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Abstract

Decoder-only architecture performs poorly in001
multilingual neural machine translation, despite002
its potential benefits in zero-shot translation,003
i.e., translation of unseen language pairs during004
training. In this work, we identify the main is-005
sue of the decoder-only architecture as its lack006
of language transfer capability. Specifically,007
representations from different source languages008
are not aligned in the representational subspace009
of the target language. We propose dividing the010
decoding process into two stages so that target011
tokens are explicitly excluded in the first stage012
to implicitly boost the transfer capability across013
languages. Additionally, we impose contrastive014
learning on translation instructions, resulting015
in improved performance in zero-shot transla-016
tion. We conduct experiments on TED-19 and017
OPUS-100 datasets, considering both training018
from scratch and fine-tuning scenarios. Ex-019
perimental results show that, compared to the020
encoder-decoder architecture, our methods not021
only perform competitively in supervised trans-022
lations but also achieve improvements of up023
to 3.39 BLEU, 6.99 chrF++, 3.22 BERTScore,024
and 4.81 COMET in zero-shot translations.1025

1 Introduction026

Multilingual neural machine translation (MNMT)027

task (Firat et al., 2016; Johnson et al., 2017), which028

aims to integrate multiple language translation di-029

rections into a single model, can achieve perfor-030

mance comparable to large language models with031

fewer parameters (Zhu et al., 2023; Xu et al., 2024).032

Decoder-only architecture has been shown to ex-033

cel at zero-shot generalization (Brown et al., 2020;034

Wang et al., 2022), which potentially benefits the035

zero-shot translation, i.e., translation of unseen lan-036

guage pairs during training. However, state-of-037

the-art MNMT models are still based on encoder-038

decoder architecture (Fan et al., 2020; Team et al.,039

1We will release all codes on GitHub for reproduction if
our paper is accepted.
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(b) Preference
Figure 1: Comparison between different architectures
in preliminary experiments on TED-19. 1a shows the
performance. 1b shows the linguistic preference of
layer-wise representation, and the x-axis indicates the
layer number. Specifically, a similarity score higher than
0.5 means the representation prefers the target language,
while a score lower than 0.5 indicates a preference for
the source language. Additionally, the vertical line indi-
cates the value range. Appendix A provides a detailed
explanation of 1b.

2022), because decoder-only architectures (Dong 040

et al., 2019), including the casual manner (Radford 041

et al., 2018) and the prefixed manner (Dong et al., 042

2019), perform weaker in MNMT (Gao et al., 2022; 043

Raffel et al., 2023) in practice (Figure 1a). 044

MNMT models typically add a language tag, in- 045

dicating the target language, at the beginning of the 046

source tokens as a translation instruction (Johnson 047

et al., 2017; Wu et al., 2021; Team et al., 2022). 048

Recently, Qu et al. (2024) state that the success 049

of the encoder-decoder architecture in MNMT is 050

attributed to the language transfer capability of the 051

encoder. Specifically, as shown in Figure 1b, the 052

encoder-decoder model aligns representations from 053

different source languages in the representational 054

subspace of the target language, making the decod- 055

ing process rely on the representation with target 056

language features. However, this process is absent 057

in the decoder-only architecture because the gener- 058

ation of target tokens solely relies on source tokens 059

from the beginning. 060

In this work, we propose dividing the decoder- 061

only architecture into two stages, termed Two-stage 062

Decoder-only (TDO). Specifically, the representa- 063

1



tions of target tokens are not used in the first stage064

to allow language transfer, and the target represen-065

tations are recovered in the second stage, which066

follows the normal decoder-only manner. Addition-067

ally, a potential degradation occurs in the second068

stage due to the lack of an explicit optimization069

objective for the source tokens. Therefore, we fur-070

ther introduce Instruction-level Contrastive Learn-071

ing (InstruCL), which enhances the significance of072

translation instruction to prevent degradation.073

We evaluate the proposed methods on two074

datasets, TED-19 (Ye et al., 2018), and OPUS-100075

(Zhang et al., 2020a; Yang et al., 2021), using four076

automatic evaluation metrics for a comprehensive077

understanding of the improvement: BLEU (Pap-078

ineni et al., 2002; Post, 2018), chrF++ (Popović,079

2015, 2017), BERTScore (Zhang et al., 2020b) and080

COMET (Rei et al., 2020). Experimental results081

show that, compared to models with the encoder-082

decoder architecture, our models perform compet-083

itively in supervised translations and achieve im-084

provements of up to 3.39 BLEU, 6.99 chrF++, 3.22085

BERTScore, and 4.81 COMET in zero-shot trans-086

lations. Furthermore, we analyze the variation of087

layer-wise representation to demonstrate the effects088

of our proposed methods. Results prove that the089

gains of our proposed methods in the decoder-only090

architecture derive from the improvement of lan-091

guage transfer.092

2 Backgrounds093

2.1 Multilingual Neural Machine Translation094

Multilingual Neural Machine Translation (MNMT)095

task aims to train a single model capable of sup-096

porting translations between multiple languages.097

Given a parallel multilingual corpus, denoted by098

C, the raw data within C consists of translation099

pairs in the form of (x,y). Here, x = x1, . . . , xI100

is the source sentence composed of I tokens, and101

y = y1, . . . , yJ is the target sentence composed102

of J tokens. We also denote language tags by103

l = l1, . . . , lK , where each tag is an artificial token104

uniquely corresponding to one of the K languages105

in C. To serve as a translation instruction2, we add106

the language tag specifying the target language at107

the beginning of the source tokens (Johnson et al.,108

2017; Wu et al., 2021), denoted by ly. Thus, the109

training data comprises instances in the form of110

(ly,x,y). The model is trained over all instances111

2Appendix B shows the comparison between different
strategies of translation instructions in MNMT.
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Figure 2: Illustration of the encoder-decoder architec-
ture and the decoder-only architecture.
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Figure 3: Different manners of the masked self-attention
mechanism in the decoder-only architectures. Black
blocks mean visible and white blocks mean masked.
Thus, source tokens are masked in the causal decoder-
only while are visible in the prefix decoder-only.

in C by the standard training objective: 112

Lce = −
∑

ly ,x,y∈C

J∑
j=1

log p(yj | ly,x,y<j), (1) 113

where p(yj | ly,x,y<j) is a probability distribu- 114

tion generated by MNMT model. 115

2.2 Architectures 116

All architectures discussed in this work follow the 117

Transformer architecture (Vaswani et al., 2017), 118

which is the de facto standard of MNMT. 119

Almost all MNMT models are based on the 120

encoder-decoder architecture (Johnson et al., 2017; 121

Fan et al., 2020; Team et al., 2022; Raffel et al., 122

2023), as illustrated in Figure 2, which comprises 123

two components, an encoder and a decoder. Both 124

the encoder and decoder are composed of N lay- 125

ers with each encoder layer comprising a self- 126

attention mechanism and a feed-forward network 127

(FFN), and with each decoder layer comprising a 128

masked self-attention mechanism, a cross-attention 129

mechanism, and an FFN. The encoder receives 130

the input of (ly,x), and output the representations 131

H = {h1, ...,hI+1},h ∈ Rd, d is the model di- 132

mension. Then, the decoder relies on H and y<j 133
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M×

(a) Two-stage Decoder-only

[de] Hello, world! Hallo, Welt!
[fr] 每天开⼼! Heureux chaque jour!

Negative Instances:

[zh] Happy everyday! 每天开⼼!

···

[fr] Hello, world! Bonjour, le monde!

Anchor:

[fr] Bonjour, le monde! Bonjour, le monde!

Positive Instance:

Identity Pair

Source Token Target Token Predicted Token

Dec-only

Unused Token

Target Tokens 
Recovered

(2N-M)×
Dec-only

Linear

Adaption Modules

Only Target

Only Source
Linear
ReLU

Linear

Linear
ReLU

(b) Instruction-level Contrastive Learning

Dec-only 
(layer index > M)

Dec-only 
(layer index > M+1)

···

···

Figure 4: Illustration of proposed methods. Notably, the term, Token, not only means the real token before and
after the processing of model, but also refers to the representation in the corresponding position. (a) shows the
Two-stage Decoder-only and shows the Adaption, i.e., using an additional FFN to narrow the gap between source
representations and target representations by non-linear transformation. (b) shows the Instruction-level Contrastive
Learning. Underline marks target tokens, and [*] means the instruction of this instance. For the anchor, negative
instances in this figure meet at least one of two features: 1) different target language and 2) unparallel semantics.

to generate the next token:134

HN = encoder(ly,x), (2)135

yj = decoder(HN ,y<j), (3)136

where N is the layer number of the encoder, and137

HN is an intermediate state used in the cross-138

attention mechanism in each decoder layer without139

further transformation. Thus, Equation 1 implicitly140

aligns the output of the encoder in the represen-141

tational subspace of the target language, i.e., the142

language transfer as shown in the red line of Figure143

1b, because the ideal decoder should translate two144

sentences xa and xb, which have the same target145

language, parallel semantics, and different source146

languages, to the same target sentence y. Formally,147

an ideal encoder meets the following:148

encoder(ly,x
a) = encoder(ly,x

b). (4)149

A decoder-only architecture refers to a model150

that consists solely of a decoder (Figure 2). Each151

decoder-only layer consists of a masked self-152

attention mechanism and an FFN (Radford et al.,153

2018), and each model has 2N layers to approx-154

imately match the parameter size of an encoder-155

decoder architecture. We define the decoder-only156

process as follows:157

yj = decoder-only(ly,x,y<j). (5)158

Notably, the difference between decoder-only(·)159

and decoder(·) is that decoder-only(·) fuses the160

source and target information by a concatenated161

input3, namely, ly,x, and y are equally treated, in-162

stead of using a cross-attention mechanism. Thus,163

3Appendix C introduces the input forms in this work.

there is not an intermediate state to align differ- 164

ent source languages as Equation 4, resulting in 165

the blue and green lines of Figure 1b. More- 166

over, we follow Gao et al. (2022); Raffel et al. 167

(2023) to distinguish the decoder-only by the man- 168

ner of masked self-attention mechanism as causal 169

decoder-only and prefix decoder-only (Figure 3). 170

Finally, compared to the encoder-decoder architec- 171

ture, the decoder-only architecture requires around 172

10% fewer parameters.4 173

3 Methodologies 174

3.1 Two-stage Decoder-only Architecture 175

The limitations of the decoder-only architecture 176

in MNMT likely arise from inadequate language 177

transfer capabilities, i.e., the absence of Equation 4. 178

To address this issue, we propose the Two-stage 179

Decoder-only (TDO) architecture, which divides 180

the decoder-only process into two stages to align 181

source representations in the subspace of the target 182

language. Specifically, as illustrated in Figure 4, 183

target representations are not used in the first stage, 184

i.e., the first M layers, and these target represen- 185

tations are recovered in the second stage, i.e., the 186

subsequent 2N −M layers. The process of TDO 187

is formally expressed as follows: 188

HM = decoder-only1(ly,x), (6) 189

yj = decoder-only2(H
M ,y<j), (7) 190

where decoder-only1(·) enables the implicit align- 191

ment as done in Equation 4. Notably, the first stage 192

logically acts as an encoder when prefixed masking 193

4Appendix D introduces the estimation process.
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is applied to the self-attention mechanism. How-194

ever, the first and second stages remain unified195

structures, and the fusing of source and target in-196

formation follows the manner of decoder-only(·)197

rather than decoder(·). Therefore, TDO architec-198

ture is a revision of the decoder-only architecture.199

We also introduce two optional Adaptation mod-200

ules in the information fusing. Specifically, a repre-201

sentational gap arises at the M+1 layer because the202

source representation has been passed through prior203

M layers while the target representation has not.204

As shown in Figure 4, we employ an FFN, which205

includes an up-projection linear layer, a ReLU acti-206

vation function, and a down-projection linear layer207

(Vaswani et al., 2017), to nonlinearly transform208

the source representation to bridge the gap (Geva209

et al., 2021). Similarly, since the two types of in-210

formation share the same representational space211

in the second stage, we use an FFN to nonlinearly212

transform the target representation to ensure that it213

remains unaffected by the source information in the214

representational subspace of the target language.215

3.2 Instruction-level Contrastive Learning216

Although the first stage aligns the representation217

with the target language, the source representation218

potentially tends to degrade towards the source219

language in the second stage because Equation 1220

does not supervise source tokens5; and the second221

stage naturally focuses on source features.222

Contrastive learning, which is a technique to223

softly encourage the representation towards the224

target states (Jaiswal et al., 2021), is helpful to225

mitigate this degradation. However, there are two226

challenges in this optimization process. The first227

challenge is the lack of optimization targets for228

representation transfer. For instance, a translation229

from German to English cannot be considered an230

anchor for a translation from French to English231

because neither adequately represents the optimal232

state of English. The second challenge is the align-233

ment, because of the lack of token correspondence234

between different translations. Although using av-235

eraged pooling of sentences to obtain rough sen-236

tence representations (Pan et al., 2021) can act as237

proxies for alignment, this potentially leads to sub-238

optimal results.239

5Although the language modeling task (Radford et al.,
2018) does provide supervision for source tokens, supervising
source tokens does not substantially benefit MNMT (Gao et al.,
2022), which may be attributed to insufficient parameters and
insufficient training data in the MNMT task.

In this work, we propose Instruction-level Con- 240

trastive Learning (InstruCL), which only aligns 241

the instruction of each instance, for effective con- 242

straints because MNMT remains sensitive to the in- 243

struction (Wu et al., 2021). Moreover, as shown in 244

Figure 4, we suggest using the identity pair, which 245

is established by translating the target sentence to it- 246

self and belongs exclusively to the target language, 247

as the positive instance in InstruCL because the 248

identity pair serves as a proxy for the optimal state 249

of the target language (Qu et al., 2024). Specifi- 250

cally, we collect the representation of ly, i.e., h1, 251

from H. In a training batch, we then have a set of 252

representations B = {h1
1,h

2
1, . . . }. As illustrated 253

in Figure 4, first, we designate one instance of B 254

as the anchor, denoted by hanc. Other instances 255

are treated as negative instances, which meet one 256

or both of the following features compared to the 257

anchor: different target languages or unparallel se- 258

mantics. Subsequently, we use the target sentence 259

of the anchor to establish the identity pair and pass 260

it into the model to obtain its representation at the 261

same layer, denoted by hpos. The objective of In- 262

struCL is formulated as: 263

Lctr = −
∑
h∈B

log
exp(s+)

exp(s+) +
∑|B|−1

i=1 exp(s−i )
,

s+ = sim(hanc,hpos),

s−i = sim(hanc,hi
1),h

i
1 ̸= hanc,

(8)

264

where sim(·) calculates the similarity of representa- 265

tions using the cosine similarity. The final training 266

objective is simply jointed as: 267

L = Lce + Lctr. (9) 268

4 Experiments 269

4.1 Setups 270

Datasets We use English-centric datasets in our 271

experiments, i.e., the training and validation data 272

comprising translation pairs translation pairs trans- 273

lating from English and translating to English. We 274

conduct our experiments with two datasets6. The 275

first set is TED-19, which is a sub-collection of 276

TED Talks (Ye et al., 2018) consisting of 6.5 mil- 277

lion instances and 19 languages belonging to vari- 278

ous language families, resulting in 32 supervised 279

translation pairs and 306 zero-shot translation pairs. 280

The second set is the revised version of OPUS-100 281

6Appendix E lists the information of datasets in detail.
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(Zhang et al., 2020a; Yang et al., 2021), which con-282

sists of 95 languages and 92 million instances in283

total. However, the zero-shot translation of OPUS-284

100 only involves six languages, i.e., 30 pairs. Gen-285

erally, each pair of validation and test sets in those286

two datasets contains 2,000 instances, but several287

pairs of OPUS-100 have fewer instances.288

Evaluations We set beam size to 4 in inference,289

and evaluate the inference quality by four automatic290

evaluation metrics as follows: 1) BLEU (Papineni291

et al., 2002; Post, 2018) measures the overlap be-292

tween inferences and references at the lexical level.293

2) chrF++ (Popović, 2015, 2017) measures overlap294

at the character level and additionally considers a295

balance between precision and recall in its evalua-296

tion. 3) BERTScore (Zhang et al., 2020b) measures297

the similarity between inferences and references at298

the representation level.7 4) COMET (Rei et al.,299

2020) additionally considers the source text at the300

representation level for higher semantic relevance.8301

In addition, we employ fasttext-langdetect9 to mea-302

sure the target-off ratio on zero-shot pairs, i.e., the303

ratio that the source sentence does not translate to304

the correct target language, as a secondary metric.305

Model settings of training from scratch Our306

model conforms to the manner of the Transformer307

(Vaswani et al., 2017). We have different settings10308

for two datasets. For TED-19, we set N to 6, d to309

512, inner size of FFN to 4d for models trained on310

TED-19. Thus, the model with an encoder-decoder311

architecture has 70 million parameters, while the312

model with a decoder-only architecture has 63 mil-313

lion parameters. Moreover, the FFN in the adap-314

tation module matches the dimensions of the FFN315

in the main part, so in this case, the model has 67316

million parameters. For OPUS-100, we first in-317

crease N to 12, resulting in parameter counts of318

121 million, 108 million, and 113 million, respec-319

tively. We also consider a wider model where N is320

6 and d is 1024, resulting in parameter counts of321

242 million, 217 million, and 234 million, respec-322

tively. Additionally, we consistently set M = N323

and the layer index of InstruCL as 1.5N in the324

main experiments to ensure comparability across325

different architectures.326

7In BERTScore, en is computed by xlmr.large (Conneau
et al., 2019; Goyal et al., 2021) and other languages are com-
puted by bert-base-multilingual-cased (Devlin et al., 2018).

8All COMET scores are computed by Unbabel/wmt22-
comet-da (Rei et al., 2022).

9https://pypi.org/project/fasttext-langdetect
10Appendix F introduces the experimental settings in detail.

Model settings of fine-tuning We conduct fine- 327

tuning experiments on TED-19 solely. Since pre- 328

trained models in MNMT are mainly based on 329

the encoder-decoder architecture, we train a model 330

with parameters initialized from the decoder. We 331

also froze the embedding layer in training. Our 332

experiments include three pre-trained models: 1) 333

M2M-418M (Fan et al., 2020), which has 12 de- 334

coder layers. so we set N to 6, resulting in param- 335

eter counts of 307 million, 282 million, and 299 336

million, respectively. 2) NLLB-600M (Team et al., 337

2022), which has the same configuration as M2M- 338

418M but with a larger vocabulary size, leading to 339

parameter counts of 439 million, 413 million, and 340

430 million, respectively. 3) M2M-1.2B (Fan et al., 341

2020), which has 24 decoder layers and a larger 342

inner size of FFN compared to M2M-418M. We 343

set N to 12, leading to parameter counts of 685 344

million, 635 million, and 668 million, respectively. 345

4.2 Results: Training from scratch 346

Table 1 shows the experimental results. The com- 347

parison between the basic architectures shows that, 348

first, the prefix decoder-only consistently outper- 349

forms the causal decoder-only, which aligns with 350

Raffel et al. (2023). Second, the decoder-only ar- 351

chitecture consistently underperforms the encoder- 352

decoder architecture in supervised pairs of all three 353

settings, with maximum deficits of -4.17, -5.78, - 354

1.14, and -5.16 on the BLEU, chrF++, BERTScore, 355

and COMET respectively. On the other hand, while 356

the decoder-only architecture shows weaker per- 357

formance on TED-19 for zero-shot translation, it 358

achieves higher scores in two settings on OPUS- 359

100. This suggests that the zero-shot capability of 360

the decoder-only architecture in MNMT relates to 361

the amount of data and parameters. 362

In comparison with the encoder-decoder archi- 363

tecture, TDO, firstly, achieves competitively su- 364

pervised capabilities using fewer parameters, and, 365

specifically, TDO is slightly stronger when trans- 366

lating to en and slightly weaker when translating 367

from en. Secondly, our method exhibits stronger 368

zero-shot translation scores, achieving scores im- 369

provements of +2.49, +3.22, +1.57, and +4.81; 370

+3.39, +6.99, +1.88, and +0.31; +2.41, +5.16, 371

+0.76, +1.79 across three settings for the four main 372

metrics respectively. We also find that the Adap- 373

tation module enhances both supervised and zero- 374

shot translation performance.11 On the other hand, 375

11Appendix G shows the improvement is not because of
increased parameters.
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BLEU ↑ chrF++ ↑ BERTScore ↑ COMET ↑ off ↓

Pref. Adap. CL en→ →en zero en→ →en zero en→ →en zero en→ →en zero zero

TED
N=6
d =512

Enc-Dec 25.46 28.31 12.32 45.96 50.86 32.13 84.10 93.37 78.03 80.49 78.15 67.26 3.82

Dec-only
22.54 24.14 7.33 42.84 45.08 23.36 82.96 92.31 74.38 76.60 72.99 57.50 6.01

✓ 24.00 26.97 8.18 44.49 48.93 25.35 83.54 92.97 74.52 78.46 76.10 56.74 5.51

TDO

25.47 28.88 13.56 45.98 51.33 34.04 84.11 93.45 78.90 80.41 78.42 69.74 3.54
✓ 25.55 28.98 13.61 46.03 51.49 34.11 84.15 93.50 78.94 80.56 78.65 70.09 3.49

✓ 25.37 28.46 13.95 45.99 51.13 34.41 84.09 93.40 79.15 80.35 78.26 70.43 3.45
✓ ✓ 25.60 28.82 14.16 46.11 51.35 34.76 84.13 93.45 79.29 80.52 78.47 70.98 3.43

✓ 25.53 28.76 14.26 46.01 51.09 34.72 84.13 93.41 79.27 80.43 78.18 70.82 3.43
✓ ✓ 25.61 28.52 14.51 46.04 50.89 35.01 84.16 93.40 79.41 80.60 78.16 71.48 3.49
✓ ✓ 25.62 28.94 14.70 46.15 51.46 35.34 84.15 93.47 79.57 80.55 78.55 71.94 3.39
✓ ✓ ✓ 25.61 28.66 14.81 46.05 51.01 35.35 84.16 93.41 79.60 80.61 78.22 72.07 3.42

OPUS
N=12
d =512

Enc-Dec 25.18 29.79 5.13 44.75 48.40 12.95 82.98 92.33 72.44 76.59 76.21 58.51 64.21

Dec-only
23.09 26.80 5.42 42.18 45.05 13.55 82.19 91.72 72.48 74.66 73.65 58.17 60.22

✓ 23.96 28.41 6.62 42.98 47.22 15.36 82.47 92.06 73.57 75.48 75.34 59.56 58.91

TDO

✓ 24.88 29.97 5.32 44.72 49.39 13.29 82.91 92.41 72.50 76.26 76.73 58.30 51.56
✓ ✓ 24.79 29.22 5.97 44.69 48.35 14.30 82.87 92.34 72.97 76.04 76.25 58.33 53.80
✓ ✓ 24.35 29.52 7.93 44.44 48.74 18.65 82.84 92.37 73.97 75.93 76.23 58.71 48.37
✓ ✓ ✓ 24.73 29.70 8.52 44.60 48.72 19.94 82.90 92.38 74.32 76.16 76.59 58.82 43.38

OPUS
N=6
d =1024

Enc-Dec 27.71 31.60 6.95 46.84 50.31 15.89 83.55 92.62 74.12 78.10 77.58 59.99 57.15

Dec-only
26.09 29.09 7.55 44.51 47.44 16.98 82.93 92.12 73.94 76.77 75.80 61.21 63.80

✓ 26.79 30.42 8.15 45.48 48.92 17.65 83.21 92.37 74.17 77.53 76.69 62.32 55.67

TDO

✓ 27.22 31.58 7.06 46.54 50.59 15.96 83.44 92.64 73.78 77.68 77.89 60.60 52.43
✓ ✓ 27.51 31.64 7.70 46.87 50.39 17.32 83.58 92.58 74.32 78.05 77.58 61.24 49.87
✓ ✓ 27.12 31.49 9.28 46.55 50.23 21.33 83.50 92.65 75.04 77.63 77.64 60.84 39.71
✓ ✓ ✓ 27.45 31.36 9.36 46.79 50.06 21.05 83.52 92.64 74.88 77.97 77.75 61.78 43.36

Table 1: Averaged scores of results in the experiments of training from scratch. Enc-Dec and Dec-only are
abbreviations of encoder-decoder and decoder-only, respectively. Pref., Adap., and Cl abbreviates Prefix, Adaption
and InstruCL, respectively. ✓in the Prefix column means the masked self-attention mechanism follows Prefix
manner, conversely, follows Causal manner. en→ and →en means the supervised pairs translating from English
to non-central languages and translating from non-central languages to English, respectively. zero abbreviates
zero-shot pairs, off abbreviates the target-off ratio. The best score in each column and block is in bold.

InstruCL significantly boosts zero-shot capability,376

though there is a degradation in supervised transla-377

tion performance. Additionally, with the Adapta-378

tion module implemented, the degree of degrada-379

tion in supervised performance is reduced.380

Moreover, the prefix decoder-only architecture381

achieves the highest COMET score on OPUS-100,382

though, it remains weaker on BERTScore com-383

pared to TDO, where both two metrics are based on384

semantics. This phenomenon can be explained by385

the target-off ratio, in which models with decoder-386

only architecture still have a high target-off ratio387

with biasing towards English primarily (Chen et al.,388

2023) to hamper the evaluation of COMET by con-389

sidering the source sentence at the same time.390

4.3 Results: Fine-tuning391

Table 2 shows the experimental results by fine-392

tuning the pre-trained models, which shows a393

similar tendency to Table 1 in general. First,394

since we initialize the model using parameters395

from the decoder, the training processes for the396

encoder-decoder, decoder-only, and TDO architec-397

tures are relatively fair. Thus, we can conclude398

that, when compared with the decoder-only archi-399

tecture, the proposed TDO architecture supports an 400

efficient transformation from pre-trained encoder- 401

decoder models. Secondly, when compared with 402

the encoder-decoder models, TDO models achieve 403

the highest scores across four metrics, reaching up 404

to +0.39, +0.48, +0.10, and +0.31 for pairs translat- 405

ing to en, up to +0.82, +1.00, +0.14, and +0.52 for 406

pairs translating from en, and up to +0.47, +0.96, 407

+0.29, and +0.88 for zero-shot pairs. Moreover, we 408

observe that InstruCL does not show significant im- 409

provements in the case of NLLB-600M, whereas it 410

remains effective in the two M2M cases. This may 411

be attributed to that NLLB supports 205 languages, 412

compared to 100 languages of M2M, implying a 413

denser representational space that affects the ef- 414

fectiveness of InstruCL in aligning representations 415

across languages. Additionally, the frozen embed- 416

ding layer also potentially restricts the alignment. 417

5 Discussion 418

5.1 Representation Analysis 419

The limitation of the decoder-only architecture in 420

MNMT is due to the lack of language transfer, 421

which is shown in Figure 1b. To verify whether 422
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BLEU ↑ chrF++ ↑ BERTScore ↑ COMET ↑

en→ →en zero en→ →en zero en→ →en zero en→ →en zero

M2M
418M

Enc-Dec 26.59 31.62 15.73 46.79 54.07 36.25 84.48 94.02 80.12 82.39 81.30 75.11
Dec-only 25.72 30.06 14.67 45.88 52.52 34.51 84.12 93.70 79.45 81.61 79.89 73.33
TDO 26.63 32.44 15.96 46.90 54.80 36.56 84.49 94.15 80.28 82.31 81.80 75.45
+Adap. 26.87 31.93 16.12 47.08 54.21 36.73 84.58 94.08 80.35 82.62 81.54 75.80
+CL 26.61 32.34 16.01 47.03 55.07 36.87 84.51 94.16 80.37 82.29 81.82 75.70
+Adap.,+CL 26.75 31.83 16.20 46.98 54.09 36.82 84.56 94.07 80.41 82.56 81.52 75.95

NLLB
600M

Enc-Dec 26.39 32.04 15.44 46.90 54.51 36.09 84.46 94.07 79.96 81.98 81.16 74.05
Dec-only 26.35 30.20 14.69 46.36 51.96 34.16 84.35 93.72 79.45 82.20 79.94 73.62
TDO 25.82 32.15 15.48 46.42 54.76 36.35 84.30 94.10 80.09 81.34 81.28 74.17
+Adap. 26.60 32.47 15.82 47.04 54.83 36.62 84.54 94.15 80.23 82.08 81.48 74.89
+CL 25.87 32.29 15.48 46.44 54.71 36.21 84.31 94.11 80.09 81.43 81.27 74.18
+Adap.,+CL 26.58 32.37 15.85 46.94 54.69 36.52 84.52 94.14 80.24 82.12 81.44 74.93

M2M
1.2B

Enc-Dec 27.02 31.75 16.21 47.05 53.82 36.51 84.60 94.03 80.29 82.93 81.38 76.13
Dec-only 26.47 29.99 15.40 46.47 52.01 35.10 84.36 93.72 79.83 82.51 80.21 75.33
TDO 27.17 31.95 16.45 47.37 54.66 37.24 84.64 94.11 80.48 82.96 81.71 76.47
+Adap. 27.32 31.05 16.57 47.53 53.76 37.47 84.68 93.99 80.56 83.11 81.29 76.72
+CL 27.27 31.83 16.57 47.32 54.42 37.08 84.67 94.11 80.54 83.04 81.75 76.72
+Adap.,+CL 27.41 30.72 16.60 47.49 53.38 37.23 84.70 93.96 80.55 83.24 81.21 76.88

Table 2: Averaged scores of results in the experiments of fine-tuning. Abbreviations align with Table 2. Notably, the
decoder-only and TDO architectures use Prefix masked self-attention only. The best score is in bold.
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(v) Two-stage Decoder-only + Adaption + InstruCL

Figure 5: Illustration of linguistic preference, which
follows Figure 1b. All cases in this figure use the Prefix
manner for the masked self-attention mechanism. The
marker of prefix decoder-only is square, and our pro-
posed methods are round. The x-axis is the index of
layers, and the vertical line indicates the value range.

our proposed methods can address this issue, we423

analyze the layer-wise representations of five mod-424

els trained on TED-19: (i) a prefix decoder-only425

model with N = 6; (ii) a TDO model with M = 6;426

(iii) a TDO model with Adaption modules; (iv) a427

TDO model with InstrucCL; (v) a TDO model with428

Adaption modules and InstrucCL.429

As illustrated in Figure 5, the representation of430

(i) only exhibits a preference for the target language431

in the last two layers. However, (ii) shows a prefer-432

ence for the target language from the fourth layer,433

and this trend continues into the second stage. Al-434

though (iii) exhibits a more stable layer-wise trend435

compared to (ii), it shows significant differences436

in the final output across languages. Meanwhile,437

(iv) exhibits smaller differences across languages.438

Finally, (v) incorporates all the advantages of (iii)439

and (iv). Therefore, we can conclude that the TDO440
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(b) OPUS-100
Figure 6: Variation in different values of M. The y-axis
is the variation ratio compared to the performance of
the model with prefix decoder-only architecture, and the
x-axis is the value of M. The values of N are 6 and 12
in TED-19 and OPUS-100 respectively. Additionally,
the line and the dotted line indicate supervised and zero-
shot translations respectively.

enables better language transfer by aligning dif- 441

ferent languages in the representational subspace 442

of the target language. Meanwhile, the Adaption 443

module and InstrucCL improve the transferability 444

of multilingual representations. 445

5.2 How to balance two stages? 446

In Section 4, we always set M equals N to en- 447

sure a fair comparison between the TDO and the 448

encoder-decoder architectures. However, the bal- 449

anced design is not optimal (Kasai et al., 2021; 450

Pires et al., 2023). Thus, we test different M on 451

TED-19 and OPUS-100 to investigate balancing 452

two stages. As shown in Figure 6a, the perfor- 453

mance is always improved with the increase of M 454

on TED-19. On OPUS-100, as depicted in Figure 455

6b, the case with M = 3 achieves the best zero- 456

shot translation scores, but there is a noticeable 457

decline in zero-shot translation performance with 458
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Figure 7: Variation in different layer index of InstruCL.
The y-axis is the variation ratio compared to the perfor-
mance of the model without InstruCL, and the x-axis is
the index of the layer where employing InstruCL.

the increase of M , while supervised translation459

scores continue to rise.460

Those results align with our expectations and461

experimental results that the first stage enhances462

language transfer. Moreover, as mentioned in Sec-463

tion 4.2, the decoder-only architecture scores better464

in zero-shot translation on OPUS-100 but exhibits465

a higher target-off ratio. Combining Figure 6b, we466

speculate that the second stage may focus more on467

the source language to align semantic information468

across languages, which is supported by Table 1469

which shows a significant improvement in zero-470

shot translation scores of the TDO once InstruCL471

is applied to assist in aligning language features.472

Thus, we conclude that the first stage is crucial473

in small-scale datasets, whereas the second stage474

becomes more significant in large-scale datasets.475

5.3 How to set layer index for InstruCL?476

In Section 4, we set the layer index for InstruCL477

to 1.5N to prevent the degradation of language478

transfer in the second stage. Given that Section 5.2479

shows the different roles of the first and second480

stages, we test the performance of models with481

different layer indexes of InstruCL for the decoder-482

only and the TDO models. Figure 7a demonstrates483

that InstruCL consistently yields positive gains for484

the decoder-only architecture. On the other hand,485

Figure 7b shows a decline in the first stage but486

benefits in the second stage. Moreover, in both487

cases, an excessively high index leads to reduced488

gains, which aligns with our expectations. These re-489

sults indicate that InstruCL primarily affects layers490

that follow the decoder-only manner, namely, the491

second stage of TDO. This also indirectly shows 492

that both InstruCL and the first stage enhance the 493

alignment of multilingual representations. 494

6 Related Work 495

Research on applying the decoder-only architecture 496

to MNMT is limited because the encoder-decoder 497

architecture is more suitable for MNMT tasks in 498

theory (Dabre et al., 2020; Raffel et al., 2023) and 499

in practice (Fan et al., 2020; Team et al., 2022). Al- 500

though Gao et al. (2022) exhibited that the decoder- 501

only architecture does not have a distinct advantage 502

in MNMT, the use of decoder-only architecture is 503

highly appealing for MNMT, because the decoder- 504

only architecture has been proven to have better 505

capability in the zero-shot generalization (Radford 506

et al., 2018; Brown et al., 2020; Wang et al., 2022), 507

as zero-shot translation can significantly reduce the 508

training costs of MNMT (Johnson et al., 2017; Aha- 509

roni et al., 2019; Arivazhagan et al., 2019; Gu et al., 510

2019; Qu and Watanabe, 2022; Chen et al., 2023). 511

On the other hand, Kudugunta et al. (2019) pointed 512

out that the MNMT model pairs different languages 513

in the representational space, then Gu et al. (2019) 514

stated that the pairing is weak. Recently, Qu et al. 515

(2024) further demonstrated that the success of 516

the MNMT model is because of aligning different 517

source languages in the representational subspace 518

of the target language, termed language transfer, 519

by the encoder. This work proves that absenting 520

this process limits the performance of decoder-only 521

architecture in MNMT. 522

7 Conclusions 523

In this work, we first analyzed the reasons behind 524

the poor performance of the decoder-only architec- 525

ture in MNMT, identifying the lack of language 526

transfer capability as the primary challenge. To 527

address this, we introduced the Two-stage Decoder- 528

only architecture. We also proposed Instruction- 529

level Contrastive Learning to overcome the issue 530

from the perspective of representation optimiza- 531

tion. We conducted experiments on two settings, 532

i.e., training from scratch and fine-tuning, using the 533

TED-19 and OPUS-100 datasets, and the results 534

validate the effectiveness of our approach. Through 535

further representation analysis and further experi- 536

ments, our study confirms that the advantages of 537

our method are primarily derived from enhanced 538

language transfer capabilities. 539
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8 Limitations540

This work preliminarily discussed achieving the541

multilingual neural machine translation (MNMT)542

task using a decoder-only architecture model. Al-543

though our model aligns with the standard im-544

plementation of the decoder-only architecture545

(Vaswani et al., 2017; Raffel et al., 2023), we train546

the model by the standard training objective of547

the MNMT task (Equation 1) rather than a lan-548

guage modeling task (Radford et al., 2018). More-549

over, while relative position encoding (Su et al.,550

2023) has become de facto in the decoder-only551

architecture (Touvron et al., 2023), the MNMT552

task involves only sentence-level text. Thus, we553

exclusively use sinusoidal positional embeddings554

(Vaswani et al., 2017) to ensure a fair comparison555

with the encoder-decoder architecture.556

9 Ethical Considerations557

All datasets and toolkits used in this work are pub-558

lic, common, and general in the research on mul-559

tilingual neural machine translation, meanwhile,560

the usage of those datasets and toolkits follows the561

license. Moreover, this work is foundational re-562

search and is not a report of specific applications.563

Therefore, this work is harmless and has no ethical564

risks.565
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A Introduction of Illustrating Linguistic854

Preference855

Overview In this work, we only quantify the lin-856

guistic preferences of the representations by the857

similarity scores, although the analysis of Qu et al.858

(2024) further quantified the semantic features of859

representations. Specifically, the score presents860

whether the representations at a certain state ex-861

hibit more features related to the target language or862

more features related to the source language.863

Setup First, computing the linguistic preferences864

of the representations requires a semantically par-865

allel dataset. Therefore, we conduct analysis ex-866

periments on TED-19, which provides six fully867

parallel languages, including ar, he, zh, hr, vi,868

and ja. We connect these languages to generate 30869

zero-shot translation pairs, each pair consisting of870

967 sentences. The model setup is consistent with871

our main experiments (Section 4).872

Computing the similarity score First, we follow873

the process of Qu et al. (2024) to measure repre-874

sentation similarity in MNMT, employing singular875

value canonical correlation analysis (Raghu et al.,876

2017). As the definition in Section 2, we obtain877

the token-wise hidden representations of the source878

sentence, i.e. H, from a translation pair. Notably,879

for a decoder-only model, we cut out the source880

part, namely, |H| is always I + 1. Then, we derive881

the sentence-level representation h using average882

pooling h =
∑q

i=1 hi

q . Given Ha and Hb derived883

from two sentences, we first perform singular value884

decomposition on h
a

and h
b

to obtain subspace885

representations h
a ∈ Rda and h

b ∈ Rdb . Then886

we perform canonical correlation analysis to deter-887

mine Wa ∈ Rd′×da and Wb ∈ Rd′×db . Formally,888

we compute correlation ρ between h
a

and h
b

as889

ρ =
⟨Wah

a
,Wbh

b⟩
∥Wah

a∥∥Wbh
b∥
, (10)890

where ⟨·, ·⟩ indicates the inner product. We use891

ρ to represent the similarity of two sentences.892

Subsequently, we get the similarity ρx between893

(ly,x,y) and (lx,x,x) and the similarity ρy be-894

tween (ly,x,y) and (ly,y,y), respectively. There-895

fore, a similarity score of linguistic preference is896

computed as follows:897

s(ly ,x,y) =
ρy

ρy + ρx
, (11)898
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Figure 8: Averaged BLEU scores in different architec-
tures. The palette follows Figure 1, i.e., red is encoder-
decoder, green is causal decoder-only, and blue is prefix
decoder-only.

where s(ly ,x,y) is the similarity score for the given 899

translation pair. Finally, we compute the set-level 900

score by taking the average scores of all sentences 901

over the test set. 902

Meaning of the similarity score Equation 11 903

simply compares the importance of source infor- 904

mation and target information in the representation. 905

Therefore, a value higher than 0.5 means the repre- 906

sentation prefers the target language, otherwise the 907

representation prefers the source language. More- 908

over, the value reflects the degree of linguistic pref- 909

erence, for example, compared to 0.6, 0.7 means 910

the representation presents much more features of 911

the target language or fewer features of the source 912

language. In addition, we also denote the high- 913

est and lowest values by the vertical lines on each 914

point in Figures 1b and 5 to show the value range, 915

which can present stability. Finally, we can find 916

that models with decoder-only architecture cannot 917

align the representation of the source tokens in the 918

representational subspace of the target language, 919

and they try to align source and target languages to 920

be a language-agnostic state. 921

B Comparison between Different 922

Instruction Strategies in MNMT 923

MNMT is sensitive to the strategy of translation in- 924

struction (Wu et al., 2021). We summarize the pos- 925

sible strategies as follows: (1) Adding a language 926

tag specified to the target language at the beginning 927

of source tokens; (2) Adding a language tag speci- 928

fied to the target language at the beginning of target 929

tokens; (3) Based on the (2), using the language tag 930

to replace the [eos] token, which is used to be the 931

trigger of inference; (4) Adding two language tag 932

specified to the target language at the beginning of 933

source tokens and the beginning of target tokens, si- 934

multaneously; (5) Adding a language tag specified 935
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Figure 9: Illustration of different input forms. [eos] is a
special token, which means the end of a sentence.

to the source language and a language tag specified936

to the target language at the beginning of source937

tokens and target tokens, respectively. Then, we938

conduct preliminary experiments on three architec-939

tures: encoder-decoder, causal decoder-only, and940

prefix decoder-only, to support the validity of using941

approach (1). As shown in Figure 8, the perfor-942

mance of encoder-decoder architecture meets the943

analysis of Wu et al. (2021). However, a language944

tag at the beginning of target tokens, i.e., (2), (3),945

and (4), is more beneficial for the zero-shot capa-946

bility in Decoder-only architecture. Considering947

that (1) also benefits decoder-only architectures in948

the supervised translation, using (1) in this work is949

reasonable.950

C Different Input Forms951

Figure 9 illustrates different input forms for two952

architectures involved in this work. Initially, within953

the encoder-decoder architecture, the encoder re-954

ceives parallel input from source tokens, including955

ly, x, and [eos]. The decoder’s input, however, is956

shifted. Specifically, in training, [eos] is placed at957

the beginning of the target tokens, and the output at958

each position always points to the token in the next959

position; in inference, [eos] serves as the trigger,960

and the model would generate the next token step961

by step until the predicted token is [eos]. On the962

other hand, the decoder-only architecture combines963

source tokens and target tokens. In this work, we964

only supervise the target tokens.965

D Estimation of Parameters966

We follow the notation in Section 4.1, that is, d967

is the dimension of the model and the inner size968

of FFN is 4d. Therefore, each attention mecha-969

nism has 4d2 parameters because there are 4 ma- 970

trices with dimensions of d × d, and each FFN 971

has 8d2 parameters (Vaswani et al., 2017). Then, 972

all layers have the structure illustrated in Figure 973

2. Given N =1, the model with encoder-decoder 974

architecture has 28d2 parameters and the model 975

with Decoder-only architecture has 24d2 parame- 976

ters. Thus, considering the fixed parameters of nor- 977

malization modules and embedding layer, Decoder- 978

only architecture is implemented with around 10% 979

fewer parameters than encoder-decoder architec- 980

ture. 981

E Detailed Information of Datasets 982

First of all, the language code in our de- 983

scriptions follows ISO 639-1, referring to 984

https://www.loc.gov/standards/iso639-2/ 985

php/code_list.php. We list the detailed infor- 986

mation of TED-19 in Table 4, and of OPUS-100 in 987

Table 5. Although Yang et al. (2021) has removed 988

the repetition in the original version of OPUS-100 989

(Zhang et al., 2020a), we further remove noisy 990

instances that only contain nonsense characters. 991

Moreover, the zero-shot translation of OPUS-100 992

in this work only involves six languages, including 993

ar, nl, de, zh, ru, and fr. Finally, we employ 994

SentencePiece (Kudo and Richardson, 2018) to 995

get the vocabulary for training, specifically, the 996

vocabulary size is set to 50,000 of TED-19 and 997

64,000 of OPUS-100. 998

F Detailed Model Settings 999

We implement models by Fairseq (Ott et al., 2019), 1000

which is an open-source toolkit. First of all, in 1001

this work, we apply independent sinusoidal po- 1002

sitional embeddings for source tokens and target 1003

tokens (Vaswani et al., 2017) for the input of the 1004

decoder-only architecture. In the case of training 1005

from scratch on TED-19, we set the learning rate 1006

to 0.0005 and the model is trained for 30 epochs on 1007

eight Nvidia V100 GPUs with a batch size of 4,000 1008

per GPU to ensure full convergence. Moreover, we 1009

set the head number of the attention mechanism 1010

to 8, the dropout rate to 0.1, label smoothing to 1011

0.1, and weight decay to 0.0001. We also employ 1012

Adam (Kingma and Ba, 2017) as our optimizer and 1013

set share-all-embeddings of Fairseq. We evaluate 1014

by averaging the top-5 best checkpoints selected 1015

based on validation loss. In the case of training 1016

from scratch on OPUS-100 with N =12, we set the 1017

number of gradient accumulation steps to 16 to in- 1018
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d d1ffn d2ffn en→ →en zero

TDO+adapt. 512 2048 2048 25.61 28.52 14.51

TDO

544 2048 2048 25.55 28.28 14.22
512 2432 2432 25.51 28.51 14.31
512 2048 2816 25.32 27.98 13.89
512 2816 2048 25.56 28.95 14.01

Table 3: Averaged BLEU scores of models with TDO
architecture trained on TED-19. Abbreviations in this
table follow Table 1. In addition, d1ffn is the inner size
of FFN in the first stage, and d2ffn is in the second stage.
The best score is in bold.

crease the batch size and train for 50,000 steps with1019

a learning rate of 0.0007. For another setting of1020

OPUS-100 with N =6, the d is increased to 1024,1021

and the head number of the attention mechanism1022

is 16. Therefore, we additionally set an attention1023

dropout to 0.05. Moreover, we reduce the batch1024

size per GPU to 2,000, set the number of gradient1025

accumulation steps to 32, and train for 100,0001026

steps due to GPU memory constraints. For two1027

cases of OPUS-100, we test the checkpoint with1028

the best validation loss. Additionally, in training1029

on OPUS-100, we set encoder-normalize-before1030

and decoder-normalize-before in Fairseq and re-1031

duce the weight decay to 0, which lead to a quick1032

convergence in a complex data condition (Liu et al.,1033

2020; Fan et al., 2020; Team et al., 2022).1034

In the model settings of fine-tuning, M2M-418M1035

has 12 layers for encoder and decoder, respectively.1036

d of M2M-418M is 1024, the inner size of FFN1037

is 4096, the label smoothing is 0.2, the dropout is1038

0.3, the attention dropout is 0.05, and the batch size1039

and the learning rate keep the settings of training1040

from scratch. However, we reduce the batch size to1041

2000 and set gradient accumulation to 2 for NLLB-1042

600M because of the GPU memory constraints.1043

In M2M-1.2B, our experiments are conducted on1044

four NVIDIA A6000 GPUs, and we set gradient1045

accumulation to 2. We also reduce the learning rate1046

to 0.0002 and the number of training epochs to 101047

because of more parameters.1048

G Experiments with Different1049

Parameters1050

To verify the improvement brought by Adaption1051

modules is not because of increased parameters,1052

we run experiments with models that have different1053

dimensions. We can find that models, which are1054

shown in Table 3, have similar parameters. There-1055

fore, the result of this table can prove our statement.1056
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Code Language Family Sub-Family #Train Code Language Family Sub-Family #Train

es Spanish Indo-European Romance 196026 ar Arabic Afro-Asiatic Semitic 214111
fr French Indo-European Romance 192304 he Hebrew Afro-Asiatic Semitic 211819
ro Romanian Indo-European Romance 180484 ru Russian Indo-European Slavic 208458
nl Dutch Indo-European Germanic 183767 ko Korean Koreanic 205640
de German Indo-European Germanic 167888 it Italian Indo-European Romance 204503
pl Polish Indo-European Slavic 176169 ja Japanese Japonic 204090
hr Croatian Indo-European Slavic 122091 zh Chinese Sino-Tibetan Sinitic 199855
cs Czech Indo-European Slavic 103093 tr Turkish Turkic 182470
fa Persian Indo-European Iranian 150965 vi Vietnamese Austroasiatic Vietic 171995

Table 4: Detailed information of TED-19 datasets. #Train indicates the number of training instances.

Code Language Family Sub-Family #Train Code Language Family Sub-Family #Train

fa Persian Indo-European Iranian 934413 yi Yiddish Indo-European Romance 1865
bn Bengali Indo-European Iranian 724719 ga Irish Indo-European Celtic 187967
ur Urdu Indo-European Iranian 724226 br Breton Indo-European Celtic 96951
si Sinhala Indo-European Iranian 613702 cy Welsh Indo-European Celtic 92615
hi Hindi Indo-European Iranian 374472 gd Scottish Gaelic Indo-European Celtic 11104
tg Tajik Indo-European Iranian 183216 lt Lithuanian Indo-European Baltic 797693
ne Nepali Indo-European Iranian 144520 lv Latvian Indo-European Baltic 779972
gu Gujarati Indo-European Iranian 108564 tr Turkish Turkic 918838
ku Kurdish Indo-European Iranian 107110 az Azerbaijani Turkic 237533
pa Punjabi Indo-European Iranian 72160 uz Uzbek Turkic 148319
as Assamese Indo-European Iranian 58009 tt Tatar Turkic 97746
mr Marathi Indo-European Iranian 26117 ug Uyghur Turkic 71241
ps Pashto Indo-European Iranian 14254 kk Kazakh Turkic 62227
or Oriya Indo-European Iranian 13410 ky Kyrgyz Turkic 12724
de German Indo-European Germanic 968252 tk Turkmen Turkic 98
nl Dutch Indo-European Germanic 936611 ar Arabic Afro-Asiatic Semitic 959868
sv Swedish Indo-European Germanic 916259 he Hebrew Afro-Asiatic Semitic 913493
no Norwegian Indo-European Germanic 914187 mt Maltese Afro-Asiatic Semitic 672134
da Danish Indo-European Germanic 911156 ha Hausa Afro-Asiatic Chadic 91869
is Icelandic Indo-European Germanic 813820 am Amharic Afro-Asiatic Semitic 64369
nn Norwegian Nynorsk Indo-European Germanic 172187 el Greek Indo-European Hellenic 932811
af Afrikaans Indo-European Germanic 146600 sq Albanian Indo-European Albanian 855095
nb Norwegian Bokmål Indo-European Germanic 128374 ml Malayalam Dravidian 633920
fy Frisian Indo-European Germanic 42372 ta Tamil Dravidian 184699
li Limburgish Indo-European Germanic 3331 te Telugu Dravidian 37792
ru Russian Indo-European Slavic 951611 kn Kannada Dravidian 13777
sr Serbian Indo-European Slavic 935342 xh Xhosa Niger-Congo Bantu 231708
hr Croatian Indo-European Slavic 927541 rw Kinyarwanda Niger-Congo Bantu 62159
pl Polish Indo-European Slavic 926940 zu Zulu Niger-Congo Bantu 6834
bg Bulgarian Indo-European Slavic 925647 ig Igbo Niger-Congo Volta-Niger 691
cs Czech Indo-European Slavic 924282 fi Finnish Uralic Finnic 938601
bs Bosnian Indo-European Slavic 921232 et Estonian Uralic Finnic 893074
sl Slovenian Indo-European Slavic 912248 hu Hungarian Uralic Finno-Ugric 920592

mk Macedonian Indo-European Slavic 881176 se Northern Sami Uralic Sami 32289
sk Slovak Indo-European Slavic 878540 vi Vietnamese Austroasiatic Vietic 883581
uk Ukrainian Indo-European Slavic 759826 id Indonesian Austronesian Malayo-Polynesian 881198
sh Serbo-Croatian Indo-European Slavic 209379 ms Malay Austronesian Malayo-Polynesian 819431
be Belarusian Indo-European Slavic 61862 mg Malagasy Austronesian Malayo-Polynesian 292520
fr French Indo-European Romance 963140 km Khmer Austroasiatic Khmeric 101294
es Spanish Indo-European Romance 929677 zh Chinese Sino-Tibetan Sinitic 954358
it Italian Indo-European Romance 928427 my Burmese Sino-Tibetan Lolo-Burmese 5326
pt Portuguese Indo-European Romance 919755 th Thai Kra-Dai Tai 892433
ro Romanian Indo-European Romance 913451 ko Korean Koreanic 892064
ca Catalan Indo-European Romance 633826 ja Japanese Japonic 886850
gl Galician Indo-European Romance 353596 eu Basque Language isolate 786645
wa Walloon Indo-European Romance 48894 eo Esperanto Constructed 257560
oc Occitan Indo-European Romance 27773 ka Georgian Kartvelian 240335

Table 5: Detailed information of OPUS-100 datasets. #Train indicates the number of training instances.
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