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Abstract

Novel view acoustic synthesis (NVAS) aims to render binaural audio at any target
viewpoint, given a mono audio emitted by a sound source at a 3D scene. Existing
methods have proposed NeRF-based implicit models to exploit visual cues as a
condition for synthesizing binaural audio. However, in addition to low efficiency
originating from heavy NeRF rendering, these methods all have a limited ability
of characterizing the entire scene environment such as room geometry, material
properties, and the spatial relation between the listener and sound source. To
address these issues, we propose a novel Audio-Visual Gaussian Splatting (AV-
GS) model. To obtain an implicit material-aware and geometry-aware condition
for audio synthesis, we learn an explicit point-based scene representation with
an audio-guidance parameter on locally initialized Gaussian points, taking into
account the space relation from the listener and sound source. To make the visual
scene model audio adaptive, we propose a point densification and pruning strategy
to optimally distribute the Gaussian points, with the per-point contribution in
sound propagation (e.g., more points needed for texture-less wall surfaces as they
affect sound path diversion). Extensive experiments validate the superiority of
our AV-GS over existing alternatives on the real-world RWAS and simulation-
based SoundSpaces datasets. Project page: https://surrey-uplab.github.
io/research/avgs/

1 Introduction
Novel view synthesis [25, 1, 14] allows to generate images for any target viewpoints, which has
been extensively studied and advanced. For real-world applications in augmented reality (AR) and
virtual reality (VR), solely visual rendering of 3D scenes without spatial audio (i.e., deaf) fails to
fully immerse users in the virtual environment. This thus inspires a recent surge of investigating
novel view acoustic synthesis (NVAS) [4, 17, 5, 32]. By synthesizing binaural audio (two channels
corresponding to the left and right ear) taking into account the factors like directionality, distance and
relative elevation, this can create a spatial audio experience akin to real-life perception [23]. However,
realistic binaural audio synthesis is challenging, since the wavelengths of sound waves are much
longer, necessitating the modeling of wave diffraction and scattering. To illustrate, while blocking
the sun with your thumb is easy, blocking thunder sounds with your thumb is difficult because sound
waves wrap around obstacles. A sound wave propagating through a 3D space undergoes various
sophisticated acoustic phenomena, like direct sound, early reflections, and late reverberations.

Aiming to render binaural audio from the mono audio for target poses, Neural Acoustic Field (NAF)
[21] learns room acoustics in a synthetic environment with a 2D grid of implicit representations as a
condition. However, deriving a 2D representation grid for real-view scenes is extremely challenging in
the presence of unconstrained objects, materials, and occlusion in 3D scenes. Alternatively, AV-NeRF
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Figure 1: Sound propagation point patterns between a listener (blue sphere) and emitter (yellow
sphere) captured by our AV-GS. Notice the points outside the propagation path (points behind the
speaker, points behind rigid walls). Please note we slice the scene into half along the y-axis (omitting
the points from the ceiling) in order to facilitate better visibility.
[17] leverages implicit representations of the visual cue by learning a vision NeRF model [25] that
generates the listener’s view. Nonetheless, this can only offer limited conditions, as the listener’s
view provides information from only the line-of-sight, whilst audio spreads around corners more
widely (a listener cannot see behind but can hear sources that are behind). Further, NeRF’s training
and inference efficiency is typically low [37, 14].

To overcome these limitations, in this work, we present a novel Audio-Visual Gaussian Splatting
(AV-GS) model, characterized by efficiently learning an explicit, holistic 3D scene condition with rich
material and geometry information, as well as more comprehensive contextual knowledge beyond
the listener’s field of view for enhanced synthesis conditioning. Due to the intrinsic discrepancy
between vision and audio as discussed earlier, extending existing 3D Gaussian splatting-based (3DGS)
[14] from visual scenes to 3D audio (i.e., spatial audio) is non-trivial. Optimizing towards scene
visual reconstruction, points tend to over-populate along object edges and under-populate in texture-
less regions such as walls, doors etc. But, such point distribution is rhetoric when learning sound
propagation since, major changes in sound paths (absorption and diversion) primarily happen around
those texture-less regions. The key challenge lies in jointly modeling 3D geometry and implicit
material characteristics of the visual scene objects to instigate direction and distance awareness for
realistic binaural audios. To that end, we decouple the physical geometric prior from the 3DGS
representation to learn an acoustic field network by introducing audio-guidance parameters. These
audio-guidance parameters combined with their relative distance and direction from the listener and
sound source, are projected on-the-fly to derive holistic scene-aware and implicit material-aware
conditions for synthesizing binaural audios (see Figure 1). We hypothesize that converging AV-GS
on binaural audio reconstruction loss, requires location and density adjustment of the Gaussian points
relative to the “audio-guidance” provided by the individual point. Towards this direction, we design a
Gaussian point densification and pruning strategy based on the individual per-point contribution in
providing this “guidance” for sound propagation, ultimately improving the overall binaural audio
synthesis.

To summarize, we make the following contributions: (1) The first novel view acoustic synthesis work
with conditions on holistic scene geometry and implicit material information; (2) A novel AV-GS
model that learns a holistic geometry-aware material-aware scene representation in a tailored 3DGS
pipeline; (3) Extensive evaluations validating the advantages of our method over prior art alternatives
on both synthetic and real-world datasets.

2 Related Work
Audio binauralization converts monaural (single-channel) audio signals into binaural (two-channel)
audio signals. It can enhance immersion by simulating sound directionality, distance, and spatial
cues. Generating realistic binaural audio from mono audio is challenging [31, 30], prompting the
exploration of various conditioning techniques in the literature.

Geometry and material conditioning Luo et al. [21] introduced Neural Acoustic Field (NAF) for
room acoustics modeling using implicit neural representations of geometric features, capturing spatial
information of speakers and receivers. Su et al. [34] also learned implicit neural representations
for audio, focusing on interactive acoustic radiance transfer, relying on scene geometry as input.
Anton and Dinesh [29] proposed a material-aware binaural sound propagation model, incorporating
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material and topology data, necessitating an acoustic material database. In contrast, our approach
learns explicit representation from 3D scenes and disentangles learning of physical and (implicit)
material properties, eliminating reliance on scene geometry and material characteristics as inputs.

Visual cue conditioning Recent works leverage visual cues to generate spatial audio from mono audio,
capturing complementary scene characteristics [9, 38, 27, 41, 18, 43, 19, 28]. Li et al. [15] proposed
a multi-task approach optimizing binaural audio generation and flipped audio classification, sharing
visual cues from corresponding video frames. Chen et al. [4] synthesized sound by analyzing input
audio-visual cues, incorporating active speaker features, target pose, and encoded visual features in
the acoustic synthesis pipeline. Alternatively, Liang et al. [17] encoded the listener’s position and
orientation, conditioned by the listener’s view. It additionally provides local visual depth information
dependent on the listener’s position. However, focusing solely on the listener’s view overlooks the
broader 3D scene geometry’s contribution, which is crucial for sound propagation. We thus propose
to learn a holistic 3D scene representation, enhancing binauralization guidance with additional audio
parameters.

3D Scene Representation Learning Point-based rendering techniques, initiated by [10], utilize
point-based representation where each point affects a single pixel. Zwicker et al. [45] advanced this
with ellipsoid-based rendering (splatting), allowing mutual overlap to fill image holes. At the absence
of given geometry, Mildenhall et al. [25] explored neural implicit representation, NeRF, predicting
view-dependent radiance via implicit density fields. NeRF requires combining colors of densely
sampled points along the camera rays for high-quality rendering. 3D Gaussian splatting (3D-GS)
[14], a novel-view synthesis method, employs explicit point-based representation, contrasting with
NeRF’s volumetric rendering. Since its real-time high-quality rendering capabilities that 3DGS has
been applied to various domains, including simultaneous localization [13, 24], content generation
[36], and 4D dynamic scenes [16, 39, 42], among others.

However, no works take the 3DGS advantages to improve the NVAS task. Hence, in this work, we
for the first time exploit the 3D-GS for NVAS, to the best of our knowledge, including capturing the
scene geometry and material-related information for audio signal processing purposes. Further, we
adapt the point management mechanism to account for the characteristics of sound propagation. In
a nutshell, our approach aims to improve binaural audio reconstruction loss in AV-GS by adjusting
Gaussian point location and density based on their contribution to sound propagation guidance.

3 Method

Problem definition Deployed at a location XS in a 3D scene, a sound source S emits a mono audio
amono. A listener entity L moves around in this 3D scene, capturing multiple observations using a
camera mounted with a binaural microphone. Each observation Op = (VC , VA), constitutes a pair of
a camera view VC and an auditory perspective VA, w.r.t a specific listener pose p = (XL, d), where
XL is the 3D position of the listener and d is the viewing direction corresponding to listener’s head.
A camera view VC defines that at the pose p, the listener would observe a RGB image, I (as their
view). Similarly, an auditory perspective VA defines that at the pose p, the listener hears a binaural
audio, abi = (al, ar) where l and r represent the left and right ear respectively. Given N observations
from the listener, O = {O1, O2, ..., ON}, the task is to predict the binaural audio abi

∗ for a novel
observation Op∗ having an arbitrary unseen pose p∗.

3.1 Audio-Visual Gaussian Splatting (AV-GS)
Our model is comprised of a 3D Gaussian Splatting model G, an acoustic field network F , and an
audio binauralizer B. In order to model sound propagation in space and time, having a holistic scene
prior as contextual guidance is essential. Crucially, this guidance must incorporate both geometric
and material-related characteristics. For facilitating the learning of visual and auditory modalities
with inherently distinct characteristics, we decouple the physical geometry and the acoustic field
by introducing in-between an acoustic field network F that learns geometry-aware and implicit
material-aware scene contexts.

In the following, we first, provide a brief regarding learning the scene geometry. Later, we explain
how to construct an audio-focused representation Ga. We further describe the process of decoding
the parameters of Ga on the fly using view-dependent information, followed by point densification
and pruning tailored for sound propagation.
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Figure 2: Overview of our proposed AV-GS. Our model is comprised of a 3D Gaussian Splatting
model G, an acoustic field network F and an audio binauralizer B. We first train G to capture the
scene geometry information. Next, we construct an audio-focused point representation Ga, with
the location X and audio-guidance parameter α initialized by the pre-trained G. Then the acoustic
field network F is used to process the α parameters for all the Gaussian points in the vicinity of the
listener and the sound source (in the 3D space). The output from F is finally used to condition the
audio binauralizer B, which transforms the mono audio to binaural audio w.r.t the listener and sound
source location.

3D Gaussian Splatting (3D-GS) [14] is a state-of-the-art novel-view synthesis method that learns an
explicit point-based representation of the 3D scene. It is utilized here to capture the scene geometry.
Specifically, each point in the explicit representation G is represented as a 3D Gaussian ellipsoid to
which physical attributes like position X , quaternion R, scale S , opacity O and Spherical Harmonic
coefficients (SH) representing view-dependent color are attached. For an arbitrary camera view VC

∗

with a pose p∗, we project/splat 3D Gaussians onto the 2D image plane to obtain the listener’s view
as an RGB image I∗. The projection of 3D Gaussian ellipsoids can be formulated as:

Σ′ = JWΣWTJT (1)
where Σ′ and Σ = RSSTRT are the covariance matrices for 3D Gaussian ellipsoids and projected
Gaussian ellipsoids on 2D image from a viewpoint with viewing transformation matrix W . J is the
Jacobian matrix for the projective transformation. Please refer to [14] for more details on splatting.

3.1.1 Acoustic Field Network
As a part of the decoupling approach, we further introduce an audio-focused point-based representa-
tion Ga. Concretely, every point in Ga is parameterized using the location X , alongside a learnable
audio-guidance parameter α to encapsulate implicit material-specific characteristics of the scene.
X is initialized using the location of Gaussian points in G, in order to impose the scene geometry
knowledge. To initialize α we concatenate the view-dependent color priors from G, particularly
spherical harmonics SH and quaternion feature R. An intuition is to choose the parameters that
provide information regarding the color and density characteristics, which are often correlated with
material properties [8] (see ablation on the choice of different parameters from G for forming α in
Section 4.4).

In order to drive the mono to binaural audio transformation, a pose-specific holistic scene context
has to be derived from Ga. To achieve this, we derive a position-guidance feature G w.r.t both, the
listener L and the sound source S. Position-guidance G concatenated with the audio-guidance α is
used as an input to the acoustic field network F to obtain a joint context for each point w.r.t to the
listener and the sound source separately.

C = CS ⊕ CL (2)

Ci = F(α,Gi);Gi =
X −Xi

∥X −Xi∥2
, i ∈ {S,L} (3)
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Concatenating (represented using ⊕) the listener-context and the speaker-context yields the overall
pose-specific holistic scene context. We obtain the condition for binauralization by averaging the
context across all points in Ga, post dropping points outside the vicinity of the listener and sound
source. The vicinity for the listener and sound source is defined by the nearest kL and kS points
based on the Euclidean distance between X and XL and that between X and XS , respectively. We
provide an ablation for selecting the size of vicinity points in Section 4.4.

3.1.2 Audio Binauralizer
An audio binauralization module B transforms the mono audio amono emergent from the sound
source S into binaural audio abi = {al, ar}, representing the left and right audio channels. The
position and orientation of the listener (relative to the sound source) along with the learned holistic
scene context C is used to condition this transformation.

abi = B(amono|C, XL) (4)

where XL denotes the listener’s position and orientation. We adopt a similar architecture for the
binauralization as [17], wherein XL and C are fused to generate acoustics masks mm and md

representing the mixture and difference of the sound fields respectively. Specifically, an MLP
combines XL and Ga with a frequency query f ∈ [0, F ] to produce a feature vector which is further
projected using a linear projection to obtain a mixture mask mm for frequency f. This feature vector
is concatenated with the transformed direction θ and passed to a second MLP to generate a difference
mask md. All frequencies within [0, F ] are queried to generate complete masks for both the mixture
and difference. The magnitude spectrogram smono, computed using short-time Fourier transform
(STFT) over amono, is multiplied with mm and md to obtain the mixture magnitude sm and the
difference magnitude sd, respectively. Finally, an inverse STFT is operated on sm and sd to obtain
the binaural audios for the left and right channels, al and ar. The architecture of the binauralizer is
discussed in our appendix A.2.

3.2 Model training

Due to our decoupling design, we adopt a dual-stage optimization, starting with an initial warm-
up stage that learns the physical properties of the Gaussian points using gradients obtained while
reconstructing camera views (RGB images). The objective of this initial stage is to infer an explicit
point-based representation G to capture the scene geometry. Optimization of G is adapted from the
original 3D-GS [14] using the loss function,

LG = (1− λ)L1 + λLSSIM (5)

In the second stage, we initialize the audio-guidance parameters of Ga using physical parameters of
the warmed-up 3D Gaussians. Subsequently, we learn the implicit material properties for the Gaussian
points using gradients obtained in the binauralization task for every training auditory perspective.
Optimization of Ga is guided by a combination of the binaural audio reconstruction loss, Lm and a
volume regularization loss, Lv .

LGa
= (1− λa)Lm + λaLv (6)

Lm = L2(sm) + L2(sl) + L2(sr) (7)

where, Lm is the summation of the L2 loss calculated individually between the predicted magnitudes
for sm, sl, sr (i.e., mixture, left and right audio channel, respectively) and their respective ground-truth
magnitudes. Lv =

∑Na

i=1 Prod(αi), where Prod(.) is the product of the values of the audio-guidance
parameter α of each Gaussian point in the auditory perspective, encouraging the audio-guidance
parameters to be small, and non-overlapping.

The physical properties and material-related properties of the new Gaussians are decoded from the
learned physical parameters and audio-guidance parameters respectively, in a view-dependent manner
on-the-fly.

Audio-aware point management The location of points in Ga are initialized from G, however since
G is optimized using an image reconstruction loss, the initial placement of the points in Ga is not
necessarily contributive to an optimal audio guidance. Especially, it has been observed in recent
works that 3D-GS is inadequate in densifying texture-less and less observed areas [20, 6, 2].
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To address this problem, we propose an error-based point growing policy that populates new points in
Ga, wherever deemed significant. Specifically, the densification step is interleaved across multiple
binauralization forward passes. During each densification step, we compute averaged gradients
(across all steps up to the previous consecutive densification step) for each point in Ga that lies in the
vicinity, denoted as Θg. Points with Θg > τg are deemed as significant, where τg is a pre-defined
threshold. Using the original 3D position as a probability distribution function (PDF), we sample new
points. The audio-guidance parameters for these new points are obtained by random initialization.
Additionally, we regularly employ a random elimination of points to avoid rapid expansion of new
points (e.g., every 3000 iterations).

4 Experiments

4.1 Datasets

We evaluate both a real-world dataset-RWAVS and a synthetic dataset-SoundSpaces.

Real-World Audio-Visual Scene (RWAVS) [17] The RWAVS dataset offers realistic multi-modal
training samples constituting camera poses, high-quality binaural audios, and images. The dataset
consists of 11 indoor and 2 outdoor scenes. Randomly sampling the sound source and listener
positions, the authors collected data ranging from 10 to 25 minutes for every scene. For every scene,
a data sample includes a set of camera poses (sound source and listener), extracted RGB key frame,
followed by one-second binaural audio (as received at the listener position) and one-second mono
source audio (as emitted by the sound source). We follow an 80:20 train-validation split for every
scene in the dataset.

SoundSpaces synthetic dataset [3] The Soundspaces dataset consists of 6 indoor scenes with varying
degrees of complexity (2 scenes having a single room with rectangular walls; 2 scenes having a
single room with a non-rectangular walls; 2 with multi-room layout). Since the dataset includes
room impulse responses (RIR) recorded at receiver/listener positions, we replace the acoustic mask
generation block with an RIR prediction block. The listener consists of a stereo listener, with four
discrete head orientations among 0, 90, 180, and 270. We follow the same 80:20 train-validation split,
as [17] for every scene in the dataset.

4.2 Implementation Details

Our complete implementation is based in PyTorch using a single Nvidia A550 GPU. The learning
rate for all physical parameters in G is adopted from the original 3D-GS implementation [14]. For the
acoustic field network F , we use MLP network with 64 nodes. Hyper-parameters for the binauralizer
B, as well as the metrics are adopted from AV-NeRF [17]. For the audio-aware point management,
we set τg to 0.0004. Additionally, after every 3k iterations we randomly eliminate points using an
outlier removal process (from Open3D [44]) that removes points that have less than 8 neighbors in a
sphere less than radius of 0.1.

As a part of the proposed decoupling, we train the 3D-GS model G for 3k iterations, wherein each
iteration involves randomly sampling a camera view VC and optimizing the parameters for G. Post
this we initialize α with the physical parameters from G, and train for 40k iterations, wherein now
each iteration involves randomly sampling an auditory perspective VA and optimizing the parameters
for Ga and B.

4.3 Results

Binaural audio synthesis - RWAVS dataset - Table 1 In order to have a fair comparison, we
adopt the same metrics - magnitude distance [MAG] [41] (computed in time-frequency domain) and
envelope distance [ENV] [26] (computed in time domain), as [17]. Particularly, (1) Mono-Mono
duplicates the source audio to create fake binaural audio without modifications; (2) Mono-Energy
scales the input audio’s energy to match the target, generating stereo audio by duplicating the scaled
audio; (3) Stereo-Energy separately scales the input audio’s energy for each channel to match the
target, then combines them for stereo audio; In addition to the codec baselines above, we also
compare with NAF [21], INRAS [34], and AV-NeRF [17]. AV-GS significantly surpasses all prior
arts across all scenes, by a significant margin. Particularly compared against AV-NeRF, which utilizes
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Table 1: Comparison with state-of-the-art methods on RWAVS dataset.

Methods Modality Office ↓ House ↓ Apartment ↓ Outdoors ↓ Overall ↓
Audio Visual MAG ENV MAG ENV MAG ENV MAG ENV MAG ENV

Mono-Mono ✓ ✗ 9.269 0.411 11.889 0.424 15.120 0.474 13.957 0.470 12.559 0.445
Mono-Energy ✓ ✗ 1.536 0.142 4.307 0.180 3.911 0.192 1.634 0.127 2.847 0.160
Stereo-Energy ✓ ✗ 1.511 0.139 4.301 0.180 3.895 0.191 1.612 0.124 2.830 0.159
INRAS [35] ✓ ✗ 1.405 0.141 3.511 0.182 3.421 0.201 1.502 0.130 2.460 0.164
NAF [22] ✓ ✗ 1.244 0.137 3.259 0.178 3.345 0.193 1.284 0.121 2.283 0.157
AV-NeRF [17] ✓ ✓ 0.930 0.129 2.009 0.155 2.230 0.184 0.845 0.111 1.504 0.145
AV-GS (ours) ✓ ✓ 0.861 0.124 1.970 0.152 2.031 0.177 0.791 0.107 1.417 0.140

Figure 3: In the presence of (a) complex geometry, and (b) meaningless views, AV-NeRF, when
compared to our AV-GS makes errors in binaural synthesis. For both scenarios we showcase the
corresponding listener view, used by AV-NeRF, as well as the learned holistic scene representation
that is used by AV-GS, and hence unaffected by both scenarios.

audio-visual cues, AV-GS achieves a 5.7% and 3.4% relative improvement in terms of MAG and
ENV respectively.

We highlight the qualitative improvement of AV-GS over AV-NeRF in Fig. 3 (and in Section A.1).
AV-NeRF extracts visual cues from the listener’s view using a 256x256 RGB and depth image
(rendered by a pre-trained NeRF) and processed by a frozen ResNet18 [11] model that is trained
on ImageNet [7]. When the listener’s view includes multiple objects or complex geometries (Fig.
3(a)), or meaningless information (Fig. 3(b)), it leads to sub-optimal visual cue extraction and poor
binauralization. In contrast, our AV-GS uses learned representations (combining α of points in Ga

w.r.t to the listener and speaker) to extract context at a more holistic level, remaining unaffected by
these scenarios.

RIR generation - Soundspaces dataset - Table 2(a) Following [17] and [21], we compare AV-GS
against classical high-performance audio coding methods: Advanced Audio Coding (AAC) [12] and
Xiph Opus [40], applying both linear and nearest neighbor interpolation techniques to the coded
acoustic fields. Additionally, we also compare with existing neural methods: NAF [21], INRAS [34],
and AV-NeRF [17]. It can be observed that AV-GS outperforms all the prior arts by a significant
margin.

Table 2: Comparison with the state-of-the-art and Ablation study on physical parameters.

(a) Comparison with state-of-the-art: Performance on SoundSpaces
dataset using T60, C50, and EDT metrics. Lower score indicates a
higher RIR generation quality. Opus is an open audio codec [40], and
AAC is a multi-channel audio coding standard [12].

Methods Audio Visual T60 (%) ↓ C50 (dB) ↓ EDT (sec) ↓
Opus-nearest ✓ ✗ 10.10 3.58 0.115
Opus-linear ✓ ✗ 8.64 3.13 0.097
AAC-nearest ✓ ✗ 9.35 1.67 0.059
AAC-linear ✓ ✗ 7.88 1.68 0.057
INRAS [35] ✓ ✗ 3.14 0.60 0.019
NAF [22] ✓ ✗ 3.18 1.06 0.031
AV-NeRF [17] ✓ ✓ 2.47 0.57 0.016
AV-GS (ours) ✓ ✓ 2.23 0.53 0.014

(b) Ablation on the choice of physical
parameters from G, for initializing α.

Parameters Dimension Overall ↓
MAG ENV

O 1 1.477 0.140
S 3 1.451 0.141
R 4 1.439 0.140
SH 48 1.435 0.140

S,O 4 1.481 0.141
SH,O 49 1.466 0.141
S,SH 51 1.549 0.143
SH,R 52 1.417 0.140
S,SH,O 52 1.500 0.141
SH,R,O 53 1.454 0.141

S,SH,R,O 56 1.496 0.141
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Table 3: Comparing for efficiency in terms of the inference time with the existing AV-NeRF using
multiple perspective views. Please note the inference time includes the time for rendering the view
from V-NeRF, extracting features through AV-Mapper ([17]) and then rendering the binaural audio
from A-NeRF.

Methods Time (↓) Overall (↓)
Inference MAG ENV

AV-NeRF - 1 view 1.4s 1.504 0.145
AV-NeRF - 2 views 2.9s 1.495 0.145
AV-NeRF - 4 views 7.6s 1.482 0.144

AV-GS (ours) 0.08s 1.417 0.140

Improved efficiency Decoding α on-the-fly helps AV-GS retain the efficiency advantage of having an
explicit point based representation over learning an implicit representation of the visual 3D scene. In
contrast, AV-NeRF trains an additional NeRF model, whose outputs are used to render the listener’s
view which is the condition for their binauralizer module. In Table 3, we compare the inference time
for a single scene (House scene 1) from the RWAVS dataset. Although the original implementation
of AV-NeRF proposed a single view in the direction of listener’s viewing direction (used as the
listener’s context), we modify their implementation in which the V-NeRF renders 2 and 4 perspective
views with a field of view of 90◦for each receiver’s position. It can be observed, although using
the additional views, helps provide additional local context around the listener (hence improving
the binauralization performance), but only at the cost of increased inference time. AV-GS on the
other hand requires least rendering time, while providing the best binauralization performance. It is
important to note that, although we train the 3D-GS for only an initial warm-up stage of 3k iterations,
we can still jointly train both G and Ga on the corresponding camera view VC and the auditory
perspective VA respectively. By doing so, AV-GS would be able to synthesize both binaural audio as
well the visual view at the unseen target (novel) viewpoint, without any increase in the training time
than that of as shown in Table 3 (last row). In this work, we instead focus on only the binaural audio
synthesis and hence train only Ga in the second stage.

Although we train the 3D-GS for just an initial 3k iterations, we can still train both G and Ga together
for the corresponding camera view VC and auditory perspective VA, such that the trained AV-GS
is able to synthesize both the binaural audio and the visual view from a novel viewpoint , thereby
making it a fair comparison with AV-NeRF [17]. However, in this work, we focus solely on binaural
audio synthesis and only train Ga in the second stage.

4.4 Ablation study

We use the binaural audio synthesis task for performing our ablation study and report average
performance across all scenes in the RWAVS dataset.

Initialization of α. 3D-GS learns a point-based representation (G) of the 3D scene such that each
point in the explicit representation is represented as a 3D Gaussian ellipsoid to which physical
attributes like position X , quaternion R, scale S, opacity O and Spherical Harmonic coefficients
(SH) representing view-dependent color are attached. As discussed above, we initialize the audio-
guidance parameter α using the learned physical parameters from G. Table 2(b) shows an in-depth
study of the effect on the binauralization performance when choosing different parameters from G
for the initialization. It is evident that SH and R, when considered individually as well as when
combined, are crucial parameters that help provide an overall better binauralization performance.

Size of the vicinity The learned Gaussian points G representation normally consists of millions of
points, and using all the points for computing the condition for the binauralization task will result
in a huge computational overload. Moreover, intuitionally, points near the listener and speaker
location in the 3D space (i.e.vicinity) are more contributive to determining the local geometry and
material-related characteristics, and greatly influence the sound field. Empirically in Table 4a, we find
that using 15 percentile of the points in the vicinity (listener and speaker considered separately) yields
the best performance. Using an extremely high percentile for capturing the vicinity generally helps,
but only to a certain extent, since it increases the risk of adding unnecessary information. Moreover,
it is important to note that in scenes with smaller room sizes or when the listener and speaker are
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Table 4: (a)Ablation on the size of vicinity w.r.t the listener and sound source position. (b) Effect of
audio-aware point management.

(a) Percentile-k denotes the top k % points
nearest to the listener and sound source.

Percentile Overall ↓
MAG ENV

5 1.482 0.143
10 1.454 0.141
15 1.417 0.140
20 1.424 0.141
25 1.428 0.141

(b) SfM: Structure-from-motion [33] (i.e.camera calibration),
G: warmup using 3D-GS [14]

.

Initialization Point Overall ↓
management MAG ENV

SfM
✗ 1.668 0.147
✓ 1.552 0.143

G (3D-GS) ✗ 1.481 0.141
✓ 1.417 0.140

Figure 4: Ablation on the size of vicinity w.r.t the listener and sound source position. Percentile-k
denotes the top k % points nearest to the listener and sound source are considered in computing the
scene context. (a) RGB color (from G), (b) learned α (from Ga), (c) 5% percentile vicinity, (d) 25%
percentile vicinity.

placed nearby, a larger vicinity capture might lead to overlapping points thus adding to redundant
information (see Fig. 4 (d)).

Effect of audio-aware point management. AV-GS infers local geometry from an explicit point-
based prior and learns additional audio-specific parameters for every point. The local geometry
can be inferred either directly from the sparse points produced during camera calibration using
Structure-from-motion (SfM) [33] or warming up a 3D-GS model on the SfM points. From Table
4b it is evident that audio-aware point management helps improve the binauralization performance
irrespective of the adopted point initialization approach. Texture-less regions such as walls, doors,
etc are the regions with maximum sound absorption and diversion and hence having optimal point
density promotes better modeling of sound propagation.

5 Conclusion

In this work, we present AV-GS, a holistic scene representation learning approach for conditioning
novel view acoustic synthesis. The core of AV-GS lies in the proposed decoupled modeling of
3D scene geometry and material-related characteristics of scene objects for sound propagation,
enabled by the introduction of additional audio-guidance parameters per point within an acoustic
field network. We show that our approach leverages audio-aware Gaussian point positioning to
improve the binauralization performance, on real world as well as synthetic 3D scenes, significantly
in comparison to prior art alternatives.

Limitations Although AV-GS achieves a new state-of-the-art on the NVAS task by learning a holistic
scene representation with geometry-aware and implicit material-aware characteristics, it faces some
challenges. Like AV-Nerf, AV-GS currently learns a separate representation for each scene, posing a
significant challenge for generalizability and transferability across multiple scenes, which is crucial
for improving efficiency and reducing computational demands. Also, as observed in Table 1, the
performance drops when the scene size increases (e.g., from Office to House), due to the difficulty in
learning representations for larger, complex geometries with multiple rooms. An interesting research
direction would be to model individual rooms using separate 3D-GS representations and then learn a
transfer function across rooms.

9



References
[1] Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P Srinivasan, and Peter Hedman.

Mip-nerf 360: Unbounded anti-aliased neural radiance fields. In CVPR, 2022.

[2] Samuel Rota Bulò, Lorenzo Porzi, and Peter Kontschieder. Revising densification in gaussian
splatting. arXiv preprint arXiv:2404.06109, 2024.

[3] Changan Chen, Unnat Jain, Carl Schissler, Sebastia Vicenc Amengual Gari, Ziad Al-Halah,
Vamsi Krishna Ithapu, Philip Robinson, and Kristen Grauman. Soundspaces: Audio-visual
navigation in 3d environments. In ECCV. Springer, 2020.

[4] Changan Chen, Alexander Richard, Roman Shapovalov, Vamsi Krishna Ithapu, Natalia
Neverova, Kristen Grauman, and Andrea Vedaldi. Novel-view acoustic synthesis. In CVPR,
2023.

[5] Ziyang Chen, Israel D Gebru, Christian Richardt, Anurag Kumar, William Laney, Andrew
Owens, and Alexander Richard. Real acoustic fields: An audio-visual room acoustics dataset
and benchmark. arXiv preprint arXiv:2403.18821, 2024.

[6] Kai Cheng, Xiaoxiao Long, Kaizhi Yang, Yao Yao, Wei Yin, Yuexin Ma, Wenping Wang, and
Xuejin Chen. Gaussianpro: 3d gaussian splatting with progressive propagation. arXiv preprint
arXiv:2402.14650, 2024.

[7] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In CVPR, 2009.

[8] Sara Fridovich-Keil, Alex Yu, Matthew Tancik, Qinhong Chen, Benjamin Recht, and Angjoo
Kanazawa. Plenoxels: Radiance fields without neural networks. In CVPR, 2022.

[9] Ruohan Gao and Kristen Grauman. 2.5 d visual sound. In CVPR, 2019.

[10] Jeffrey P Grossman and William J Dally. Point sample rendering. In Rendering Techniques’ 98:
Proceedings of the Eurographics Workshop. Springer.

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR, 2016.

[12] International Organization for Standardization. Advanced audio coding (aac). ISO/IEC 13818-
7:2006, 2006.

[13] Nikhil Keetha, Jay Karhade, Krishna Murthy Jatavallabhula, Gengshan Yang, Sebastian Scherer,
Deva Ramanan, and Jonathon Luiten. Splatam: Splat, track & map 3d gaussians for dense rgb-d
slam. arXiv preprint arXiv:2312.02126, 2023.

[14] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian
splatting for real-time radiance field rendering. ACM Transactions on Graphics, 2023.

[15] Sijia Li, Shiguang Liu, and Dinesh Manocha. Binaural audio generation via multi-task learning.
ACM Transactions on Graphics, 2021.

[16] Zhan Li, Zhang Chen, Zhong Li, and Yi Xu. Spacetime gaussian feature splatting for real-time
dynamic view synthesis. arXiv preprint arXiv:2312.16812, 2023.

[17] Susan Liang, Chao Huang, Yapeng Tian, Anurag Kumar, and Chenliang Xu. Av-nerf: Learning
neural fields for real-world audio-visual scene synthesis. NeurIPS, 2023.

[18] Yan-Bo Lin and Yu-Chiang Frank Wang. Exploiting audio-visual consistency with partial
supervision for spatial audio generation. In AAAI, 2021.

[19] Francesc Lluís, Vasileios Chatziioannou, and Alex Hofmann. Points2sound: from mono to
binaural audio using 3d point cloud scenes. EURASIP Journal on Audio, Speech, and Music
Processing, 2022(1):33, 2022.

10



[20] Tao Lu, Mulin Yu, Linning Xu, Yuanbo Xiangli, Limin Wang, Dahua Lin, and Bo Dai. Scaffold-
gs: Structured 3d gaussians for view-adaptive rendering. arXiv preprint arXiv:2312.00109,
2023.

[21] Andrew Luo, Yilun Du, Michael Tarr, Josh Tenenbaum, Antonio Torralba, and Chuang Gan.
Learning neural acoustic fields. NeurIPS, 2022.

[22] Andrew Luo, Yilun Du, Michael J Tarr, Joshua B Tenenbaum, Antonio Torralba, and Chuang
Gan. Learning neural acoustic fields. 2022.

[23] Sagnik Majumder, Changan Chen, Ziad Al-Halah, and Kristen Grauman. Few-shot audio-visual
learning of environment acoustics. In NeurIPS, 2022.

[24] Hidenobu Matsuki, Riku Murai, Paul HJ Kelly, and Andrew J Davison. Gaussian splatting slam.
arXiv preprint arXiv:2312.06741, 2023.

[25] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi,
and Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. In ECCV,
2020.

[26] Pedro Morgado, Nuno Nvasconcelos, Timothy Langlois, and Oliver Wang. Self-supervised
generation of spatial audio for 360 video. NeurIPS, 2018.

[27] Kranthi Kumar Rachavarapu, Vignesh Sundaresha, AN Rajagopalan, et al. Localize to binaural-
ize: Audio spatialization from visual sound source localization. In CVPR, 2021.

[28] Anton Ratnarajah, Sreyan Ghosh, Sonal Kumar, Purva Chiniya, and Dinesh Manocha. Av-rir:
Audio-visual room impulse response estimation. arXiv preprint arXiv:2312.00834, 2023.

[29] Anton Ratnarajah and Dinesh Manocha. Listen2scene: Interactive material-aware binaural
sound propagation for reconstructed 3d scenes. In IEEE VR, 2024.

[30] Anton Ratnarajah, Zhenyu Tang, and Dinesh Manocha. Ir-gan: Room impulse response
generator for far-field speech recognition. arXiv preprint arXiv:2010.13219, 2020.

[31] Anton Ratnarajah, Shi-Xiong Zhang, Meng Yu, Zhenyu Tang, Dinesh Manocha, and Dong Yu.
Fast-rir: Fast neural diffuse room impulse response generator. In ICASSP, 2022.

[32] Kazuki Shimada, Archontis Politis, Parthasaarathy Sudarsanam, Daniel A Krause, Kengo
Uchida, Sharath Adavanne, Aapo Hakala, Yuichiro Koyama, Naoya Takahashi, Shusuke Taka-
hashi, et al. Starss23: An audio-visual dataset of spatial recordings of real scenes with spa-
tiotemporal annotations of sound events. NeurIPS, 2023.

[33] Noah Snavely, Steven M Seitz, and Richard Szeliski. Photo tourism: exploring photo collections
in 3d. In ACM siggraph 2006 papers, pages 835–846. 2006.

[34] Kun Su, Mingfei Chen, and Eli Shlizerman. Inras: Implicit neural representation for audio
scenes. Advances in Neural Information Processing Systems, 35:8144–8158, 2022.

[35] Kun Su, Mingfei Chen, and Eli Shlizerman. Inras: Implicit neural representation for audio
scenes. In NeurIPS, 2022.

[36] Jiaxiang Tang, Jiawei Ren, Hang Zhou, Ziwei Liu, and Gang Zeng. Dreamgaussian: Generative
gaussian splatting for efficient 3d content creation. arXiv preprint arXiv:2309.16653, 2023.

[37] Ayush Tewari, Justus Thies, Ben Mildenhall, Pratul Srinivasan, Edgar Tretschk, Wang Yifan,
Christoph Lassner, Vincent Sitzmann, Ricardo Martin-Brualla, Stephen Lombardi, et al. Ad-
vances in neural rendering. In Computer Graphics Forum, pages 703–735. Wiley Online Library,
2022.

[38] Ruiqi Wang, Haonan Cheng, Long Ye, and Qin Zhang. Visual-guided scene-aware audio
generation method based on hierarchical feature codec and rendering decision. Displays,
83:102708, 2024.

11



[39] Guanjun Wu, Taoran Yi, Jiemin Fang, Lingxi Xie, Xiaopeng Zhang, Wei Wei, Wenyu Liu,
Qi Tian, and Xinggang Wang. 4d gaussian splatting for real-time dynamic scene rendering.
arXiv preprint arXiv:2310.08528, 2023.

[40] Xiph.Org Foundation. Xiph opus. https://opus-codec.org/, 2012.

[41] Xudong Xu, Hang Zhou, Ziwei Liu, Bo Dai, Xiaogang Wang, and Dahua Lin. Visually informed
binaural audio generation without binaural audios. In CVPR, 2021.

[42] Zeyu Yang, Hongye Yang, Zijie Pan, Xiatian Zhu, and Li Zhang. Real-time photorealistic
dynamic scene representation and rendering with 4d gaussian splatting. In ICLR, 2024.

[43] Hang Zhou, Xudong Xu, Dahua Lin, Xiaogang Wang, and Ziwei Liu. Sep-stereo: Visually
guided stereophonic audio generation by associating source separation. In ECCV, 2020.

[44] Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. Open3d: A modern library for 3d data
processing. arXiv preprint arXiv:1801.09847, 2018.

[45] Matthias Zwicker, Hanspeter Pfister, Jeroen Van Baar, and Markus Gross. Surface splatting. In
Annual conference on Computer graphics and interactive techniques, 2001.

12

https://opus-codec.org/


A Appendix / supplemental material

Broader impact Potential applications of AV-GS lie in virtual reality, augmented reality, and im-
mersive audio experiences, where accurate and efficient binaural audio rendering can significantly
enhance user experience. However, enhanced acoustic synthesis technology could be used unethi-
cally in surveillance or privacy-invasive applications, where binaural audio could be synthesized to
eavesdrop on conversations or create misleading audio experiences.

A.1 Direction and distance awareness showcased by AV-GS

Fig. 5 highlights the distance-awareness exhibited in the binaural audios synthesized by AV-GS. The
top row shows the corresponding RGB frame or the listener’s view, followed by AV-GS’s learned
holistic scene representation in the next row. The two rows show a plot of the rendered binaural audios
(left and right respectively) with time along the x-axis and amplitude of the audio along the y-axis.
(Please note that in the second row we slice the points in Ga for along the vertical axis, essentially
removing the points from the ceiling, in order to provide better visibility.) With the increase in
the distance of the listener (blue sphere) from the sound source (yellow sphere), AV-GS is able to
synthesize binaural audios with decreasing amplitude across both the left and right audio channels.

Figure 5: Distance aware audio rendering. As the distance from the sound source increases the
amplitude of the synthesized binaural audio decreases. Yellow sphere - location of the sound source,
blue sphere - location of the listener.

Fig. 6 shows the direction-awareness showcased by AV-GS. In (a) the synthesized left channel has a
higher magnitude compared to the right channel, owing to the proximity of the listener’s left ear to
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the sound source. Vice-versa, in (b) the right channel has a higher amplitude compared to the right
channel owing to the proximity of the listener’s right ear to the sound source.

Figure 6: Direction aware audio rendering. Relative to the viewing direction of the listener w.r.t to
the sound source AV-GS synthesizes binaural audios with varying amplitude levels in the left and
right audio channel. The arrow on the listener (blue sphere) represents the viewing direction, and the
yellow sphere depicts the sound source.

A.2 Binauralizer

Figure 7: Overview of the binauralizer module, B (with modifications from [17]).

We adopt the architecture of binauralizer from [17] with some modifications to input the learned
scene context from our acoustic field network F (see Fig. 7).

Embedding blocks take the normalized location position XL (only 2D x and y coordinates).

The main components include two Multilayer Perceptrons (MLPs), each comprising four linear layers
with an additional residual connection. The width of each linear layer, is set to 128 for the RWAVS
dataset and 256 for the SoundSpaces dataset. All linear layers are followed by ReLU activation layers,
except for the last layer, where the ReLU activation is replaced with the Sigmoid function. The first
MLP takes the listener’s position (x, y) and the frequency f ∈ [0, F ] as input, where F represents the
number of frequency bins. It predicts a mixture mask mm for the given frequency f and generates a
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feature vector with c channels. Prior to feeding them into the MLP, we apply positional encoding to
the listener’s position (x, y) and the frequency f . We set the maximum frequency used for positional
encoding as 10. A coordinate transformation [17] to project the listener’s direction θ into a high
frequency space. We concatenate the transformed listener’s direction and the feature vector, and
feed it into the second MLP. The second MLP is appended with a Sigmoid layer and a scaling layer,
ensuring that the difference mask md estimated by the second MLP falls within the range of −1, 1.
For each frequency query f , estimates two masks: mm and md, both of which are scalars. We iterate
over all frequencies f ∈ [0, F ] to obtain the complete masks mm and md.

For validating AV-GS on the room impulse response generation task using the Soundspaces dataset,
following [17], we drop the mixture mask, and predict the impulse response directly for a correspond-
ing time input, using the second MLP. We show these modifications in Fig. 8.

Figure 8: Changes to B for the RIR generation - Soundspaces dataset (scores reported in Table 2(a)).
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and precede the (optional) supplemental material. The checklist does NOT
count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The sections of Methods and Experiments clearly describe the claims we
made.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations are discussed in Section 5

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: the paper does not include theoretical results.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
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Answer: [Yes]
Justification: We provide all details for hyper-parameters as well as train and test settings
wherever applicable. Additionally, we will publicly release our entire codebase along with
pre-trained models upon acceptance.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We will publicly release our entire codebase along with pre-trained models on
our project page (link provided in abstract). The datasets used are publicly available.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Discussed in Section 3 - Model Training

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Seeds are fixed to provide reproducibility of the results.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Provided in Section 4 - Implementation details, as well as, detailed discussion
provided regarding inference and training times.

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: All guidelines have been followed.

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss broader impact as a part of our Conclusion.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our paper poses no such risks.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
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Answer: [Yes]
Justification: All existing data and code that has been used by us is properly cited and all of
it is under the CC-BY 4.0 license.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: the paper does not release new assets.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: the paper does not involve crowdsourcing nor research with human subjects.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [Yes]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
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