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Abstract

Recent advances in multi-agent reinforcement learning
(MARL) have demonstrated success in numerous challenging
domains and environments, but typically require specialized
models for each task. In this work, we propose a coherent
methodology that makes it possible for a single GPT-based
model to learn and perform well across diverse MARL envi-
ronments and tasks, including collision-avoidance and coor-
dination problems (such as multi-agent path finding scenar-
ios demonstrated in POGEMA), alongside established bench-
marks like StarCraft Multi-Agent Challenge and Google Re-
search Football. Our method, MARL-GPT, applies offline
reinforcement learning to train at scale on expert trajectories
(400M for SMACv2, 100M for GRF, and 1B for POGEMA)
combined with a single transformer-based observation encoder
that requires no task-specific tuning. By leveraging offline RL,
we address the long-horizon planning and coordination chal-
lenges inherent in MAPF-like problems, enabling efficient
learning without costly online environment interaction. Exper-
iments show that MARL-GPT achieves competitive perfor-
mance compared to specialized baselines in all tested environ-
ments. Thus, our findings suggest that it is, indeed, possible
to build a multi-task transformer-based model for a wide va-
riety of (significantly different) multi-agent problems paving
the way to the fundamental MARL model (akin to ChatGPT,
Llama, Mistral etc. in natural language modeling).

Introduction
Multi-agent reinforcement learning (MARL) has made signif-
icant progress in solving complex tasks such as competitive
games like StarCraft or cooperative robotic tasks such as
multi-agent pathfinding. However, most MARL methods are
designed for a single environment or task, requiring spe-
cialized architectures and training pipelines for each new
problem. And even in this case the resultant MARL policies
typically struggle when solving the problems not seen in the
training time that are different in the number of agents, map
layout etc. In this work we wish to not only improve the
generalization abilities of a MARL policy but to make it pos-
sible for such policy to efficiently solve tasks from different
domains.

To this end we leverage the power of transformer-based
architectures (that are the backbone of the overwhelming
success in natural language processing tasks and are suc-
cessfully applied to other domains such as computer vision,
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Figure 1: Spider plot demonstrating the relative performance
of all evaluated approaches on three different environments –
SMACv2, Google Research Football (GRF) and POGEMA.

robotic control as well) coupled with imitation-learning at
scale. We focus on three significantly different MARL envi-
ronments: Starcraft Multi-Agent Challenge (adversarial com-
bat game) (Samvelyan et al. 2019), Google Research Football
(adversarial sport game) (Kurach et al. 2020), and POGEMA
(cooperative multi-robot navigation) (Skrynnik et al. 2025).
Using the expert policies for those environments, that include
both learnable policies and the rule-based ones, we obtain a
large and diverse dataset of observation-action pairs that are
used to train our model, that we call MARL-GPT.

We train MARL-GPT using supervised imitation learn-
ing on a diverse dataset of expert demonstrations collected
from multiple MARL environments and tasks. Each expert
trajectory consists of sequences of observation-action-reward
triplets gathered across scenarios that vary in dynamics, state
spaces, and agent interactions. To represent these observa-
tions, we tokenize structured, vectorized inputs describing
each agent’s local view – including itself, allies, and oppo-
nents. These tokens are enriched with the learned embed-
dings that encode the type of feature (e.g., position, health),
the agent’s identity and team affiliation, and the temporal



step of the observation. This flexible encoding supports a
variable number of agents and preserves role-specific and
group-specific information while maintaining permutation
invariance where applicable. The resulting tokens are pro-
cessed by a transformer encoder, which maps them to expert
action predictions and Q-values. Training is performed using
standard cross-entropy loss on discrete action outputs or Q-
value bins, without relying on recurrence or autoregression.
Instead, partial observability is handled by leveraging the
transformer’s context window and temporal encoding.

As a result we are able to obtain a single (fundamental)
MARL model, that generalizes across state and action spaces,
reward structures, and agent coordination requirements as
confirmed by our extensive empirical evaluation.

Our experiments show that this unified model achieves
competitive performance compared to specialized MARL
algorithms in all tested domains. This suggests that general-
purpose architectures can handle diverse multi-agent tasks
without extensive tuning, reducing the need for task-specific
designs.

To summarize, our key contributions are as follows:
1. We develop a single GPT-based MARL model that per-

forms notably well across different environments without
any architectural changes or fine-tuning.

2. We create a large dataset of observation-action-reward
triplets, vital for imitation learning and offline RL of any
MARL policy (not necessarily ours).

3. We conduct a thorough empirical validation of our model
on SMACv2, Google Research Football, and POGEMA,
showing competitive results against specialized baselines.

We are committed to open-sourcing the model code, in-
cluding expert policy weights, training datasets, and final
weights of the MARL-GPT model.

Related Work
Multi-agent imitation learning (MAIL) In the realm of
multi-agent systems, imitation learning and learning from
demonstration are widely employed (Tang et al. 2024; Liu
and Zhu 2024). Imitation learning in multi-agent scenarios,
also known as MAIL, is a problem in which agents learn
to perform a task in a multi-agent system by observing and
mimicking expert demonstrations without any knowledge of
the reward function from the environment. This approach has
gained particular traction in the context of controlling urban
traffic and traffic lights at intersections (Bhattacharyya et al.
2018; Huang et al. 2023), controlling the power in wireless
networks (Zhang et al. 2025) due to the availability of a vast
amount of data collected in real-world scenarios and the use
of high-quality simulators, e.g. Sumo (Lopez et al. 2018) in
traffic applications.

Within the realm of MAIL, there are various meth-
ods to consider, including those that employ Bayesian ap-
proaches (Yang et al. 2020), generative adversarial tech-
niques (Song et al. 2018; Li et al. 2024), statistical tools
for capturing interdependencies between agents (Wang et al.
2021), low-rank subspaces (Shih, Ermon, and Sadigh 2022),
latent models for coordinating agents (Le et al. 2017), deci-
sion transformers (Meng et al. 2023; Wen et al. 2022), and

more. Demonstrations are frequently used for pretraining in
games, such as learnable models for chess (Silver et al. 2016;
Ruoss et al. 2024b), and in multi-agent pathfinding tasks, as
exemplified by MAPF-GPT (Andreychuk et al. 2025) and
SCRIMP (Wang et al. 2023). Despite the presence of models
that are trained on pre-collected data, they are often special-
ized for a specific environment or even a single task within
that environment. These models have limited generalizability
even to conditions within the same environment, and their
performance is significantly reduced when learning in a mul-
titasking setting.

Foundation models for multi-agent systems Foundation
models are typically trained on large datasets, enabling zero-
shot or few-shot learning (Bommasani et al. 2021; Yang et al.
2023). From the perspective of an autonomous agent, it is a
model that can perform new tasks that are different from those
it was trained on, either with additional demonstration of de-
sired behavior or without any demonstration (Firoozi et al.
2023). Another important feature of these foundation models
is their fine-tuning ability for specific tasks, allowing them to
improve performance quickly (see Gato tuning (Reed et al.
2022)). These models are commonly used in robotics to solve
multimodal tasks where the goal is specified in text instruc-
tions (Firoozi et al. 2023; Team et al. 2024; Kim et al. 2024).
However, in multi-agent scenarios, such models are less com-
mon, with examples including the Magnetic-One model for
language and multimodal task-solving in WebArena (Fourney
et al. 2024), as well as the MAPF-GPT model for pathfind-
ing (Andreychuk et al. 2025).

Work on multitasking multi-agent models is also close to
this topic, in which attempts are made to train a single policy
for action in different scenarios and environments (Liu et al.
2025; Park, Seong, and Ko 2025). However, these studies
either focus on the training of generalized overused skills
without good overall performance or they do not assume
the properties of foundation models with the possibility of
fine-tuning in additional demonstrations.

Some papers have explored the possibility of adapting
single-agent foundation models to solve multi-agent prob-
lems without modifying the pre-training process (Veerapa-
neni et al. 2024; Xu et al. 2024). In our method, we focus on
the task of training a foundation model for multiple multi-
agent environments from scratch. It should be noted that no
such single pre-trained model has been proposed yet. This
is due to the complex nature of multi-agent policies in var-
ious tasks, such as StarCraft (Samvelyan et al. 2019) and
football (Kurach et al. 2020), and the lack of large expert
trajectory datasets necessary for effective foundation model
training. In our MARL-GPT model, we overcome these dif-
ficulties and show that it is possible to train a multitasking,
multi-agent foundation model on a reasonable set of expert
data and with expert-level quality.

Background
Multi-Agent Reinforcement Learning (MARL) generalizes
single-agent Reinforcement Learning (RL) to environments
where multiple agents interact simultaneously. Generally, the
problem in this case can be stated using the formalism of a
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Figure 2: The general pipeline begins with training expert policies across diverse MARL environments using domain-appropriate
algorithms (e.g., IPPO, RHCR). These policies generate large-scale datasets of observation-action(-reward) trajectories. MARL-
GPT is then trained on the aggregated data using cross-entropy loss to predict expert actions and Q-values, enabling a single
model to generalize across environments, tasks, and coordination regimes.

Markov Game (Littman 1994), which is defined by the tuple:

(N,S, {Ai}i∈N , P, {Ri}i∈N , γ),

where N = {1, . . . , n} is the set of agents, S is the state
space (common to all agents), Ai is the action space of agent
i, with joint action a = (a1, . . . , an) ∈ A := ×i∈NAi.
P : S × A × S → [0, 1] is the transition kernel, where
P (s′ | s,a) gives the probability of transitioning to state s′

from s under joint action a. Ri : S × A × S → R is the
reward function for agent i and γ ∈ [0, 1) is the discount
factor.

At each time step t each agent i selects actions via a policy
πi : S → ∆(Ai), where ∆(·) denotes the distribution of
actions provided by the policy. After all agents have selected
their actions and the joint action a is formed the environment
transitions to the next state and each agent gets its reward
rit = Ri(st,at, st+1). The fundamental objective in MARL
is for each agent i to find an optimal policy π∗ i that maxi-
mizes its expected cumulative return, which is a discounted
sum of step-wise rewards.

Each agent deploys its learned policy, which selects ac-
tions based only on its own local observation history. The
policies themselves are conditioned only on local information,
making execution fully decentralized. Agents do not need to
communicate or observe others’ states/actions at runtime.

Parameter sharing employs a single policy network π
across all agents. This approach reduces the parameter count
and enables efficient knowledge transfer, though it may limit
policy diversity when agents require specialized behaviors.

Offline RL and imitation learning methods train on
expert trajectories D. The simplest approach is behav-
ior cloning, which formulates imitation learning as su-
pervised learning by minimizing the cross-entropy loss
Eot,at∼D [LCE(a ∼ π(a|ot), at)] over expert demonstra-
tions (ot, at).

Method
The suggested pipeline of obtaining a multi-task MARL
model can be divided into three main components. First, ex-
pert policies for each task are acquired, and expert trajectories
are collected using them. Second, observations are encoded
in a way that enables the model to operate across multiple
environments, in contrast to the expert policies, which are
specialized for a single environment. Finally, a transformer
architecture is trained via behavior cloning to imitate the
expert behavior.

Acquiring of Expert Policies and Data Collection
Let π∗

e denote an expert policy for the environment e ∈
E . These expert policies serve as sources of high-quality
demonstrations and can be obtained through a variety of
means. In certain well-established domains, such as chess,
expert policies are readily available in the form of rule-based
or search-based engines (e.g., Stockfish with NNUE), which
do not require further training. These systems can generate
large volumes of expert trajectories with negligible additional
cost.

In contrast, expert policies for complex multi-agent sys-
tems are significantly less common. One exception is the
domain of multi-agent pathfinding, where centralized solvers
(e.g., Conflict-Based Search) can be used to compute glob-
ally optimal or near-optimal solutions. These solvers are
environment-specific but provide valuable expert supervision
when applicable.

In many modern MARL environments, no public expert
policies are readily available. In such cases, we construct
strong policies by applying large-scale reinforcement learn-
ing. For instance, we use independent PPO agents trained
separately in each environment e to convergence, resulting in
a set of high-performing task-specific policies. This approach
is applicable even in partially observable settings.

Each expert policy π∗
e is used to collect trajectories by



interacting with its corresponding environment. If the policy
is recurrent, it may condition on a history of past observations.
Specifically, the expert produces a trajectory:

τe = {(ot, at, rt)}Tt=1,

where ot is the observation at time t, and at ∼ π∗
e(· | ht)

is the action sampled based on observation history ht =
{ot−k, . . . , ot}. The agent receives the reward rt. In practice,
the policy may use a GRU or similar recurrent architecture
to encode ht into a compact hidden state.

We collect expert trajectories across a distribution of en-
vironments E . Some of them may contain multiple different
scenarios (tasks), allowing us to gather data that vary not only
across environments, but also across tasks within a given en-
vironment. This results in a diverse dataset of expert demon-
strations covering a wide range of state spaces, dynamics,
and task structures.

Observation Encoding
We consider the task of multi-agent decision making in a
partially observable environment. In this setting, observa-
tions usually include information about the agent itself, the
surrounding agents, and the environment around them. We
assume that observation from any environment can be rep-
resented as a vector o = {oi}ni=0. For each element oi in
this observation vector, we obtain a token embedding toki by
applying a learned linear layer toki = L(oi) that projects the
raw input into the embedding space.

Each element of the observation corresponds to a specific
environmental property, e.g. the health of the nearest agent.
To provide context to these elements, we augment them with
positional and structural information. Four positional num-
bers are defined to encode this information. First, posattr
(attribute) indicates the type of observed property. For in-
stance, whether it is the agent’s health or its coordinates. If
both agent k and agent j have the same property P observed,
they will share the same posattr. Second, posteam denotes
the group to which the observed agent belongs. Agents may
be divided into different groups based on their roles or goals,
such as allies and enemies. Third, agents can be numbered
within their group using posindx . Thus, an observation ele-
ment oi can be associated with an agent of the group posteam
and the index posindx. The agent whose observation is be-
ing considered is always assigned group 0 and index 0. All
global properties of the situation are also attributed to this
agent (group 0, index 0).

The environment is partially observable, which means that
the agent does not have access to the full state of the environ-
ment. One simple way to handle this limitation is to include
in the final observation a history of the last h observations
from the environment, or to complete the current observation
with some information from previous steps. To indicate the
time moment of each observation element, we add a posi-
tional encoding postime. It is important to note that we do
not use methods such as autoregressive modeling or recurrent
neural networks in this approach.

Thus, each observation element oi can be represented by a
tuple of four components: agent index posiindx, group num-
ber positeam, agent property number posiattr, and time step

positime from which the observation was taken. The structure
of these positional vectors depends on the specific environ-
ment. For each positional component, a corresponding em-
bedding is learned embitype = Ltype(pos

i
type) and added to

the respective token.
In summary, each observation element oi is contextual-

ized by a four-component positional vector: the agent in-
dex posiindx, group identifier positeam, attribute type posiattr,
and timestep positime. While the rules for assigning these
positional indices are environment-dependent, the mecha-
nism for using them is universal. Each positional compo-
nent is mapped to a vector using a learned embedding layer
embitype = Ltype(pos

i
type). These four positional embed-

dings are then summed with the initial observation token
toki to produce the final input representation, resi.
resi = toki + embiindx + embiteam + embiattr + embitime.

The result tokens resi are then processed by a GPT-like
model. The example of a positional encoding for the well-
known SMACv2 environment is shown in Fig. 3. Appendix A
provides recommendations for constructing positional encod-
ings tailored to specific environment.

Model Training
We study a universal model that predicts an agent’s action
using only its own observation, without access to the state
or observations of other agents. Our approach is based on
offline RL with a data-driven actor-critic architecture. At
each timestep t, the transformer-based observation encoder
processes the agent’s observation ot into a hidden state ht,
which is shared by both the critic Q and stochastic policy π
output heads. The model is trained by minimizing joint loss
L = Lcritic + Lactor using minibatch stochastic gradient
descent with the Adam optimizer.

Critic. Classification with categorical cross-entropy loss
(LCE) is more effective than regression with mean squared
error when training large neural networks, especially trans-
former architectures. For this reason, we use a discrete critic
approach (Ruoss et al. 2024a; Farebrother et al. 2024). The
Q-value range is divided into a fixed number of uniform bins,
and each Q-value is represented as a probability distribution
over these bins. If K is the scalar, then KB represents this
scalar as a vector of bins.

The critic loss consists of two parts: the temporal differ-
ence (TD) error and the conservative regularization (CR). The
TD target is yt = rt+γ Q̄(ot+1, a ∼ π(a|ot)), where Q̄ and
π̄ refer to frozen target networks. The regularization term ad-
dresses the issue of overestimating Q-values for observation-
action pairs that are rarely or never seen in the dataset (Kumar
et al. 2020; Chebotar et al. 2023). To prevent this, we penal-
ize the Q-values for actions with low probability under the
current policy, pushing them toward a minimal attainable
value qmin. Specifically, we define π′(a | o) = 1−π(a|o)

Z as a
distribution over actions that have a low probability accord-
ing to π, where Z is a normalization constant. The critic loss
is:

Lcritic = αtd Eo,a∼D
[
LCE(Q

B(o, a), yBt )
]
+

+ αcr Eo∼D, a∼π′(a|o)
[
LCE(Q

B(o, a), qBmin)
]
. (1)
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Figure 3: Illustration of the proposed encoding scheme for multi-agent systems, demonstrated using an example from the
SMACv2 environment. Each agent receives a structured, vectorized observation containing information about itself, its allies,
and nearby enemies. For each observed agent, the input features (such as position, health, etc.) are enriched with additional
embeddings: (a) a positional encoding over the feature dimensions, (b) a global timestep encoding, (c) an agent identity index,
and (d) a team index distinguishing allies from enemies. These components are combined via element-wise addition, resulting in
a contextualized embedding for each observed agent that can be processed by a transformer encoder. The provided encoding
scheme is general and transferable across multi-agent systems. By augmenting raw observation features with agent- and team-
specific indices, the encoding enables the model to distinguish between different functional groups (e.g., allies vs. enemies) and
individual agents, regardless of environment-specific dynamics or layouts. This structure preserves permutation invariance where
appropriate, while still allowing the model to learn role-specific interactions. The encoding supports a dynamic number of agents,
limited only by the model’s maximum context size.

Policy. The policy loss combines behavior cloning (BC)
loss and actor loss (A). We calculate actor loss using the
advantage function A(ot, at) because it offers a stable and
scale-invariant learning signal. This signal helps the actor
focus on actions that perform better than the average, rather
than just their absolute value.

A(ot, at) = Q(ot, at)− Ea∼π(a|ot) [Q(ot, a)]

We include a behavior cloning loss in the policy training
because it guides the model to imitate the best behavior ob-
served in the dataset. This loss provides a strong and reliable
supervisory signal, especially when the optimal policy is

unknown or difficult to estimate. The policy loss is:

Lactor = −αa Eot,at∼D [A(ot, at) log π(at|ot)]
+ αbc Eot,at∼D, a∼π(a|ot) [LCE(a, at)] . (2)

Action Space. Due to differing action spaces in each en-
vironment, an action masking vector is applied to keep the
probability of unavailable actions at zero throughout learning
and inference.

Empirical Evaluation
Experimental Setup
Environments. To evaluate MARL-GPT, we selected three
well-known multi-agent environments. SMACv2 (Ellis et al.



Single-Environment Baselines Multi-Env Single-Task

Environment Task DT BC CQL BC-LSTM RATE MARL-GPT Expert

SMACv2

protoss 5 vs 5 82 ± 3 61 ± 3 57 ± 3 85 ± 3 79 ± 3 89 ± 3 87 ± 3
protoss 5 vs 6 30 ± 4 12 ± 4 14 ± 4 30 ± 4 28 ± 4 54 ± 4 49 ± 4
terran 5 vs 5 84 ± 3 69 ± 3 69 ± 3 88 ± 3 85 ± 3 93 ± 2 91 ± 2
terran 5 vs 6 48 ± 4 24 ± 4 28 ± 4 51 ± 4 41 ± 4 63 ± 4 61 ± 4
zerg 5 vs 5 65 ± 3 56 ± 3 50 ± 3 72 ± 3 64 ± 3 74 ± 3 72 ± 3
zerg 5 vs 6 34 ± 4 24 ± 4 23 ± 4 38 ± 4 33 ± 4 46 ± 4 48 ± 4

GRF

pass and shoot 80 ± 2 44 ± 2 60 ± 2 90 ± 2 78 ± 2 96 ± 2 97 ± 2
corner 60 ± 5 37 ± 4 30 ± 4 22 ± 4 58 ± 5 43 ± 5 40 ± 4
counterattack easy 88 ± 3 86 ± 3 87 ± 3 88 ± 3 85 ± 3 89 ± 3 89 ± 3
11 vs 11 easy 0 40 38 43 4 98 99
11 vs 11 medium 0 41 35 30 1 98 100
11 vs 11 hard 0 40 34 24 1 68 94

POGEMA

Random 0.22 ± 0.01 0.24 ± 0.01 0.26 ± 0.01 0.23 ± 0.01 0.21 ± 0.01 1.16 ± 0.04 2.16 ± 0.13
Mazes 0.12 ± 0.01 0.10 ± 0.01 0.14 ± 0.01 0.11 ± 0.01 0.12 ± 0.01 0.96 ± 0.04 1.55 ± 0.08
Warehouse 0.13 ± 0.01 0.14 ± 0.01 0.17 ± 0.01 0.12 ± 0.01 0.13 ± 0.01 1.02 ± 0.01
Cities-tiles 0.68 ± 0.03 0.46 ± 0.02 0.66 ± 0.03 0.49 ± 0.02 0.65 ± 0.03 2.72 ± 0.12

Table 1: Win rates % (for SMACv2 and GRF) and average throughput (for POGEMA). Higher is better. The table compares
MARL-GPT (Multi-Domain) to expert single-task policies and standard offline RL baselines (Single-Domain) across SMACv2,
GRF, and POGEMA. MARL-GPT shows strong generalization, often matching or outperforming the expert and baselines.

2023) is a challenging real-time strategy benchmark that tests
coordinated decision-making and teamwork in complex com-
bat. GRF (Google Research Football) (Kurach et al. 2020)
provides a dynamic, stochastic setting with varied strategies,
assessing policy adaptability and temporal reasoning. The
POGEMA benchmark1 (Skrynnik et al. 2025) involves multi-
agent pathfinding in grid worlds, providing a tough setting
for testing scalable generalization to new agent populations
and scenarios. We use the lifelong scenario, where a new goal
is generated when an agent completes previous one.

Expert Policy Generation. To prepare the expert dataset
for SMACv2 and GRF, we used large-scale asynchronous
IPPO2. In each SMACv2 training environment, IPPO was
trained using a total of 1 billion collected observations across
scenarios involving Protoss, Terran, and Zerg, with agent
populations in both balanced (5vs5, 10vs10) and imbalanced
(5vs6) settings. The resulting policy was then used to obtain
400 million agent training samples. We trained expert poli-
cies for each GRF scenario using IPPO. For the full 11vs11
match, we trained three distinct expert policies, one for each
opponent difficulty level: easy, medium, and hard. Each of
these policies was trained for 20 billion environment steps.
For the three standard Academy scenarios, Pass and Shoot
with Keeper ran for 300 million timesteps, Easy Counter-
attack for 400 million timesteps, and Corner for 200 million
timesteps. For the POGEMA environment, we used a central-
ized solver called RHCR (Li et al. 2021), in contrast to IPPO,
which serves as the expert policy in other settings. RHCR
operates by decomposing lifelong MAPF into windowed
planning instances, resolving collisions within bounded time
horizons while having access to the full state of the environ-
ment. The performance of such a centralized policy serves

1https://github.com/Cognitive-AI-Systems/pogema-benchmark
2https://github.com/alex-petrenko/sample-factory

as an upper bound for any learnable policy, which does not
have access to the full state.

Trajectory Collection. We then used these pre-trained ex-
perts to generate multi-agent trajectories. At every timestep
in each scenario, we recorded the observations ot (as floats),
the expert actions at, available actions mt, scalar rewards rt,
and done flags dt for each agent. The tuple (ot, at,mt, rt, dt)
represents a single element in the dataset. For each SMACv2
task, we collected 60 million data elements for tasks with
5 agents and 80 million for those with 10 agents. For GRF
this produced approximately 200,000 trajectories from Pass
and Shoot with Keeper, 25,000 from Easy Counter-attack,
75,000 from Corner, and 30,000 from the full 11vs11 match.
For POGEMA, we collected 1 billion elements in mazes
and 120 million on random maps, using 32 agents and 256
steps per episode. We designed a custom dense reward for
POGEMA: agents receive 1 when moving toward the goal,
and 0 otherwise.

Training. All versions of MARL-GPT were trained using
7M parameters, a history window of 6, and the full dataset
(except SMACv2 tasks with 10 agents). The main model was
trained for 500,000 timesteps, while models used for testing
theories were trained for 10,000. Any parameter changes are
explicitly noted. During training, each batch was balanced to
provide equal data from all environments, ensuring the model
receives the same proportion of samples per environment.
Appendix B includes additional implementation details.

Model evaluation. We assess the model’s performance on
all tasks within the training distribution for the SMACv2
and GRF domains by running 500 evaluation episodes per
task and computing the average win rate. For the pathfind-
ing problem, evaluation is conducted using the POGEMA
benchmark on different map sets: random maps and mazes
for training tasks, and Warehouse and Cities-tiles for unseen



tasks. Performance in POGEMA is measured using the aver-
age throughput metric, defined as the ratio of the total number
of goals achieved by all agents to the episode length.

Experimental Results
Multi-task MARL Table 1 shows the complete experi-
mental results across all three environments. In these ex-
periments, we compare MARL-GPT (trained jointly on all
environments) to five standard offline RL baselines (each
trained on all tasks within a single environment). The eval-
uated baselines include two memory-free methods: Behav-
ior Cloning (BC) and Conservative Q-Learning (CQL; Ku-
mar et al. (2020)); three memory-based methods: Deci-
sion Transformer (DT; Chen et al. (2021)), Recurrent Ac-
tion Transformer with Memory (RATE; Cherepanov et al.
(2023)) and a recurrent BC variant with a Long Short-Term
Memory (Hochreiter and Schmidhuber 1997) backbone (BC-
LSTM). Crucially, all offline RL baselines are trained on the
same raw observation vectors without the positional encod-
ings: attribute, agent-index, team-index, and timestep that
MARL-GPT injects into every token (see 3).

Expert quality. For SMACv2 and GRF, the expert policy
is a learned model that is not near-optimal. In contrast, for
POGEMA, the expert is a centralized planner (RHCR) that
leverages full environment observability and a heavy search
to resolve conflicts, providing strong demonstrations that
serve as a useful upper bound. We aim to study the compo-
nents of our model in settings where the expert offers such
high-quality supervision.

Table 2 presents results for RHCR, MAPF-GPT (a trans-
former model trained with behavior cloning on MAPF tasks),
MARL-GPT, and MARL-GPT-BC (behavior cloning only).
In this setting, behavior cloning variants outperform MARL-
GPT. This highlights that MARL-GPT’s reward-based loss
components may introduce instability when learning from
strong expert data, and that designing effective reward func-
tions in multi-agent pathfinding remains challenging due to
the need to capture coordination, conflict resolution, and long-
term planning. As a result, imitation-based approaches can
more effectively leverage high-quality demonstrations like
those provided by RHCR.

Scenario MARL-GPT MARL-GPT-BC MAPF-GPT RHCR

Random 1.16 1.46 1.50 2.16
Mazes 0.96 1.00 1.09 1.55
Warehouse 1.02 1.47 1.27 2.35
Cities-tiles 2.72 2.71 2.99 3.48

Table 2: Average throughput. Comparing MARL-GPT with
behavior cloning variants (MARL-GPT-BC, MAPF).

Unseen tasks. For the SMACv2 environment, we evaluated
the model on previously unseen tasks with 10vs10 and 7vs7
agents, which are challenging for models trained only on 5
agents. To address this, we collected additional datasets with
10 agents and conducted two experiments: (1) We fine-tuned
the pre-trained model on a small (9M) dataset with 10 agents
across all races for 2,000 training steps; (2) we trained a new
model from scratch using all 5-agent tasks plus an additional

terran 10 vs 10 task (for 3,000 and 10,000 training steps).
All experiments were conducted with history lenghth 4. The
results (Table 3) show that the model can generalize to new
maps with more agents if the training data include tasks with
similar agent counts. Moreover, fine-tuning the pre-trained
model requires less data and fewer steps to adapt to a new
map than training from scratch.

Method /
Environment

From scratch Pretrained

3k 10k zero-shot 2k

terran 5 vs 5 87 91 88 92
terran 5 vs 6 48 57 52 62
terran 10 vs 10 71 83 0* 88

protoss 10 vs 10 62* 61* 0* 81
zerg 10 vs 10 29* 22* 1* 43
terran 7 vs 7 80* 86* 16* 88*

Table 3: Win rates %. Comparing variants of methods on un-
seen tasks: models trained from scratch and pretrained (zero-
shot and fine-tuned). * tasks were not in the train dataset.

Ablation study. We investigated how different parameters
influence the final model’s performance (Table 4). All models
were trained under identical conditions, except for one varied
parameter. MARL-GPT, our final model, uses 7M parameters,
a long history window of 6, positional encoding, and the full
dataset. Our results show that model size, history length
(notably for GRF), training data size, and positional encoding
have a substantial impact on performance.

No Model Size Dataset History Length

Task Pos. Enc. 2M 7M Half Small 2 4

terran 5 vs 6 41 37 53 52 56 49 50
zerg 5 vs 6 33 36 40 38 40 37 39
corner 29 30 30 32 42 0 32
counterattack 88 85 88 87 20 20 0
maze 0.56 0.38 0.75 0.70 0.68 0.63 0.66

Table 4: Ablation study across tasks from SMACv2, GRF, and
POGEMA. Reported are win rates (SMACv2 and GRF) and
average throughput (POGEMA). We compare MARL-GPT
(7M parameters) against a smaller 2M variant, and evaluate
the impact of removing positional encoding, reducing dataset
size, and varying history length.

Real-World Mini Experiment. We conducted a real-robot
MAPF experiment; see Appendix D for details.

Conclusion
We presented MARL-GPT, a unified transformer-based
model for multi-agent reinforcement learning that oper-
ates across diverse environments using a single architecture.
Trained purely from expert trajectories via imitation learn-
ing and RL, MARL-GPT achieves competitive or superior
performance compared to specialized baselines in SMACv2,
GRF, and POGEMA. Our results demonstrate the viability of
a generalist MARL model, suggesting a path forward toward
scalable, foundation models for multi-agent decision-making.
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