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Illumination Distribution Prior for Low-light Image Enhancement
Anonymous Authors

ABSTRACT
In this paper, we propose a simple but effective illumination dis-
tribution prior (IDP) for images to illuminate the darkness. The
illumination distribution prior is the product of a statistical ap-
proach to low-light images. It is based on a key factor - the mean
value and standard deviation of images are positively correlated
with the illumination. Using IDP in combination with the dual-
domain feature fusion network (DFFN), we can obtain images that
are more consistent with the ground truth distribution. DFFN in-
serts the discrete wavelet transform (DWT) into the transformer
architecture, aiming to recover the detailed texture of the image
through local high-frequency information and global spatial infor-
mation. We have conducted extensive experiments on five widely
used low-light image enhancement datasets and the experimental
results show the superior performance of our proposed network
(IDP-Net) compared to other state-of-the-art methods.

CCS CONCEPTS
• Computing methodologies→ Computer vision problems.

KEYWORDS
Low-light image enhancement, Illumination distribution prior, Lo-
cal high-frequency information, Global spatial information

1 INTRODUCTION
Various types of imaging devices provide a convenient means to
capture exquisite images of our daily lives. However, under the
constraints of low-light conditions, the acquired images usually
have undesirable conditions such as low contrast, color distortion
and noise amplification, which greatly affects the visual experience
of the images and challenges advanced computer vision tasks such
as face recognition [63] and object detection [37] at night. Thus, low-
light image enhancement aims to recover the information hidden
in low-light images, such as illumination and texture, and thus
improve the quality of the images.

In light of this, numerous researchers have proposed various
methods for low-light image enhancement. For plain methods, his-
togram equalization [42] and gamma correction [19] enhance the
contrast of the image but often produce unwanted artefacts. Also,
traditional methods are based on Retinex theory [2, 25], which
decomposes the image into two components, reflectance and illu-
mination, and recovers them separately. However, the enhanced
image appears with severe noise and local color distortion.
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(a) Illumination Distribution

(b) Low-light (c) SNR-Net[52] (d) FLIGHT-Net[35]

(e) Retinexformer[4] (f) Ours (g) Ground Truth

Figure 1: Compared to state-of-the-art architectures, our
method is closer to the ground truth distribution, where
(a) represents the distribution of the different methods and
(b)-(g) represent the corresponding visualization results.

With the rapid development of deep learning, convolutional
neural networks are widely used in the field of low-light image en-
hancement and have made significant progress. These CNN-based
algorithms are usually divided into two categories: deep retinex-
based decomposition and end-to-end mapping. Deep retinex decom-
position [49, 54] enhances low-light images through illumination
map estimation or reflectance recovery. End-to-end mapping [12]
learns the mapping of low-light images to ground truth through
codecs or convolutional blocks. However, these methods tend to
ignore the issue of image illumination distribution, which leads to
the probability of local overexposure during the recovery process,
and even undesired conditions such as color distortion and noise
amplification.

In addition, some existingmethods cannot extract high frequency
information well. Fan 𝑒𝑡 𝑎𝑙 . [10] used discrete wavelet transform to
obtain the output features of wavelet attention feature information.
However, they did not distinguish between high-frequency and
low-frequency information when extracting wavelet domain fea-
tures, resulting in not highlighting the features of high-frequency
information. Besides, discrete wavelet transform focuses more on

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 2: We statistics the mean and standard deviation of a
total of 7939 pairs of images for low-light images and ground
truth on datasets for low-light image enhancement (LOL-v1
[49], LOL-v2-real [54], LOL-v2-syn [54], LSRW-Nikon [16],
and LSRW-Huawei [16]). (a) and (b) show that themean value
and standard deviation are lower for low-light images and
higher for ground truth.

the characterization of local information and cannot effectively
capture global features.

Our solution for low-light image enhancement. Inspired by
related work of layer normalization [1, 23, 41, 55], the magnitude of
the mean and standard deviation of an image is correlated with the
illumination. Based on this, we propose illumination distribution
prior to remove darkness from low-light images. The illumination
distribution prior is based on the statistics of the mean value and
standard deviation of the images. As shown in Fig. 2 (a) and (b),
we observe that the mean value and standard deviation of the low-
light images are lower, while those of the ground truth are higher.
Thus, the illumination distributions of low-light images and ground
truth are different. Notably, Fig. 3 (a) shows that the illumination
distributions are not the same for different sub-regions (same scale)
of the same image. Fig. 3 (b) shows that the illumination distribu-
tions of sub-regions (similar backgrounds) with different scale sizes
are also different. Considering the above, the illumination distribu-
tion prior restores the illumination by migrating the illumination
distributions at multiple scales, which is beneficial for generating
images that are closer to the ground truth distribution. Also, using
discrete wavelet transform in combination with the transformer
architecture, our proposed dual-domain feature fusion network
(DFFN) is able to capture diverse dual-domain features to recover
the detail texture. Specifically, DFFN is a U-shaped [40] network
consisting of 𝑐𝑜𝑛𝑣3 × 3 and dual-domain feature fusion module
(DFFM). DFFM ingeniously integrates the discrete wavelet trans-
form into the transformer architecture, enhancing the recovery
of intricate textures. This integration facilitates the collaborative
extraction of information from both the local frequency domain
and the global spatial domain, thereby optimizing the preservation
and reconstruction of image details.

Figure 3: (a) selects two groups of images with the same sub-
region size but with different backgrounds to show that dif-
ferent sub-regions have different illumination distributions.
Note that “Low-light-x”, “Ours-x”, and “Ground Truth-x” (x
= 1, 2) represent low-light images, our method, and ground
truth, respectively. (b) selects three groups of images with dif-
ferent sub-region sizes but with similar backgrounds to show
that there are differences in the illumination distributions of
sub-regions at different scales. Note that “Ours-y”, “Ground
Truth-y” (y=1, 2, 3) represent our method and ground truth,
respectively. Significantly, (a) and (b) also indicate that our
method is closer to the distribution of ground truth.

Extensive experiments were conducted on five widely used low-
light image enhancement datasets. The experimental results show
that the enhanced images of our method are closer to the distri-
bution form of ground truth and can adapt to different datasets
and environments. In addition, the performance of our method
consistently outperforms other state-of-the-art methods.

Overall, our contributions can be summarized as follows:

• We propose a novel illumination distribution prior for low-
light image enhancement by constructing the multi-scale
illumination distribution migration.

• We design a dual-domain feature fusion network, which
integrates the local frequency-domain information of the
discrete wavelet transform and the global spatial information
of the transformer architecture, and utilises the rich dual-
domain information for fine-grained restoration of texture
structure and noise removal.

• Compared to other state-of-the-art competitors, quantitative
and qualitative experiments validate that our architecture
outperforms the SOTA method on five datasets.
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Figure 4: Our motivation about IDP. In (a), we swap the mean value and standard deviation of each channel of a set of images
with the same background but different illumination conditions (“Low-light” and “Ground Truth”) to obtain the swapped
results “Reconstructed Low-light” and “Reconstructed Ground Truth”. The mean value and standard deviation of the low-light
image are scaled by a constant value 𝑝 , which can generate “Reconstructed High-light”. From visual perspective, the mean
value and standard deviation represent the magnitude of the image brightness. In (b), we use grayscale histogram to represent
the illumination distributions of “Low-light”, “Reconstructed Low-light”, “Ground Truth”, “Reconstructed Ground Truth”, and
“Reconstructed High-light”. The distributions of “Reconstructed Ground Truth” and “Reconstructed High-light” are close to
“Ground Truth”, while the distribution of “Reconstructed Low-light” is close to “Low-light”.

2 RELATEDWORK
2.1 Low-Light Image Enhancement
Histogram equalization [20, 27] and gamma correction [5] are used
to improve image contrast by enlarging the dynamic range, which
ignored the structural information of the images and usually pro-
duced unwanted artifacts. Traditional methods [29] are based on the
retinex theory to recover reflectance and illumination separately to
obtain enhanced results. Guo 𝑒𝑡 𝑎𝑙 . [15] proposed to improve the
initial illumination maps of low-light images through structural
prior to achieve low-light enhancement. However, these methods
lead to color distortion and noise.

With the development of deep learning, many learning-based
[3, 13, 16, 21, 24, 30, 36, 48, 60, 62] low-light image enhancement
methods have been proposed in recent years. Guo 𝑒𝑡 𝑎𝑙 . [13] de-
signed a new pixel-level and higher-order curve that can be ad-
justed in dynamic range for unsupervised training. Zhang 𝑒𝑡 𝑎𝑙 . [59]
generated more natural and colorful post-enhancement images by
learning the structural textural information and the color distri-
bution information of the images, respectively. Ozcan 𝑒𝑡 𝑎𝑙 . [35]
learned the individual gain coefficients of the illumination maps
from low-light images and multiplied them with the low-light maps
to recover the images. However, thesemethods lack local perception
of regions and remote dependencies, making it difficult to capture
illumination distributions and texture details.

2.2 Prior Knowledge
Prior knowledge [6, 14, 39, 43, 50] can provide unique information
from degraded images to assist in image restoration. He 𝑒𝑡 𝑎𝑙 . [17]

found that most local patches contain some pixels with very low
intensity in at least one color channel, and proposed the dark chan-
nel prior for image haze removal. Jin 𝑒𝑡 𝑎𝑙 . [22] proposed the deep
inconsistency prior to guide RGB-NIR fusion with the help of struc-
tural inconsistency. Based on the powerful feature representation
capability of Masked Autoencoder (MAE), zheng 𝑒𝑡 𝑎𝑙 . [60] pro-
posed MAE-based illumination and noise prior for low-light image
enhancement. Therefore, reasonable use of prior knowledge is nec-
essary.

2.3 Vision Transformer
Vaswani 𝑒𝑡 𝑎𝑙 . [45] first proposed Transformer for processing ma-
chine translation tasks. Later, transformer was widely used in com-
puter vision tasks 𝑒𝑡 𝑎𝑙 . [4, 9, 32, 33, 41, 52] and achieved remarkable
results. Xu 𝑒𝑡 𝑎𝑙 . [52] proposed a signal-to-noise ratio-aware trans-
former and convolutional model for low-light image enhancement.
Cai 𝑒𝑡 𝑎𝑙 . [4] utilized the illumination information to guide the
transformer to establish remote dependencies. However, the trans-
former architecture acquires the single spatial domain information
and does not recover well for some complex textures.

2.4 Frequency Domain Information
In recent years, frequency domain information has received atten-
tion from many researchers and has been effectively verified in
several computer vision fields [10, 11, 18, 31, 44, 51, 57, 61]. For
example, Tian 𝑒𝑡 𝑎𝑙 . [44] constructed a multi-stage image denoising
model using wavelet transform. Liu 𝑒𝑡 𝑎𝑙 . [31] used a wavelet-based
two-branch network for image de-rain. Fu 𝑒𝑡 𝑎𝑙 . [11] designed a
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Figure 5: (a) shows the overall architecture of our method. (b) shows the complete process of IDP. Also, the evolutionary
illuminance distribution process of IDP is illustrated in (b). In particular, we enumerate the detailed process of IDP when k is 2.

DWT branch for image defogging to extract high frequency infor-
mation.

The above methods show that the discrete wavelet transform can
effectively extract high-frequency information from images and
significantly improve the performance of image recovery. There-
fore, we insert the discrete wavelet transform into the transformer
architecture to obtain rich information in both frequency and spa-
tial domains. In this way, our model can utilize the dual-domain
information to effectively recover the detailed texture of the image.

3 METHOD
3.1 Motivation for Illumination Distribution

Prior
Our motivation is shown in Fig. 4. First, given a set of paired “Low-
light” and “Ground Truth” images, we derive the corresponding
mean value and standard deviation. Subsequently, we swap the
mean value and standard deviation for each channel of the “Low-
light” and “Ground Truth”. The swapped results show that the
lighting conditions of both are transformed and the distribution
of the “Reconstructed Ground Truth” is close to “Ground Truth”.
Then, appropriately increasing the magnitude of the mean and
standard deviation of the low-light image, we obtain the brightened
image “Reconstructed High-light” which is close to the illumination
distribution of the “Ground Truth”. Hence, we conclude that by
appropriately increasing the mean value and standard deviation

of the low-light image, not only the illumination can be improved,
but also the distribution of the ground truth is satisfied.

3.2 Darkness Removal Using Illumination
Distribution Prior

Fig. 4 shows that appropriately increasing the mean value and
standard deviation improves the low-light image illumination and
satisfies the ground truth distribution. In addition, we are concerned
about the differences (in Fig. 3 ) in illumination distributions (same
scale, but different sub-regions or different scales, but similar sub-
regions). Therefore, illumination distribution migration is achieved
by increasing the mean value and standard deviation of the low-
light image on sub-regions at different scales. By constructing the
multi-scale illumination distribution migration, the distribution of
the enhanced image on the sub-regions of different scales can be
made closer to the distribution of ground truth, further reducing the
error generated during the illumination migration process. We refer
to the process of the multi-scale illumination distribution migration
as illumination distribution prior (IDP).

To achieve the goal of illumination distribution prior removing
the darkness, we repeatedly divide the input 𝑋𝑙𝑜𝑤 ∈ R𝐻×𝑊 ×𝐶

into 𝑘2 sub-regions of the same size, where the sub-region size is
𝐻
𝑘
× 𝑊

𝑘
(𝑘 = 1, 2, 4, 8, 16) . Then, on each sub-region, we perform

themigration of the illumination distribution separately. Noticeably,
we divide 𝑋𝑙𝑜𝑤 five times.
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Figure 6: Dual-domain Feature Fusion Module on the left and Dual Attention Unit (DAU) on the right. Notably, DWT and IWT
represent the discrete wavelet transform and inverse wavelet transform.

Specifically, we derive the mean value 𝜇𝑖
𝑙𝑜𝑤

∈ R𝐶×1 and stan-
dard deviation 𝜎𝑖

𝑙𝑜𝑤
∈ R𝐶×1 for each channel of each sub-region.

Then, to estimate the transform mapping of the mean value and
standard deviation, we set two learnable parameters𝑊 𝑖

𝜇 ,𝑊 𝑖
𝜎 ∈ R1

as the recovered weights of 𝜇𝑖
𝑙𝑜𝑤

and 𝜎𝑖
𝑙𝑜𝑤

, respectively, and two
learnable parameters 𝐵𝑖𝜇 , 𝐵𝑖𝜎 ∈ R1 as the biases, respectively.The
process of transformation is expressed as:

𝜇𝑖
ℎ𝑖𝑔ℎ

=𝑊 𝑖
𝜇𝜇

𝑖
𝑙𝑜𝑤

+ 𝐵𝑖𝜇 , (1)

𝜎𝑖
ℎ𝑖𝑔ℎ

=𝑊 𝑖
𝜎𝜎

𝑖
𝑙𝑜𝑤

+ 𝐵𝑖𝜎 , (2)

where 𝑖 represents the channel (𝑖 = 𝑅,𝐺, 𝐵) . 𝜇𝑖
ℎ𝑖𝑔ℎ

∈ R𝐶×1 and

𝜎𝑖
ℎ𝑖𝑔ℎ

∈ R𝐶×1 represent the mean value and standard deviation of
the corresponding channel of the enhanced image, respectively.

Then 𝜇𝑖
𝑙𝑜𝑤

is subtracted from channel 𝑖 of each sub-region
to remove the effect of the original low-light illumination. The
illumination trend of the enhanced image is then constructed by
multiplying 𝜎𝑖

ℎ𝑖𝑔ℎ
and removing 𝜎𝑖

𝑙𝑜𝑤
and adding 𝜇𝑖

ℎ𝑖𝑔ℎ
to increase

the illumination. In this way, the migration of the illumination
distribution is achieved and can be expressed as:

𝑋
𝐻
𝑘
×𝑊

𝑘 =

𝜎𝑖
ℎ𝑖𝑔ℎ

𝜎𝑖
𝑙𝑜𝑤

(
𝑋 𝑖
𝐶 − 𝜇𝑖

𝑙𝑜𝑤

)
+ 𝜇𝑖

ℎ𝑖𝑔ℎ
, (3)

Using a non-overlapping displacement operation, we recover
the illumination distribution on each sub-region to obtain the illu-
mination distribution of the whole image. The process of obtaining
the illumination distribution of the whole image in a single pass is
denoted as 𝑓

𝐻
𝑘
×𝑊

𝑘 .
Therefore, the output feature 𝑋𝐼𝐷𝑃 ∈ R𝐻×𝑊 ×𝐶 of IDP can be

expressed as:

𝑋𝐼𝐷𝑃 = 𝑓
𝐻
16 ×

𝑊
16

(
𝑓

𝐻
8 ×𝑊

8
(
𝑓

𝐻
4 ×𝑊

4
(
𝑓

𝐻
2 ×𝑊

2
(
𝑓 𝐻×𝑊

))))
, (4)

where 𝑓
𝐻
𝑘
×𝑊

𝑘 ∈ R𝐻×𝑊 ×𝐶 (𝑘 = 1, 2, 4, 8, 16) . Overall, IDP re-
moves the darkness and creates the prerequisites for texture recov-
ery.

3.3 Dual-domain Feature Fusion Network
Network Structure. Dual-domain Feature Fusion Network adopts
a U-shaped [40] structure, which consists of 𝑐𝑜𝑛𝑣3 × 3 and dual-
domain feature fusion module (DFFM). Given an input feature

Figure 7: Wavelet decomposition of low-light (the first row),
ground truth (the second row), and ours (the third row) yields
the frequency sub-bands 𝐹𝐿𝐿 , (𝐹𝐻𝐿 + 𝐹𝐿𝐻 ) and 𝐹𝐻𝐻 . The red
boxes circle the features contained in the high-frequency sub-
bands (zoomed-in viewing is recommended). The results of
the comparison show that our network can acquire the high-
frequency information well and recover the detail texture.

𝑋𝐼𝐷𝑃 ∈ R𝐻×𝑊 ×𝐶 , 𝑋𝐼𝐷𝑃 is mapped into three different scales by
two downsampling. Specifically, 𝑋𝐼𝐷𝑃 is extracted by 𝑐𝑜𝑛𝑣3× 3 to
obtain the feature map. Subsequently, the feature map undergoes
sequential DFFM, 𝑐𝑜𝑛𝑣3 × 3 steps to implement the downsam-
pling operation. where 𝑐𝑜𝑛𝑣3× 3 is used to downscale the features.
Then, the lowest resolution layer features obtained after down-
sampling are upsampled according to the symmetric structure of
downsampling. In addition, we add some extra skip connections in
the architecture for mitigating the loss of information. Finally, we
obtain the enhanced image 𝑋𝑜𝑢𝑡𝑝𝑢𝑡 ∈ R𝐻×𝑊 ×𝐶 .

Discussion for DWT. High-frequency information helps to im-
prove the recovery of image details. DWT-FFC [61] applies the
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discrete wavelet transform to extract wavelet features in the im-
age defogging task, and the sub-bands generated by the discrete
wavelet transform are considered to be of two categories: the
low-frequency sub-band (𝐹𝐿𝐿) and the high-frequency sub-band
(𝐹𝐻𝐿 + 𝐹𝐿𝐻 + 𝐹𝐻𝐻 ) . However, this classification may not be suit-
able for low-light scenes. Fig. 7 shows the features of different fre-
quency sub-bands after discrete wavelet transform decomposition.
We observe that the features of the low-frequency sub-band of the
low-light image (𝐹𝐿𝐿) have low illumination, and the structural fea-
tures of the mixed high and low-frequency sub-band (𝐹𝐻𝐿 + 𝐹𝐿𝐻 )
are relatively clear. However, the features of the high-frequency
sub-band (𝐹𝐻𝐻 ) of the low-light image are almost absent.

Dual-domain Feature Fusion Module. We focus on high fre-
quency information by assigning different weights to sub-bands of
different frequencies. Specifically, we employ the discrete wavelet
transform (DWT) to decompose the input features𝑋𝑖𝑛 ∈ R𝐻×𝑊 ×𝐶

into three categories, low-frequency sub-band (𝐹𝐿𝐿) , mixed high
and low-frequency sub-band (𝐹𝐻𝐿 + 𝐹𝐿𝐻 ) , and high-frequency sub-
band (𝐹𝐻𝐻 ) . Next, the image is illuminated due to the assistance of
the illumination distribution prior. Therefore, we use a 𝑐𝑜𝑛𝑣1× 1 to
extract the features of the low-frequency sub-band (𝐹𝐿𝐿) without
additional illumination processing. As for the mixed high and low-
frequency sub-band (𝐹𝐻𝐿 + 𝐹𝐿𝐻 ) , we used a block consisting of
𝑐𝑜𝑛𝑣3× 3 and global average pooling to extract the high-frequency
information in it and moderate the relatively unimportant low-
frequency information. In particular, we use a 𝐷𝐴𝑈 to emphasize
the important features of the high-frequency sub-band (𝐹𝐻𝐻 ) .
𝐷𝐴𝑈 divides the high-frequency sub-bands into two branches of
spatial and channel dimensions to highlight key feature regions and
channels, Spatial Attention (𝑆𝐴) and Channel Attention (𝐶𝐴) . The
𝑋𝑎𝑡𝑡 ∈ R𝐻×𝑊 ×𝐶 is fed into the 𝐷𝐴𝑈 and the 𝑆𝐴 applies parallel
global average pooling and global maximum pooling to highlight
regions of features along the channel dimension. The spatial atten-
tion map is then generated by a convolutional layer, followed by
multiplication of the mapping normalized by the activation function
by 𝑋𝑎𝑡𝑡 to obtain the output 𝑋𝑆𝐴 ∈ R𝐻×𝑊 ×𝐶 . 𝐶𝐴 applies global
average pooling to extrude 𝑋𝑎𝑡𝑡 into the feature 𝑓0 ∈ R1×1×𝐶 ,
which is passed through the convolutional layer and the activation
function to obtain the weight value 𝑓1 ∈ R1×1×𝐶 . Subsequently
𝑓1 is weighted and scaled by multiplication on 𝑋𝑎𝑡𝑡 to obtain the
final output of the channel attention mapping 𝑋𝐶𝐴 ∈ R𝐻×𝑊 ×𝐶 . At
the end of the 𝐷𝐴𝑈 , the 𝐶𝐴 and 𝑆𝐴 sum the learned rich feature
information and undergo a 𝑐𝑜𝑛𝑣1 × 1 to obtain the emphasized
features of the high-frequency sub-band 𝑋𝐷𝐴𝑈 ∈ R𝐻×𝑊 ×𝐶 . More,
we integrate the weighted wavelet features of the three frequency
sub-bands and apply the inverse wavelet transform (IWT). Finally,
the wavelet transform optimized feature 𝑋𝐷𝑊𝑇 ∈ R𝐻×𝑊 ×𝐶 is
obtained after 𝑐𝑜𝑛𝑣3 × 3 .

Wavelet feature 𝑋𝐷𝑊𝑇 ∈ R𝐻×𝑊 ×𝐶 passed into the multi-head
self-attention part. We chose to remove the illumination informa-
tion in the multi-head self-attention part of Retinexformer [4], tak-
ing into account the positive effect of our illumination distribution
prior on illumination. Firstly, the feature 𝑋𝐷𝑊𝑇 is reshaped into
𝑋 ∈ R𝐻𝑊 ×𝐶 , and then 𝑋 is divided into𝑚 heads:

𝑋 = [𝑋1, 𝑋2, · · ·, 𝑋𝑚] , (5)

where 𝑋𝑛 ∈ R𝐻𝑊 × 𝐶
𝑚 and 𝑛 = 1, 2, · · ·,𝑚. For each header, 𝑋𝑛

is linearly mapped to the query element 𝑄𝑛 ∈ R𝐻𝑊 × 𝐶
𝑚 , the key

element 𝐾𝑛 ∈ R𝐻𝑊 × 𝐶
𝑚 , and the value element 𝑉𝑛 ∈ R𝐻𝑊 × 𝐶

𝑚 as
using a fully connected layer:

Thus, the self-attention of each head can be expressed as:

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 (𝑄𝑛, 𝐾𝑛, 𝑉𝑛) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥
(
𝐾𝑇𝑛𝑄𝑛

𝛼𝑛

)
𝑉𝑛, (6)

where 𝛼𝑛 is a learnable parameter. Next,𝑚 heads are concatenated
to produce the output feature 𝑋𝑓 𝑐 ∈ R𝐻𝑊 ×𝐶 by a fully connected
layer. Finally, we reconstruct 𝑋𝑓 𝑐 to obtain the output feature
𝑋𝑜𝑢𝑡 ∈ R𝐻×𝑊 ×𝐶 of the multi-head self-attention.

4 EXPERIMENT
4.1 Datasets and Implementation Details
Dataset. We evaluate the proposed method on five widely used
datasets for low-light image enhancement: LOL-v1 [49], LOL-v2-
real [54], LOL-v2-syn [54], LSRW-Nikon [16], and LSRW-Huawei
[16]. The LOL dataset consists of two versions: LOL-v1 and LOL-v2.
LOL-v1 and LOL-v2-real are collected from real-world scenarios.
LOL-v1 contains 485 pairs of low-light/ground truth images for
training and 15 pairs for testing. LOL-v2-real contains 689 pairs for
training and 100 pairs for testing. LOLv2-syn is generated by syn-
thesizing low-light images from RAW images based on the analysis
of illumination distributions. It includes 900 pairs for training and
100 pairs for testing. LSRW-Huawei and LSRW-Nikon are captured
using Huawei P40 Pro and Nikon D7500 cameras, respectively, in
real-world scenes. The training and testing sets of LSRW-Huawei
and LSRW-Nikon are divided in a ratio of 3150:30 and 2450:20,
respectively.
ImplementationDetails.We implement the ourmodel in PyTorch
[38] and train it on an NVIDIA 3090 GPU. The model is trained
for 2.5 × 105 iterations using the Adam [26] optimizer with the
momentum 𝛽1 = 0.9 and 𝛽2 = 0.999. Additionally, cosine annealing
scheme [34] is employed to adjust the learning rate of model during
training. The learning rate is initially set to 2.0×10−4 and gradually
decreased to 1.0 × 10−6 . To improve experimental performance,
data augmentation is applied by randomly rotating and flipping
the images during training. Furthermore, the training samples are
cropped into patches of size 128× 128 , and the batch size is set to 8.
For the loss function, we choose the L1 loss function to constrain
the minimum difference between the output images of our method
and the ground truth, which can be expressed as:

𝐿𝑙𝑜𝑠𝑠 =
1
𝑁

𝑁∑︁
𝑖=1

𝑋𝑔𝑡 − 𝑋𝑜𝑢𝑡𝑝𝑢𝑡 1, (7)

where 𝑁 represents the number of samples for training, and ∥·∥1
denotes the L1 norm.

4.2 Comparison with State-Of-The-Arts
In this paper, we compare our method with the state-of-the-art low-
light image enhancement methods in recent years, including SID
[7], KinD [58], LPNet [28], Band [53], IPT [8], Sparse [54], HDMNet
[30], MIRNet [56], SNR-Net [52], FourLLIE [46], FLIGHT-Net [35],
Retinexformer [4].
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Table 1: Quantitative comparison on the LOL-v1 [49], LOL-v2-real [54], LOL-v2-syn [54], LSRW-Huawei [16], and LSRW-Nikon
[16]. Boldface indicates the best results, the second-best results are underlined.

LOL-v1 LOL-v2-real LOL-v2-syn LSRW-Huawei LSRW-Nikon
Methods PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

SID [7] 14.35 0.436 13.24 0.442 15.04 0.610 13.81 0.447 13.26 0.384
KinD [58] 20.86 0.790 14.74 0.641 13.29 0.578 16.58 0.569 11.52 0.383
LPNet [28] 21.46 0.802 17.80 0.792 19.51 0.846 15.79 0.546 14.61 0.375
Band [53] 20.13 0.830 20.29 0.831 23.22 0.927 16.63 0.574 16.14 0.443
IPT [8] 16.27 0.504 19.80 0.813 18.30 0.811 18.12 0.517 15.08 0.380

Sparse [54] 17.20 0.640 20.06 0.816 22.05 0.905 17.34 0.542 14.73 0.396
HDMNet [30] 23.45 0.852 18.55 0.713 20.54 0.854 20.81 0.607 16.65 0.487
MIRNet [56] 24.14 0.830 20.02 0.820 21.94 0.876 19.98 0.609 17.10 0.502
SNR-Net [52] 24.61 0.842 21.48 0.849 24.14 0.928 20.67 0.591 17.54 0.482
FourLLIE [46] 24.15 0.840 22.34 0.847 24.65 0.919 21.30 0.622 17.82 0.504

FLIGHT-Net [35] 24.96 0.850 21.71 0.834 24.92 0.930 20.65 0.623 16.97 0.471
Retinexformer [4] 25.16 0.845 22.80 0.840 25.67 0.930 21.37 0.631 18.06 0.517

Ours 25.78 0.852 23.56 0.853 26.27 0.938 22.89 0.644 19.12 0.539

(a) Low-light (b) SNR-Net [52] (c) FourLLIE [46] (d) FLIGHT-Net [35] (e) Retinexformer [4] (f) Ours (g) Ground Truth

Figure 8: Qualitative comparison on LOL-v1 [49], LOL-v2-real [54], and LOL-v2-syn [54] (top to bottom). Our method is closer
to the illumination distributions of ground truth.

Quantitative comparison. We use peak signal-to-noise ratio
(PSNR) and structural similarity (SSIM) [47] as evaluation met-
rics. In general, the higher PSNR and higher SSIM indicate that the
quality of the generated image is better and more similar to ground
truth. It is worth noting that we either obtain the values from the
respective authoritatively published papers or run the respective
publicly released codes to obtain these values.

Table 1 shows the comparison of LOL-v1, LOL-v2-real, LOL-
v2-syn, LSRW-Huawei and LSRW-Nikon. From the quantitative
results, our method significantly outperforms the comparative mod-
els for low-light image enhancement in terms of PSNR and SSIM,
demonstrating the advantages of our proposed method. In partic-
ular, the higher SSIM indicates more high-frequency information
and structure in the results. Undoubtedly, our method retains the
high-frequency information well. Notably, compared to the recent
state-of-the-art method Retinexformer, our method achieves im-
provements of 0.62, 0.76, 0.6, 1.52, and 1.06 dB on five datasets,

respectively. Significantly, our method is closer to the illumination
distribution of ground truth.
Qualitative comparison.We give the qualitative comparison of
LOL-v1, LOL-v2-real and LOL-v2-syn in Fig. 8. Previous methods
on the LOL-v1 dataset either lost color information (like SNR-Net )
or have low illumination in local sub-regions (like FourLLIE and
FLIGHT-Net).The visualization results of the LOL-v2-real dataset
show that previous methods cannot effectively suppress noise (like
SNR -Net and FLIGHT-Net).The visualization results of the LOL-
v2-syn dataset show that ignoring the illumination information
(like FLIGHT-Net) results in image distortion. However, paying too
much attention to the illumination information (like Retinexformer)
results in an overly bright image. In contrast, our method shows
higher contrast, more accurate illumination distribution and more
detailed texture structure to achieve the best visual effect.

Fig. 9 shows the qualitative comparison of LSRW-Huawei and
LSRW-Nikon, respectively. On the LSRW-Huawei dataset, previous
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(a) Low-light (b) SNR-Net[52] (c) FourLLIE [46] (d) FLIGHT-Net[35] (e) Retinexformer [4] (f) Ours (g) Ground Truth

Figure 9: Qualitative comparison on LSRW-Huawei [16] (top) and LSRW-Nikon [16] (bottom). Our method recovers detailed
textures better.

Table 2: Results of the ablation study. The best results are boldfaced and the second-best ones are underlined.

LOL-v1 LOL-v2-real LOL-v2-syn LSRW-Huawei LSRW-Nikon
Methods PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Ours w/o DFFN 21.28 0.786 19.96 0.784 21.89 0.879 18.76 0.548 16.89 0.461
Ours w/o Transformer 22.86 0.804 21.78 0.823 24.74 0.923 20.93 0.619 17.86 0.503

Ours w/o DWT 23.17 0.821 21.41 0.817 24.96 0.925 19.98 0.594 17.14 0.481
Ours w/o IDP 23.05 0.818 21.62 0.821 24.31 0.918 20.61 0.607 17.35 0.499

Ours 25.78 0.852 23.56 0.853 26.27 0.938 22.89 0.644 19.12 0.539

methods either produce blurred images (like SNR-Net), fail to re-
cover detailed textures (like FourLLIE), or lost illumination informa-
tion (like FLIGHT-Net). On the LSRW-Nikon dataset, FLIGHT-Net
and Retinexformer cause color distortion and noise amplification.
Compared with other methods, our method is closer to the ground
truth distribution and represents clearly for some complex textures.

4.3 Ablation Study
In order to verify the rationality of the module setup in our network
architecture, we remove different components of the architecture
to perform ablation experiments. 1) “Ours w/o DFFN” removes the
Dual-domain Feature Fusion Network. 2) “Ours w/o Transformer”
removes the architecture of transformer in the Dual-domain Fea-
ture Fusion Network. 3) “Ours w/o DWT” removes the role of the
discrete wavelet transform in the Dual-domain Feature Fusion Net-
work. 4) “Ours w/o IDP” removes the Illumination Distribution
Prior.Table 2 shows the results of the ablation studies for all five
datasets.

“Ours w/o DFFN” demonstrates that we can still obtain images
with good illumination conditions only in the presence of an illumi-
nation distribution prior. However, for some complex textures, full
recovery cannot be obtained. “Ours w/o Transformer” shows that
with the illumination distribution prior and the discrete wavelet
transform, we not only obtain images with good illumination, but
also extract local high-frequency information to maintain struc-
tural consistency. Compared with “Ours”, “Ours w/o Transformer”
ignores the importance of global spatial information. “Ours w/o
DWT” shows that the transformer architecture can facilitate the re-
covery of complex textures by capturing global spatial information
on top of the illumination distribution to achieve illumination. How-
ever, “Ours w/o DWT” may ignore the effect of local signals. To be

precise, the perturbed local signals interfere with the performance
of the transformer to some extent. “Ours w/o IDP” shows that only
with the dual-domain feature fusion network, although we can
obtain well-performing images, we lack the attention to the illu-
mination information, and the obtained images possess uncertain
illumination conditions.

The above analyses demonstrate the limitations of single-domain
information in recovering detailed textures, thus suggesting that
dual-domain information facilitates feature recovery. Illumination
distribution prior guides accurately when recovering image illumi-
nation. Overall, our full setup shows the highest PSNR and SSIM
among all ablation settings.

5 CONCLUSION
In this paper, we have proposed a simple and efficient prior, called
illumination distribution prior, for illuminating the darkness of
low-light images. The illumination distribution prior is based on
the statistics of low-light images and ground truth and the positive
correlation of the mean value and standard deviation of the images
with the illumination. By combining the illumination distribution
prior with the dual-domain information fusion network, we are
able to obtain images that are more consistent with the ground
truth distribution. The Dual-domain Feature Fusion Network, by
virtue of inserting the discrete wavelet transform into the trans-
former architecture, skillfully extracts both local high-frequency
information and global spatial information to facilitate the recovery
of image detail texture. Extensive experiments on five low-light
image enhancement datasets show that our network architecture
has state-of-the-art performance. In the future, we will explore the
application of illumination distribution prior in other computer
vision fields.
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