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Abstract

Learning human objectives from preference feed-
back has significantly advanced reinforcement
learning (RL) in domains with hard-to-formalize
objectives. Traditional methods with pairwise tra-
jectory comparisons face challenges: trajectories
with subtle differences are hard to compare, and
comparisons are ordinal, limiting direct inference
of preference strength. In this paper, we intro-
duce the distinguishability query, where humans
compare two pairs of trajectories, indicate which
pair is easier to compare, and then give preference
feedback on the easier pair. This type of query di-
rectly infers preference strength and is expected to
reduce cognitive load on the labeler. We also con-
nect this query to cardinal utility and difference
relations, and develop an efficient query selection
scheme to achieve better trade-off between query
informativeness and easiness. Experimental re-
sults empirically demonstrates the potential of our
method for faster, data-efficient learning and im-
proved user-friendliness on RLHF benchmarks.

1. Introduction
Learning human objectives from preference feedback has
been key to the success of reinforcement learning (RL) in
domains where objectives are hard to formalize, such as
fine-tuning large language models like ChatGPT (OpenAI,
2022; Ouyang et al., 2022) or training simulated robots to
perform hard-to-define tasks such as backflips (Christiano
et al., 2017). The standard method in this domain is to ask
the human to compare pairs of trajectories, and then use
these comparisons to learn a reward function that can be
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Figure 1. An illustration of the distinguishability query. PCQ
refers to the usual Pairwise Comparison Query for a pair of seg-
ments (σ0, σ1), and its feedback is only yPCQ indicating the
preferred segment. DQ refers to our proposed Distinguishability
Query for two pairs (i.e., two PCQs), and its feedback (d, yPCQ)
includes an extra d to indicate which PCQ is easier to answer.

used to train an RL agent (Christiano et al., 2017; Lee et al.,
2021b; Liang et al., 2022; Park et al., 2022; Hu et al., 2024;
Verma & Metcalf, 2024). However, this method has two
key limitations: (1) It can be hard for humans to compare
trajectories, especially when the differences are subtle, and
(2) the comparisons are ordinal, not cardinal, so preference
strength can only be learned implicitly through inductive
biases in the learning algorithm and utility-dependent noise
in the human responses.

In this paper, we propose a new type of query, the distin-
guishability query (illustrated in Figure 1), that addresses
above limitations. For a distinguishability query, the human
first indicates which pair is easier to compare given two
pairs of trajectories, then provides preference feedback on
the selected pair as usual in preference-based RLHF meth-
ods. While the usual preference choice for a single pair
of segments only assures the ordinal information, the extra
choice of which comparison to provide feedback on is then
used to infer the human’s preference strength, assuming
the human prefers to provide feedback on the more distin-
guishable pair. This allows us to learn preference strength
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directly, and allows the labeler to provide selective feedback
on those comparisons that are easy to make. Our proposed
method, named DistQ, is a cooperative approach that in-
tegrates distinguishability queries with an effective query
selection scheme and a specialized learning objective.

Concretely, our contributions are as follows:

1. We propose a new type of query, the distinguishability
query, in the field of RLHF (see Section 4.1);

2. We establish the relation to the concept of cardinal util-
ity and distance relations studied in related disciplines
(see Section 2);

3. We design a query selection scheme for distinguisha-
bility queries that aims to achieve a better trade-off
between informativeness and ease of answering (see
Section 4.2);

4. We propose a specific learning objective to improve
reward learning by coupling cardinal and ordinal infor-
mation (see Section 4.3);

5. We empirically demonstrate on classic control tasks
with a synthetic oracle that our method can achieve
competitive performance in a more user-friendly man-
ner than standard pairwise comparison methods (see
Section 5).

2. Related Work
In this work, we propose a new type of query for reinforce-
ment learning from human feedback (RLHF). This new type
of query is closely related to decision theory, RLHF ap-
proaches using pairwise comparisons, and approaches that
aim to reduce the burden on the human labeler. We briefly
review these in the following.

Preference Strength Observed choices, which can be seen
as the basis of RLHF (Jeon et al., 2020), convey only ordinal
preferences, i.e., information about rank but not about dis-
tance. Reinforcement learning is based on expected utility
maximization and thus requires cardinal utilities—a funda-
mental concept in the von Neumann-Morgenstern expected
utility theorem (Von Neumann & Morgenstern, 1947). Car-
dinal utilities additionally represent preference strength and
have been extensively studied in related fields such as eco-
nomics, psychology and decision theory (Suppes & Winet,
1955; Krantz et al., 2006; Jansen et al., 2018). Prior work
has shown that the preferences elicited in RLHF, when noisy
with certain assumptions, can be used to infer cardinal util-
ities (Chan et al., 2021; Xu et al., 2020). This aligns with
the empirical success of RLHF methods relying on pairwise
comparisons (Lee et al., 2021b; Liang et al., 2022; Park
et al., 2022; Hu et al., 2024). Nonetheless, these assump-
tions about the utility-dependent noise are strong and may
not hold in practice, leading us to explore more direct ways
to elicit cardinal utilities.

Distance Relations Cardinal utilities can either be mod-
elled as a real-valued function (unique up to positive affine
transformations) or as a relation on pairs of outcomes. The
latter formalism aligns closely with our proposed query type,
asking the human labeler to distinguish between two pairs
of outcomes. Formally, we can model the human labeler’s
preferences using two relations R and D (Suppes & Winet,
1955; Jansen et al., 2018), with R being a preference rela-
tion and D a difference relation. If a pair of pairs satisfies
((a, b), (c, d)) ∈ D, then exchanging b by a is at least as
desirable as exchanging d by c, that is, a is more strongly
preferred over b than c is over d. Several prior works estab-
lish a set of axioms that determine a utility function from
such a relation unique up to positive affine transformations
(Alt, 1936; Suppes & Winet, 1955; Köbberling, 2006). No-
table among these axioms are completeness and transitivity.
If completeness is not satisfied, the relation merely deter-
mines a set of compatible utility functions (Pivato, 2013).

Eliciting Preference Strength Explicitly eliciting distin-
guishability (cardinal utilities) has not been studied within
the context of RLHF to our knowledge, though related con-
cepts have been explored in decision theory. These ap-
proaches are not directly applicable to RLHF, since they
generally assume preferences over a limited set of outcomes
that can be elicited (near) exhaustively, in contrast with our
setting that requires generalization to unseen items. Jansen
et al. (2022) propose inferring absolute preference strength
through direct (label elicitation) or indirect (time elicita-
tion) methods. Time elicitation infers preference strength
from consideration time, relying on assumptions about the
human labeler’s behavior that may not hold in practice. La-
bel elicitation collects explicit ordinal preference strength
labels, placing an additional burden on the human labeler
and suffering from limitations inherent to explicit ratings
such as annotation biases and inconsistencies (Yannakakis
& Martı́nez, 2015). In contrast to these approaches, dis-
tinguishability queries require only relative labels, making
them less burdensome since the labeler only chooses be-
tween two queries instead of providing a label for each.

Reducing the Burden on the Human Labeler Another
limitation of pairwise comparisons is that they can place
a high burden on the human labeler when the behaviors
to compare are similar or neither is preferred. Prior work
has addressed this issue through multiple strategies: (1)
pre-training, either in an unsupervised manner (Lee et al.,
2021b) or using demonstrations (Ibarz et al., 2018; Palan
et al., 2019; Bıyık et al., 2022), (2) allowing labelers to
abstain from answering queries (Lee et al., 2021a), and (3)
query selection strategies that aim to select queries that are
easier for the human labeler to answer (Bıyık et al., 2019).
The first two strategies are entirely orthogonal to our work,
and can be combined with our approach. In this third
strategy, which our approach falls into, Bıyık et al. (2019)
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propose to use information gain to select queries that are in-
formative and easy to answer, implicitly prioritizing queries
the human will be able to answer and thus lead to the largest
gain of information. Distinguishability queries could eas-
ily be constructed according to information gain, however
we opted for our proposed query selection scheme (based
on ensemble disagreement and prediction entropy), since
an approach based on information gain is computationally
challenging and difficult to scale. More importantly, in con-
trast to using this strategy in isolation, our distinguishability
queries additionally let the human labeler choose the easier
queries themselves, which has several additional benefits:
(1) effectively reducing the burden on the human labeler
who only has to answer easier-to-answer pairwise compar-
isons; (2) allowing them to compensate for the limitations
of the measure of easiness; (3) gaining additional insight
into utility differences, possibly even improving the easi-
ness estimates (based on entropy, and thus indirectly utility
differences) for future queries; (4) possibly accounting for
both reward and response model error.

3. Preliminaries
Reinforcement learning We consider a reinforcement
learning (RL) setting where an agent interacts with the envi-
ronment to maximize its expected cumulative reward. This
can be modelled with a discrete-time Markov Decision Pro-
cess (MDP)M = ⟨S,A,P, r, γ⟩. Here S andA denote the
state and action space, P(s′|s,a), r(s,a), and γ ∈ (0, 1]
represent the transition function, reward function, and the
discount factor, respectively.

At each timestep t, the agent receives a state st ∈ S from
the environment and chooses an action at ∈ A according
to its policy π(at|st). Conventionally, the environment
also provides a reward signal r(st,at) and the agent tran-
sitions to the next state st+1 ∼ P(st+1|st,at). The return
Rt =

∑∞
k=0 γ

kr(st+k,at+k) is defined as the discounted
cumulative sum of rewards from timestep t. The agent’s
goal is then to learn an optimal policy that maximizes the
expected return from each state st.

Reinforcement Learning from Human Feedback Rein-
forcement learning from human feedback (RLHF) (Kauf-
mann et al., 2023) is a framework that aims to learn optimal
agent behavior from human feedback. In this paper, we
focus on an RLHF framework that aims to infer a reward
function r(s,a) unknown to the agent, which is then used
to train a policy π(a|s) (Lee et al., 2021b;a). The agent
infers the reward function from qualitative human prefer-
ence feedback, learning an approximate reward function
r̂ψ(s,a). This approximation is modeled as an ensemble
of N neural networks r̂ψi

that is parameterized by ψi for
i ∈ {1, . . . , N}) with ψ = (ψ1, . . . , ψN ). The reward
model is then used in place of the true reward function to

train the agent’s policy πϕ. Policy πϕ and reward function
r̂ψ are updated by interleaving the following two steps:

• Step 1 (agent learning): The agent interacts with the
environment using policy πϕ to collect trajectories.
The policy is updated via a conventional RL algorithm
to maximize the expected return of the reward model
r̂ψ .

• Step 2 (reward learning): Preference queries are gener-
ated and selected from the collected trajectories. The
responses are used to update the reward model r̂ψ to
better fit the human feedback.

In principle, any RL algorithm could be employed in Step
1. Following PEBBLE (Lee et al., 2021b), we use the Soft
Actor-Critic (SAC) algorithm (Haarnoja et al., 2018) in our
experiments.

Pairwise Comparison Queries in RLHF Human feedback
is commonly collected in the form of pairwise comparison
queries (PCQ) in RLHF (Christiano et al., 2017; Lee et al.,
2021b; Liang et al., 2022; Park et al., 2022; Hu et al., 2024).
Given trajectory segments σ0 and σ1 represented by a se-
quence of states and actions, a pairwise comparison query
is asked to the oracle (e.g., human labeler) to indicate which
segment is preferred. The oracle expresses preference by
giving feedback yPCQ ∈ {(1, 0), (0, 1)}, where (1, 0) means
segment σ0 is preferred over σ1 and (0, 1) means the oppo-
site. Here we ignore the case where the two segments are
considered equivalent. This query and the corresponding
preference feedback is denoted as a triple (σ0, σ1, yPCQ) and
is stored in a dataset DPCQ.

These observed preferences are linked to the reward function
by means of a Bradley-Terry model (Bradley & Terry, 1952)
which assumes pairwise preferences are governed with a
pair of latent utilities (p0, p1) by

P [σ1 ≻ σ0] =
exp(p1)

exp(p0) + exp(p1)
.

In the context of RLHF, where the utility of a trajectory
(segment) is defined as its return, the predicted probability
of segment σ1 being preferred over σ0 is

Pψ[σ
1 ≻ σ0] =

exp
∑
t γ

tr̂ψ(s
1
t ,a

1
t )∑

i∈{0,1} exp
∑
t γ

tr̂ψ(sit,a
i
t)

, (1)

where r̂ψ(s
j
t , a

j
t ) for j ∈ {0, 1} is the average output of the

N reward networks r̂ψi
for i ∈ {1, . . . , N}. Unless stated

otherwise, γ = 1 in this paper.

Given dataset DPCQ and the corresponding predictions from
Equation (1), reward learning in Step 2 is formulated as a
supervised classification problem (Christiano et al., 2017).
The reward model r̂ψ can be learned by minimizing the
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Figure 2. Our proposed query selection scheme for DQ. We first filter a subset Qpv with higher informativeness I from the set of
randomly generated segment pairs Qp, then filter a subset Qpve with higher easiness E from Qpv . Both I and E are calculated from the
current reward model r̂ψ . Finally, we pair the PCQs in Qpve by matching the eth easiest one to the (e+

|Qpve|
2

)th to construct Qd. We
obtain QDQ with labelers’ feedback on Qd, and then our special training objective for r̂ψ on QDQ can utilize not only yPCQ but also d.

cross-entropy loss

LRew
yPCQ

= − E
(σ0,σ1,yPCQ)

∼DPCQ

[
yPCQ(0) logPψ[σ

0 ≻ σ1]

+ yPCQ(1) logPψ[σ
1 ≻ σ0]

]
.

(2)

4. Method
Although pairwise comparisons are widely used and have
shown impressive performance in simulated environments
(Christiano et al., 2017; Lee et al., 2021b; Liang et al., 2022;
Park et al., 2022; Hu et al., 2024; Verma & Metcalf, 2024),
this query type is challenging in practical applications with
real humans involved, especially when the humans face hard-
to-answer queries. The case of equally preferable choice
alternatives results in a waste of queries and bad user ex-
perience, thereby limiting application of RLHF methods to
real-world scenarios. Our work aims to address this issue
by proposing a new type of query, the distinguishability
query, which is designed to be both informative and easier
to answer for the human labeler.

We first introduce this novel query type in Section 4.1. We
further design an efficient query selection scheme tailored to
this type of query and explicate the procedure in Section 4.2.
Finally, a special training objective is proposed to fully
utilize information from such queries in Section 4.3. With
these three components, we hypothesize that the queries
posed to the labeler will be informative and easy to answer,
and the reward learning process will be complement this
new feedback type, ensuring good user experience, query
efficiency, and high final performance. See Figure 2 for the
overall procedure.

4.1. Distinguishability Query

Intuitively, in order to avoid posing unanswerable pairwise
comparison queries and to learn about preference strength,
we propose to provide the oracle with two such queries to-
gether as one distinguishability query. We let the oracle
select the more distinguishable one which is easier to an-

swer, and then provide preference feedback to the chosen
pairwise query. This effectively combines a query about or-
dinal preferences with one about preference strength, while
simultaneously reducing the burden on the human labeler.

Recall that in Section 3, the pairwise comparison query is
denoted as PCQ = (σ0, σ1) and corresponding preference
feedback is yPCQ ∈ {(1, 0), (0, 1)} . Formally, we represent
the distinguishability query as DQ = (PCQ0,PCQ1) =(
(σ0

0 , σ
1
0), (σ

0
1 , σ

1
1)
)
. The feedback to a distinguishability

query yDQ = (d, yPCQ) consists of two components: the dis-
tinguishability preference feedback d ∈ {(1, 0), (0, 1)}
indicating which pairwise comparison query is more dis-
tinguishable, and the pairwise preference feedback yPCQ
to the selected more distinguishable pairwise comparison
query. Such query and corresponding feedback is repre-
sented by (DQ, yDQ) and is stored in a dataset DDQ. See
Figure 1 for an illustration.

We define the distinguishability measurement M for a
pairwise comparison query (σ0, σ1) as

M(σ0, σ1) =

∣∣∣∣∣∑
t

γtr(s1t ,a
1
t )−

∑
t

γtr(s0t ,a
0
t )

∣∣∣∣∣ . (3)

LargerM indicates stronger distinguishability. Then in the
context of RLHF, given the reward model r̂ψ, the corre-
sponding predicted distinguishability is

M̂ψ(σ
0, σ1) =

∣∣∣∣∣∑
t

γtr̂ψ(s
1
t ,a

1
t )−

∑
t

γtr̂ψ(s
0
t ,a

0
t )

∣∣∣∣∣ .
(4)

We assume the predicted distinguishability preference also
follows the Bradley-Terry model as below:

P̃ψ[(σ
0
1 , σ

1
1) ≻ (σ0

0 , σ
1
0)] =

expM̂ψ(σ
0
1 , σ

1
1)∑

h∈{0,1} expM̂ψ(σ0
h, σ

1
h)
,

(5)
where (σ0

1 , σ
1
1) ≻ (σ0

0 , σ
1
0) represents that pairwise compar-

ison query (σ0
1 , σ

1
1) is predicted to be more distinguishable

than the other.
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4.2. Selecting Informative and Easy-to-Answer
Distinguishability Queries

Given the newly proposed type of query, we specifically
design a method to select distinguishability queries which
are informative and also easy to address for the oracle as
shown in Figure 2. Overall, we begin with selecting desir-
able pairwise comparison queries, and pair the selected ones
into distinguishability queries.

Broadly speaking, we aim to select queries on which our
current predictive uncertainty could be reduced by feedback
from the oracle, while also ensuring that the oracle can eas-
ily provide feedback. This aligns well with the concepts of
epistemic and aleatoric uncertainty (Hüllermeier & Waege-
man, 2021): While the latter refers to inherent uncertainty
due to randomness in the data-generating process (in our
case the labeler’s responses), the former is caused by the
learner’s limited knowledge of this process. Thus, while
aleatoric uncertainty is irreducible, epistemic uncertainty
can in principle be reduced through additional (training)
information, and hence is a natural target for active learning
and query construction (Nguyen et al., 2022). Since we
assume the labeler gives stochastic feedback according to
a Bradley-Terry model, aleatoric uncertainty is high when
the utility difference is small, and low when the utility dif-
ference is large.

Our selection scheme therefore favors queries that are infor-
mative and hence epistemically uncertain, and meanwhile
easy to answer by the oracle. Given the ensemble reward
model, the variance of predictions from the reward ensem-
ble can be taken as a measure of epistemic uncertainty of
the model, and hence as a measure of the informativeness of
queries (Depeweg et al., 2018). The difficulty (or easiness)
of a query depends on the learner’s total uncertainty (epis-
temic + aleatoric), which is commonly measured in terms
of the entropy1 of the aggregated ensemble prediction (De-
peweg et al., 2018). Note that the quest for high epistemic
but low total uncertainty implies low aleatoric uncertainty.

We next explain our method step by step in a more detailed
way.

Informativeness based on Variance As Figure 2 shows,
given a trajectory buffer B, we first randomly sample seg-
ments from trajectories and pair them to obtain a set Qp of
candidate comparison queries. Then with the current reward
model r̂ψ , we can compute the predicted pairwise preference
probability in Equation (1) for each query (σ0, σ1) ∈ Qp.

We define the informativeness I of a query (σ0, σ1) as the

1An alternative is the Gini index, which fits theoretically with
variance as epistemic uncertainty. Practically, there is basically no
difference between these measures.

variance of reward model prediction, which is

I(σ0, σ1) = V(σ0, σ1) =

√√√√ 1

N

N∑
i=1

(P 1
ψi
− P 1

ψ)
2
, (6)

where P 1
ψi

= Pψi
[σ1 ≻ σ0] is the prediction solely from

neural network r̂ψi and P 1
ψ = Pψ[σ

1 ≻ σ0] is the average
prediction from the ensemble reward model. Queries with
higher variance indicate higher epistemic uncertainty of the
current reward model, thus providing more information for
reward learning. In this step, pairwise comparison queries
with top V informativeness are finally selected from set Qp
for later steps.

Easiness based on Entropy Let Qpv be the set of the V
informative queries obtained in the last step. Here we define
the easiness E of a query (σ0, σ1) as the negative entropy
of reward model prediction, which is

E(σ0, σ1) = −H(r̂ψ) =
1∑
j=0

P jψ logP jψ , (7)

where P jψ = Pψ[σ
j ≻ σ1−j ] for j ∈ {0, 1} represents the

average prediction from the ensemble reward model.

It is worthwhile to mention that although higher entropy
values may also correspond to more uncertain predictions,
and the entropy criterion has been used for pairwise compar-
ison query selection (Lee et al., 2021b), relying only on the
highest entropy can result in queries that are nearest to the
decision boundary and thus really hard for the oracle to an-
swer. By selecting queries with the smallest entropy among
the ones selected with the largest variance, we guarantee
that the queries eventually selected are as easy to answer as
possible, despite the epistemic uncertainty involved.

In this step, we compute easiness E for each (σ0, σ1) ∈ Qpv
and further select a subset of queries with top E easiness
for the last step.

Forming Distinguishability Queries LetQpve be the set of
the E easy while informative pairwise comparison queries
obtained in the last step. Ordering these queries based
on easiness E from high to low, we then pair the eth

and (e+ E
2 )

th
ones into a distinguishability query, where

e ∈ {0, . . . , E2 }. Finally, a set Qd of E
2 distinguishability

queries is obtained and asked to the oracle for feedback to
obtain QDQ.

4.3. Training with Distinguishability Query

As mentioned in Section 4.1, the distinguishability feed-
back yDQ = (d, yPCQ) consists of both the distinguishability
preference feedback d and the pairwise preference feedback
yPCQ. Given the assumption shown in Equation (5) that
the predicted distinguishability preference also follows the
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Figure 3. Learning curves on locomotion and robotic manipulation tasks. The solid line and shaded regions represent the mean and
standard deviation, respectively, across five runs.
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Figure 4. Ablation study on locomotion tasks. The solid line and shaded regions represent the mean and standard deviation, respectively,
across five runs.

Bradley-Terry model, we can train the reward model with
additional information by formulating the distinguishabil-
ity preference prediction also as a supervised classification
problem.

Analogous to Equation (2), we define the cross-entropy loss
for the distinguishability preference feedback d as

LReward
yd

= − E
((σ0

0 ,σ
1
0),(σ

0
1 ,σ

1
1),yDQ)∼DDQ

[
1∑
j=0

d(j) log P̃ψ[(σ
0
j , σ

1
j ) ≻ (σ0

1−j , σ
1
1−j)]

]
.

(8)

Without loss of generality, assume (σ0
1 , σ

1
1) is the more

distinguishable one. We can define the cross-entropy loss
for the pairwise preference feedback yPCQ in the context of
distinguishability query as

LReward
yPCQ

= − E
((σ0

0 ,σ
1
0),(σ

0
1 ,σ

1
1),yDQ)∼DDQ

[
1∑
j=0

yPCQ(j) logPψ[σ
j
1 ≻ σ

1−j
1 ]

]
.

(9)

We finally update the reward model r̂ψ by minimizing the
linear combination of LReward

d and LReward
yPCQ

as

LReward
yDQ

= λdLReward
yd

+ λpLReward
yPCQ

, (10)

where λd and λp denote the weight for LReward
d and LReward

yPCQ
,

respectively. The full procedure of DistQ is summarized in
Algorithm 1.

5. Experiments
In this section, we conduct experiments to investigate the
following questions:

1. How do the proposed distinguishability query and cor-
responding query selection method help with perfor-
mance and query efficiency compared with state-of-the-
art (SOTA) RLHF methods that only utilize pairwise
comparison queries?

2. Are the pairwise comparison queries selected by our
method easier to answer compared with the ones se-
lected by baseline methods?

3. How does each proposed technique contribute to the
overall design?

5.1. Experimental Setup

Tasks Similar to prior works (Lee et al., 2021b;a; Park
et al., 2022; Liang et al., 2022; Liu et al., 2022; Hu et al.,
2024), we consider a series of continuous control tasks
including locomotion tasks from DeepMind Control Suite
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Figure 5. Wrongly predicted feedback to pairwise comparison queries on locomotion tasks. The solid line and shaded regions represent
the mean and standard deviation, respectively, across five runs.

(DMControl) (Tassa et al., 2018) and robotic manipulation
tasks from Meta-World benchmark (Yu et al., 2019).

To quantitatively evaluate the performance of involved
RLHF methods, we follow a general setting where the agent
has no access to the ground truth reward from the environ-
ment but can only receive synthetic feedback based on the
ground truth reward from a scripted labeler. Unless stated
otherwise, we consider a perfectly rational labeler in our
experiments. Given the feedback, the agent learns to solve
the corresponding task guided by the underlying reward
function. The performance is then measured as the true
average return for locomotion tasks and success rate for ma-
nipulation tasks. We report the mean and standard deviation
across five runs for all experiments.

Baselines For comparison, we adopt a variety of SOTA
methods in the field of RLHF, including PEBBLE (Lee
et al., 2021b), SURF (Park et al., 2022), RUNE (Liang
et al., 2022), MRN (Liu et al., 2022), and QPA (Hu et al.,
2024). These methods all utilize pairwise comparison
queries. As for query selection, PEBBLE adopts an entropy-
based method (i.e., smaller E), while the other four, which
also take PEBBLE as the backbone algorithm, but adopt an
variance-based method (i.e., larger I). All baselines are eval-
uated with the original settings listed in their paper. More
details are provided in Appendix A. What is more, consider-
ing all these methods employ SAC for agent learning, we
also measure the performance of SAC using the ground truth
reward function as an upper bound of performance.

Implementation We implement the distinguishability query
and the query selection method on top of the widely-adopted
method PEBBLE (Lee et al., 2021b). This implementation
is then evaluated and compared with all baselines. We
argue that the proposed new query and corresponding query
selection method can actually be implemented on top of any
RLHF method utilizing pairwise comparison queries. See
Appendix B for more implementation details.

5.2. Benchmark Tasks with Unobserved Rewards

Figure 3 shows the learning curves of our method DistQ and
the five baselines on two locomotion tasks (i.e., Walker walk
and Quadruped walk) and two robotic manipulation tasks
(i.e., Window open and Sweep into). All baseline methods
utilize a budget of pairwise comparison queries indicated
by ”Query budget” in each sub-figure. Note that for our
method, although a distinguishability query is composed
of two pairwise comparison queries, we only ask the more
distinguishable one to the oracle. Therefore, we show
the results of our method using both full budget (i.e., the
DistQ curve) and half budget (i.e., the DistQ (half) curve)
for a straightforward and fair comparison, instead of simply
considering the latter case. Take Figure 3(a) as an example,
curves of all baseline methods are obtained by asking 200
pairwise comparison queries. The curve of DistQ (dark
pink) and the curve of DistQ (half) (blue) are obtained with
200 and 100 distinguishability queries, respectively.

Locomotion Tasks from DMControl As shown in Fig-
ures 3(a) and 3(b), we find that DistQ with full budget
outperforms all baseline methods, which meets our expecta-
tion since distinguishability queries naturally provide more
information for reward learning, leading to a better reward
model to guide the agent learning. Notably, DistQ with
half budget also outperforms most baselines only except
for MRN. However, we still achieve similar performance to
MRN without too much decrease.

Recall that here DistQ is implemented on top of PEBBLE.
The other baselines based on PEBBLE mainly focus on
different aspects to improve query efficiency and perfor-
mance, like exploration, unlabeled data augmentation, and
new training procedure for the agent, which is orthogonal
to DistQ. Therefore, we expect that implementing DistQ
specifically on each of the baselines could certainly bring
about improvement accordingly.

Robotic Manipulation Tasks from Meta-World Similar
phenomena also occurred in Figures 3(c) and 3(d). DistQ
with full budget still outperforms all baselines and even

7
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converges to the same performance as SAC (yellow). The
version with half budget also exhibits better or similar per-
formance compared with baselines with the exception for
RUNE on Sweep into.

Above results effectively demonstrate that the proposed
DistQ can not only guarantee performance but also query
efficiency. The new type of query provides adequate in-
formation to reach satisfying performance through the dis-
tinguishability preference feedback while reduces oracle’s
effort on answering too many pairwise comparion queries.

5.3. Query Easiness

During each feedback session in reward learning, a batch of
pairwise comparison queries are selected and asked to the
oracle for feedback. Meanwhile, we can use the current re-
ward model to predict feedback to the selected queries. If the
predicted feedback is not consistent with the ground-truth
feedback from the oracle, corresponding pairwise compari-
son query is expected to be hard to answer.

To investigate whether we ask easier pairwise comparison
queries than the baseline methods, we display the curves of
wrongly predicted feedback to pairwise comparison queries
along the training process of various methods in Figures 5(a)
and 5(b). Note that here DistQ with half budget (blue) also
adopts half of the query batch size. We see that among all
methods, DistQ with full budget (pink) always enjoys the
least wrongly predicted feedback given the same number
of pairwise comparison queries are asked to all baselines,
which effectively support our argument that DistQ can really
ask easier-to-answer queries.

5.4. Ablation Study

To figure out how the proposed techniques contribute to
the final performance of DistQ, we carry out ablation study
on the query selection method and the newly designed loss
function, respectively.

For query selection, we individually change the order of
informativeness and easiness (EI) selection and keep only
informativeness (I) or easiness (E) selection, for which the
results on two locomotion tasks are shown in Figures 4(a)
and 4(b). To deeply understand how these different ablations
affect the final performance, we also measure the easiness
of queries generated by each ablation as in Section 5.3. Cor-
responding results are shown in Figures 5(c) and 5(d). We
see that changing the order (EI, blue) actually has different
influences on different tasks in terms of episode reward,
which may be due to the query distributions with regard
to informativeness and easiness are different on different
tasks. However, keeping only one of the selection criteria
does shed light on the effectiveness of our method. With
only informativeness (I, green), though performing (nearly)

the best, it generates the most wrongly predicted pairwise
feedback, which implies that the selected queries may be
hard to answer. The opposite case is with only easiness
(E, orange) which generates the least wrong prediction but
also suffers from the worst performance at the same time.
Therefore, two techniques individually help in one aspect
and together they make our method (pink) enjoy both good
performance and asking easier queries.

For the new loss function LReward
yDQ

in Equation (10), recall
that it consists of LReward

yd
LReward
yPCQ

. To figure out whether
LReward
yd

helps and whether the pairwise comparison queries
selected by DistQ are more helpful, we compare the perfor-
mance of DistQ trained with only LReward

yPCQ
in Equation (10),

DistQ trained normally, and PEBBLE trained normally in
Figures 4(c) and 4(d). On both tasks, training with LReward

yPCQ

(blue) hurts for DistQ (pink), which is obvious since we
lose the information in LReward

yd
for learning a good reward

model. However, training with LReward
yPCQ

(blue) surprisingly
performs better than PEBBLE (green) which is also trained
with only pairwise preference loss. This effectively demon-
strates that with the same number of pairwise queries, the
ones selected by DistQ are more helpful.

6. Discussion
Conclusion In this paper, we present DistQ which consists
of a new type of query, the distinguishability query, and
a corresponding efficient query selection method consider-
ing both informativeness and easiness of queries. Along
with a specifically designed loss function, DistQ is proposed
to achieve more informative and user-friendly RLHF. Ex-
tensive experiments demonstrate that DistQ outperforms
current SOTA baselines in RLHF with regard to query ef-
ficiency and performance on a variety of locomotion and
robotic manipulation tasks. Besides, DistQ exhibits con-
siderable potential in generating easier queries to answer,
which we expect to be critical for applying RLHF in more
realistic scenarios.

Limitations While we think our proposed query selection
method works well, there may exist more suitable mea-
surements for informativeness and easiness, which deserves
deeper investigation. Also, for now DistQ hasn’t been eval-
uated with real humans involved on more practical tasks,
which prevents our method from further improvement. We
believe that DistQ needs to be tested more thoroughly on
real world domains to make its performance better under-
stood and to potentially further improve it.

Overall, we believe that DistQ proposes an effective per-
spective to more informative and user-friendly RLHF.
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Alt, F. Über die Meßbarkeit des Nutzens. Zeitschrift für

Nationalökonomie / Journal of Economics, 7(2):161–169,
1936. ISSN 0044-3158. URL https://www.jstor.
org/stable/41792549.

Bıyık, E., Palan, M., Landolfi, N. C., Losey, D. P., and
Sadigh, D. Asking Easy Questions: A User-Friendly
Approach to Active Reward Learning. In Proceedings of
the Conference on Robot Learning (CoRL). PMLR, 2019.
URL https://proceedings.mlr.press/v1
00/b-iy-ik20a.html.

Bıyık, E., Losey, D. P., Palan, M., Landolfi, N. C., Shevchuk,
G., and Sadigh, D. Learning reward functions from di-
verse sources of human feedback: Optimally integrat-
ing demonstrations and preferences. The International
Journal of Robotics Research, 41(1):45–67, 2022. doi:
10.1177/02783649211041652.

Bradley, R. A. and Terry, M. E. Rank Analysis of Incom-
plete Block Designs: I. The Method of Paired Com-
parisons. Biometrika, 39(3/4):324–345, 1952. doi:
10.2307/2334029.

Chan, L., Critch, A., and Dragan, A. Human irrationality:
Both bad and good for reward inference, 2021. URL
http://arxiv.org/abs/2111.06956. preprint.

Christiano, P., Leike, J., Brown, T., Martic, M., Legg, S., and
Amodei, D. Deep Reinforcement Learning from Human
Preferences. In Advances in Neural Information Process-
ing Systems (NIPS), volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.
cc/paper/2017/hash/d5e2c0adad503c91f
91df240d0cd4e49-Abstract.html.

Depeweg, S., Hernandez-Lobato, J.-M., Doshi-Velez, F.,
and Udluft, S. Decomposition of Uncertainty in Bayesian

Deep Learning for Efficient and Risk-Sensitive Learn-
ing. In Proc. ICML, 35th International Conference on
Machine Learning, pp. 1184–1193. PMLR, 2018.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft
Actor-Critic: Off-Policy Maximum Entropy Deep Rein-
forcement Learning with a Stochastic Actor. In Proceed-
ings of the International Conference on Machine Learn-
ing (ICML). PMLR, 2018. URL https://proceedi
ngs.mlr.press/v80/haarnoja18b.html.

Hu, X., Li, J., Zhan, X., Jia, Q.-S., and Zhang, Y.-Q. Query-
Policy Misalignment in Preference-Based Reinforcement
Learning. In Proceedings of the International Conference
on Learning Representations (ICLR), 2024. URL http
s://openreview.net/forum?id=UoBymIwP
JR.
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A. Baselines
All baseline methods considered in this paper are under the RLHF framework as we explained in Section 3. In this section,
we provide more details about these baselines. Specifically, we summarize the query selection methods adopted by DistQ
and baselines in Table 1.

Table 1. Query selection methods adopted by different methods.

Methods DistQ PEBBLE SURF RUNE MRN QPA

Query selection Larger variance + lower entropy Larger entropy Larger variance

A.1. PEBBLE

Based on the framework proposed by Christiano et al. (2017), PEBBLE (Lee et al., 2021b) uses SAC to replace the original
on-policy RL implementation. Besides, PEBBLE additionally pre-trains the policy in an unsupervised way before the reward
learning part to improve sample efficiency over the original preference-based reward learning framework. Specifically, it
improves the basic framework described in Section 3 with three parts:

1. Unsupervised pre-training: Instead of initializing the policy model randomly at the beginning, PEBBLE pre-trains the
policy model separately by maximizing the entropy of encountered states, which can obtain a better policy generating
more diverse trajectories to ease the beginning of reward learning.

2. Entropy-based query selection: It first randomly samples a large batch of segment pairs, and then filters the group of
pairs with larger entropyH(Pψ).

3. Relabel relabeling: To stabilise the learning process of SAC, an off-policy RL method that is sensitive to inconsistent
reward signals, PEBBLE re-predicts the reward signals for state-action pairs in the replay buffer once the reward model
is updated.

A.2. SURF

SURF (Park et al., 2022) takes PEBBLE as its backbone algorithm and argue that it reduces the number of feedback needed
from the labeler while maintaining the same or even higher level of performance. However, instead of investigating how the
queries are generated or sampled, they focus on making use of more available data. SURF introduces a semi-supervised
learning (SSL) approach to generate pseudo labels for unlabeled data and also proposes a specific data augmentation
technique for the pairwise segments query. With the two ingredients, SURF is demonstrated to significantly improve the
query-efficiency of RLHF algorithms on both locomotion and manipulation tasks mentioned in Section 5.1.

A.3. RUNE

RUNE (Liang et al., 2022) contains an intrinsic reward designed by measuring novelty based on the learned reward, and
is also integrated with PEBBLE. Specifically, it utilizes disagreements across an ensemble of learned reward models. It
incorporates the uncertainty of the reward function into the reward itself, which encourages the agent to explore uncertain
regions of the environment.

A.4. MRN

MRN (Liu et al., 2022) leverages meta-learning to make the reward learning process implicitly differentiable, enabling the
use of gradient-based optimization for learning the reward function. This framework aims to improve the use of preference
data, which is critical in PbRL, as it leverages human preferences as the reward signal, thus avoiding the need for reward
engineering. It also incorporates bi-level optimization, which can be seen as a method to enhance data efficiency.
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A.5. QPA

QPA (Hu et al., 2024) involves near-on-policy queries and a specially designed hybrid experience replay, which together
enforce the bidirectional query-policy alignment. The near on-policy query selection ensures the selection of segments from
recent trajectories which are more aligned with the current policy. The hybrid experience replay involves maintaining a
separate buffer that stores the most recent trajectories, effectively emulating a near-on-policy buffer’s characteristics. The
data augmentation generates multiple instances from a single pair, effectively expanding the preference dataset.

B. Experimental Settings
Our method DistQ is implemented based on the framework of PEBBLE. DistQ and all the baseline methods follow the
general hyperparameter configurations described in Table 2. For other specific hyperparameter settings of each baseline, we
follow their papers and published codes.

Table 2. Hyperparameters setting.

HYPERPARAMETER VALUE HYPERPARAMETER VALUE

General settings

Initial temperature 0.1 Hidden units per each layer 1024(DMControl)
256(Meta-world)

Length of segment 50 # of layers 2(DMControl)
3(Meta-world)

Learning rate 0.0003 (Meta-world) Batch Size 1024(DMControl)
0.0005 (Walker) 512(Meta-world)
0.0001 (Quadruped) Optimizer Adam

Critic target update freq 2 Critic EMA τ 0.005
(β1, β2) (0.9,0.999) Discount γ̄ 0.99
Frequency of feedback 5000 (Meta-world) Maximum budget / 500/50, 200/20 (DMControl)

20000 (Walker) # of queries per session 10000/50, 400/10 (Meta-world)
30000 (Quadruped)

# of ensemble models Nen 3 # of pre-training steps 10000

Other settings for DistQ

Loss weights (λd, λp) (1, 1) Size of Qp 10×# of queries per session
Size of Qpv (V ) 5×# of queries per session Size of Qpve (E) 2×# of queries per session

C. Algorithm
C.1. Pseudo code

Since our method is based on PEBBLE, we use the normal black color to denote steps that are the same as PEBBLE, and
use the orange color to highlight the different parts in Algorithm 1.
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Algorithm 1 DistQ
1: Randomly initialize policy model πϕ and reward model r̂ψ
2: Dataset for trajectories B ← ∅
3: Dataset for distinguishability feedback QDQ ← ∅
4: //PRE-TRAIN
5: Pre-training as PEBBLE’s to obtain B, πϕ
6: for each iteration do
7: //REWARD LEARNING
8: if Iteration%K == 0 then
9: //SAMPLING QUERIES

10: Randomly sample segment pairs Qp = {(σ0, σ1)} from B
11: Calculate informativeness I of queries in Qp (Equation (6)), Qpv are the top V ones with larger I
12: Calculate easiness E of queries in Qpv (Equation (7)), Qpve are the top E ones with larger E
13: Sort queries in Qpve according to E , pair the eth with the (e+ E

2 )
th

to form Qd
14: QDQ′ ← Qd with feedback
15: QDQ ← QDQ ∪QDQ′

16: //TRAINING r̂ψ ON EXTENDED QDQ
17: for each gradient step do
18: Randomly sample a minibatch {((σ0

0 , σ
1
0), (σ

0
1 , σ

1
1), yDQ)} from QDQ

19: Optimize LReward
yDQ

( Equation (10)) with respect to ψ
20: end for
21: end if
22: //COLLECT TRAJECTORIES
23: for each timestep t do
24: Collect interaction data by at ∼ πϕ(at|st), st+1 ∼ P (st+1|st, at)
25: Store B ← B ∪ (st, at, st+1)
26: end for
27: //POLICY LEARNING
28: for each gradient step do
29: Optimize πϕ with a minibatch {(s, a, r̂ψ(s, a), s′)} randomly sampled from B
30: end for
31: end for
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