the observation is converted to grayscale and reduced to the
size of 8 x 11 pixels. The depth is then reduced from 256 to
8 values according to L% where p is the pixel value. The
resulting image is the representation of the cell. Go-Explore
is the closest baseline to our algorithm. Appendix D] details
the differences between LGE and Go-Explore.

Diversity Is All You Need (DIAYN, Eysenbach et al|
(2019a)) The agent is conditioned by a skill and a discrimi-
nator predicts the skill pursued by the agent. The more the
discriminator predicts with certainty the skill pursued, the
bigger the reward. Conjointly, the discriminator is trained
to maximize the distinguishability of skills.

Skew-Fit (Pong et al.|[2020) The agent’s goal sampling is
skewed to maximize the entropy of a density model learned
on the achieved states.

For the goal-directed methods, we use Hindsight Experience
Replay (HER, |Andrychowicz et al.[(2017)) relabeling which
has shown to significantly increase learning.

To nullify the variation in results due to different implemen-
tations, we implement all algorithms in the same framework:
Stable-Baselines3 (Raffin et al}, 2021). The set of intrin-
sic reward-based methods and goal-directed methods are
underpinned by the same off-policy algorithm. The hyper-
parameters for this algorithm are identical. For the maze
environment, we use SAC, while for the robotic environ-
ment, we use DDPG as it gives better results for all methods.
For Atari environments, we use QR-DQN
[2018)), as it commonly considered to be a strong baseline
on it. For Atari, we only compare LGE to Go-Explore as
it far outperforms the others. To negate the influence of a
bad choice of hyperparameter on the results, the method-
specific hyperparameters are optimized. Appendix [A]details
the optimization process and the resulting hyperparameters.

4.3. Measuring the Exploration

In this paper, we focus on the agent’s ability to explore its
environment in a pure exploration context, i.e. in the ab-
sence of extrinsic reward. This step is particularly important
because, in the case of an environment with very sparse
rewards, the agent can interact a large number of times with
the environment without getting any reward. It is therefore
necessary to follow an efficient exploration strategy to dis-
cover the few areas of the state space where the agent can
get a reward. To be able to compare the results obtained
by different methods in this context, it is necessary to use a
common metric for the quality of exploration.



Cell-Free Latent Go-Explore

100

—_
o
(=]

Space coverage (%)

&
\
Fraction (%) of runs with

space coverage > T
ot
)

o

|
50 100

0 50 100
timesteps 10%

——LGE (ours) Skew-Fit —— SAC+Surprise —— SAC
—— Go-Explore —— DIAYN SAC+ICM

o

Space coverage (%)

—— Random

Figure 3. Comparison of the space coverage of the maze environ-
ment. Each experiment is run 10 times. The left plot represents
the space coverage (number of cell divided by the total number of
reachable cells) across timesteps. The solid lines are the IQMs and
the shaded areas are the 95% confidence intervals. The right plot
is the final performance profile (higher is better).

The literature uses various metrics. Some papers use the
average reward on a hard-exploration task (Ali Taiga et al.,
2020), the zero-shot performance on a predefined task
(Sekar et al., [2020) or monitor specific identifiable events in
the environment that indirectly informs the degree of explo-
ration (Gtilcehre et al.| 2020). We argue that these indirect
measures are unsatisfactory as they rely on the subsequent
learning ability of an online and offline agent respectively.
For simplicity, we use the number of visited cells as the
metric, whose construction strategy is explained in Section
M.2.3] Therefore, the figures represent the number of cells
explored, although Go-Explore is the only algorithm to ex-
plicitly maximize this metric. Following the guidelines of
(Agarwal et al., [2021)), we use for all plots in this paper the
interquartile mean (IQM) with the 95% confidence interval.

4.4. Main Results

The exploration results for the maze environment are pre-
sented in Figure[3] A rendering of the positions explored
by the agent is presented in Figure [2l We note that only
LGE and Go-Explore significantly outperform the results
obtained with random exploration. This demonstrates the
effectiveness of the return-then-explore paradigm in this
environment. We note that exploration based on intrinsic
curiosity does not yield significantly better results than those
obtained by random exploration. We hypothesize that the
simple dynamics of the environment makes the intrinsic
reward to quickly converge to 0.0. Surprisingly, neither
Skew-Fit nor DIAYN performs significantly better than ran-
dom exploration. For DIAYN, we find that most of the skills
were concentrated in the initial position area of the agent.
We hypothesize that this is the consequence of the lack of
post-exploration described by (Yang et al.,[2022)). Finally,
we note that, although the cell size has been optimized,
LGE significantly outperforms Go-Explore. LGE manages
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Figure 4. Comparison of exploration with the robotic environment.
Each experiment is run 10 times. The left plot represents the
number of explored bins across timesteps. The solid lines are the
IQMs and the shaded areas are the 95% confidence intervals. The
right plot is the final performance profile (higher is better).

to cover almost the entire reachable space at the end of the
runs while exhibiting low variability in the results.

The exploration results for the robotic environment are pre-
sented in Figure ] We notice that LGE significantly out-
performs all other methods. Notably, Go-Explore performs
only slightly better than random exploration. We note that
Go-Explore does not learn to grasp the object throughout
the learning process. The results presented on a robotic
environment by |[Ecoffet et al.|(2021) are much better. We
presume this is mainly due to the meticulous work done
on the state space examination and the induced cell design.
Here, we use a naive grid-like cell design. Although the
grid parameter is optimized, it does not yield good explo-
ration results with this environment. We thus demonstrate
the benefit of using a learned representation to automatically
capture important features of the environment’s dynamics.

The exploration results for Atari are presented Figure [5]
We see that both LGE and Go-Explore quickly discover a
large number of cells, then continue their exploration by
regularly discovering new cells. LGE slightly outperforms

Montezuma’s Revenge Pitfall
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Figure 5. Comparison of exploration on the Atari environments.
Each experiment is run 3 times. The solid lines are the IQMs and
the shaded areas are the 95% confidence intervals.
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Figure 6. Result of ablation study on the maze environment. Each
experiment is run 10 times. The left plot represents the space
coverage across timesteps. The solid lines are the IQMs and the
shaded areas are the 95% confidence intervals. The right plot is
the final performance profile (higher is better).

Go-Explore on both Pitfall and Montezuma’s Revenge. Nev-
ertheless, we note that the number of discovered cells is
much lower than that of Go-Explore in its full configuration
(around 5k for Montezuma’s Revenge), including domain
knowledge and the ability to reset the environment in any
state. This shows the criticality of these settings for explor-
ing these particular environments.

4.5. Ablation Study

We study the impact of the ablation of three key elements of
LGE. (1) LGE without further exploration (as exploratory
goal methods, see Section @]): the environment is reset
once the agent reaches the final goal instead of perform-
ing the exploration random interactions. (2) LGE without
skewing the final goal distribution in favor of low latent
density areas, the final goals are sampled uniformly among
the reached goals. (3) LGE without subgoals trajectory re-
duction: the agent is just conditioned by the final goal state.
We perform these ablation studies on the maze environment
and use the same hyperparameters as in Section The
results are shown in Figure[§

The impact of the three ablations on the outcome is signifi-
cant. We find that exploration after reaching the final goal is
crucial, confirming the results of (Yang et al.,[2022); with-
out it, the agent reaches the limits of its knowledge but has
little chance to explore further. Additionally, sampling goals
with low latent density can significantly improve results by
directing exploration to states with high exploratory value.
Furthermore, we observe that conditioning the agent with
successive subgoals greatly improves its exploration.

5. Discussion

5.1. Limitation and Future Work

Goal-achievement functions In LGE, an agent is consid-
ered to have reached a goal (whether final or intermediate)

when the latent distance between its state and the goal is
below a threshold. This is a naive way of defining a goal
achievement function (Colas et al.||2022) that depends cru-
cially on the latent representation. We believe that the results
could be improved by envisioning a more informative and
suitable goal achievement function for our method.

The initial state must remain the same across episodes
The approach we propose is based on the assumption that the
agent is always initialized in the same state. This assump-
tion guarantees that at the beginning of each episode, all the
states previously reached are reachable and that the subgoal
trajectory starts with the initial state of the agent. However,
in some environments, especially in procedurally generated
environments, this assumption is not fulfilled (Kiittler et al.,
2020). In this situation, trying to follow the subgoal trajec-
tory may be counterproductive in reaching the final goal.
It is also possible that the final goal is not even reachable.
However, note that even the pursuit of an unreachable goal
can foster exploration. We believe that an approach inspired
by generative networks such as (Racaniere et al., 2020) may
be appropriate to overcome this problem.

High-dimension environments and representation learn-
ing Our main contribution consists in the generalization
of the Go-Explore approach by using a latent representation.
LGE is notably effective in high-dimensional environments,
specifically those with image observations. Representation
learning is the keystone of the method. We provide a proof
of concept for a forward model, an inverse model, and a
VQ-VAE. We believe that the results can be greatly im-
proved by choosing more finely the representation learning
method for each environment by taking advantage of the
many works dealing with this subject (Lesort et al., 2018).
Representations are expected to encapsulate transitional
proximity between observations, a feature not guaranteed
by most learning methodologies. Nonetheless, in practice,
such transitional proximity is often exhibited in learned
representations.

The representation used by Search on Replay Buffer (SoRB)
(Eysenbach et al., 2019b) is directly that of the critic. Using
the same reward structure as LGE, the critic thus has the
nice property of basically learning the negative distance of
the shortest directed path between two states. Overall, we
believe that the use of SoRB in the ”Go” phase can be a
substantial improvement of LGE and is a promising way to
solve the three limitations mentioned above.

Finally, we believe that the community should endeavour to
find a relevant metric for exploration, especially for image-
based environments. We expect that such a metric would
allow a more accurate comparison of different methods.
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5.2. Conclusion

We introduce LGE, a new exploration method for RL. In this
method, our agent explores the environment by selecting its
own goals based on a jointly learned latent representation.
LGE can be used as pre-training in environments where
rewards are sparse or deceptive. Our main contribution is to
generalize the Go-Explore algorithm, allowing us to benefit
from representation learning algorithms for exploration. We
present statistically robust empirical results conducted on
diverse environments, including robotic systems and Atari
games, that demonstrate our approach’s significant improve-
ment in exploration performance.
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A. Hyperparameters and Environments
Settings

To limit the impact of the large variability of results de-
pending on the hyperparameters, we chose to optimize the
hyparameters for each experiment. For maze and robotic
environments, we selected 100 unique sets of hyperparame-
ters from a search space presented in Table [T using Optuna
(Akiba et al., [2019). For each hyperparameter set, we train
the model with 3 different seeds and keep the median score.
For Atari, we selected 10 unique sets of hyperparameters
and train the agent just once.

The method-specific parameters that have not been opti-
mized are presented in Table 2]

The hyperparameters used for the off-policy agent are iden-
tical for all algorithms. They are presented in Table

For Atari, we mainly use the setting recommended by
Machado et al.| (2018)). Like (Ecoffet et al.| [2021)), we use
both sticky actions and start no-ops.

B. On the Criticality of Cell Representation in
Go-Explore

In Go-Explore, similar observations are grouped into cells
and each cell encountered is stored in an archive. The cell
representation is a critical aspect of Go-Explore. In the
Montezuma’s Revenge environment, a slight variation in cell
representation results in an order of magnitude difference
in the results. The cells are used to (1) estimate the density
of states encountered in the observation space and sample a
target cell against it; (2) divide this goal reaching task into a
sequence of subgoals.

We argue that building a cell representation to capture the rel-
evant components of an environment to perform the desired
task requires a significant amount of domain knowledge. In
general, this cell representation cannot be generalized to
other tasks or to other environments.

To support our claim, we present in Figure |7| the space
coverage in a continuous maze for different cell design. We
show that even in this simple environment, a small variation
in cell design has a significant impact on the result.

On the left, the cells are small, and the agent must visit
each of them. If the agent interacts long enough with the
environment, it should eventually explore the whole space.
On the right, the cells are large. We can observe some
detached areas, because the agent has not visited the cell
enough to discover the next one, but enough so that this cell
is no longer listed as a target cell.
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Table 1. Search space and resulting hyparparameters after optimization.

METHOD HYPERPARAMETER SEARCH SPACE MAZE ROBOTIC ATARI
LGE Latent distance threshold [0.1,0.2,0.5,1.0,2.0] 1.0 1.0 2.0

Latent dimension [4,8,16,32,64] 16 8 8x8x8F°

Geometric parameter [0.001, 0.002,0.005,0.01,0.02,0.05]  0.05 0.01 0.001
GO-EXPLORE  Cell size [0.2,0.5,1.0,2.0,5.0] 2.0 0.2 11x8x8°
ICM Scaling factor [107%,1072,1071,10°, 10", 10%] 107 1072 N/A

Actor loss coefficient [1073,1072,1071,10%, 10", 107] 10? 1073 N/A

Inverse loss coefficient® [1073,1072,1071,10°%, 10", 10%] 10t 1073 N/A

Forward loss coefficient® [1073,1072, 107, 10°,10%, 10%] 10t 102 N/A
SURPRISE Feature dimension [2,4,8,16,32] 2 16 N/A

Desired average bonus 1072,107%,10°,10"] 1072 1072 N/A

Model train frequency 2,4,8,16, 32,64, 128] 64 8 N/A

Model learning rate [1076,1075,107%,1073,1077] 1075  107° N/A
DIAYN Number of skills [4,8,16, 32,64, 128] 32 32 N/A
SKEW-FIT Number of models 5,10, 20, 50, 100, 200] 50 50 N/A

Density power -5.0,—2.0,-1.0,-0.5,—-0.2,—-0.1] —1.0 —0.2 N/A

Number of pre-sampled goals  [64, 128, 256, 512, 1024, 2048] 64 128 N/A

Success distance threshold 0.05,0.1,0.2,0.5, 1.0] 0.5 0.2 N/A

“ In the original paper, the sum of the forward and inverse loss coefficients is 1. We get better results without this constraint.
® Width x Height x Number of grayscale values. Not optimized, taken from the original paper.
¢ Width x Height x Number of embedding vectors.

nd
Ly

(a) Cell size = 0.5 x 0.5 (b) Cell size = 2.0 x 2.0 (c) Cell size = 6.0 x 6.0

Figure 7. Go-Explore scene coverage after 100k timesteps. The cell design is represented by the gray grid. We show the results for 3
different cell widths and shift. The red dots represent the visited states.
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Table 2. Hyperparameters specific to each method. Their value is identical for all experiments and have not been optimized.

METHOD HYPERPARAMETER VALUE
LGE Encoder module trained every N timesteps 5k (Maze and Robotic), 500k (Atari)
Learning 0.001
Batch size 32
Gradient steps 500 (Maze and Robotic), 5k (Atari)
Exploration strategy Random
Repeat action probability 0.9
GO-EXPLORE  Exploration strategy Random
Repeat action probability 0.9
ICM Feature size 16
Networks [64, 64]
Activation function ReLU
SURPRISE Networks [64, 64]
Activation function ReLU
DIAYN Discriminator networks [256, 256]
Activation function ReLU
SKEW-Fit Gradient steps 100
Batch size 2048
Learning rate 0.01

C. On the Density Estimation

Let sq,..., s, be a sample of event locations in a R%-space.
Assume that the event location s follows a common distri-
bution with density function f(s). For any sample s; and
s; in this sample, assume that D;(s;) = ||s; — s;]|, denotes
the euclidian distance between s; and s;. For any k& < n, let
D 1)(s;) be the distance with k-th nearest neighbors of s;
with respect to the euclidian distance.

(Kung et al., 2012) propose an optimal unbiased estimator
f for the density:

A kU,
f=3—7 &)
where
Uy = (6)
nCdD(dk)
and
/2
Ca= T(d/2+1) ™
Hence we have
ok
f= TCdD(k) 3

We follow the recommendation of (Kung et al.l 2012)) to
take

k= 2n*/4 ©9)

14

D. Comparing Go-Explore and LGE

The Go-Explore algorithm as presented by [Ecoffet et al.
(2021) has many components. All these components allow
to obtain good results on test environments. In this article,
we implement our own version of Go-Explore. We have
tried to stick as much as possible to the initial implemen-
tation and to improve some aspects. We keep the essence
of Go-Explore, but our implementation is not intended to
be equivalent to the initial implementation. The main goal
here is to compare LGE and Go-Explore. Thus, the two
implementations differ only in the elements that make them
unique. To the best of our knowledge, all the composnts that
we did not implement are compatible with LGE. It is likely
that they improve LGE and Go-Explore in a similar way. In
this section, we describe the implementation of LGE and
Go-Explore. We explain their differences if any.

Policy-based Go-Explore The initial implementation of
Go-Explore distinguishes between the case where the envi-
ronment can be reset to any desired state and the case where
this is not possible. In this paper, we choose the general
setting where the environment can’t be reset to any desired
state, and we therefore work with the so-called policy-based
implementation of Go-Explore.

Exploration after returning In the original implementa-
tion of Go-Explore, once a cell is returned, exploration pro-
ceeds with random actions for a certain number of timesteps.
For both LGE and Go-Explore, we set this number of
timesteps to 50 for all environments. Note that the agent can
interrupt this exploration beforehand if the maximum num-
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Table 3. Hyperparameters of the off-policy agent. These hyperparameters are identical for all methods and for all experiments. The
hyperparameters related to HER relabeling only apply to the methods for which the agent is goal-conditioned (DIAYN, Go-Explore,

Skew-Fit and LGE).

HYPERPARAMETER SAC DDPG QR-DQN
NETWORKS [300,400] [300,400] CNN from (Mnih et al.; 2015)
LEARNING RATE 3x107* 1073 5x 107°
LEARNING STARTS AFTER N TIMESTEPS 100 100 1M
BATCH SIZE 256 100 32
DISCOUNT FACTOR () 0.99 0.99 0.99
POLYAK UPDATE COEFFICIENT (7) 0.005 0.005 1.0
TARGET ENTROPY 2.0 N/A N/A
TARGET UPDATE EVERY N TIMESTEPS N/A N/A 10k
€ DECREASES DURING N TIMESTEPS N/A N/A 4M
INITIAL € N/A N/A 1.0
FINAL € N/A N/A 0.05
TRAIN EVERY N TIMESTEPS 1 1 10
GRADIENT STEPS 1 1 1
HER SAMPLING PROBABILITY 0.8 0.8 0.8
HER RELABELING STRATEGY Future Future Future
Table 4. Atari setting.

PARAMETER Value

RESET ON LIFE LOSS Yes

START NO-OPS From 1 to 30

ACTION REPETITIONS 4

STICKY ACTION PROBABILITY o 0.25

OBSERVATION PREPROCESSING
ACTION SET
MAX EPISODE LENGTH

MAX-POOL OVER LAST N ACTION REPEAT FRAMES

84 x 84, grayscale
Full (18 actions)
100k

2

ber of interactions with the environment is reached. (Ecoffet!
et al.; 2021) shows that action consistency generally allows
for more effective exploration, especially in the robotic envi-
ronment. For LGE and Go-Explore, we use the same trick:
the agent chooses the previous action with a probability of
90%, and uniformly samples an action with a probability of
10%.

Cell design The original implementation of Go-Explore
provides two methods for generating the cell representation.

1. When the observation is an image, the observation is
grayscaled and downscaled. The image produced is the
cell representation. The parameters to get this represen-
tation (downscaling width and height and number of
shades of gray) are optimized during training to max-
imize an objective function that depends on a target
split factor.

2. When the observation is a vector, each component
of the vector is discretized separately by hand before
learning.
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For all the environments presented in this paper, we use
a naive method of cell generation corresponding to a dis-
cretization of the observation. The granularity of the dis-
cretization is a hyperparameter. The choice of this hyper-
parameter is crucial, we develop it in more detail in the

Appendix [B]

Goal-conditioning In the original implementation of Go-
Explore, the agent is conditioned by the cell representation
of the goal. We note that this representation can vary during
learning, and even in size (see previous paragraph). It is not
clear how to structure the agent’s network when the size of
the input varies during the learning process.

In our implementation, we choose to condition the agent by
the goal observation rather than by the representation of its
cell. We also condition the agent by the goal observation in
LGE.

RL agent In the original implementation of Go-Explore,
the goal-conditioned agent is based on the on-policy PPO
algorithm (Schulman et al., |2017). For both LGE and Go-
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Explore, we rather chose to use an off-policy algorithm
(SAC or DDPG) to use a Hindsight Experience Replay
(HER, |/Andrychowicz et al.|(2017)) relabelling, which has
shown to perform better in a sparse reward environment.

Reward In the original implementation of Go-Explore,
the agent gets 41 reward for reaching intermediate cells and
+5 reward for reaching the final cell of a path. The rest of the
time, it receives a 0 reward. For both LGE and Go-Explore,
following the suggestions of (Tang & Kucukelbir, [2021)),
we rather choose the following structure for the reward: the
agent gets a reward of 0 for a success (target cell reached
for Go-Explore and latent distance with the goal state below
the distance threshold for LGE) and —1 the rest of the time.
As noted by (Eysenbach et al.l [2019b), in this setting, an
optimal agent tries to terminate the episode as quickly as
possible. We therefore set done = True only at the end
of the post-exploration, and not when the agent reaches a
final state.
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