
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ENTROPY-BASED ACTIVATION FUNCTION OPTIMIZA-
TION: A METHOD ON SEARCHING BETTER ACTIVA-
TION FUNCTIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

The success of artificial neural networks (ANNs) hinges greatly on the judicious
selection of an activation function, introducing non-linearity into network and
enabling them to model sophisticated relationships in data. However, the search of
activation functions has largely relied on empirical knowledge in the past, lacking
theoretical guidance, which has hindered the identification of more effective activa-
tion functions. In this work, we offer a proper solution to such issue. Firstly, we
theoretically demonstrate the existence of the worst activation function with bound-
ary conditions (WAFBC) from the perspective of information entropy. Furthermore,
inspired by the Taylor expansion form of information entropy functional, we pro-
pose the Entropy-based Activation Function Optimization (EAFO) methodology.
EAFO methodology presents a novel perspective for designing static activation
functions in deep neural networks and the potential of dynamically optimizing
activation during iterative training. Utilizing EAFO methodology, we derive a
novel activation function from ReLU, known as Correction Regularized ReLU
(CRReLU). Experiments conducted with vision transformer and its variants on
CIFAR-10, CIFAR-100 and ImageNet-1K datasets demonstrate the superiority of
CRReLU over existing corrections of ReLU. Extensive empirical studies on task of
large language model (LLM) fine-tuning, CRReLU exhibits superior performance
compared to GELU, suggesting its broader potential for practical applications.

1 INTRODUCTION

Flourishing development of artificial intelligence is predominantly attributable to rapid advancements
in artificial neural networks (ANNs) observed in recent years. Activation functions (AFs) play
a critical role in the performance of ANNs due to their fundamental role in enabling nonlinear
representations. Despite continuous development of novel activation functions and their empirical
success in improving network performance, theoretical analysis towards these activation functions
remain scarce in the research literature. In other words, proposal of improved activation functions is
often based on empirical evidence without theoretical validations, which greatly hinders the search for
better activation functions. Hence, a theoretically reliable methodology on searching better activation
functions holds significant value for the machine learning community and future research.

In our work, we initiate our exploration from the correlation between information entropy and
Bayesian error rate. Subsequently, we establish the connection between activation function and
information entropy, ultimately deriving the specific form that the worst activation function does
exist under boundary conditions. Based on the derivation, we propose a novel method for optimiz-
ing activation functions, namely the Entropy-based Activation Function Optimization(EAFO)
methodology. Utilizing EAFO methodology, we derive a novel activation function known as Cor-
rection Regularized ReLU (CRReLU) with the beginning of conventional ReLU (Hahnloser et al.,
2000; Jarrett et al., 2009; Nair & Hinton, 2010). The derived CRReLU activation function possesses
several desirable properties, including the avoidance of neuron death, the preservation of neuron
sparsity, and so on. Experiments involving the vision transformer (Dosovitskiy et al., 2020) and its
variants (Touvron et al., 2021; Han et al., 2021), conducted on CIFAR-10, CIFAR-100 (Krizhevsky
et al., 2009) and ImageNet-1K (Deng et al., 2009) datasets, have consistently demonstrated the
superior performance of CRReLU compared to other activation function baselines. Extensive ex-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

perimental studies on the task of large language model (LLM) fine-tuning with direct preference
optimization (DPO) method (Rafailov et al., 2023) also demonstrate that CRReLU surpasses GELU
in performance, suggesting the wider applicability of CRReLU in practical scenarios. Moreover, the
EAFO methodology also shows potential to further optimize activation functions during the iterative
training of ANNs, although the specific optimization techniques remain a topic of ongoing research.

In summary, our main contributions are as follows:

• We theoretically prove the existence of the worst activation function with boundary condi-
tions from the perspective of information entropy; and starting from the worst activation
function, performance of activation functions always improves.

• We propose the Entropy-based Activation Function Optimization (EAFO) methodology,
which provides a novel perspective for designing static activation functions in deep neural
networks and the potential of dynamically optimizing activation during iterative training.

• We derive a novel activation function known as Correction Regularized ReLU (CRReLU)
starting from ReLU utilizing the EAFO methodology. Experiments across several main-
stream architectures, datasets and tasks demonstrate that the proposed CRReLU exceeds
existing activation functions, exhibiting exceptional performance.

2 RELATED WORK

With the development of deep learning, deep neural networks (DNNs) have gained significant promi-
nence and achieved notable success across various domains. Recent advancements in the field of
natural language processing, exemplified by large language models such as GPT-4 (OpenAI, 2023),
LLama-3 (Hugo Touvron, 2023), and Gemini (Team, 2024), have propelled machine understanding
and generation of natural language to unprecedented levels of accuracy. Additionally, deep neural
networks have also achieved important applications in computer vision (Dosovitskiy et al., 2020; Tou-
vron et al., 2021; Han et al., 2021), deep reinforcement learning (Schulman et al., 2017), autonomous
driving(Pan et al., 2024), and many other areas.

The nonlinearity of activation functions in neural networks is crucial for both enabling the efficient
learning of complex patterns, and facilitating the extraction of intricate and hierarchical representa-
tions from input data, thus allowing them to capture more complex relationships between input and
output variables. In contrast, however, the nonlinear activation functions of deep neural networks
also presents challenges during training, encompassing challenges like gradient vanishing (Bengio
et al., 1994), gradient exploding (Larochelle et al., 2009), and so on.

To address these challenges, researchers have explored alternative approaches for improvement,
including the enhancement of activation functions. In the nascent stages of activation function devel-
opment, scholars predominantly focused on rudimentary thresholding functions, initially directing
their attention towards squashing functions such as the Sigmoid function and the Tanh function
(Hornik, 1991). In order to mitigate the issues of vanishing and exploding gradients, various non-
squashing functions have been proposed. Notably, ReLU (Hahnloser et al., 2000; Jarrett et al., 2009;
Nair & Hinton, 2010) has played a pivotal role in the remarkable success of deep learning. The
derivative of ReLU for positive inputs is one, thereby preventing the gradient from vanishing; however,
negative values are mapped to zero, leading to two main issues: (1) The absence of information flow
for negative values, known as dying ReLU ; (2) The shift in subsequent layers due to positive bias
maintained by activation.

Given the aforementioned challenges, researchers have dedicated significant efforts to improving the
effectiveness of activation functions. The Leaky ReLU (Maas, 2013) activation function permits a
small negative slope, ensuring some gradient can still be propagated even when input is less than
zero. The Parametric ReLU (PReLU) (He et al., 2015) is an extension of the Leaky ReLU, where α

is considered a learnable parameter that is learned from data rather than being predetermined. The
Exponential Linear Unit (ELU) (Clevert et al., 2016) outputs a negative value when x is less than 0,
leading to the advantageous property of the average output approaching 0. The Continuously Differ-
entiable Exponential Linear Unit (CELU) (Barron, 2017) proposes an alternative parameterization
that simplifies analysis of the rectifier function and facilitates the tuning process of parameters in
ELU. The Swish (also known as SiLU) (Ramachandran et al., 2017) has been shown to enhance
training stability and performance in deep learning models due to its smooth nature and improved

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

gradient propagation. In Mish (Misra, 2020) activation function, unboundedness of positive values
avoids the saturation led by a plateau, slight allowance for negative values enables better gradient flow,
and the smoother activation function allows better information to flow deep into neural networks,
thus resulting in better accuracy and generalization in performance.

3 MOTIVATION

In Section 2, it is apparent that researchers have dedicated substantial efforts to the exploration of
improved activation functions, which are widely acknowledged to hold considerable significance
for the advancement of deep learning. However, it has also come to our attention that proposals for
these activation functions lack a theoretical framework, indicating such searches are, to some extent,
inefficient and aimless.

GELU(Gaussian Error Linear Unit)(Hendrycks & Gimpel, 2023) was first proposed in 2016 and has
since gained significant success in a variety of fields, especially with the emergence of large language
models in recent years. It has been successfully incorporated into several cutting-edge neural network
architectures, such as BERT(Devlin et al., 2019) , ViT (Dosovitskiy et al., 2020) , GPT-4(OpenAI,
2023) , and so on, demonstrating its versatility and effectiveness. In the work conducted by Lee
(2023) (2023), insightful mathematical properties of the GELU are finally unveiled, including its
differentiability, boundedness, stationarity, and smoothness. Hence, it is often the case that superior
performance exhibited by novel activation functions frequently lacks mathematical explanations for
their observed enhancements. Understanding may merely limited to the fact that it exhibits improved
performance, which hampers exploration for better activation functions and interpretability of neural
networks.

In light of the aforementioned challenges, our work endeavors to propose a methodology for searching
better activation functions, not only enabling the discovery of improved activation functions but also
elucidating the reasons behind their superior performance at the same time.

4 METHODOLOGY

4.1 PROBLEM SETUP

4.1.1 BAYESIAN ERROR RATE AND INFORMATION ENTROPY

A deep neural network can be simplified as comprising a feature extraction layer, which is subse-
quently followed by a fully connected layer for final classification. From a probabilistic perspective,
in binary classification, the feature extraction layer can be conceptualized as transforming the shape
of mixture distribution, thereby enabling the final fully connected layer to separate two distributions
with a hyperplane. Hence, the more overlapping two distributions are, the higher Bayesian error rate
and the worse classification performance. Furthermore, a lower information entropy corresponds to a
higher likelihood of forming two distinct peaks (i.e. the smaller classification uncertainty, the easier
to classify); and an increase in the overlap between two distributions also leads to the increase of
information entropy (i.e. the greater classification uncertainty, the harder to classify). In addition, the
above statements can be extended to multi-class classification, and further elaboration is omitted here.

4.1.2 ACTIVATION FUNCTION AND INFORMATION ENTROPY

Assuming the inverse function of the activation function is y(x), and the activation function is
monotonically increasing. Many previous activation functions, such as Sigmoid and Tanh (Hornik,
1991), satisfy the assumption that the function has an inverse function in entire definition domain.
Furthermore, when an activation function fails to meet the assumption, we can transform the part of
such function satisfying this assumption, as is the case with the positive part of ReLU.

Then we set data distribution before passing through the activation function obeys the distribution
p(x). Thus, data distribution after passing through activation function is : q(x) = p(y(x))y′(x), where
y′(x) represents the derivative of y(x). Hence, we can express the information entropy as:

H(y(x)) =−
∫

q(x) logq(x)dx =−
∫

p(y(x))y′(x) log(p(y(x))y′(x))dx =
∫

G(y′(x),y(x))dx

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Therefore, the information entropy can be deemed as a functional, which takes a function y(x) as
input and produces a real number as output.

4.2 WORST ACTIVATION FUNCTION WITH BOUNDARY CONDITION (WAFBC)

Firstly, we would like to determine the extremum (whether it is a maximum or minimum) of the
functional H(y(x)). For further deductions, taking the simplest functional into consideration, e.g.
setting H(y(x)) =

∫
G(y′(x),y(x),x)dx.

In order to research the influence brought by variations of function y(x), we apply a small perturbation
εη(x) to function y(x), and then the functional H(y(x)+ εη(x)) takes the form as:

H(y(x)+ εη(x)) =
∫

G(y′(x)+ εη
′(x),y(x)+ εη(x),x)dx

We apply Taylor expansion to functional H(y(x)+ εη(x)), we can obtain the following equation:

H(y(x)+ εη(x)) =
∫ [

G(y′(x),y(x),x)+ ε
∂G
∂y′

η
′(x)+ ε

∂G
∂y

η(x)+O(ε)

]
dx

=H(y(x))+ ε

∫ [
∂G
∂y

η(x)+
∂G
∂y′

η
′(x)
]

dx+O(ε)

(1)

As illustrated in Section 4.1.2, q(x) = p(y(x))y′(x) is the data distribution after passing through
activation function. We can easily get that for the inverse function y(x) of activation function, when
x approaches the lower bound (e.g. the initial activation function value approaches lower bound),
y(x) should approaches negative infinity; and when x approaches the upper bound (e.g. the initial
activation function value approaches upper bound), y(x) should approaches positive infinity. And
for the sake that εη(x) is a small perturbation applied to y(x), we can draw the conclusion that η(x)
must be 0 at the boundaries.

Utilizing the method of integration by parts and boundary condition towards Equation 1, we can
derive the following results:∫

∂G
∂y′

η
′(x)dx =

∫
∂G
∂y′

dη(x) = η(x)
∂G
∂y′

∣∣∣∣
x
−
∫

η(x)
d
dx

(
∂G
∂y′

)
dx =−

∫
η(x)

d
dx

(
∂G
∂y′

)
dx

Thus, H(y(x)+ εη(x)) has the following expression:

H(y(x)+ εη(x)) =H(y(x))+ ε

∫ [
∂G
∂y

− d
dx

(
∂G
∂y′

)]
η(x)dx+O(ε)

In analogy to the extremum of ordinary functions, it is expected that the first-order term should be 0
at the extremum point. Such requirement for arbitrary η(x) leads to the Euler-Lagrange equation:

d
dx

(
∂G
∂y′

)− ∂G
∂y

= 0 (2)

Proposition 1. If G is independent of x, i.e. G=G(y,y′), based on the Euler-Lagrange equation
expressed in Equation 2, then we have:

G− y′
∂G
∂y′

=C (3)

Detailed proof of Proposition 1 can be seen in Appendix A.

Substitute G=−p(y(x))y′(x) log(p(y(x))y′(x)) into Equation 3 and perform the calculation, the final
result is:

dy
dx

p(y(x)) =C

Integrating both sides of the equation simultaneously, the final solution is:

x = c1

∫
p(y)dy+ c2 (4)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Based on the solution we get in Equation 4, for the sake that y(x) is the inverse function of the
activation function, the first integral equation can finally be solved to obtain the form of the activation
function as:

f (x) =C1

∫ x

−∞

p(t)dt +C2, (5)

where C1 and C2 are two constants based on the upper bound and lower bound of activation function.

Equation 5 shows the analytical form of the worst activation function with boundary condition. We
provide further discussion on this form in Appendix B. Through the above derivation, extremum of
the functional is determined. Furthermore, we would like to deduce whether it is a maximum value
or a minimum one. Applying Legendre condition to the functional extremum, then we have:

Gy′y′ =− p(y(x))
y′

⩽ 0

Therefore, the derived extremum is a maximum extremum, and is a global maximum extremum
actually, meaning the deduced activation function has the worst performance. Actually, the WAFBC
possesses some intriguing properties, for example, it inherently has upper and lower bounds, which
can explain why bounded activation functions like Sigmoid and Tanh do not perform as well as
unbounded functions like ReLU.

4.3 ENTROPY-BASED ACTIVATION FUNCTION OPTIMIZATION (EAFO)

In Section 4.2, we have derived the extremum of the functional, showing the analytical form in
Equation 5. However, the solution obtained is the global maximum, rather than the minimum.
The minimum of the functional is needed if we would like to obtain the best activation function.
Nonetheless, based on calculation, the actual situation is that this functional only has a global
maximum but no global minimum exists. Hence, there is no best activation function, but only
better activation functions. In this scenario, WAFBC represents a global maximum of the functional,
indicating that the performance of activation functions consistently improves from WAFBC to any
alternative activation functions. Therefore, we propose the following question: Is there a methodology
to begin with an existing, high-performing activation function, and subsequently develop an activation
function with superior performance?

Let’s reconsider the Taylor expansion of the functional

H(y(x)+ εη(x)) =H(y(x))+ ε

∫ [
∂G
∂y

− d
dx

(
∂G
∂y′

)]
η(x)dx+O(ε)

To minimize the information entropy of novel activation function, it is advisable to reduce the first-
order term of Taylor expansion. In order to ensure that the information entropy of novel activation
function has been indeed reduced, we would like to set η(x) as the opposite sign to ∂G

∂y − d
dx

(
∂G
∂y′

)
,

which means we set:

η(x) =−
(

∂G
∂y

− d
dx

(
∂G
∂y′

))
(6)

Substitute the analytical form of functional G(y′(x),y(x)) into Equation 6, perform the calculation,
we can derive the following equation:

η(x) =−
(

p(y(x))
y′′(x)
y′(x)

+ p′(y(x))y′(x)
)
, (7)

where p(x) is the probability density function (PDF) of data distribution before passing through the
activation function; p′(x) is the first order derivative of PDF; y(x) is inverse function of the activation
function; y′(x) is the first order derivative of y(x); y′′(x) is the second order derivative of y(x).

As a result, we have derived a correction term that is capable of decreasing information entropy,
expressing its general form in Equation 7. Subsequently, we can obtain the inverse function of
the optimized activation function, denoted as g(x) = y(x)+η(x). Finally, the optimized activation
function can be obtained by deriving the inverse function of g(x).

EAFO methodology outline . In summary, we express the theoretical EAFO methodology as follows:
1) Utilize Equation 7 and derive correction term η(x) given data distribution p(y) and inverse function

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

of activation function y(x). 2) Sum the correction term with the inverse function to obtain the inverse
function of the optimized function, i.e. g(x) = y(x)+η(x) . 3) Derive the rigorous or approximate
inverse function of g(x), yielding the optimized activation function.

Furthermore, EAFO methodology has also shown the potential of dynamically optimizing activation
during iterative training. We are acknowledged that activation of neural networks with Multi-Layer
Perceptrons (MLPs) architecture is typically fixed. Recent studies, such as work done by Liu
et al. (2024), have suggested the optimization of activation in innovative network architectures
(Kolmogorov-Arnold Networks). Furthermore, across true data distributions p(y), utilizing EAFO
methodology, we may continuously optimize activation y(x) practically under Multi-Layer Percep-
trons (MLPs) architecture with numerical methods. Moreover, in theory, it is feasible to optimize
activation functions using methods such as gradient descent optimization of the information entropy
functional through numerical methods; however, we are also aware that this would result in an
explosion of computational complexity in large neural networks, which calls for practically efficient
algorithms. Hence, the EAFO methodology is still in the theoretical stage presently, providing
guidance for calculating the analytical form of better activation functions.

4.4 CORRECTION REGULARIZED RELU (CRRELU) : FROM RELU TO BETTER

As illustrated in Section 4.2, it is theoretically true that the worst activation function exists, and we
can determine its exact form. Actually, beginning with the worst activation function, the value of
the functional G consistently decreases, indicating an improvement in the performance of activation
function. This reveals the feasibility of searching an improved activation function, which constitutes
the crux of "optimization". In Section 4.3, EAFO is proposed as the optimization methodology.
Hence, we can easily think of optimizing from WAFBC to get a better-performing activation function.
While it is true that such an idea is feasible, we also observe that WAFBC itself takes the form of a
variable upper bound integral, which yields a complex form of η(x) and renders the deduced result
not practically significant. Moreover, commencing optimization from WAFBC also leads to sluggish
advancement. Therefore, in practical applications, we are inclined to start from an activation function
that already demonstrates relatively good performance.

Here, we would like to take ReLU (Hahnloser et al., 2000; Jarrett et al., 2009; Nair & Hinton, 2010) as
the beginning, and show the process of finding a better activation function. Before the deduction, we
also notice that ReLU is lack of an inverse function over the entire domain. In this section, we would
like to utilize following strategies for mitigating the aforementioned dilemma: the initial activation
function only necessitates an inverse function in specific regions where it is required; and when
encountering parts without an inverse function, we may employ practical approximations. Therefore,
we initially examine the region where x is positive in the case of ReLU. As shown in Equation 7, the
derivation of correction term η(x) only requires original distribution p(y) and inverse function of
the activation function y(x). Knowledge of activation function is easily available, whereas original
distribution remains unexplored. However, in real experiments, original distribution of experimental
data would surely exhibit a substantial degree of morphological variability, thus lacking a perfect
analytical form. Hence, we assume the situation is that networks are large enough, according to the
Central Limit Theorem, the data processed by them can be approximated as a Gaussian distribution
(Williams, 1996; Lee et al., 2018; Park et al., 2020; Gao et al., 2023)(Huang et al., 2021). Certainly,
such assumption may not always hold in networks of real experiments; nevertheless, approximation
of the exact solution for inverse function and existence of the learnable parameter ε have significantly
mitigated the impact of such assumption, which can also be demonstrated by the insensitivity of
CRReLU to data distribution shown in Section 5.

Now, let’s consider the derivation from ReLU to CRReLU. For the sake of concise representation, we
rewrite the data distribution and the derivative of data distribution as:

p(y) =C · e−
y2
2 , p′(y) =−C · ye−

y2
2

Furthermore, ReLU has a mathematical function defined as y = x when x is positive, meaning we
have y(x) = x , y′(x) = 1 and y′′(x) = 0. Therefore,

p′(y(x)) = p′(x) =−C · ye−
y2
2 =−C · xe−

x2
2

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Ultimately, by incorporating p′(y) =−C · xe−
x2
2 , y′(x) = 1 and y′′(x) = 0 into Equation 7, we can

obtain:
η(x) =−C · xe−

x2
2

Furthermore, we make constant C as a learnable parameter ε with the purpose of enabling self-
optimization in networks. According to EAFO methodology, we can get the inverse function of
revised activation function as follows:

g(x) = x− εxe−
x2
2 x ⩾ 0 (8)

Finally, the optimized activation function CRReLU can be obtained by deriving the inverse function of
g(x). However, obtaining the inverse function of Equation 8 presents a challenge using conventional
methods; as a consequence, we use the following function as a form of practical approximation.

f (x) = x+ εxe−
x2
2 x ⩾ 0 (9)

We show the rationalization and reliability of utilizing Equation 9 as the approximate inverse function
of Equation 8 in Proposition 2

Proposition 2. Known g(x) = x− εxe−
x2
2 , f (x) = x+ εxe−

x2
2 , for x ⩾ 0 , the absolute value of error

between g(f (x)) and x is bounded with
∣∣∣e−1ε2 +0.5e−

3
2 ε3
∣∣∣.

Detailed proof of Proposition 2 can be seen in Appendix C.

As illustrated in Section 4.2, εη(x) is the small perturbation; hence, from a theoretical perspective,
we can set εη(x) as an infinitesimal. Furthermore, in this case, given the knowledge that η(x) is a
bounded function, we can easily deduce that ε is also an infinitesimal. Therefore, the absolute value
of error between g(f (x)) and x is an infinitesimal of higher order. In practice, we typically initialize
ε to a small value, such as 0.01 (as described in Section 5), implying that the absolute value of error
is a small value.

Finally, let’s consider the part where x is negative. When x is negative, the inverse function of ReLU
can be visualized as a ray emanating from the origin and extending to infinity, possessing an infinite
slope; and when x is positive, it constitutes a ray with the slope of 1. Hence, the correction term
solution for both positive and negative values of x can be considered identical, differing only by
constant C. In Equation 9 and Proposition 2, it is shown that incorporating the correction term into a
linear activation function can have beneficial effects by reducing the information entropy. Therefore,
we can obtain the full form of Correction Regularized ReLU as:

f (x) = max(0,x)+ εxe−
x2
2 (10)

Discussion on introduced learnable parameter ε . In Section 4.2, we have successfully demonstrated
existence of the worst activation function, and from the worst as a starting point, it always moves
towards improvement, regardless of the direction taken. However, commencing from a specific
activation function, like ReLU here, does not invariably result in improvement across all directions,
i.e. certain optimization paths may lead to deteriorated outcomes. Therefore, from the practical
perspective, we introduce learnable parameter ε with the aim of enabling self-optimization of
networks. From another perspective, in the derivation from ReLU to CRReLU, we assume that data
follows Gaussian distribution, which might not be true in real experiments. Existence of the learnable
parameter ε also weakens this assumption to some extent.

Finally, we provide further details of CRReLU in Appendix D, including python-like pseudocode of
CRReLU in Appendix D.1, and further discussion on properties of CRReLU in Appendix D.2.

5 EXPERIMENTS

Datasets. In experiments of image classification task, we adopt three datasets, ordered as CIFAR-10
(Krizhevsky et al., 2009), CIFAR-100 (Krizhevsky et al., 2009) and ImageNet-1K (Deng et al., 2009)

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Test accuracy of experiments conducted on CIFAR-10 for 100 epochs with error bar.

Top-one Accuracy GELU ELU PReLU CELU SiLU Mish CRReLU
(ours)

CIFAR-10 ViT-Tiny 70.4±0.2 66.4±0.5 78.0±0.6 66.5± 0.6 68.6±0.3 68.7±0.3 80.7±0.3
CIFAR-10 DeiT-Tiny 72.4±0.7 67.6±0.6 75.4±0.1 67.7±0.8 69.9±0.5 70.2±0.6 77.0±0.3
CIFAR-10 TNT-Small 73.7±0.5 69.5±0.6 75.8±0.3 68.7±0.2 71.1±0.7 71.6±0.8 76.9±0.5

Table 2: Test accuracy of experiments conducted on CIFAR-100 for 100 epochs with error bar.

Top-one Accuracy GELU ELU PReLU CELU SiLU Mish CRReLU
(ours)

CIFAR-100 ViT-Tiny 32.6±0.8 28.9±0.1 43.2±1.0 28.9±0.2 31.2±0.6 30.6±0.8 46.6±0.6
CIFAR-100 DeiT-Tiny 46.6±0.9 40.5±0.5 50.0±0.5 40.5±0.5 43.5±0.6 43.8±1.0 50.7±0.1
CIFAR-100 TNT-Small 47.5±0.8 43.6±0.3 49.0±0.7 43.0±0.5 45.0±0.9 45.5±0.8 50.9±0.4

in terms of the number of classification categories. In experiments of large language model (LLM)
fine-tuning task, we employ two human preference datasets: SHP (Ethayarajh et al., 2022) and HH
(Bai et al., 2022).

Baselines. We conduct experiments comparing the performance of CRReLU with several typical
existing corrections of ReLU as illustrated in Section 2 and Section 3 : PReLU (He et al., 2015), ELU
(Clevert et al., 2016), CELU (Barron, 2017), GELU (Hendrycks & Gimpel, 2023), Swish (SiLU)
(Ramachandran et al., 2017) and Mish (Misra, 2020).

Experimental hyperparameters. For all transformer-based architectures, we directly set ε to 0.01
without further optimization. Detailed experimental hyperparameters are provided in Appendix E.

5.1 TASK OF IMAGE CLASSIFICATION

We conduct all experiments within CIFAR10 and CIFAR100 on 4×RTX3090 and those within
ImageNet1K on 4×NVIDIA L20 for 100 epochs using the AdamW optimizer with weight decay of
0.05, truncated normal initialization, gradient clipping norm of 1.0, cross entropy loss function, and
cosine annealing learning rate scheduler with linear warm-up. All experiments are conducted three
runs, we report the mean and standard derivation.

Experiments of ViTs on CIFAR-10 and CIFAR-100. Vision Transformer and its variants possess
sufficiently complex structure and representational capability, garnering widespread attention from
the community. Moreover, the assumption of Gaussian distribution has been theoretically proved as
reasonable for sufficiently large MLPs (Williams, 1996; Lee et al., 2018; Park et al., 2020; Gao et al.,
2023) and CNNs (Huang et al., 2021); however, the distribution of data under attention mechanism
of transformers remains unexplored. Hence, we select vision transformer and its variants as our
test model in order to further investigate the insensitivity of CRReLU to data distribution. Phase
of experiments on CIFAR-10 and CIFAR-100 involves the selection of Vision Transformer (ViT)
(Dosovitskiy et al., 2020), Data-Efficient Image Transformer (DeiT) (Touvron et al., 2021) and
Transformer in Transformer (TNT) (Han et al., 2021). We report the top-one accuracy on CIFAR-10
in Table 1 and CIFAR-100 in Table 2, demonstrating CRReLU outperforms other existing corrections
of ReLU on CIFAR dataset.

Experiments of ViTs on ImageNet-1K. ImageNet-1K dataset poses a significant challenge to
information processing capability of neural networks due to its large image size and extensive range
of classification categories. Hence, phase of experiments on ImageNet-1K involves the selection of
Vision Transformer (ViT) (Dosovitskiy et al., 2020) and Data-Efficient Image Transformer (DeiT)
(Touvron et al., 2021). We report the top-one accuracy on ImageNet-1K in Table 3.

Experiments on ViT clearly demonstrate superiority of CRReLU over other activation functions, and
those on DieT, GELU shows 0.4% higher accuracy compared to CRReLU. Such result is attributed to
the teacher-student strategy structure of DieT model. We utilize the fine-tuned "deit-tiny-patch16-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 3: Test accuracy of experiments conducted on ImageNet-1K for 100 epochs with error bar.

Top-one Accuracy GELU ELU PReLU CELU SiLU Mish CRReLU
(ours)

ImageNet-1K ViT-Tiny 53.9±0.3 37.2±0.6 56.8±0.3 37.6±0.5 46.1±0.7 46.9±1.1 57.5±0.4
ImageNet-1K DeiT-Tiny 61.7±0.4 49.1±0.7 60.8±0.4 48.9±0.8 58.5±0.7 58.9±0.3 61.6±0.2

224" model as teacher model, which is trained with GELU. As explained in the work (Abnar et al.,
2020), through distillation, transformers will inherit inductive bias. Hence, training a student model
with GELU on ImageNet-1K with the help of teacher model, which has already been pre-trained on
ImageNet-1K with GELU, is certain to achieve better results than other activation functions.

5.2 TASK OF LARGE LANGUAGE MODEL (LLM) FINE-TUNING

In order to further validate the effectiveness of CRReLU on larger networks and generalization to a
richer range of applications, we further perform supplementary experiments on LLM fine-tuning task.
We employ the Direct Preference Optimization (DPO) (Rafailov et al., 2023) method to fine-tune
GPT-2 (Radford et al., 2019) on Stanford Human Preferences (SHP) dataset (Ethayarajh et al., 2022)
and Anthropic HH dataset (Bai et al., 2022). The parameter number of GPT-2 is 137 M, a relatively
modest magnitude, hence we conduct full fine-tuning instead of LoRA-based one on 2×RTX3090.
Firstly, we carry out supervised fine-tuning (SFT) with the purpose of mitigating distribution shift
between the true reference distribution which is unavailable, and the reference policy utilized by
DPO. Subsequently, we separately set the penalty coefficient β as 0.1, 1, 2, and 5, in order to
compare the performance of CRReLU and GELU under different penalty coefficients, and then
execute DPO. We conduct three runs, reporting mean and standard deviation of evaluation metrics
across the fine-tuning process in Table 4, which demonstrates that CRReLU generally outperforms
GELU in LLM fine-tuning task.

Table 4: Metrics comparison between CRReLU and GELU in the task of LLM fine-tuning with error
bar.

Evaluation Metrics Evaluation Margin Reward↑ Evaluation Accuracy↑ Evaluation Loss↓

β = 0.1
CRReLU 0.1428±0.0002 0.6209±0.0001 0.6476±0.0000

GELU 0.1420±0.0003 0.6197±0.0001 0.6480±0.0000

β = 1
CRReLU 0.4627±0.0007 0.5757±0.0001 0.9202±0.0002

GELU 0.4560±0.0006 0.5729±0.0003 0.9387±0.0008

β = 2
CRReLU 0.7757±0.0021 0.5631±0.0003 1.4610±0.0008

GELU 0.7178±0.0015 0.5606±0.0001 1.4814±0.0005

β = 5
CRReLU 1.8473±0.0032 0.5635±0.0002 3.2677±0.0006

GELU 1.6538±0.0069 0.5568±0.0003 3.3034±0.0021

6 DISCUSSION

Pursuit of better activation functions has been a longstanding and fundamental topic in the realm of
machine learning. However, prior research has consistently concentrated on empirical search, without
an emphasis on understanding the underlying mathematical mechanisms. This work aims to offer a
proper solution to such issue. Our investigation into the relationship between activation functions
and information theory concepts reveals that information entropy can be represented as a functional.
Existence of the worst activation function with boundary condition (WAFBC) furnishes a solid
theoretical basis for exploring better activation functions. In the process of solving WAFBC, we draw
inspiration from the Taylor expansion form, leading us to propose Entropy-based Activation Function
Optimization (EAFO) methodology. EAFO methodology presents a novel perspective for designing
static activation functions in deep neural networks and shows the potential of dynamically optimizing

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

activation during iterative training. Utilizing EAFO methodology, we derive a novel activation
function from ReLU, called Correction Regularized ReLU (CRReLU). Experiments involving image
classification task and large language model (LLM) fine-tuning task demonstrate that CRReLU is
comparable to or surpasses existing corrections of ReLU. Overall, the EAFO methodology provides
numerous promising avenues for future research on activation functions, and the CRReLU introduces
a novel addition to the set of high-performing activation functions.

Limitations and Future Work. Our findings raise several important questions for future work.
Firstly, how can EAFO framework be systematically generalized to non-invertible activation func-
tions? In the initial setting of EAFO methodology, the choice of activation function is restricted to
those with invertible counterparts. Despite ReLU being a prominent example of activation function
without an inverse, we derive CRReLU utilizing EAFO; however, the derivation also partly benefits
from the simplicity of ReLU’s form and several heuristic approaches. Secondly, how to effectively
implement activation function iteration optimization during neural network training? Notwithstanding
the demonstrated feasibility of iterative activation function optimization during neural network train-
ing, it is currently hindered by the high computational complexity, particularly in large-scale neural
networks. Applicability of the EAFO methodology to optimize activation in alternative network
structures, such as Kolmogorov-Arnold Networks (KANs), also deserves further in-depth research.
Therefore, the development of practical and efficient algorithms is an exciting direction for future
work. Moreover, although previous work has theoretically established the reasonability of Gaussian
distribution assumptions for MLP and CNN, and we have empirically demonstrated superiority of
CRReLU in modern architectures like transformers, the theoretical robustness under a broader range
of distributions is still worthy of further research. Finally, while we have empirically validated
the exceptional performance of CRReLU on image classification task and large language model
fine-tuning task, its performance on other tasks remains to be explored, thereby warranting further
investigation.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Samira Abnar, Mostafa Dehghani, and Willem Zuidema. Transferring inductive biases through
knowledge distillation, 2020.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, Nicholas Joseph, Saurav Kadavath, Jackson
Kernion, Tom Conerly, Sheer El-Showk, Nelson Elhage, Zac Hatfield-Dodds, Danny Hernandez,
Tristan Hume, Scott Johnston, Shauna Kravec, Liane Lovitt, Neel Nanda, Catherine Olsson, Dario
Amodei, Tom Brown, Jack Clark, Sam McCandlish, Chris Olah, Ben Mann, and Jared Kaplan.
Training a helpful and harmless assistant with reinforcement learning from human feedback, 2022.

Jonathan T. Barron. Continuously differentiable exponential linear units, 2017.

Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with gradient descent is
difficult. IEEE Transactions on Neural Networks, 5(2):157–166, 1994.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network
learning by exponential linear units (elus), 2016.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hier-
archical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition,
pp. 248–255, 2009.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding, 2019.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Kawin Ethayarajh, Yejin Choi, and Swabha Swayamdipta. Understanding dataset difficulty with
V-usable information, 2022.

Tianxiang Gao, Xiaokai Huo, Hailiang Liu, and Hongyang Gao. Wide neural networks as gaussian
processes: Lessons from deep equilibrium models, 2023.

Richard Hahnloser, Rahul Sarpeshkar, Misha Mahowald, Rodney Douglas, and H. Seung. Digital
selection and analogue amplification coexist in a cortex-inspired silicon circuit. Nature, 405:
947–51, 07 2000.

Kai Han, An Xiao, Enhua Wu, Jianyuan Guo, Chunjing Xu, and Yunhe Wang. Transformer in
transformer, 2021.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification, 2015.

Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. Eurosat: A novel dataset
and deep learning benchmark for land use and land cover classification. IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing, 12(7):2217–2226, 2019.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus), 2023.

Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural Networks, 4:
251–257, 1991.

Zhongzhan Huang, Wenqi Shao, Xinjiang Wang, Liang Lin, and Ping Luo. Convolution-weight-
distribution assumption: Rethinking the criteria of channel pruning, 2021.

Thibaut Lavril etal. Hugo Touvron. Llama: Open and efficient foundation language models, 2023.

Kevin Jarrett, Koray Kavukcuoglu, Marc’Aurelio Ranzato, and Yann LeCun. What is the best
multi-stage architecture for object recognition? In 2009 IEEE 12th International Conference on
Computer Vision, pp. 2146–2153, 2009.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Grigory Khromov and Sidak Pal Singh. Some fundamental aspects about lipschitz continuity of
neural networks. In The Twelfth International Conference on Learning Representations, 2024.
URL https://openreview.net/forum?id=5jWsW08zUh.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

H. Larochelle, Yoshua Bengio, Jérôme Louradour, and Pascal Lamblin. Exploring strategies for
training deep neural networks. J. Mach. Learn. Res., 10:1–40, 2009.

Jaehoon Lee, Yasaman Bahri, Roman Novak, Samuel S. Schoenholz, Jeffrey Pennington, and Jascha
Sohl-Dickstein. Deep neural networks as gaussian processes, 2018.

Minhyeok Lee. Gelu activation function in deep learning: A comprehensive mathematical analysis
and performance, 2023.

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie.
A convnet for the 2020s. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 11976–11986, 2022.

Ziming Liu, Yixuan Wang, Sachin Vaidya, Fabian Ruehle, James Halverson, Marin Soljačić,
Thomas Y. Hou, and Max Tegmark. Kan: Kolmogorov-arnold networks, 2024.

Andrew L. Maas. Rectifier nonlinearities improve neural network acoustic models. 2013.

Diganta Misra. Mish: A self regularized non-monotonic activation function. In British Machine
Vision Conference, 2020.

Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted boltzmann machines. In
International Conference on Machine Learning, 2010.

OpenAI. Gpt-4 technical report, 2023.

Chenbin Pan, Burhaneddin Yaman, Tommaso Nesti, Abhirup Mallik, Alessandro G Allievi, Senem
Velipasalar, and Liu Ren. Vlp: Vision language planning for autonomous driving, 2024.

Daniel S. Park, Jaehoon Lee, Daiyi Peng, Yuan Cao, and Jascha Sohl-Dickstein. Towards nngp-guided
neural architecture search, 2020.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model, 2023.

Prajit Ramachandran, Barret Zoph, and Quoc V. Le. Searching for activation functions, 2017.

Jorge M Santos, Luis A Alexandre, and J Marques de Sá. The error entropy minimization algorithm
for neural network classification. In int. conf. on recent advances in soft computing, pp. 92–97,
2004.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms, 2017.

Luis M Silva, Joaquim Marques de Sá, and Luis A Alexandre. Neural network classification using
shannon’s entropy. In Esann, pp. 217–222, 2005.

Gemma Team. Gemma: Open models based on gemini research and technology, 2024.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
Herve Jegou. Training data-efficient image transformers & amp; distillation through attention. In
International Conference on Machine Learning, volume 139, pp. 10347–10357, July 2021.

Christopher K. I. Williams. Computing with infinite networks. In Neural Information Processing
Systems, 1996.

12

https://openreview.net/forum?id=5jWsW08zUh

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Aolin Xu and Maxim Raginsky. Information-theoretic analysis of generalization capability of learning
algorithms. Advances in neural information processing systems, 30, 2017.

Jirong Yi, Qiaosheng Zhang, Zhen Chen, Qiao Liu, and Wei Shao. Mutual information learned
classifiers: An information-theoretic viewpoint of training deep learning classification systems.
arXiv preprint arXiv:2209.10058, 2022.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A PROOF OF PROPOSITION 1

Proof. From Equation 2, we know that:

d
dx

(
∂G
∂y′

)− ∂G
∂y

= 0

Considering the total differential of G:

dG
dx

(
y′,y,x

)
=

∂G
∂x

· dx
dx

+
∂G
∂y

· dy
dx

+
∂G
∂y′

· dy′

dx
=

∂G
∂x

+
∂G
∂y

· y′+ ∂G
∂y′

· y′′

Thus, we have:

d
dx

(
y′

∂G
∂y′

)
= y′′

∂G
∂y′

+ y′
d
dx

(
∂G
∂y′

)
=

dG
dx

(
y′,y,x

)
− ∂G

∂y
· y′− ∂G

∂x
+ y′

d
dx

(
∂G
∂y′

)
=

d
dx

G
(
y′,y,x

)
− ∂G

∂x
− y′ ·

(
∂G
∂y

− d
dx

(
∂G
∂y′

))
=

d
dx

G
(
y′,y,x

)
− ∂G

∂x

Therefore, we know that
∂G
∂x

− d
dx

(
G− y′

∂G
∂y′

)
= 0

For the sake that G is independent of x, then we have that ∂G
∂x = 0. Hence,

d
dx

(
G− y′

∂G
∂y′

)
= 0

Finally, we can draw the conclusion that:

G− y′
∂G
∂y′

=C,

which completes the proof.

B FURTHER DISCUSSION ON WAFBC

Let’s take several typical boundary conditions into consideration. Firstly, setting f (x) approaches 1,
when x tends to positive infinity; and f (x) approaches 0, when x tends to negative infinity. Therefore,
the solution takes the form of cumulative distribution function (CDF), which can be expresses as:

f (x) =
∫ x

−∞

p(t)dt

Similarly, if fixing the difference between the upper and lower bounds of the activation function to be
e, and making the activation function symmetric about the origin, the form can be written as:

f (x) = e
∫ x

0
p(t)dt

Furthermore, in the event that the input data distribution is assumed to be approximately uniformly
distributed, the worst activation function can be approximated as a linear function. Were it to
approximate the input data distribution as a normal distribution, then the form of the worst activation
function would be closer to Sigmoid and Tanh. We show the comparison of function curves in Figure
1 and Figure 2.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

4 2 0 2 4
x value

0.0

0.2

0.4

0.6

0.8

1.0

Fu
nc

tio
n

va
lu

e

Comparison between Sigmoid and Standard Normal CDF
Standard Normal CDF
Sigmoid

Figure 1: Comparison between Sigmoid and standard normal CDF

4 2 0 2 4
x value

1.0

0.5

0.0

0.5

1.0

Fu
nc

tio
n

va
lu

e

Comparison between Tanh and Standard Normal CDF multiplied by e
Standard Normal CDF multiplied by e
Tanh

Figure 2: Comparison between Tanh and Standard Normal CDF multiplied by e (has been transformed
to achieve symmetry about origin)

C PROOF OF PROPOSITION 2

Before the proof of Proposition 2, we would like to show four facts without proof.

Fact 1. f (x) = xe−
x2
2 is a bounded function, and range of the function is [−e−

1
2 ,e−

1
2].

Fact 2. f (x) = x2e−x2
is a bounded function, and range of the function is [0,e−1].

Fact 3. f (x) = x3e−
3
2 x2

is a bounded function, and range of the function is [−e−
3
2 ,e−

3
2].

Fact 4. ∀x ∈R, 1− e−x − x ⩽ 0.

We now commence the proof of Proposition 2.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Proof. Substituting the analytic expression into the formula and performing algebraic simplifications,
we can obtain:

g(f (x)) = g
(

x+ εxe−
x2
2

)
= x+ εxe−

x2
2 − ε

(
x+ εxe−

x2
2

)
e
− 1

2

(
x+εxe−

x2
2

)2

= x+ εx

e−
x2
2 − e

− 1
2

(
x+εxe−

x2
2

)2− ε
2xe−

x2
2 e

− 1
2

(
x+εxe−

x2
2

)2

= x+ εxe−
x2
2

1− e
− 1

2

(
2εxe−

x2
2 +ε2x2e−x2

)− ε
2xe−

x2
2 e

− 1
2

(
x+εxe−

x2
2

)2

Thus,

|g(f (x))− x|=

∣∣∣∣∣∣∣εxe−
x2
2

1− e
− 1

2

(
2εxe−

x2
2 +ε2x2e−x2

)− ε
2xe−

x2
2 e

− 1
2

(
x+εxe−

x2
2

)2 ∣∣∣∣∣∣∣
⩽

∣∣∣∣∣∣∣εxe−
x2
2

1− e
− 1

2

(
2εxe−

x2
2 +ε2x2e−x2

)
∣∣∣∣∣∣∣

⩽

∣∣∣∣∣∣εxe−
x2
2

−2εxe−
x2
2 + ε2x2e−x2

2

∣∣∣∣∣∣
=

∣∣∣∣εxe−
x2
2

(
−εxe−

x2
2 − 1

2
ε

2x2e−x2
)∣∣∣∣= ∣∣∣∣ε2x2e−x2

+
1
2

ε
3x3e−

3
2 x2
∣∣∣∣

⩽
∣∣∣e−1

ε
2 +0.5e−

3
2 ε

3
∣∣∣

The first inequality is established owing to Fact 1 and the fact that when x is positive, the second term
of absolute value must be positive. The second inequality is established owing to Fact 4. The third
inequality is established owing to Fact 2 and Fact 3. Hence, we can draw the conclusion that the
absolute value of error between g(f (x)) and x is bounded with

∣∣∣e−1ε2 +0.5e−
3
2 ε3
∣∣∣, which completes

the proof.

D FURTHER DETAILS OF CRRELU

D.1 CORRECTION REGULARIZED RELU (CRRELU) PSEUDOCODE

Algorithm 1: Correction Regularized ReLU (CRReLU) Pseudocode

import torch
import torch.nn as nn
import torch.nn.functional as F

class CRReLU(nn.Module):
def __init__(self,lr=0.01):

super(CRReLU,self).__init__()
self.lr = nn.Parameter(torch.tensor(lr))

def forward(self,x):
return F.relu(x)+self.lr*x*torch.exp(-x**2/2)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

D.2 FURTHER DISCUSSION ON PROPERTIES OF CRRELU

We show the function curves with different ε values for CRReLU in Figure 3. As depicted in
the figure, existence of the correction term in CRReLU brings several good properties. It allows
propagation of gradient when input is less than zero, serving to alleviate the dying ReLU phenomenon
to a certain degree; simultaneously, as x approaches negative infinity, CRReLU also converges to 0,
thereby guaranteeing sparsity of models in the negative part.

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x value

0.0

0.5

1.0

1.5

2.0

Fu
nc

tio
n

va
lu

e

CRReLU with different value
=0.1
=0.3
=0.5

Figure 3: CRReLU with different ε value

E DETAILS OF EXPERIMENTAL SETTINGS

E.1 TASK OF IMAGE CLASSIFICATION

Table 5: Experimental settings of ViT, DeiT and TNT on CIFAR-10 and CIFAR-100 datasets
Image Size 32 × 32

Patch Size 4

Embedding Dim 192 for ViT-Tiny and DeiT-Tiny ; 384 for TNT-small

Optimizer AdamW with weight decay = 0.05

Learning Rate
Cosine Annealing Learning Rate Scheduler

Initial lr = 2.5×10−4 ; lr drop = -1 ; min lr = 1 ×10−5

Warm up warmup epochs = 20 ; warmup learning rate = 1×10−6

Gradient Clipping 1.0

Training Epochs 100

Batch Size 256

Loss Function CrossEntropy Loss

Normalization Layer Norm

Data Augmentation True (provided by timm)

Drop Out and Drop Path False

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 6: Experimental settings of ViT and DeiT on ImageNet-1K dataset
Image Size 224 × 224

Patch Size 16

Embedding Dim 192

Optimizer AdamW with weight decay = 0.05

Learning Rate
Cosine Annealing Learning Rate Scheduler

Initial lr = 2.5×10−4 ; lr drop = -1 ; min lr = 1 ×10−5

Warm up warmup epochs = 20 ; warmup learning rate = 1×10−6

Gradient Clipping 1.0

Training Epochs 100

Batch Size 256

Loss Function CrossEntropy Loss

Normalization Layer Norm

Data Augmentation True (provided by timm)

Drop Out and Drop Path False

Table 7: We record changes in parameter number when employing various activation functions.
GELU, ELU, CELU, SiLU (Swish), and Mish are considered activation functions without learnable
parameter (AFs without LP), while PReLU and CRReLU are considered activation functions with
learnable parameter (AFs with LP). The results demonstrate that increase in parameter number
introduced by the learnable parameter is negligible.

Parameter Number CIFAR-10 CIFAR-100 ImageNet-1K

ViT-Tiny AFs without LP 5399818 5417188 5754472
AFs with LP 5399830 5417200 5754484

DeiT-Tiny AFs without LP 5365076 5399816 5910800
AFs with LP 5365088 5399828 5910812

TNT-Small AFs without LP 21525298 21559948 /
AFs with LP 21525322 21559972 /

E.2 TASK OF LARGE LANGUAGE MODEL (LLM) FINE-TUNING

Table 8: Experimental settings of GPT2 fine-tuning task
Batch Size 32

Optimizer RMSprop (More Memory-Efficient)

Learning Rate 5×10−7 with linear warmup steps of 150

Trainer FSDPTrainer (2 GPUs)

Max Gradient Norm 10.0

Max Length for an Input (Prompt + Response) 512

Max Length for Prompt 256

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

F ADDITIONAL SUPPORTIVE EXPERIMENTS

In response to reviewers’ precious feedback, we conduct additional supportive experiments to address
their concerns. These experiments mainly focus on the following aspects: additional architecture
(Appendix F.1), additional dataset (Appendix F.2), additional ε initialization (Appendix F.3), entropy
calculation after activation (Appendix F.4) and mixed activation function (Appendix F.5).

F.1 ADDITIONAL ARCHITECTURE

In this section, we aim to enhance the evaluation of CRReLU’s generalization to network architec-
ture. We choose to validate the performance on CIFAR10, CIFAR100, and ImageNet1K with the
ConvNeXt-tiny (Liu et al., 2022). For all the experiments, we conduct three runs, and we report the
mean and standard deviation in Table 9. Experiments within CIFAR10 and CIFAR100 are conducted
on 4×RTX3090 and those within ImageNet1K are conducted on 4×NVIDIA L20.

Table 9: Test accuracy of experiments conducted on ConvNeXt-tiny for 100 epochs with error bar.

Top-one Accuracy GELU ELU PReLU CELU SiLU Mish CRReLU
(ours)

CIFAR10 ConvNeXt 64.9±0.4 59.8±0.5 64.6±1.4 59.8±0.5 60.6±0.2 61.4±0.4 70.6±1.1
CIFAR100 ConvNeXt 36.6±0.3 30.3±0.4 35.2±0.5 30.5±0.2 35.0±0.9 35.3±0.7 42.1±0.7

ImageNet1K ConvNeXt 72.9±0.3 71.7±0.5 72.9±0.5 71.8±0.9 72.3±0.7 72.8±0.6 73.2±0.2

F.2 ADDITIONAL DATASET

In this section, we endeavor to elucidate the performance of CRReLU on diverse datasets. We
conduct experiments on EuroSAT (Helber et al., 2019) with ConvNeXt-tiny (Liu et al., 2022). All
experiments are performed three times, we report the mean and standard deviation. We conduct this
part experiments on a single RTX3090 for 25 epochs using the AdamW optimizer, learning rate of
0.0001, cross entropy loss function, batch size of 256.

Table 10: Test accuracy of experiments conducted with ConvNeXt-tiny on the EuroSAT.

GELU ELU PReLU CELU SiLU Mish CRReLU
(ours)

83.09±1.06 81.21±0.37 81.33±0.94 81.12±0.27 81.85±1.01 82.23±0.08 83.26±0.52

F.3 ADDITIONAL ε INITIALIZATION

In this section, we focus on exploring the impact of different initial values of ε , as well as potential
instabilities or failure cases under different initialization schemes. We set ε to -0.5, -0.2, -0.1, -0.05,
-0.02, -0.01, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, and 10, conducting experiments with ViT-tiny on
CIFAR10 and CIFAR100. We conduct three runs on 4×RTX3090, reporting the mean and standard
derivation in Table 11.

Table 11: Test accuracy of experiments conducted with ViT for 100 epochs under different initializa-
tions.

ε 0.01 0.02 0.05 0.1 0.2 0.5 1 10

CIFAR10 80.7±0.4 80.1±0.1 79.7±0.3 79.6±0.2 78.1±0.7 74.1±1.0 68.7±0.3 60.3±0.4
CIFAR100 46.6±0.6 46.0±0.3 45.6±0.4 44.9±0.3 43.6±0.4 36.4±0.9 29.9±0.8 22.7±0.6

ε -0.01 -0.02 -0.05 -0.1 -0.2 -0.5

CIFAR10 80.1±0.4 80.0±0.3 80.1±0.2 80.6±0.1 80.5±0.3 80.4±0.1
CIFAR100 45.9±0.3 46.0±0.6 46.1±0.6 46.1±0.3 46.0±0.1 45.8±0.5

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Discussion: From the above experiments, we can see different initialization strategy does can have
an impact on the final result. When the initial values differ significantly from the values we derived
in Corollary G.1 (such as 0.5, 1, 10), we have observed that the performance of training will degrade
severely, especially at 1 and 10, where the training process becomes extremely unstable.

F.4 ENTROPY CALCULATION AFTER ACTIVATION

In this section, we focus on comparing the entropy post-training of neural networks trained with
CRReLU and GELU. We apply the post-trained ViT-Tiny with CRReLU and GELU on ImageNet1K.
By randomly selecting same ten batches of images from ImageNet1K, we compute the information
entropy after each of the 12 layers. We present the mean and standard deviation of these values in
Table 12.

Table 12: Entropy calculation after activation (GELU and CRReLU) on 12 layers of the trained ViT
on ImageNet1K.

Layer 1 2 3 4 5 6

CRReLU 7.594±0.007 7.598±0.003 7.599±0.003 7.595±0.003 7.592±0.003 7.584±0.004
GELU 7.536±0.046 7.541±0.019 7.561±0.011 7.573±0.006 7.580±0.005 7.583±0.004

Layer 7 8 9 10 11 12

CRReLU 7.572±0.005 7.557±0.005 7.540±0.005 7.523±0.007 7.498±0.008 7.461±0.008
GELU 7.585±0.004 7.585±0.004 7.583±0.004 7.580±0.004 7.577±0.004 7.560±0.004

Discussion: From the results presented above, it is evident that for GELU, the entropy after 12
layers of activation exhibits an overall increasing trend, whereas conversely, CRReLU demonstrates
a general declining trend. Furthermore, we have noted that the reduction in entropy for CRReLU
between layers 1 and 6 is not significant, whereas a marked decline is observed from layers 7 to 12.

F.5 MIXED ACTIVATION FUNCTION

In Appendix F.4, it is shown that reduction in entropy for CRReLU between layers 1 and 6 is not
significant. Hence, in this section, we focus on equipping different activation functions in the initial
six layers and subsequent six ones. We employ GELU for layers 1 to 6 and CRReLU for layers 7
to 12, denoting this as "6GELU+6CRReLU". We conduct three runs on CIFAR10, CIFAR100, and
ImageNet1K, presenting the mean and standard deviation of the results in Table 13. Experiments on
CIFAR10 and CIFAR100 are conducted on 4×RTX3090, and those on ImageNet1K are carried out
on 4×NVIDIA L20.

Table 13: Test accuracy of experiments conducted with ViT (12GELU, 6GELU+6CRReLU, 12CR-
ReLU) for 100 epochs.

12GELU 6GELU+6CRReLU 12CRReLU

CIFAR10 0.704±0.002 0.755±0.008 0.807±0.003
CIFAR100 0.326±0.008 0.399±0.004 0.466±0.006

ImageNet1K 0.539±0.003 0.512±0.001 0.575±0.004

Discussion: From the results, it appears that having only the last few layers equipped with CRReLU
is not as effective as utilizing CRReLU throughout the entire network. Especially the results on
ImageNet1K, 6GELU+6CRReLU is significantly and stably worsen to all GELU and all CRReLU,
which is quite surprising to us. We consider that this may be due to the fact that, while the reduction
in entropy is not significantly apparent in the earlier layers, CRReLU’s focus on achieving lower
entropy still facilitates superior feature extraction. It seems that when using GELU in the earlier
layers and CRReLU in the later layers, on small-scale datasets, it is still possible to benefit from the
CRReLU mechanism in the later layers (the features learned in the earlier layers are not good enough

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

yet); however, on large-scale datasets, the features learned in the earlier layers (those equipped with
GELU) might even have a negative effect.

G LIPSCHITZ CONTINUITY ANALYSIS

Lipschitz continuity constitutes a stronger form of continuity, which imposes an upper bound on the
rate of variation of a function. We would like to begin with the defination of Lipschitz-continuous
functions.
Definition G.1 (Lipschitz Continuous Function(Khromov & Singh, 2024)). For function f: Rd →
RK , defined on some domain dom(f) ⊆ Rd , is called C-Lipschitz continuous, C > 0, w.r.t. some
α-norm if, ∀ x,y ∈ dom(f): ∥ f (x)− f (y)∥α ≤C∥x− y∥α .

Generally speaking, we are interested in the smallest C that makes the above condition hold. This is
what we called the (true) Lipschitz constant of the function f . Lipschitz continuity of an activation
function is crucial for ensuring a well-behaved optimization landscape, thereby promoting efficient
convergence during training; furthermore, a Lipschitz constant closer to 1 indicates stronger Lipschitz
continuity. In the work (Lee, 2023), the Lipschitz constant of GELU has been derived by the authors.
We refined the derivation in Remark G.1.
Remark G.1 ((Lee, 2023)). Lipschitz constant of GELU is 1.084.

Proof of sketch. Firstly, compute the derivative of the GELU function as:

dGELU(x)
dx

= x · 1√
2π

e−
x2
2 +Φ(x)

To find a constant C > 0 such that for all x∈ R, we have that | dGELU(x)
dx | ≤C.

Using the second derivative to establish a tight bound on the derivative. The second derivative of the
GELU function is:

d2GELU(x)
dx2 =

1√
2π

e−
x2
2 (2− x2)

Setting the second derivative equal to zero and solving for x, we obtain two critical points at x =−
√

2
and x =

√
2. Computing the first derivative at x =

√
2:

dGELU(x)
dx

|x=√
2 ≈ 1.084

Thus, it is found that derivation of GELU is bounded by 1.084, proving its Lipschitz continuity.

Remark G.2. Lipschitz constant of SiLU is 1.100.

Proof of sketch. In the following calculations and derivations, we refer to the derivation in Re-
mark G.1 and make appropriate omissions. Firstly, we write the form of SiLU as :

SiLU(x) =
x

1+ e−x

We can compute the derivative of the SiLU function as:

dSiLU(x)
dx

=
(x+1)e−x +1
(1+ e−x)2

and the second derivative as follows:

d2SiLU(x)
dx2 =

ex(−ex(x−2)+ x+2)
(1+ ex)3

We solve the transcendental equation d2SiLU(x)
dx2 = 0 through a python program, we have x1 ≈−2.3994

and x2 ≈ 2.3994. Furthermore, we have the derivative of the SiLU is bounded in the range of [-0.100,
1.100]. Hence, Lipschitz constant of SiLU is 1.100.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Remark G.3. Lipschitz constant of Mish is 1.089.

Proof of sketch. Form of the Mish function, its derivation and its second derivation are performed as:

Mish(x) = x
e2x +2ex

e2x +2ex +2
dMish(x)

dx
=

ex[4(x+1)+4e2x + e3x + ex(4x+6)]
(e2x +2ex +2)2

d2Mish(x)
dx2 =

4ex(3e2x(x−2)+2e3x(x−1)−2(x+2)−2ex(x+4))
(e2x +2ex +2)3

Similarly, we solve the transcendental equation d2Mish(x)
dx2 = 0 through a python program, we then

have x1 ≈−2.2564 and x2 ≈ 1.4906. Morever, the derivative of the Mish is bounded in the range of
[-0.113, 1.089]. Hence, Lipschitz constant of Mish is 1.089.

Remark G.4. Under mild assumptions, Lipschitz constant of CRReLU is max(1+ ε,1−0.446ε).

Proof of sketch.

CRReLU(x) =

{
x+ εxe−

x2
2 (x > 0)

εxe−
x2
2 (x < 0)

Furthermore, under mild assumptions, we consider the derivative of CRReLU piecewise (disregarding
the potential for non-differentiability at x = 0 temporarily).

dCRReLU(x)
dx

=

{
1+ ε(1− x2)e−

x2
2 (x > 0)

ε(1− x2)e−
x2
2 (x < 0)

Setting the second derviation to be 0
d2CRReLU(x)

dx2 = εe−
x2
2 (x3 −3x) = 0

Then we have that: x1 = 0,x2 =
√

3,x3 =−
√

3. For x2 and x3, we directly calculate the values at that
point:

dCRReLU(x)
dx

|x2 = 1−0.446ε;
dCRReLU(x)

dx
|x3 =−0.446ε

For x1 = 0, we calculate the limit of dCRReLU(x)
dx around 0:

lim
x→0+

dCRReLU(x)
dx

= 1+ ε; lim
x→0−

dCRReLU(x)
dx

= ε

Hence, under mild assumptions, to obtain the upper bound for derivative of CRReLU. we have that:
C = max(1+ ε,ε,1−0.446ε,−0.446ε)

Let’s further consider the Lipschitz constant and simplify it. If ε > 0, it is obvious that C = 1+ε ; and
if ε < 0, we can get C = 1−0.446ε . Hence, we can express the Lipschitz constant of CRReLU as:

C = max(1+ ε,1−0.446ε)

Corollary G.1. In order to make Lipschitz constant of CRReLU remains lower than that of GELU,
the range of ε is (-0.188,0.084). We recommend setting the initial value of ε within this range.

Proof of sketch. If ε > 0, considering the following inequality:
1+ ε < 1.084, then we have: 0 < ε < 0.084

If ε < 0, considering the following inequality:
1−0.446ε < 1.084, then we have: −0.188 < ε < 0

Corollary G.2. If ε is in (0.084,0.089)∪(-0.198, -0.188), we have the CRReLU’s Lipschitz continuity
worsen than GELU, but better than Mish.
Corollary G.3. If ε is in (0.089,0.100)∪(-0.198, -0.188), we have the CRReLU’s Lipschitz continuity
worsen than Mish, but better than SiLU.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

H FURTHER DISCUSSION ON INITIALIZATION AND TRAINING STABILITY

In Table 11, we demonstrate that different initialization strategies can have an impact on the final
result. Improper initialization can significantly impair performance and lead instability. In this part,
we set ε to 0.01 and show the changes of ε in each layer during the 100 epochs’ training of ViT-tiny
on CIFAR10 and CIFAR100 in Figure 4 and Figure 5. As the figures shown, initializing ε at 0.01
allows its stable change during the training process and could avoid extreme situations.

Figure 4: Visualization of ε change in each layer during the training of ViT-tiny on CIFAR10.

Figure 5: Visualization of ε change in each layer during the training of ViT-tiny on CIFAR100.

Furthermore, we would like to provide some insights on selecting optimal values of ε for practitioners
implementing CRReLU in their own networks. Firstly, we suggest looking within the aforementioned
scope (-0.188,0.084) (detailed in Corollary G.1). Furthermore, we suggest testing multiple values of
it within this range and using k-fold cross-validation to test the performance of model under different
initial values. Train and evaluate the model on different folds to find the optimal value. In addition, if
the prior knowledge of the dataset and network structure is sufficient, it can also be fully utilized,
for example, if the network tends to produce negative outputs, then increasing the value of ε can be
considered to enable the model to better capture the features of the samples.

I FURTHER DISCUSSION ON LOWER ENTROPY INDICATES BETTER
CLASSIFICATION

Our work is largely based on the statement: lower entropy indicates better classification. In this
section, we will further elaborate on the reasonability of such a statement. We would like to further
elaborate mainly from three perspectives: intuitively, empirically, and theoretically. From the intuitive
perspective, lower entropy indicates less uncertainty for feature representation, which usually means
more information is captured in fewer features. In other words, lower entropy can suggest that
features are more discriminative, better able to distinguish different categories or patterns. From
the empirical perspective, early work (Silva et al., 2005) experimentally showed that minimization
of Shannon’s entropy of the gap between the output and the desired target could achieve a better
performance compared to MSE and CE. In early work (Santos et al., 2004), the authors experimentally
illustrated that minimizing entropy of the error between output and desired targets yields exceptionally
satisfactory classification performance. From the theoretical perspective, work (Yi et al., 2022)
proved that for training DNN classifiers essentially learns the conditional entropy of the underlying
data distribution of the dataset (the information or uncertainty remained in the labels after revealing
the input) and derived the mutual information (between the corresponding feature and the label)
bounds for a classification data model (Section 7). Hence, the conditional entropy H(output | input)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

will decrease with the process of training. In the work (Xu & Raginsky, 2017), the authors derived
upper bounds on the generalization error in terms of the mutual information between its input
and output. According to (Xu & Raginsky, 2017), a smaller mutual information means a smaller
generalization error upper bound, which in turn suggests better classification performance. We have
mutual information I(input,output) = H(output) - H(output | input). Within the process of training,
H(output | input) decreases; hence, in order to make the mutual information I(input,output) as small
as possible, we should minimize the H(output). Therefore, we consider that a lower entropy signifies
better classification performance.

J FURTHER DISCUSSION ON DYNAMIC OPTIMIZATION

As mentioned, the EAFO methodology has shown the potential for dynamic optimization of activation
during iterative training. Although we have not yet obtained an effective dynamic optimization
method, we still want to provide some discussion here for future research work.

Dynamic optimization during iterative training might introduce considerable computational com-
plexity. Such a problem of computational complexity might require the utilization of more efficient
optimization algorithms (or optimizer) to address. Some insights are provided as follows. Firstly,
we suggest conducting such activation optimization at a "batch-level" (gradient updates are typically
done at the mini-batch level), which can stabilize the entire training process on one hand, and on the
other hand, can reduce the computational complexity of dynamic optimization. That is to say, we
can update the network parameters at a mini-batch level; while updating the activation at a batch
level. Furthermore, we recommend using techniques similar to momentum methods for the design of
optimizers, so that the model can retain information about the speed of gradient descent from the past,
thereby accelerating convergence and reducing computing cost overall. Finally, we also would like to
consider methods for the adaptive activation learning, similar to Adam, by adjusting the activation
learning rates through calculating first and second moment estimates of the gradients.

24

	Introduction
	Related Work
	Motivation
	Methodology
	Problem Setup
	Bayesian Error Rate and Information Entropy
	Activation Function and Information Entropy

	Worst Activation Function with Boundary Condition (WAFBC)
	Entropy-based Activation Function Optimization (EAFO)
	Correction Regularized ReLU (CRReLU) : From ReLU to Better

	Experiments
	Task of Image Classification
	Task of Large Language Model (LLM) Fine-tuning

	Discussion
	Proof of Proposition 1
	Further Discussion on WAFBC
	Proof of Proposition 2
	Further details of CRReLU
	Correction Regularized ReLU (CRReLU) Pseudocode
	Further Discussion on Properties of CRReLU

	Details of experimental settings
	Task of Image Classification
	Task of Large Language Model (LLM) Fine-tuning

	Additional Supportive Experiments
	Additional Architecture
	Additional Dataset
	Additional Initialization
	Entropy Calculation after Activation
	Mixed Activation Function

	Lipschitz Continuity Analysis
	Further Discussion on Initialization and Training Stability
	Further Discussion on Lower Entropy Indicates Better Classification
	Further Discussion on Dynamic Optimization

