Improving Language Transfer Capability of Decoder-only Architecture in
Multilingual Neural Machine Translation

Anonymous ACL submission

Abstract

Decoder-only architecture performs poorly in
multilingual neural machine translation, despite
its potential benefits in zero-shot translation,
i.e., translation of unseen language pairs during
training. In this work, we identify the main is-
sue of the decoder-only architecture as its lack
of language transfer capability. Specifically,
representations from different source languages
are not aligned in the representational subspace
of the target language. We propose dividing the
decoding process into two stages so that target
tokens are explicitly excluded in the first stage
to implicitly boost the transfer capability across
languages. Additionally, we impose contrastive
learning on translation instructions, resulting
in improved performance in zero-shot transla-
tion. We conduct experiments on TED-19 and
OPUS-100 datasets, considering both training
from scratch and fine-tuning scenarios. Ex-
perimental results show that, compared to the
encoder-decoder architecture, our methods not
only perform competitively in supervised trans-
lations but also achieve improvements of up
to 3.39 BLEU, 6.99 chrF++, 3.22 BERTScore,
and 4.81 COMET in zero-shot translations.!

1 Introduction

Multilingual neural machine translation (MNMT)
task (Firat et al., 2016; Johnson et al., 2017), which
aims to integrate multiple language translation di-
rections into a single model, can achieve perfor-
mance comparable to large language models with
fewer parameters (Zhu et al., 2023; Xu et al., 2024).
Decoder-only architecture has been shown to ex-
cel at zero-shot generalization (Brown et al., 2020;
Wang et al., 2022), which potentially benefits the
zero-shot translation, i.e., translation of unseen lan-
guage pairs during training. However, state-of-
the-art MNMT models are still based on encoder-
decoder architecture (Fan et al., 2020; Team et al.,

'We will release all codes on GitHub for reproduction if
our paper is accepted.

Architectures

601" —e— Encoder-Decoder
—e— Causal Decoder-only
—e— Prefix Decoder-only

Architectures

3 == Encoder-Decoder

30 = Causal Decoder-Only
= Prefix Decoder-Only

15

as
10
s 0.40

342 Translation Pairs L1 L2 L3 L4 L5 L6

==

Similarity Scores

BLEU Scores

(a) Performance
Figure 1: Comparison between different architectures
in preliminary experiments on TED-19. 1a shows the
performance. 1b shows the linguistic preference of
layer-wise representation, and the x-axis indicates the
layer number. Specifically, a similarity score higher than
0.5 means the representation prefers the target language,
while a score lower than 0.5 indicates a preference for
the source language. Additionally, the vertical line indi-
cates the value range. Appendix A provides a detailed
explanation of 1b.

(b) Preference

2022), because decoder-only architectures (Dong
et al., 2019), including the casual manner (Radford
et al., 2018) and the prefixed manner (Dong et al.,
2019), perform weaker in MNMT (Gao et al., 2022;
Raffel et al., 2023) in practice (Figure 1a).

MNMT models typically add a language tag, in-
dicating the target language, at the beginning of the
source tokens as a translation instruction (Johnson
et al., 2017; Wu et al., 2021; Team et al., 2022).
Recently, Qu et al. (2024) state that the success
of the encoder-decoder architecture in MNMT is
attributed to the language transfer capability of the
encoder. Specifically, as shown in Figure 1b, the
encoder-decoder model aligns representations from
different source languages in the representational
subspace of the target language, making the decod-
ing process rely on the representation with target
language features. However, this process is absent
in the decoder-only architecture because the gener-
ation of target tokens solely relies on source tokens
from the beginning.

In this work, we propose dividing the decoder-
only architecture into two stages, termed Two-stage
Decoder-only (TDO). Specifically, the representa-

tions of target tokens are not used in the first stage
to allow language transfer, and the target represen-
tations are recovered in the second stage, which
follows the normal decoder-only manner. Addition-
ally, a potential degradation occurs in the second
stage due to the lack of an explicit optimization
objective for the source tokens. Therefore, we fur-
ther introduce Instruction-level Contrastive Learn-
ing (InstruCL), which enhances the significance of
translation instruction to prevent degradation.

We evaluate the proposed methods on two
datasets, TED-19 (Ye et al., 2018), and OPUS-100
(Zhang et al., 2020a; Yang et al., 2021), using four
automatic evaluation metrics for a comprehensive
understanding of the improvement: BLEU (Pap-
ineni et al., 2002; Post, 2018), chrF++ (Popovic,
2015, 2017), BERTScore (Zhang et al., 2020b) and
COMET (Rei et al., 2020). Experimental results
show that, compared to models with the encoder-
decoder architecture, our models perform compet-
itively in supervised translations and achieve im-
provements of up to 3.39 BLEU, 6.99 chrF++, 3.22
BERTScore, and 4.81 COMET in zero-shot trans-
lations. Furthermore, we analyze the variation of
layer-wise representation to demonstrate the effects
of our proposed methods. Results prove that the
gains of our proposed methods in the decoder-only
architecture derive from the improvement of lan-
guage transfer.

2 Backgrounds

2.1 Multilingual Neural Machine Translation

Multilingual Neural Machine Translation (MNMT)
task aims to train a single model capable of sup-
porting translations between multiple languages.
Given a parallel multilingual corpus, denoted by
C, the raw data within C consists of translation
pairs in the form of (x,y). Here, x = z1,...,z1
is the source sentence composed of I tokens, and
Yy = y1,...,Ys is the target sentence composed
of J tokens. We also denote language tags by
l=1,...,lg, where each tag is an artificial token
uniquely corresponding to one of the K languages
in C. To serve as a translation instruction?, we add
the language tag specifying the target language at
the beginning of the source tokens (Johnson et al.,
2017; Wu et al., 2021), denoted by l,,. Thus, the
training data comprises instances in the form of
(ly,x,y). The model is trained over all instances

2Appendix B shows the comparison between different
strategies of translation instructions in MNMT.

Encoder Encoder-Decoder

Layer Architecture
—
Decoder Coce
Feed-Forward
Network Nx m
‘Adds&Norm
(o)
Self-Attention| P etor Nx Enc 0000
 S— I

0000

Decoder-only| [&
Layer
—

Adds&Norm

Decoder-Only
Architecture

00000000

Adds&N
|G 2N« (" Dec-only
Self-Attention

— 00000000

Feex d

© Source Token Q Target Token @ Predicted Token

Figure 2: Illustration of the encoder-decoder architec-
ture and the decoder-only architecture.

Causal

q | [1]
v BE06)
d | | 68
g | GEEE | | 08
d GeeEN | =8

X1 Xe Xs Y1 Ve Xi Xe Xs Y1 Y

Prefix

q 1]
@808
d | | 88

Figure 3: Different manners of the masked self-attention
mechanism in the decoder-only architectures. Black
blocks mean visible and white blocks mean masked.
Thus, source tokens are masked in the causal decoder-
only while are visible in the prefix decoder-only.

in C by the standard training objective:

J
Le=— Y 3 logply;|ly.z,y), (1)

ly,x,ycC j=1

where p(y; | ly, z,y;) is a probability distribu-
tion generated by MNMT model.

2.2 Architectures

All architectures discussed in this work follow the
Transformer architecture (Vaswani et al., 2017),
which is the de facto standard of MNMT.

Almost all MNMT models are based on the
encoder-decoder architecture (Johnson et al., 2017,
Fan et al., 2020; Team et al., 2022; Raffel et al.,
2023), as illustrated in Figure 2, which comprises
two components, an encoder and a decoder. Both
the encoder and decoder are composed of N lay-
ers with each encoder layer comprising a self-
attention mechanism and a feed-forward network
(FEN), and with each decoder layer comprising a
masked self-attention mechanism, a cross-attention
mechanism, and an FFN. The encoder receives
the input of (l, «), and output the representations
H = {hy,....,hr 1}, h € RY, d is the model di-
mension. Then, the decoder relies on H and y_;

(a) Two-stage Decoder-only

0066 000eT - \f\daption Modules

1 0000000 @

Dec-only

(2N-M)x [0 © 0 © 00 00 Only Target

Target Token:

I
Rocovered 0. 0 0 0 O 000 -+1'000 00000
f ~%
00060000

Dec-only

Mx 0000

[Retu] Only Source

00000000 00000000

© Source Token Q) Target Token @ Predicted Token @ Unused Token

(layer index > M+1)

00000000F-~

(layer index > M)

00000000 .

(b) Instruction-level Contrastive Learning

@) Positive Instance:

[fr] Bonjour, le monde! Bonjour, le monde!

0 Identity Pair

[fr] Hello, world! Bonjour, le monde!

Dec-only
:I’, Anchor:

»n

Dec-only LN Q Negative Instances:
N

N \‘[de] Hello, world! Hallo, Welt!
'\ o] R TR0 Heureux chaque jour!

¥ »[zh] Happy everyday! SXF !

Figure 4: Illustration of proposed methods. Notably, the term, Token, not only means the real token before and
after the processing of model, but also refers to the representation in the corresponding position. (a) shows the
Two-stage Decoder-only and shows the Adaption, i.e., using an additional FFN to narrow the gap between source
representations and target representations by non-linear transformation. (b) shows the Instruction-level Contrastive
Learning. Underline marks target tokens, and [*] means the instruction of this instance. For the anchor, negative
instances in this figure meet at least one of two features: 1) different target language and 2) unparallel semantics.

to generate the next token:
H" = encoder(ly, x),

Y = decoder(HN7 y<j)7

2
3)

where NV is the layer number of the encoder, and
HY is an intermediate state used in the cross-
attention mechanism in each decoder layer without
further transformation. Thus, Equation 1 implicitly
aligns the output of the encoder in the represen-
tational subspace of the target language, i.e., the
language transfer as shown in the red line of Figure
1b, because the ideal decoder should translate two
sentences ® and x, which have the same target
language, parallel semantics, and different source
languages, to the same target sentence y. Formally,
an ideal encoder meets the following:

“

A decoder-only architecture refers to a model
that consists solely of a decoder (Figure 2). Each
decoder-only layer consists of a masked self-
attention mechanism and an FFN (Radford et al.,
2018), and each model has 2NV layers to approx-
imately match the parameter size of an encoder-
decoder architecture. We define the decoder-only
process as follows:

encoder(ly, %) = encoder(ly, x*).

&)

Notably, the difference between decoder-only(-)
and decoder(+) is that decoder-only(-) fuses the
source and target information by a concatenated
input?, namely, ly,x, and y are equally treated, in-
stead of using a cross-attention mechanism. Thus,

yj = decoder—only(ly7 x, y<j)-

3 Appendix C introduces the input forms in this work.

there is not an intermediate state to align differ-
ent source languages as Equation 4, resulting in
the blue and green lines of Figure 1b. More-
over, we follow Gao et al. (2022); Raffel et al.
(2023) to distinguish the decoder-only by the man-
ner of masked self-attention mechanism as causal
decoder-only and prefix decoder-only (Figure 3).
Finally, compared to the encoder-decoder architec-
ture, the decoder-only architecture requires around
10% fewer parameters.*

3 Methodologies

3.1 Two-stage Decoder-only Architecture

The limitations of the decoder-only architecture
in MNMT likely arise from inadequate language
transfer capabilities, i.e., the absence of Equation 4.
To address this issue, we propose the Two-stage
Decoder-only (TDO) architecture, which divides
the decoder-only process into two stages to align
source representations in the subspace of the target
language. Specifically, as illustrated in Figure 4,
target representations are not used in the first stage,
i.e., the first M layers, and these target represen-
tations are recovered in the second stage, i.e., the
subsequent 2N — M layers. The process of TDO
is formally expressed as follows:

H = decoder-only, (I, x),

y; = decoder-only, (HM, y<j)a

(0)
(7
where decoder-only, (+) enables the implicit align-

ment as done in Equation 4. Notably, the first stage
logically acts as an encoder when prefixed masking

*Appendix D introduces the estimation process.

is applied to the self-attention mechanism. How-
ever, the first and second stages remain unified
structures, and the fusing of source and target in-
formation follows the manner of decoder-only(-)
rather than decoder(-). Therefore, TDO architec-
ture is a revision of the decoder-only architecture.
We also introduce two optional Adaptation mod-
ules in the information fusing. Specifically, a repre-
sentational gap arises at the M 41 layer because the
source representation has been passed through prior
M layers while the target representation has not.
As shown in Figure 4, we employ an FFN, which
includes an up-projection linear layer, a ReLU acti-
vation function, and a down-projection linear layer
(Vaswani et al., 2017), to nonlinearly transform
the source representation to bridge the gap (Geva
et al., 2021). Similarly, since the two types of in-
formation share the same representational space
in the second stage, we use an FEN to nonlinearly
transform the target representation to ensure that it
remains unaffected by the source information in the
representational subspace of the target language.

3.2 Instruction-level Contrastive Learning

Although the first stage aligns the representation
with the target language, the source representation
potentially tends to degrade towards the source
language in the second stage because Equation 1
does not supervise source tokens’; and the second
stage naturally focuses on source features.

Contrastive learning, which is a technique to
softly encourage the representation towards the
target states (Jaiswal et al., 2021), is helpful to
mitigate this degradation. However, there are two
challenges in this optimization process. The first
challenge is the lack of optimization targets for
representation transfer. For instance, a translation
from German to English cannot be considered an
anchor for a translation from French to English
because neither adequately represents the optimal
state of English. The second challenge is the align-
ment, because of the lack of token correspondence
between different translations. Although using av-
eraged pooling of sentences to obtain rough sen-
tence representations (Pan et al., 2021) can act as
proxies for alignment, this potentially leads to sub-
optimal results.

SAlthough the language modeling task (Radford et al.,
2018) does provide supervision for source tokens, supervising
source tokens does not substantially benefit MNMT (Gao et al.,
2022), which may be attributed to insufficient parameters and
insufficient training data in the MNMT task.

In this work, we propose Instruction-level Con-
trastive Learning (InstruCL), which only aligns
the instruction of each instance, for effective con-
straints because MNMT remains sensitive to the in-
struction (Wu et al., 2021). Moreover, as shown in
Figure 4, we suggest using the identity pair, which
is established by translating the target sentence to it-
self and belongs exclusively to the target language,
as the positive instance in InstruCL because the
identity pair serves as a proxy for the optimal state
of the target language (Qu et al., 2024). Specifi-
cally, we collect the representation of [y, i.e., hq,
from H. In a training batch, we then have a set of
representations B = {hl, h?,...}. As illustrated
in Figure 4, first, we designate one instance of B
as the anchor, denoted by h*". Other instances
are treated as negative instances, which meet one
or both of the following features compared to the
anchor: different target languages or unparallel se-
mantics. Subsequently, we use the target sentence
of the anchor to establish the identity pair and pass
it into the model to obtain its representation at the
same layer, denoted by hP**. The objective of In-
struCL is formulated as:

9

JF
Log == log exp(ﬁml
heB exp(st) + Zi:1 exp(s;)
sT = sim(h™, hP%®),
57 = sim(h™, ht), h} # h™,
®)

where sim(-) calculates the similarity of representa-
tions using the cosine similarity. The final training
objective is simply jointed as:

L= Ece + »Cctr- (9)

4 Experiments

4.1 Setups

Datasets We use English-centric datasets in our
experiments, i.e., the training and validation data
comprising translation pairs translation pairs trans-
lating from English and translating to English. We
conduct our experiments with two datasets®. The
first set is TED-19, which is a sub-collection of
TED Talks (Ye et al., 2018) consisting of 6.5 mil-
lion instances and 19 languages belonging to vari-
ous language families, resulting in 32 supervised
translation pairs and 306 zero-shot translation pairs.
The second set is the revised version of OPUS-100

® Appendix E lists the information of datasets in detail.

(Zhang et al., 2020a; Yang et al., 2021), which con-
sists of 95 languages and 92 million instances in
total. However, the zero-shot translation of OPUS-
100 only involves six languages, i.e., 30 pairs. Gen-
erally, each pair of validation and test sets in those
two datasets contains 2,000 instances, but several
pairs of OPUS-100 have fewer instances.

Evaluations We set beam size to 4 in inference,
and evaluate the inference quality by four automatic
evaluation metrics as follows: 1) BLEU (Papineni
et al., 2002; Post, 2018) measures the overlap be-
tween inferences and references at the lexical level.
2) chrF++ (Popovié, 2015, 2017) measures overlap
at the character level and additionally considers a
balance between precision and recall in its evalua-
tion. 3) BERTScore (Zhang et al., 2020b) measures
the similarity between inferences and references at
the representation level.” 4) COMET (Rei et al.,
2020) additionally considers the source text at the
representation level for higher semantic relevance.®
In addition, we employ fasttext-langdetect’ to mea-
sure the target-off ratio on zero-shot pairs, i.e., the
ratio that the source sentence does not translate to
the correct target language, as a secondary metric.

Model settings of training from scratch Our
model conforms to the manner of the Transformer
(Vaswani et al., 2017). We have different settings10
for two datasets. For TED-19, we set IV to 6, d to
512, inner size of FEN to 4d for models trained on
TED-19. Thus, the model with an encoder-decoder
architecture has 70 million parameters, while the
model with a decoder-only architecture has 63 mil-
lion parameters. Moreover, the FFN in the adap-
tation module matches the dimensions of the FFN
in the main part, so in this case, the model has 67
million parameters. For OPUS-100, we first in-
crease NV to 12, resulting in parameter counts of
121 million, 108 million, and 113 million, respec-
tively. We also consider a wider model where N is
6 and d is 1024, resulting in parameter counts of
242 million, 217 million, and 234 million, respec-
tively. Additionally, we consistently set M = N
and the layer index of InstruCL as 1.5/N in the
main experiments to ensure comparability across
different architectures.

"In BERTScore, en is computed by x/mr.large (Conneau
et al., 2019; Goyal et al., 2021) and other languages are com-
puted by bert-base-multilingual-cased (Devlin et al., 2018).

8All COMET scores are computed by Unbabel/wmit22-
comet-da (Rei et al., 2022).

ghttps ://pypi.org/project/fasttext-langdetect
19Appendix F introduces the experimental settings in detail.

Model settings of fine-tuning We conduct fine-
tuning experiments on TED-19 solely. Since pre-
trained models in MNMT are mainly based on
the encoder-decoder architecture, we train a model
with parameters initialized from the decoder. We
also froze the embedding layer in training. Our
experiments include three pre-trained models: 1)
M2M-418M (Fan et al., 2020), which has 12 de-
coder layers. so we set IV to 6, resulting in param-
eter counts of 307 million, 282 million, and 299
million, respectively. 2) NLLB-600M (Team et al.,
2022), which has the same configuration as M2M-
418M but with a larger vocabulary size, leading to
parameter counts of 439 million, 413 million, and
430 million, respectively. 3) M2M-1.2B (Fan et al.,
2020), which has 24 decoder layers and a larger
inner size of FFN compared to M2M-418M. We
set IV to 12, leading to parameter counts of 685
million, 635 million, and 668 million, respectively.

4.2 Results: Training from scratch

Table 1 shows the experimental results. The com-
parison between the basic architectures shows that,
first, the prefix decoder-only consistently outper-
forms the causal decoder-only, which aligns with
Raffel et al. (2023). Second, the decoder-only ar-
chitecture consistently underperforms the encoder-
decoder architecture in supervised pairs of all three
settings, with maximum deficits of -4.17, -5.78, -
1.14, and -5.16 on the BLEU, chrF++, BERTScore,
and COMET respectively. On the other hand, while
the decoder-only architecture shows weaker per-
formance on TED-19 for zero-shot translation, it
achieves higher scores in two settings on OPUS-
100. This suggests that the zero-shot capability of
the decoder-only architecture in MNMT relates to
the amount of data and parameters.

In comparison with the encoder-decoder archi-
tecture, TDO, firstly, achieves competitively su-
pervised capabilities using fewer parameters, and,
specifically, TDO is slightly stronger when trans-
lating to en and slightly weaker when translating
from en. Secondly, our method exhibits stronger
zero-shot translation scores, achieving scores im-
provements of +2.49, +3.22, +1.57, and +4.81;
+3.39, +6.99, +1.88, and +0.31; +2.41, +5.16,
+0.76, +1.79 across three settings for the four main
metrics respectively. We also find that the Adap-
tation module enhances both supervised and zero-
shot translation performance.!! On the other hand,

" Appendix G shows the improvement is not because of
increased parameters.

https://pypi.org/project/fasttext-langdetect

chrF++ 1

BERTScore 1 COMET 4

Pref. Adap.

zero zZero

Enc-Dec

Dec-only

Enc-Dec

OPUS Dec-only

N=12
d =512

TDO

Table 1: Averaged scores of results in the

experiments of training from

scratch. Enc-Dec and Dec-only are

abbreviations of encoder-decoder and decoder-only, respectively. Pref., Adap., and Cl abbreviates Prefix, Adaption
and InstruCL, respectively. v'in the Prefix column means the masked self-attention mechanism follows Prefix
manner, conversely, follows Causal manner. en— and —en means the supervised pairs translating from English
to non-central languages and translating from non-central languages to English, respectively. zero abbreviates
zero-shot pairs, off abbreviates the target-off ratio. The best score in each column and block is in bold.

InstruCL significantly boosts zero-shot capability,
though there is a degradation in supervised transla-
tion performance. Additionally, with the Adapta-
tion module implemented, the degree of degrada-
tion in supervised performance is reduced.
Moreover, the prefix decoder-only architecture
achieves the highest COMET score on OPUS-100,
though, it remains weaker on BERTScore com-
pared to TDO, where both two metrics are based on
semantics. This phenomenon can be explained by
the target-off ratio, in which models with decoder-
only architecture still have a high target-off ratio
with biasing towards English primarily (Chen et al.,
2023) to hamper the evaluation of COMET by con-
sidering the source sentence at the same time.

4.3 Results: Fine-tuning

Table 2 shows the experimental results by fine-
tuning the pre-trained models, which shows a
similar tendency to Table 1 in general. First,
since we initialize the model using parameters
from the decoder, the training processes for the
encoder-decoder, decoder-only, and TDO architec-
tures are relatively fair. Thus, we can conclude
that, when compared with the decoder-only archi-

tecture, the proposed TDO architecture supports an
efficient transformation from pre-trained encoder-
decoder models. Secondly, when compared with
the encoder-decoder models, TDO models achieve
the highest scores across four metrics, reaching up
to +0.39, +0.48, +0.10, and +0.31 for pairs translat-
ing to en, up to +0.82, +1.00, +0.14, and +0.52 for
pairs translating from en, and up to +0.47, +0.96,
+0.29, and +0.88 for zero-shot pairs. Moreover, we
observe that InstruCL does not show significant im-
provements in the case of NLLB-600M, whereas it
remains effective in the two M2M cases. This may
be attributed to that NLLB supports 205 languages,
compared to 100 languages of M2M, implying a
denser representational space that affects the ef-
fectiveness of InstruCL in aligning representations
across languages. Additionally, the frozen embed-
ding layer also potentially restricts the alignment.

5 Discussion

5.1 Representation Analysis

The limitation of the decoder-only architecture in
MNMT is due to the lack of language transfer,
which is shown in Figure 1b. To verify whether

BLEU 1 chrF++ 1 BERTScore 1 COMET 1
en— —en zero en— —en zero en— —en Zero en— —en Zero
Enc-Dec 26.59 31.62 1573 46.79 54.07 3625 8448 94.02 80.12 8239 8130 75.11
Dec-only 2572 30.06 14.67 45.88 52.52 3451 84.12 9370 79.45 81.61 79.89 73.33
M2M TDO 26.63 32.44 1596 4690 54.80 36.56 84.49 94.15 80.28 8231 81.80 7545
418M +Adap. 26.87 3193 16.12 47.08 5421 36.73 84.58 94.08 80.35 82.62 81.54 75.80
+CL 26.61 3234 16.01 47.03 55.07 36.87 8451 94.16 8037 8229 81.82 75.70
+Adap.,+#CL 26.75 31.83 16.20 4698 54.09 36.82 84.56 94.07 80.41 8256 81.52 75.95
Enc-Dec 2639 32.04 1544 4690 5451 36.09 8446 9407 7996 8198 81.16 74.05
Dec-only 26.35 30.20 14.69 46.36 5196 34.16 8435 9372 79.45 8220 79.94 73.62
NLLB TDO 2582 3215 1548 4642 5476 3635 8430 94.10 80.09 81.34 81.28 74.17
600M +Adap. 26.60 32.47 1582 47.04 54.83 36.62 84.54 94.15 80.23 82.08 81.48 74.89
+CL 2587 3229 1548 4644 5471 3621 8431 94.11 80.09 8143 8127 74.18
+Adap..+CL 26.58 32.37 15.85 46.94 54.69 36.52 84.52 94.14 80.24 82.12 81.44 174.93
Enc-Dec 27.02 3175 1621 47.05 53.82 36.51 84.60 94.03 8029 8293 8138 76.13
Dec-only 2647 2999 1540 4647 5201 3510 8436 93.72 79.83 8251 8021 7533
M2M TDO 27.17 3195 1645 4737 54.66 3724 84.64 9411 8048 8296 81.71 76.47
12B +Adap. 2732 31.05 16.57 47.53 53.76 3747 84.68 9399 80.56 83.11 8129 76.72
+CL 27.27 31.83 16.57 47.32 5442 37.08 84.67 9411 80.54 83.04 8175 76.72
+Adap.,+CL 2741 30.72 16.60 47.49 5338 37.23 8470 93.96 80.55 83.24 81.21 76.88

Table 2: Averaged scores of results in the experiments of fine-tuning. Abbreviations align with Table 2. Notably, the

decoder-only and TDO architectures use Prefix masked self-attention only. The best score is in bold.

(i) Prefix Decoder-only

(ii) Two-stage Decoder-only

(iii) Two-stage Decoder-only + Adaption
(iv) Two-stage Decoder-only + InstruCL

—e— (v) Two-stage Decoder-only + Adaption + InstruCL

Similarity Scores

~ T .

) A (e

L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12

Figure 5: Illustration of linguistic preference, which
follows Figure 1b. All cases in this figure use the Prefix
manner for the masked self-attention mechanism. The
marker of prefix decoder-only is square, and our pro-
posed methods are round. The x-axis is the index of
layers, and the vertical line indicates the value range.

our proposed methods can address this issue, we
analyze the layer-wise representations of five mod-
els trained on TED-19: (i) a prefix decoder-only
model with N = 6; (ii) a TDO model with M = 6;
(>iii)) a TDO model with Adaption modules; (iv) a
TDO model with InstrucCL; (v) a TDO model with
Adaption modules and InstrucCL.

As illustrated in Figure 5, the representation of
(i) only exhibits a preference for the target language
in the last two layers. However, (ii) shows a prefer-
ence for the target language from the fourth layer,
and this trend continues into the second stage. Al-
though (iii) exhibits a more stable layer-wise trend
compared to (ii), it shows significant differences
in the final output across languages. Meanwhile,
(iv) exhibits smaller differences across languages.
Finally, (v) incorporates all the advantages of (iii)
and (iv). Therefore, we can conclude that the TDO

—— supchrf <,

- zerochri N

601 —a= sup.bert Y o
- zeropert

e~ sup.comet

-~ zero.comet

e
l
1
i
|
8

Variation Ratio (%)
1
i
i
[
/
/
Variation Ratio (%)

\
[

A
\
A
\
s

T
|
PN
PN
"
|
|
1
;
»

_30| —= supbleu —e— sup.vert o
-~ zerobleu =k zerobert N
—e— sup.chf —e— sup.comet N
k- zerochri =& zero.comet

1 3 5 6 7 9 1 3 6 9 12 15 18 21
M

(a) TED-19 (b) OPUS-100

Figure 6: Variation in different values of M. The y-axis
is the variation ratio compared to the performance of
the model with prefix decoder-only architecture, and the
x-axis is the value of M. The values of N are 6 and 12
in TED-19 and OPUS-100 respectively. Additionally,
the line and the dotted line indicate supervised and zero-
shot translations respectively.

enables better language transfer by aligning dif-
ferent languages in the representational subspace
of the target language. Meanwhile, the Adaption
module and InstrucCL improve the transferability
of multilingual representations.

5.2 How to balance two stages?

In Section 4, we always set M equals IV to en-
sure a fair comparison between the TDO and the
encoder-decoder architectures. However, the bal-
anced design is not optimal (Kasai et al., 2021;
Pires et al., 2023). Thus, we test different M on
TED-19 and OPUS-100 to investigate balancing
two stages. As shown in Figure 6a, the perfor-
mance is always improved with the increase of M
on TED-19. On OPUS-100, as depicted in Figure
6b, the case with M = 3 achieves the best zero-
shot translation scores, but there is a noticeable
decline in zero-shot translation performance with

407 —— supbleu —e— sup.bert AN
351 —k- zerobleu —i- zero.bert e S~
—e— supchrf —e— sup.comet i

—&- zerochrf =—a- zero.comet -7

Index of InstruCL

(a) Decoder-only

)

Variation Ratio (%]

—e— sup.bleu
/ -k- zerobleu —k- zero.bert

—e— sup.bert

/ —e— sup.chrf —e— sup.comet
; -k- zerochrf —k- zero.comet

1 2 3 a 5 8 9 10 1 12

(b) Two-stage Decoder-only with M = 6
Figure 7: Variation in different layer index of InstruCL.
The y-axis is the variation ratio compared to the perfor-
mance of the model without InstruCL, and the x-axis is
the index of the layer where employing InstruCL.

the increase of M, while supervised translation
scores continue to rise.

Those results align with our expectations and
experimental results that the first stage enhances
language transfer. Moreover, as mentioned in Sec-
tion 4.2, the decoder-only architecture scores better
in zero-shot translation on OPUS-100 but exhibits
a higher target-off ratio. Combining Figure 6b, we
speculate that the second stage may focus more on
the source language to align semantic information
across languages, which is supported by Table 1
which shows a significant improvement in zero-
shot translation scores of the TDO once InstruCL
is applied to assist in aligning language features.
Thus, we conclude that the first stage is crucial
in small-scale datasets, whereas the second stage
becomes more significant in large-scale datasets.

5.3 How to set layer index for InstruCL?

In Section 4, we set the layer index for InstruCL
to 1.5N to prevent the degradation of language
transfer in the second stage. Given that Section 5.2
shows the different roles of the first and second
stages, we test the performance of models with
different layer indexes of InstruCL for the decoder-
only and the TDO models. Figure 7a demonstrates
that InstruCL consistently yields positive gains for
the decoder-only architecture. On the other hand,
Figure 7b shows a decline in the first stage but
benefits in the second stage. Moreover, in both
cases, an excessively high index leads to reduced
gains, which aligns with our expectations. These re-
sults indicate that InstruCL primarily affects layers
that follow the decoder-only manner, namely, the

second stage of TDO. This also indirectly shows
that both InstruCL and the first stage enhance the
alignment of multilingual representations.

6 Related Work

Research on applying the decoder-only architecture
to MNMT is limited because the encoder-decoder
architecture is more suitable for MNMT tasks in
theory (Dabre et al., 2020; Raffel et al., 2023) and
in practice (Fan et al., 2020; Team et al., 2022). Al-
though Gao et al. (2022) exhibited that the decoder-
only architecture does not have a distinct advantage
in MNMT, the use of decoder-only architecture is
highly appealing for MNMT, because the decoder-
only architecture has been proven to have better
capability in the zero-shot generalization (Radford
et al., 2018; Brown et al., 2020; Wang et al., 2022),
as zero-shot translation can significantly reduce the
training costs of MNMT (Johnson et al., 2017; Aha-
roni et al., 2019; Arivazhagan et al., 2019; Gu et al.,
2019; Qu and Watanabe, 2022; Chen et al., 2023).
On the other hand, Kudugunta et al. (2019) pointed
out that the MNMT model pairs different languages
in the representational space, then Gu et al. (2019)
stated that the pairing is weak. Recently, Qu et al.
(2024) further demonstrated that the success of
the MNMT model is because of aligning different
source languages in the representational subspace
of the target language, termed language transfer,
by the encoder. This work proves that absenting
this process limits the performance of decoder-only
architecture in MNMT.

7 Conclusions

In this work, we first analyzed the reasons behind
the poor performance of the decoder-only architec-
ture in MNMT, identifying the lack of language
transfer capability as the primary challenge. To
address this, we introduced the Two-stage Decoder-
only architecture. We also proposed Instruction-
level Contrastive Learning to overcome the issue
from the perspective of representation optimiza-
tion. We conducted experiments on two settings,
i.e., training from scratch and fine-tuning, using the
TED-19 and OPUS-100 datasets, and the results
validate the effectiveness of our approach. Through
further representation analysis and further experi-
ments, our study confirms that the advantages of
our method are primarily derived from enhanced
language transfer capabilities.

8 Limitations

This work preliminarily discussed achieving the
multilingual neural machine translation (MNMT)
task using a decoder-only architecture model. Al-
though our model aligns with the standard im-
plementation of the decoder-only architecture
(Vaswani et al., 2017; Raffel et al., 2023), we train
the model by the standard training objective of
the MNMT task (Equation 1) rather than a lan-
guage modeling task (Radford et al., 2018). More-
over, while relative position encoding (Su et al.,
2023) has become de facto in the decoder-only
architecture (Touvron et al., 2023), the MNMT
task involves only sentence-level text. Thus, we
exclusively use sinusoidal positional embeddings
(Vaswani et al., 2017) to ensure a fair comparison
with the encoder-decoder architecture.

9 Ethical Considerations

All datasets and toolkits used in this work are pub-
lic, common, and general in the research on mul-
tilingual neural machine translation, meanwhile,
the usage of those datasets and toolkits follows the
license. Moreover, this work is foundational re-
search and is not a report of specific applications.
Therefore, this work is harmless and has no ethical
risks.

References

Roee Aharoni, Melvin Johnson, and Orhan Firat. 2019.
Massively multilingual neural machine translation.
Preprint, arXiv:1903.00089.

Naveen Arivazhagan, Ankur Bapna, Orhan Firat, Roee
Aharoni, Melvin Johnson, and Wolfgang Macherey.
2019. The missing ingredient in zero-shot neural
machine translation. Preprint, arXiv:1903.07091.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877-1901. Curran Associates,
Inc.

Liang Chen, Shuming Ma, Dongdong Zhang, Furu Wei,
and Baobao Chang. 2023. On the off-target problem

of zero-shot multilingual neural machine translation.
In Findings of the Association for Computational
Linguistics: ACL 2023, pages 9542-9558, Toronto,
Canada. Association for Computational Linguistics.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzman, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2019. Unsupervised
cross-lingual representation learning at scale. arXiv
preprint arXiv:1911.02116.

Raj Dabre, Chenhui Chu, and Anoop Kunchukuttan.
2020. A survey of multilingual neural machine trans-
lation. ACM Comput. Surv., 53(5).

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: pre-training of
deep bidirectional transformers for language under-
standing. CoRR, abs/1810.04805.

Li Dong, Nan Yang, Wenhui Wang, Furu Wei, Xi-
aodong Liu, Yu Wang, Jianfeng Gao, Ming Zhou,
and Hsiao-Wuen Hon. 2019. Unified language model
pre-training for natural language understanding and
generation. Preprint, arXiv:1905.03197.

Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi
Ma, Ahmed El-Kishky, Siddharth Goyal, Man-
deep Baines, Onur Celebi, Guillaume Wenzek,
Vishrav Chaudhary, Naman Goyal, Tom Birch, Vi-
taliy Liptchinsky, Sergey Edunov, Edouard Grave,
Michael Auli, and Armand Joulin. 2020. Be-
yond english-centric multilingual machine transla-
tion. Preprint, arXiv:2010.11125.

Orhan Firat, Baskaran Sankaran, Yaser Al-onaizan,
Fatos T. Yarman Vural, and Kyunghyun Cho. 2016.
Zero-resource translation with multi-lingual neural
machine translation. In Proceedings of the 2016 Con-
ference on Empirical Methods in Natural Language
Processing, pages 268-277, Austin, Texas. Associa-
tion for Computational Linguistics.

Yingbo Gao, Christian Herold, Zijian Yang, and Her-
mann Ney. 2022. Is encoder-decoder redundant for
neural machine translation? In Proceedings of the
2nd Conference of the Asia-Pacific Chapter of the As-
sociation for Computational Linguistics and the 12th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 562-574,
Online only. Association for Computational Linguis-
tics.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer
Levy. 2021. Transformer feed-forward layers are key-
value memories. In Proceedings of the 2021 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 5484-5495, Online and Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

Naman Goyal, Jingfei Du, Myle Ott, Giri Ananthara-
man, and Alexis Conneau. 2021. Larger-scale trans-
formers for multilingual masked language modeling.
arXiv preprint arXiv:2105.00572.

https://arxiv.org/abs/1903.00089
https://arxiv.org/abs/1903.07091
https://arxiv.org/abs/1903.07091
https://arxiv.org/abs/1903.07091
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.18653/v1/2023.findings-acl.608
https://doi.org/10.18653/v1/2023.findings-acl.608
https://doi.org/10.18653/v1/2023.findings-acl.608
https://doi.org/10.1145/3406095
https://doi.org/10.1145/3406095
https://doi.org/10.1145/3406095
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1905.03197
https://arxiv.org/abs/1905.03197
https://arxiv.org/abs/1905.03197
https://arxiv.org/abs/1905.03197
https://arxiv.org/abs/1905.03197
https://arxiv.org/abs/2010.11125
https://arxiv.org/abs/2010.11125
https://arxiv.org/abs/2010.11125
https://arxiv.org/abs/2010.11125
https://arxiv.org/abs/2010.11125
https://doi.org/10.18653/v1/D16-1026
https://doi.org/10.18653/v1/D16-1026
https://doi.org/10.18653/v1/D16-1026
https://aclanthology.org/2022.aacl-main.43
https://aclanthology.org/2022.aacl-main.43
https://aclanthology.org/2022.aacl-main.43
https://doi.org/10.18653/v1/2021.emnlp-main.446
https://doi.org/10.18653/v1/2021.emnlp-main.446
https://doi.org/10.18653/v1/2021.emnlp-main.446

Jiatao Gu, Yong Wang, Kyunghyun Cho, and Vic-
tor O.K. Li. 2019. Improved zero-shot neural ma-
chine translation via ignoring spurious correlations.
In Proceedings of the 57th Annual Meeting of the As-
sociation for Computational Linguistics, pages 1258—
1268, Florence, Italy. Association for Computational
Linguistics.

Ashish Jaiswal, Ashwin Ramesh Babu, Moham-
mad Zaki Zadeh, Debapriya Banerjee, and Fillia
Makedon. 2021. A survey on contrastive self-
supervised learning. Preprint, arXiv:2011.00362.

Melvin Johnson, Mike Schuster, Quoc V. Le, Maxim
Krikun, Yonghui Wu, Zhifeng Chen, Nikhil Thorat,
Fernanda Viégas, Martin Wattenberg, Greg Corrado,
Macduff Hughes, and Jeffrey Dean. 2017. Google’s
multilingual neural machine translation system: En-
abling zero-shot translation. Transactions of the As-
sociation for Computational Linguistics, 5:339-351.

Jungo Kasai, Nikolaos Pappas, Hao Peng, James Cross,
and Noah Smith. 2021. Deep encoder, shallow
decoder: Reevaluating non-autoregressive machine
translation. In International Conference on Learning
Representations.

Diederik P. Kingma and Jimmy Ba. 2017. Adam:
A method for stochastic optimization. Preprint,
arXiv:1412.6980.

Taku Kudo and John Richardson. 2018. SentencePiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66—71, Brussels, Belgium.
Association for Computational Linguistics.

Sneha Kudugunta, Ankur Bapna, Isaac Caswell, and
Orhan Firat. 2019. Investigating multilingual NMT
representations at scale. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 1565-1575, Hong Kong,
China. Association for Computational Linguistics.

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey
Edunov, Marjan Ghazvininejad, Mike Lewis, and
Luke Zettlemoyer. 2020. Multilingual denoising pre-
training for neural machine translation. Preprint,
arXiv:2001.08210.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan,
Sam Gross, Nathan Ng, David Grangier, and Michael
Auli. 2019. fairseq: A fast, extensible toolkit for
sequence modeling. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Associa-
tion for Computational Linguistics (Demonstrations),
pages 48-53, Minneapolis, Minnesota. Association
for Computational Linguistics.

Xiao Pan, Mingxuan Wang, Liwei Wu, and Lei Li. 2021.
Contrastive learning for many-to-many multilingual
neural machine translation. In Proceedings of the

10

59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 244-258, Online. Asso-
ciation for Computational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311-318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Telmo Pires, Robin Schmidt, Yi-Hsiu Liao, and Stephan
Peitz. 2023. Learning language-specific layers for
multilingual machine translation. In Proceedings
of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 14767-14783, Toronto, Canada. Association
for Computational Linguistics.

Maja Popovié. 2015. chrF: character n-gram F-score
for automatic MT evaluation. In Proceedings of the
Tenth Workshop on Statistical Machine Translation,
pages 392-395, Lisbon, Portugal. Association for
Computational Linguistics.

Maja Popovié. 2017. chrF++: words helping charac-
ter n-grams. In Proceedings of the Second Confer-
ence on Machine Translation, pages 612-618, Copen-
hagen, Denmark. Association for Computational Lin-
guistics.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186—
191, Brussels, Belgium. Association for Computa-
tional Linguistics.

Zhi Qu, Chenchen Ding, and Taro Watanabe. 2024. Lan-
guages transferred within the encoder: On represen-
tation transfer in zero-shot multilingual translation.
Preprint, arXiv:2406.08092.

Zhi Qu and Taro Watanabe. 2022. Adapting to non-
centered languages for zero-shot multilingual transla-
tion. In Proceedings of the 29th International Con-
ference on Computational Linguistics, pages 5251—
5265, Gyeongju, Republic of Korea. International
Committee on Computational Linguistics.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya
Sutskever, et al. 2018. Improving language under-
standing by generative pre-training.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2023. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. Preprint, arXiv:1910.10683.

Maithra Raghu, Justin Gilmer, Jason Yosinski, and
Jascha Sohl-Dickstein. 2017. Svcca: Singular vec-
tor canonical correlation analysis for deep learning
dynamics and interpretability. In Proceedings of the

https://doi.org/10.18653/v1/P19-1121
https://doi.org/10.18653/v1/P19-1121
https://doi.org/10.18653/v1/P19-1121
https://arxiv.org/abs/2011.00362
https://arxiv.org/abs/2011.00362
https://arxiv.org/abs/2011.00362
https://doi.org/10.1162/tacl_a_00065
https://doi.org/10.1162/tacl_a_00065
https://doi.org/10.1162/tacl_a_00065
https://doi.org/10.1162/tacl_a_00065
https://doi.org/10.1162/tacl_a_00065
https://openreview.net/forum?id=KpfasTaLUpq
https://openreview.net/forum?id=KpfasTaLUpq
https://openreview.net/forum?id=KpfasTaLUpq
https://openreview.net/forum?id=KpfasTaLUpq
https://openreview.net/forum?id=KpfasTaLUpq
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D19-1167
https://doi.org/10.18653/v1/D19-1167
https://doi.org/10.18653/v1/D19-1167
https://arxiv.org/abs/2001.08210
https://arxiv.org/abs/2001.08210
https://arxiv.org/abs/2001.08210
https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.18653/v1/2021.acl-long.21
https://doi.org/10.18653/v1/2021.acl-long.21
https://doi.org/10.18653/v1/2021.acl-long.21
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.18653/v1/2023.acl-long.825
https://doi.org/10.18653/v1/2023.acl-long.825
https://doi.org/10.18653/v1/2023.acl-long.825
https://doi.org/10.18653/v1/W15-3049
https://doi.org/10.18653/v1/W15-3049
https://doi.org/10.18653/v1/W15-3049
https://doi.org/10.18653/v1/W17-4770
https://doi.org/10.18653/v1/W17-4770
https://doi.org/10.18653/v1/W17-4770
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/W18-6319
https://arxiv.org/abs/2406.08092
https://arxiv.org/abs/2406.08092
https://arxiv.org/abs/2406.08092
https://arxiv.org/abs/2406.08092
https://arxiv.org/abs/2406.08092
https://aclanthology.org/2022.coling-1.467
https://aclanthology.org/2022.coling-1.467
https://aclanthology.org/2022.coling-1.467
https://aclanthology.org/2022.coling-1.467
https://aclanthology.org/2022.coling-1.467
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683

31st International Conference on Neural Information
Processing Systems, NIPS’17, page 6078—-6087, Red
Hook, NY, USA. Curran Associates Inc.

Ricardo Rei, José G. C. de Souza, Duarte Alves,
Chrysoula Zerva, Ana C Farinha, Taisiya Glushkova,
Alon Lavie, Luisa Coheur, and André F. T. Martins.
2022. COMET-22: Unbabel-IST 2022 submission
for the metrics shared task. In Proceedings of the
Seventh Conference on Machine Translation (WMT),
pages 578-585, Abu Dhabi, United Arab Emirates
(Hybrid). Association for Computational Linguistics.

Ricardo Rei, Craig Stewart, Ana C Farinha, and Alon
Lavie. 2020. COMET: A neural framework for MT
evaluation. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 2685-2702, Online. Association
for Computational Linguistics.

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha,
Bo Wen, and Yunfeng Liu. 2023. Roformer: En-
hanced transformer with rotary position embedding.
Preprint, arXiv:2104.09864.

NLLB Team, Marta R. Costa-jussa, James Cross, Onur
Celebi, Maha Elbayad, Kenneth Heafield, Kevin Hef-
fernan, Elahe Kalbassi, Janice Lam, Daniel Licht,
Jean Maillard, Anna Sun, Skyler Wang, Guillaume
Wenzek, Al Youngblood, Bapi Akula, Loic Bar-
rault, Gabriel Mejia Gonzalez, Prangthip Hansanti,
John Hoffman, Semarley Jarrett, Kaushik Ram
Sadagopan, Dirk Rowe, Shannon Spruit, Chau
Tran, Pierre Andrews, Necip Fazil Ayan, Shruti
Bhosale, Sergey Edunov, Angela Fan, Cynthia
Gao, Vedanuj Goswami, Francisco Guzman, Philipp
Koehn, Alexandre Mourachko, Christophe Rop-
ers, Safiyyah Saleem, Holger Schwenk, and Jeff
Wang. 2022. No language left behind: Scal-
ing human-centered machine translation. Preprint,
arXiv:2207.04672.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models. Preprint,
arXiv:2302.13971.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, L. ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Thomas Wang, Adam Roberts, Daniel Hesslow,
Teven Le Scao, Hyung Won Chung, 1z Beltagy,
Julien Launay, and Colin Raffel. 2022. What lan-
guage model architecture and pretraining objective
work best for zero-shot generalization? Preprint,
arXiv:2204.05832.

Liwei Wu, Shanbo Cheng, Mingxuan Wang, and Lei
Li. 2021. Language tags matter for zero-shot neural

11

machine translation. In Findings of the Association
for Computational Linguistics: ACL-IJCNLP 2021,
pages 3001-3007, Online. Association for Computa-
tional Linguistics.

Haoran Xu, Young Jin Kim, Amr Sharaf, and Hany Has-
san Awadalla. 2024. A paradigm shift in machine
translation: Boosting translation performance of
large language models. In The Tivelfth International
Conference on Learning Representations.

Yilin Yang, Akiko Eriguchi, Alexandre Muzio, Prasad
Tadepalli, Stefan Lee, and Hany Hassan. 2021. Im-
proving multilingual translation by representation
and gradient regularization. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 7266—7279, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Qi Ye, Sachan Devendra, Felix Matthieu, Padmanabhan
Sarguna, and Neubig Graham. 2018. When and why
are pre-trained word embeddings useful for neural
machine translation. In HLT-NAACL.

Biao Zhang, Philip Williams, Ivan Titov, and Rico Sen-
nrich. 2020a. Improving massively multilingual neu-
ral machine translation and zero-shot translation. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 1628—
1639, Online. Association for Computational Linguis-
tics.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020b. Bertscore:
Evaluating text generation with bert. Preprint,
arXiv:1904.09675.

Wenhao Zhu, Hongyi Liu, Qingxiu Dong, Jingjing Xu,
Shujian Huang, Lingpeng Kong, Jiajun Chen, and
Lei Li. 2023. Multilingual machine translation with
large language models: Empirical results and analy-
sis. Preprint, arXiv:2304.04675.

https://aclanthology.org/2022.wmt-1.52
https://aclanthology.org/2022.wmt-1.52
https://aclanthology.org/2022.wmt-1.52
https://doi.org/10.18653/v1/2020.emnlp-main.213
https://doi.org/10.18653/v1/2020.emnlp-main.213
https://doi.org/10.18653/v1/2020.emnlp-main.213
https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/2207.04672
https://arxiv.org/abs/2207.04672
https://arxiv.org/abs/2207.04672
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://arxiv.org/abs/2204.05832
https://arxiv.org/abs/2204.05832
https://arxiv.org/abs/2204.05832
https://arxiv.org/abs/2204.05832
https://arxiv.org/abs/2204.05832
https://doi.org/10.18653/v1/2021.findings-acl.264
https://doi.org/10.18653/v1/2021.findings-acl.264
https://doi.org/10.18653/v1/2021.findings-acl.264
https://openreview.net/forum?id=farT6XXntP
https://openreview.net/forum?id=farT6XXntP
https://openreview.net/forum?id=farT6XXntP
https://openreview.net/forum?id=farT6XXntP
https://openreview.net/forum?id=farT6XXntP
https://doi.org/10.18653/v1/2021.emnlp-main.578
https://doi.org/10.18653/v1/2021.emnlp-main.578
https://doi.org/10.18653/v1/2021.emnlp-main.578
https://doi.org/10.18653/v1/2021.emnlp-main.578
https://doi.org/10.18653/v1/2021.emnlp-main.578
https://doi.org/10.18653/v1/2020.acl-main.148
https://doi.org/10.18653/v1/2020.acl-main.148
https://doi.org/10.18653/v1/2020.acl-main.148
https://arxiv.org/abs/1904.09675
https://arxiv.org/abs/1904.09675
https://arxiv.org/abs/1904.09675
https://arxiv.org/abs/2304.04675
https://arxiv.org/abs/2304.04675
https://arxiv.org/abs/2304.04675
https://arxiv.org/abs/2304.04675
https://arxiv.org/abs/2304.04675

A Introduction of Illustrating Linguistic
Preference

Overview In this work, we only quantify the lin-
guistic preferences of the representations by the
similarity scores, although the analysis of Qu et al.
(2024) further quantified the semantic features of
representations. Specifically, the score presents
whether the representations at a certain state ex-
hibit more features related to the target language or
more features related to the source language.

Setup First, computing the linguistic preferences
of the representations requires a semantically par-
allel dataset. Therefore, we conduct analysis ex-
periments on TED-19, which provides six fully
parallel languages, including ar, he, zh, hr, vi,
and ja. We connect these languages to generate 30
zero-shot translation pairs, each pair consisting of
967 sentences. The model setup is consistent with
our main experiments (Section 4).

Computing the similarity score First, we follow
the process of Qu et al. (2024) to measure repre-
sentation similarity in MNMT, employing singular
value canonical correlation analysis (Raghu et al.,
2017). As the definition in Section 2, we obtain
the token-wise hidden representations of the source
sentence, i.e. H, from a translation pair. Notably,
for a decoder-only model, we cut out the source
part, namely, |H| is always I + 1. Then, we derive
the sentence-level representation h using average
pooling h = # Given H® and H? derived
from two sentences, we first perform singular value
decomposition on &* and &’ to obtain subspace
representations h" € R and R’ € R®. Then
we perform canonical correlation analysis to deter-
mine W7 € RY*4" and WP € Ré'*d", Formally,
we compute correlation p between B and i as

(WR", WPR")
—a *b 9y
[Weh™||[[WPhR]|

(10)

where (-, -) indicates the inner product. We use
p to represent the similarity of two sentences.
Subsequently, we get the similarity p, between
(ly,x,y) and (Iz,x,x) and the similarity p,, be-
tween (ly, ,y) and (ly, y, y), respectively. There-
fore, a similarity score of linguistic preference is
computed as follows:

Py

— Y
py+pm

S(ly 7w»y) =

12

"y 1 1 el e
i | e 11
| B i
1 L1l i1 il
o
8 255 = - = 8 =
I IETEINI NI
g g
& 250] a]
3 IIIIIIIIIIB".ll.
2
g g
gl RINININIIS I
.
Nl BIE " EINT HEANR
H B B BRI
o

=

(2) (3) (4)

5]

(a) supervised (b) zero-shot

Figure 8: Averaged BLEU scores in different architec-
tures. The palette follows Figure 1, i.e., red is encoder-
decoder, green is causal decoder-only, and blue is prefix
decoder-only.

where s(;, 4 4 1s the similarity score for the given
translation pair. Finally, we compute the set-level
score by taking the average scores of all sentences
over the test set.

Meaning of the similarity score Equation 11
simply compares the importance of source infor-
mation and target information in the representation.
Therefore, a value higher than 0.5 means the repre-
sentation prefers the target language, otherwise the
representation prefers the source language. More-
over, the value reflects the degree of linguistic pref-
erence, for example, compared to 0.6, 0.7 means
the representation presents much more features of
the target language or fewer features of the source
language. In addition, we also denote the high-
est and lowest values by the vertical lines on each
point in Figures 1b and 5 to show the value range,
which can present stability. Finally, we can find
that models with decoder-only architecture cannot
align the representation of the source tokens in the
representational subspace of the target language,
and they try to align source and target languages to
be a language-agnostic state.

B Comparison between Different
Instruction Strategies in MNMT

MNMT is sensitive to the strategy of translation in-
struction (Wu et al., 2021). We summarize the pos-
sible strategies as follows: (1) Adding a language
tag specified to the target language at the beginning
of source tokens; (2) Adding a language tag speci-
fied to the target language at the beginning of target
tokens; (3) Based on the (2), using the language tag
to replace the [eos] token, which is used to be the
trigger of inference; (4) Adding two language tag
specified to the target language at the beginning of
source tokens and the beginning of target tokens, si-
multaneously; (5) Adding a language tag specified

(a) Encoder-Decoder

AR GRS CRN [eos]
bttt

(Encoder —(Decoder)
t HEEERE
ly x1 x2 xs [eos] [eos] y1 y2 Y3

(b) Decoder-only
x2 x3 [eos] yi.

t ¢ttt
Decoder-only

R

x1 X2 xs [eos] [eos] w1

y2. y3

e
J

y2

ys

Figure 9: Illustration of different input forms. [eos] is a
special token, which means the end of a sentence.

to the source language and a language tag specified
to the target language at the beginning of source
tokens and target tokens, respectively. Then, we
conduct preliminary experiments on three architec-
tures: encoder-decoder, causal decoder-only, and
prefix decoder-only, to support the validity of using
approach (1). As shown in Figure 8, the perfor-
mance of encoder-decoder architecture meets the
analysis of Wu et al. (2021). However, a language
tag at the beginning of target tokens, i.e., (2), (3),
and (4), is more beneficial for the zero-shot capa-
bility in Decoder-only architecture. Considering
that (1) also benefits decoder-only architectures in
the supervised translation, using (1) in this work is
reasonable.

C Different Input Forms

Figure 9 illustrates different input forms for two
architectures involved in this work. Initially, within
the encoder-decoder architecture, the encoder re-
ceives parallel input from source tokens, including
ly, x, and [eos]. The decoder’s input, however, is
shifted. Specifically, in training, [eos] is placed at
the beginning of the target tokens, and the output at
each position always points to the token in the next
position; in inference, [eos] serves as the trigger,
and the model would generate the next token step
by step until the predicted token is [eos]. On the
other hand, the decoder-only architecture combines
source tokens and target tokens. In this work, we
only supervise the target tokens.

D Estimation of Parameters

We follow the notation in Section 4.1, that is, d
is the dimension of the model and the inner size
of FEN is 4d. Therefore, each attention mecha-

13

nism has 4d? parameters because there are 4 ma-
trices with dimensions of d x d, and each FFN
has 8d? parameters (Vaswani et al., 2017). Then,
all layers have the structure illustrated in Figure
2. Given N =1, the model with encoder-decoder
architecture has 28d? parameters and the model
with Decoder-only architecture has 24d? parame-
ters. Thus, considering the fixed parameters of nor-
malization modules and embedding layer, Decoder-
only architecture is implemented with around 10%
fewer parameters than encoder-decoder architec-
ture.

E Detailed Information of Datasets

First of all, the language code in our de-
scriptions follows ISO 639-1, referring to
https://www.loc.gov/standards/iso639-2/
php/code_list.php. We list the detailed infor-
mation of TED-19 in Table 4, and of OPUS-100 in
Table 5. Although Yang et al. (2021) has removed
the repetition in the original version of OPUS-100
(Zhang et al., 2020a), we further remove noisy
instances that only contain nonsense characters.
Moreover, the zero-shot translation of OPUS-100
in this work only involves six languages, including
ar, nl, de, zh, ru, and fr. Finally, we employ
SentencePiece (Kudo and Richardson, 2018) to
get the vocabulary for training, specifically, the
vocabulary size is set to 50,000 of TED-19 and
64,000 of OPUS-100.

F Detailed Model Settings

We implement models by Fairseq (Ott et al., 2019),
which is an open-source toolkit. First of all, in
this work, we apply independent sinusoidal po-
sitional embeddings for source tokens and target
tokens (Vaswani et al., 2017) for the input of the
decoder-only architecture. In the case of training
from scratch on TED-19, we set the learning rate
to 0.0005 and the model is trained for 30 epochs on
eight Nvidia V100 GPUs with a batch size of 4,000
per GPU to ensure full convergence. Moreover, we
set the head number of the attention mechanism
to 8, the dropout rate to 0.1, label smoothing to
0.1, and weight decay to 0.0001. We also employ
Adam (Kingma and Ba, 2017) as our optimizer and
set share-all-embeddings of Fairseq. We evaluate
by averaging the top-5 best checkpoints selected
based on validation loss. In the case of training
from scratch on OPUS-100 with N =12, we set the
number of gradient accumulation steps to 16 to in-

https://www.loc.gov/standards/iso639-2/php/code_list.php
https://www.loc.gov/standards/iso639-2/php/code_list.php
https://www.loc.gov/standards/iso639-2/php/code_list.php

d dy, d% en— —en zero
TDO+adapt. 512 2048 2048 25.61 28.52 14.51

Table 3: Averaged BLEU scores of models with TDO
architecture trained on TED-19. Abbreviations in this
table follow Table 1. In addition, df, is the inner size
of FFN in the first stage, and d3, is in the second stage.
The best score is in bold.

crease the batch size and train for 50,000 steps with
a learning rate of 0.0007. For another setting of
OPUS-100 with N =6, the d is increased to 1024,
and the head number of the attention mechanism
is 16. Therefore, we additionally set an attention
dropout to 0.05. Moreover, we reduce the batch
size per GPU to 2,000, set the number of gradient
accumulation steps to 32, and train for 100,000
steps due to GPU memory constraints. For two
cases of OPUS-100, we test the checkpoint with
the best validation loss. Additionally, in training
on OPUS-100, we set encoder-normalize-before
and decoder-normalize-before in Fairseq and re-
duce the weight decay to 0, which lead to a quick
convergence in a complex data condition (Liu et al.,
2020; Fan et al., 2020; Team et al., 2022).

In the model settings of fine-tuning, M2M-418M
has 12 layers for encoder and decoder, respectively.
d of M2M-418M is 1024, the inner size of FFN
is 4096, the label smoothing is 0.2, the dropout is
0.3, the attention dropout is 0.05, and the batch size
and the learning rate keep the settings of training
from scratch. However, we reduce the batch size to
2000 and set gradient accumulation to 2 for NLLB-
600M because of the GPU memory constraints.
In M2M-1.2B, our experiments are conducted on
four NVIDIA A6000 GPUs, and we set gradient
accumulation to 2. We also reduce the learning rate
to 0.0002 and the number of training epochs to 10
because of more parameters.

G Experiments with Different
Parameters

To verify the improvement brought by Adaption
modules is not because of increased parameters,
we run experiments with models that have different
dimensions. We can find that models, which are
shown in Table 3, have similar parameters. There-
fore, the result of this table can prove our statement.

14

Code Language Family Sub-Family #Train Code Language Family Sub-Family #Train
es Spanish Indo-European =~ Romance 196026 ar Arabic Afro-Asiatic Semitic 214111
fr French Indo-European Romance 192304 he Hebrew Afro-Asiatic Semitic 211819
ro Romanian Indo-European Romance 180484 ru Russian Indo-European Slavic 208458
nl Dutch Indo-European ~ Germanic 183767 ko Korean Koreanic 205640
de German Indo-European Germanic 167888 it Italian Indo-European Romance 204503
pl Polish Indo-European Slavic 176169 ja Japanese Japonic 204090
hr Croatian Indo-European Slavic 122091 zh Chinese Sino-Tibetan Sinitic 199855
cs Czech Indo-European Slavic 103093 tr Turkish Turkic 182470
fa Persian Indo-European Iranian 150965 vi Vietnamese Austroasiatic Vietic 171995

Table 4: Detailed information of TED-19 datasets. #Train indicates the number of training instances.

Code Language Family Sub-Family #Train Code Language Family Sub-Family #Train
fa Persian Indo-European Tranian 934413 yi Yiddish Indo-European Romance 1865
bn Bengali Indo-European Iranian 724719 ga Irish Indo-European Celtic 187967
ur Urdu Indo-European Iranian 724226 br Breton Indo-European Celtic 96951
si Sinhala Indo-European Iranian 613702 cy Welsh Indo-European Celtic 92615
hi Hindi Indo-European Iranian 374472 gd Scottish Gaelic Indo-European Celtic 11104
tg Tajik Indo-European Iranian 183216 1t Lithuanian Indo-European Baltic 797693
ne Nepali Indo-European Iranian 144520 1v Latvian Indo-European Baltic 779972
gu Gujarati Indo-European Iranian 108564 tr Turkish Turkic 918838
ku Kurdish Indo-European Iranian 107110 az Azerbaijani Turkic 237533
pa Punjabi Indo-European Iranian 72160 uz Uzbek Turkic 148319
as Assamese Indo-European Iranian 58009 tt Tatar Turkic 97746
mr Marathi Indo-European Iranian 26117 ug Uyghur Turkic 71241
ps Pashto Indo-European Iranian 14254 kk Kazakh Turkic 62227
or Oriya Indo-European Tranian 13410 ky Kyrgyz Turkic 12724
de German Indo-European ~ Germanic =~ 968252 tk Turkmen Turkic 98
nl Dutch Indo-European Germanic 936611 ar Arabic Afro-Asiatic Semitic 959868
sV Swedish Indo-European Germanic =~ 916259 he Hebrew Afro-Asiatic Semitic 913493
no Norwegian Indo-European ~ Germanic 914187 mt Maltese Afro-Asiatic Semitic 672134
da Danish Indo-European ~ Germanic 911156 ha Hausa Afro-Asiatic Chadic 91869
is Icelandic Indo-European Germanic 813820 am Amharic Afro-Asiatic Semitic 64369
nn Norwegian Nynorsk Indo-European Germanic 172187 el Greek Indo-European Hellenic 932811
af Afrikaans Indo-European ~ Germanic 146600 sq Albanian Indo-European Albanian 855095
nb Norwegian Bokmal Indo-European Germanic 128374 ml Malayalam Dravidian 633920
fy Frisian Indo-European Germanic =~ 42372 ta Tamil Dravidian 184699
li Limburgish Indo-European ~ Germanic 3331 te Telugu Dravidian 37792
ru Russian Indo-European Slavic 951611 kn Kannada Dravidian 13777
st Serbian Indo-European Slavic 935342 xh Xhosa Niger-Congo Bantu 231708
hr Croatian Indo-European Slavic 927541 rw Kinyarwanda Niger-Congo Bantu 62159
pl Polish Indo-European Slavic 926940 zu Zulu Niger-Congo Bantu 6834
bg Bulgarian Indo-European Slavic 925647 ig Igbo Niger-Congo Volta-Niger 691
cs Czech Indo-European Slavic 924282 fi Finnish Uralic Finnic 938601
bs Bosnian Indo-European Slavic 921232 et Estonian Uralic Finnic 893074
sl Slovenian Indo-European Slavic 912248 hu Hungarian Uralic Finno-Ugric 920592
mk Macedonian Indo-European Slavic 881176 se Northern Sami Uralic Sami 32289
sk Slovak Indo-European Slavic 878540 vi Vietnamese Austroasiatic Vietic 883581
uk Ukrainian Indo-European Slavic 759826 id Indonesian Austronesian Malayo-Polynesian 881198
sh Serbo-Croatian Indo-European Slavic 209379 ms Malay Austronesian Malayo-Polynesian 819431
be Belarusian Indo-European Slavic 61862 mg Malagasy Austronesian Malayo-Polynesian 292520
fr French Indo-European ~ Romance 963140 km Khmer Austroasiatic Khmeric 101294
es Spanish Indo-European ~ Romance 929677 zh Chinese Sino-Tibetan Sinitic 954358
it Italian Indo-European ~ Romance 928427 my Burmese Sino-Tibetan Lolo-Burmese 5326
pt Portuguese Indo-European ~ Romance 919755 th Thai Kra-Dai Tai 892433
ro Romanian Indo-European ~ Romance 913451 ko Korean Koreanic 8920064
ca Catalan Indo-European Romance 633826 ja Japanese Japonic 886850
gl Galician Indo-European ~ Romance 353596 eu Basque Language isolate 786645
wa Walloon Indo-European =~ Romance 48894 eo Esperanto Constructed 257560
oc Occitan Indo-European = Romance 27773 ka Georgian Kartvelian 240335

Table 5: Detailed information of OPUS-100 datasets. #Train indicates the number of training instances.

15

	Introduction
	Backgrounds
	Multilingual Neural Machine Translation
	Architectures

	Methodologies
	Two-stage Decoder-only Architecture
	Instruction-level Contrastive Learning

	Experiments
	Setups
	Results: Training from scratch
	Results: Fine-tuning

	Discussion
	Representation Analysis
	How to balance two stages?
	How to set layer index for InstruCL?

	Related Work
	Conclusions
	Limitations
	Ethical Considerations
	Introduction of Illustrating Linguistic Preference
	Comparison between Different Instruction Strategies in MNMT
	Different Input Forms
	Estimation of Parameters
	Detailed Information of Datasets
	Detailed Model Settings
	Experiments with Different Parameters

