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Abstract
We present Banyan, a model that efficiently learns
semantic representations by leveraging explicit
hierarchical structure. While transformers ex-
cel at scale, they struggle in low-resource set-
tings. Conversely recent structured models have
shown promise as efficient learners, but lack per-
formance. Banyan bridges this gap with two key
innovations: an entangled hierarchical tree struc-
ture and diagonalised message passing, enabling
it to outperform larger transformer models with
just 14 non-embedding parameters. It excels in
low-resource settings, offering a viable alternative
for under-represented languages and highlighting
its potential for efficient, interpretable NLP in
resource-constrained environments.

1. Introduction
Semantic representations are foundational for various NLP
applications, such as retrieval-augmented generation (RAG)
(Lewis et al., 2020), question answering, and summarisa-
tion (Abdalla et al., 2023; Wang et al., 2022). They are
also crucial for clustering and organising textual data when
labelled training data is unavailable. Typically, such repre-
sentations are generated by large-scale transformer models
(Vaswani et al., 2017); highly effective but needing substan-
tial amounts of data and computational resources to train.

An alternative approach draws inspiration from lin-
guistics and cognitive science, incorporating structured
compositions—a principle that posits that understanding
the semantics of a whole requires knowing the meanings
of its parts and the structural rules that determine how they
assemble (Chomsky, 1956; Crain & Nakayama, 1987; Pal-
lier et al., 2011; de Marneffe et al., 2006). This principle is
highly efficient because novel utterances can be decomposed
into familiar components using systematic rules, minimis-
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ing the need to store individual meanings. It allows humans
to learn efficiently from relatively little data and enables
effective and efficient learners (Lake et al., 2016; Ito et al.,
2022; Wiedemer et al., 2023).

To incorporate such inductive biases into models, the tradi-
tional information flow within neural networks needs alter-
ing. Instead of relying on implicit processing alone, models
must learn representations for atomic components and an
explicit computation graph that dictates how these compo-
nents combine. Additionally, models must learn functions
to govern information flow through this graph. Such ap-
proaches have demonstrated improved language modelling
perplexity at cognitively plausible scales (Hu et al., 2021;
2022), better systematic generalisation (Sartran et al., 2022;
Murty et al., 2023), and, especially relevant here, enhanced
efficiency in acquiring semantics (Opper et al., 2023b).

The SELF-STRAE model (Opper et al., 2023b) learns rep-
resentations that explicitly model compositional seman-
tics, and achieves promising performance while requiring
minimal resources, both in terms of data and model size.
It opened the door to exploring more compute-efficient
solutions—particularly valuable for low-resource languages
where scaling is often infeasible. However, while innovative,
it still falls short compared to large-scale pre-trained trans-
formers, even in languages outside standard pre-training
corpora. Here, we introduce BANYAN, a model which signif-
icantly outperforms SELF-STRAE while achieving greater
resource efficiency. Our approach involves modifying the
structural optimisation process to induce an entangled graph
that models global relations between nodes and employs
a message passing mechanism using diagonal functions,
reducing parameters while enhancing expressiveness.

BANYAN, achieves performance comparable to transformer-
based baselines and represents a low-cost, viable alterna-
tive to transformers for producing representations in low-
resource languages, as measured by semantic textual similar-
ity (STS) tasks. By leveraging cognitively inspired inductive
biases, our work enables semantic representation learning
that rivals or surpasses large-scale pre-trained LLMs—using
only 14 non-embedding parameters. Our model, BANYAN,
offers a new direction for efficient and effective semantic
understanding in resource-constrained environments. 1

1Code available at: github.com/exlab-research/Banyan
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2. Background and Related Work
Banyan is a graph neural network, specifically a recursive
neural network (RvNN) that learns both structure and repre-
sentations. We unpack these components below.

Recursive Neural Networks (RvNNs): Like regular re-
current neural networks (RNNs), RvNNs process data by
repeatedly applying a function to update their state in se-
quence. However, instead of relying on temporal ordering
(like the sequence of words in a sentence), RvNNs use hierar-
chical structures, often provided as input—most commonly
as a binary tree—and can be applied either bottom-up (from
leaves to root) or top-down (root to leaves). They were
popularised in the deep learning era by Socher et al. (2011;
2013), inspiring many successor models that vary in how
they define the recursive function, including Tree-LSTMs
(Tai et al., 2015) and IORNN (Le & Zuidema, 2014).

Learning Structure: RvNNs often require structural input,
which limits their flexibility since this structure may not
always be available or easily obtainable. To address this, re-
searchers have developed methods to induce structure within
the model during recursive computation; using differentiable
chart parsing (Drozdov et al., 2019; 2020; Hu et al., 2021;
2022), beam search (Ray Chowdhury & Caragea, 2023),
continuous relaxation (Chowdhury & Caragea, 2021; Sou-
los et al., 2024), and reinforcement learning (Havrylov et al.,
2019). However, these methods can struggle with memory
issues and require careful tuning of hyperparameters. Here,
we adopt a method from Opper et al. (2023b) that uses rep-
resentation similarity to determine how nodes should be
merged during computation, which is both computationally
efficient and surprisingly effective.

Semantic Representations of Text: Systems like
Word2Vec (Mikolov et al., 2013) and GloVe (Pennington
et al., 2014) use the distributional hypothesis (Harris, 1954)
to model word semantics, which posits that words are de-
fined by the context in which they appear. To learn represen-
tations, these models use a fixed context window and predict
a missing word in a sequence. While initially effective, this
approach is limited because representations for higher level
objects (i.e. phrases, sentences etc.) are computed by sim-
ply averaging word embeddings. However, some notable
follow on works attempted to improve upon this. Arora et al.
(2017); Ethayarajh (2018) introduce a more sophisticated
form of taking an average over word embeddings by using
SVD, while Rücklé et al. (2018) use the power mean. These
approaches yielded improvements, but relied on represen-
tations pre-trained at scale which limited their applicability
to specialised domains or low resource languages. Wieting
et al. (2021) attempt to refine the sentence representation
through the use of paraphrase corpora, looking to increase
alignment between language pairs, again improving perfor-
mance, but requiring large scale parallel corpora. Finally,

Pagliardini et al. (2017) realised that if the average of the
embeddings was going to be used to create the sentence
representation, it makes sense to optimise it directly. Conse-
quently, they modified the pre-training objective in order to
have the average predict a missing word from a sentence. At
scale this proved tremendously effective. However, despite
offering substantial improvements, all these methods require
scale and more importantly do not tackle the central limita-
tion of word embeddings - the inability to handle changes
in meaning dependent on context.

On the other hand, transformers, through self-attention, are
able to represent contextualised meanings. However, early
encoder-only transformer models produced poor represen-
tations (Reimers & Gurevych, 2019), especially compared
to the more sophisticated approaches based on word em-
beddings. This was largely due to the anisotropy issue
(Godey et al., 2024), which required the development of
techniques using contrastive fine-tuning (Gao et al., 2021)
to finally remedy. These approaches eventually surpassed
word embeddings, and have become the method of choice
for producing semantic representations. However, they still
rely heavily on scale for success, as contrastive refinement is
a final fine-tuning step applied to pre-trained models rather
than directly incorporated within pre-training.

Semantic Representation Learning through Structure:
Transformer embeddings have become more successful than
static word embeddings due to their ability to handle vary-
ing contextual influences. Unlike attention mechanisms in
transformers, which route information based on token rela-
tionships, some approaches use explicit graphs or structures,
such as dependency (Levy & Goldberg, 2014; Vashishth
et al., 2019) or constituency parses (Pham et al., 2015), to
determine the focus of context windows. These models
have the potential to bridge the gap between the efficiency
of word embeddings and the contextualisation offered by
transformers. This is because the discrete structure provides
an input specific routing order which dictates interactions
between atoms and consequently determines their influence
on higher level representations - allowing for more flexibil-
ity than simple averaging. Most related to our work, Opper
et al. (2023b) introduce two models. StrAE, which use con-
stituency parsers to learn sentence-level embeddings along-
side word embeddings, and SELF-STRAE, which learns
its own structure using representations. This latter model,
SELF-STRAE, serves as the foundation for BANYAN and is
described next.

3. Preliminary: Self-StrAE
SELF-STRAE involves three main components that act over
a sequence of tokens w = ⟨wn⟩Nn=1: (a) an algorithm for
merging tokens based on their similarity, (b) functions for
composition and decomposition of embeddings, and (c) an
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Figure 1: Self-StrAE operation. Red lines indicate cosine
similarity. Shared colours imply shared parameters.

objective that leverages both the induced structure and em-
beddings. While full details are available in Opper et al.
(2023b), we provide a brief overview to establish context
for our model development (§ 4).

At a high level, SELF-STRAE learns representations that
define their own structure while being shaped by it. Starting
with an initial embedding matrix ΩΨ, tokens are merged into
single embeddings using a composition function CΦ based
on best cosine similarity (e.g., see Figure 1). This process
reduces the sequence to a single root embedding while cap-
turing semantic relationships. The resulting merge history
forms a binary tree structure, over which the model then
operates in reverse by decomposing embeddings at each
node using a decomposition function DΘ, to reconstruct the
leaf embeddings. Optionally, it can further predict tokens
(ŵn) using a dembedding function ΛΓ. Figure 1 illustrates
the autoencoding process. During training, tokens that are
frequently merged together develop correlated representa-
tions, leading the model to learn meaningful compositional
semantics. This results in embeddings that reflect both their
own structure and the semantic patterns they encode.

More formally, one denotes tokens as the vertices wi ∈ ∆V

in a V -simplex for vocabulary size V , and note that the
models generates two sets of embeddings—one going up
(ē: leaves→ root) and one coming down (e: root→ leaves).
The embeddings are viewed as e ∈ RU×K allowing the
composition and decomposition functions to act indepen-
dently over K channels, and be defined as

CΦ(ēi, ēi+1) = HCAT(ēi, ēi+1) Φ + ϕ, Φ ∈ R2U×U (1)

DΘ(ei) = HSPLIT(ei Θ+ θ), Θ ∈ RU×2U (2)

To learn this model from data, Opper et al. (2023b) derive
two objectives. The first is straightforward cross-entropy
over reconstructed tokens, for sentence w and prediction ŵ
as LCE(w, ŵ) = − 1

N

∑N
n=1 wn · log ŵn. This however,

places little constraint on the intermediate nodes in the hi-
erarchical model. To address this, an alternate structural

contrastive objective is formulated over a batch of sentences.
As up and down trees are structurally identical (modulo
edge reversal), it draws together an embedding and its dual
on the other tree, while pushing away all other embeddings
across the batch, using cosine similarity. Denoting pair-
wise similarity matrix A ∈ RM×M between up and down
embeddings over M nodes in the batch, the objective is:
LCO(ē, e) =

−1
2M

∑M
i=1 log (στ (Ai·)στ (A·i)) with στ (·) the

tempered softmax over the unspecified (·) dimension.

4. Banyan
Given their construction, the upward embeddings are always
locally-contextual: only encapsulating the context of the
span they cover. For example, in Figure 1, the upward
embedding ē for the span “ate doughnuts” is always the
same regardless of context, no matter who did the eating.
In contrast, downward embeddings are always globally-
contextual: necessarily encapsulating surrounding context,
being decomposed from embeddings of larger spans. In our
example, this implies multiple downward embeddings ey,
one for each y ∈ {“Lisa”, “Homer”, . . .}. Learning effective
embeddings requires amortisation over these differences to
ensure meaning resolves over all these contexts.

4.1. From trees to entangled trees

Algorithm 1 BANYAN: Entangled Compose

Input: Global frontier ⟨(sn, en)⟩Nn=1, compose (◦), concat
(⋄), similarity CSIM(e, e′)

1: A ← ⟨(sn, en)⟩Nn=1 ▷ initialise frontier

2: (V, E)← (∅,∅) ▷ initialise graph

3: while ∃i : si ⋄ si+1 ̸∈s V do
4: i⋆ ← argmaxi CSIM(ei, ei+1) ▷ locate closest pair

5: ep = ◦(ei⋆ , ei⋆+1) ▷ compose

6: V ← V ∪ {(si⋆ ⋄ si⋆+1, ep)}
7: E ← E ∪ {p ∼ i⋆, p ∼ (i⋆ + 1)}
8: J ← {j : (sj , sj+1) = (si⋆ , si⋆+1)}

▷ locate all occurrences of this pair

9: A ← A \ {∀j∈J Aj ,Aj+1}
▷ delete occurrences from those locations

10: A ← A∪J {(si⋆ ⋄ si⋆+1, ep)}
▷ insert composition into those locations

return: Graph (V, E)

We wish to have composition embeddings amortise over all
possible contexts, and simultaneously, all decompositions
embeddings to resolve to the same thing. The representation
of an entity “Lisa” should encapsulate everything she could
possibly eat. Simultaneously, the average of everything
she could eat we should get back to “Lisa”. Self-StrAE
does not explicitly model this behaviour in its structure.
Decomposition embeddings of the same entity only interact
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Figure 2: Entangled trees: Example of disjoint trees be-
ing transformed into an entangled tree. Internal functions
(CΦ, DΘ, . . .) are elided to avoid clutter.

when we calculate the loss. On top of this, because the loss
is taken over the batch, they are actually treated as false
negatives to each other. Even though they are terms that
ought not be pushed away, the objective ask them to be.

Our innovation is to address both these issues by formulating
the process in terms of entangled trees—where entangling
describes the transformation of disjoint tree structures into
a conjoined graph structure. An example is shown in Fig-
ure 2. Here, all instances of “night” and “some are born to”
are captured by a single node representing that constituent.
We call our model BANYAN on account of this entangling,
because, like the tree, it can have many roots—consisting
of nodes frequently reused across contexts.

Entangling: Constructing an entangled tree given a set
of disjoint trees is a relatively straightforward process and
is formally specified in Algorithm 1. In contrast to the

some are born to

tobornare

(a) upward composition

some are born to

tobornare

(b) downward decomposition

Figure 3: Upward and downward traversals for a section of
the entangled tree from Figure 2.

agglomerative clustering employed in SELF-STRAE, here
we employ a global frontier spanning all leaf nodes across
the given data. The key differences to the prior methods
are mainly to do with constructing a graph jointly with
progressing the frontier and ensuring that new nodes are
never duplicated, for which we employ a node identity sn
in addition to the node embedding en.

Incorporating context: Following the entangling of trees
described, the model proceeds in a similar vein to SELF-
STRAE, by composing upwards from leaves to roots (multi-
ple roots corresponding to multiple trees), and then decom-
posing downwards back to the leaves. With entangled trees,
while traversing upwards each node is always composed
from the same two children, but on the way back down,
things are different as each separate context for a given node
provides a different downward embedding. This is shown
in Figure 3 focussing on a subgraph of the entangled tree
from Figure 2(right). Note that the node in question (in
blue) corresponds to the span “some are born to”, and has
downward embeddings that incorporate context both from
“endless night” and “sweet delight”. This is exactly as de-
sired, as BANYAN allows explicit aggregation to derive the
downward embedding that resolves over the contexts. For
any upward embedding ē whose span occurs in different
contexts y ∈ Y , the corresponding downward embedding
is derived by simply averaging over the different contextual
down embeddings; i.e., e = 1/|Y|

∑
y e

y .

Effectiveness and efficiency: Beyond the ability to explic-
itly incorporate context across data, entangled trees also
help the contrastive objective by avoiding false negatives
since they do not admit duplicate nodes by construction.
Furthermore, the lack of duplicate nodes also drastically
impacts the memory footprint of the model as one deals
with the set of all nodes rather than counting each instance
as its own node. These effects becomes more pronounced
when entangling a larger set of instances as the likelihood
of false negative and duplicates goes up together.

Practical estimation: Given the advantages of entangled
trees, one would ideally want to construct it over all the
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available data—not practically feasible with the exponential
growth in dataset sizes. To address this, we construct our
model to estimate the given objective by taking steps over
batches of data that are of a more manageable size, noting
that this estimator is unbiased. To see this is the case, note
that entangled trees only affects the downward embeddings
directly, and that batching simply means that the resolved
embedding is an average over samples instead of over all the
data (population)—the sample mean is always an unbiased
estimator of the population mean.

4.2. Simplified Message Passing

Complementary to the development of entangled trees to
incorporate context, we also explore avenues to improve
the message passing with the composition (C) and decom-
position (D) functions. The original formulations (1, 2)
concatenate or split using simple single-layer linear neural
networks. These were found to lead to better representations
than e.g., Tree-LSTM cells, because they forced the model
to conform to the compression order of the structure.

But if all that was required for success is to respect the
compression order, then one could possibly do better with
a simpler solution that exploits diagonalised functions (Ba
et al., 2016)—a crucial component in the resurgence of
recurrent neural networks (Peng et al., 2023; Orvieto et al.,
2023; De et al., 2024) introducing decayed memory across
time. Thus, rather than using linear layers, we now define:

C(ēi, ēi+1)=(ēi ·σ(Φl) + ēi+1 ·σ(Φr)) + ϕ (3)

D(ei) =
(
ei ·σ(Θl) + θl, ei ·σ(Θr) + θr

)
(4)

Φl,Φr, ϕ,Θl,Θr, θl, θr ∈ RU

with sigmoid non-linearity (σ) applied to parameters both
for numerical stability and to enforce a decayed memory
over structure depth. Repeated application of the diagonal
composition function will decay the influence of nodes fur-
ther down in the tree, thereby respecting its compression
order. During composition representations can increase in
magnitude as they are the sum of the two children. During
decomposition representations will, by necessity, reduce
back down in magnitude towards the leaves. Further mim-
icking the information flow specified by the entangled trees.
Finally, they restrict encoder (comp) and decoder (decomp)
embeddings to remain in the same space. Which makes
amortisation required for successful reconstruction, letting
us switch objective to cross entropy over the vocabulary.
We provide analysis to support this claim later in § 7.

These relatively simple changes have a pretty drastic effect,
both in terms of performance (see experiments), as well as
efficiency, with parameters now reduced by a factor of U
compared to the functions from (1, 2).

5. Experiments: English Evaluation
Goal: We wish to test whether BANYAN can efficiently
learn semantics. We start by evaluating on English, which
is well resourced and has a wide array of test sets available
with which we can measure the efficacy of our embeddings.
This is crucial to establish, because when we turn to low
resource languages later on, the amount of reliable evalu-
ation sets will become limited. We want to make use of
broad spectrum of tests available for English to reliably
demonstrate embedding quality before moving forward.

5.1. Experimental Setup and Evaluation:

We want to evaluate how well BANYAN learns effective
semantic representations. Ideally we want to probe this at
different levels of hierarchy, because it allows us to test
whether structured models can do what they are supposed to
i.e., seamlessly transfer semantic knowledge across different
levels of hierarchy via composition. Our evaluation is unsu-
pervised, both to directly probe the effect of the inductive
bias, and for greater parity with what may be expected in a
low-resource domain. It consists of three parts:

Correlation with human judgements: We compare the
cosine similarity of embedding pairs produced by the model
with human judgements of their semantic correspondence.
On the word level, we use Simlex-999 (Hill et al., 2015)
and WordSim-S/R (Agirre et al., 2009). All tasks measure
semantics, but do so on differing axes. Simlex measures sim-
ilarity at the exclusion of relatedness. Wordsim S measures
similarity without penalising relatedness. And Wordsim R
measures relatedness. On the sentence level, we use STS-12
through 16 (Agirre et al., 2012; 2013; 2014; 2015; 2016),
the STS-B (Cer et al., 2017), SICK-R (Marelli et al., 2014)
and SemRel (Ousidhoum et al., 2024) - which combined
cover a wide array of semantic correspondence.

Retrieval: This is a cornerstone of Retrieval-Augmented
Generation (RAG)-based systems and perhaps the most
important use case for embedding models. We use two
retrieval datasets from the BEIR suite (Thakur et al., 2021).
Quora: evaluates success of matching questions to answers
and capturing the response relation. Arguana: evaluates
matching arguments to counter arguments, testing if our
semantic space captures the notion of dialectical opposition.

Classification: We also include two test sets from the
GLUE benchmark (Wang et al., 2019). Sentiment clas-
sification (SST-2) tests whether the representation space
captures semantic polarity. Paraphrase detection (MRPC):
tests whether our representation space capture semantic
equivalence. While our other evaluation is applied to the
embeddings zero-shot, for the classification tasks we train
a GeLU MLP with a 512D hidden size, though we leave
models frozen as a direct test of representation quality.
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Table 1: Sentence level results for models pretrained on English. Higher is better. Results represent mean and standard
deviation across four random initialisations. Spearman’s ρ is * 100 following convention.

Model STS-12 STS-13 STS-14 STS-15 STS-16 STS-B SICK-R SemRel Score

SELF-STRAE 31.98 ± 0.58 53.88 ± 0.68 37.73 ± 0.70 55.23 ± 0.58 55.55 ± 0.47 39.53 ± 1.61 51.78 ± 0.29 50.05 ± 0.92 46.59 ± 0.43

GLOVE 31.61 ± 0.31 21.69 ± 0.12 27.37 ± 0.10 40.42 ± 0.09 29.27 ± 0.12 28.25 ± 0.08 50.20 ± 0.25 41.20 ± 0.43 33.75 ± 0.04
+ stopword rm 39.00 ± 0.57 41.61 ± 0.19 39.31 ± 0.18 51.06 ± 0.35 45.14 ± 0.14 48.40 ± 0.07 52.80 ± 0.04 42.37 ± 0.13 44.96 ± 0.10

Sent2Vec 38.14 ± 0.29 51.37 ± 0.48 48.64 ± 0.09 67.28 ± 0.02 56.26 ± 0.06 53.39 ± 0.11 59.67 ± 0.02 51.47 ± 0.03 53.28 ± 0.11

ROBERTA 42.77 ± 1.27 51.70 ± 1.30 45.67 ± 1.42 63.97 ± 0.81 59.60 ± 0.61 39.97 ± 0.95 52.93 ± 0.23 52.73 ± 0.58 51.08 ± 0.61
+ SimCSE 50.63 ± 1.45 62.23 ± 2.51 54.17 ± 2.10 68.77 ± 3.00 66.67 ± 1.40 53.53 ± 1.18 56.87 ± 1.16 59.27 ± 0.93 59.02 ± 1.45

BANYAN 51.38 ± 0.15 69.60 ± 0.37 63.20 ± 0.28 73.08 ± 0.26 67.18 ± 0.56 61.90 ± 0.63 55.23 ± 0.13 61.88 ± 0.22 62.97 ± 0.03

Table 2: Word level results analogous to Table 1.

Model Simlex Wordsim-S Wordsim-R Score

SELF-STRAE 13.80 ± 0.41 54.38 ± 0.78 52.85 ± 1.27 40.34 ± 0.66

GLOVE 27.47 ± 0.25 62.53 ± 0.42 51.00 ± 0.56 47.00 ± 0.38

Sent2Vec 28.88 ± 0.42 68.32 ± 1.28 54.49 ± 1.51 50.56 ± 0.79

ROBERTA 29.23 ± 0.64 61.97 ± 2.38 46.00 ± 2.13 45.73 ± 1.71

BANYAN 14.65 ± 2.90 63.23 ± 2.21 67.73 ± 0.3 48.53 ± 1.33

Baselines: We compare against the SELF-STRAE, GLOVE
(Pennington et al., 2014), Sent2Vec (Pagliardini et al., 2017)
and a ROBERTA (Liu et al., 2019) in the medium con-
figuration from (Turc et al., 2019; Opper et al., 2023a).
SELF-STRAE, the closest point of comparison to BANYAN,
indicates where the current performance level of structured
representation learning lies. GLOVE lets us compare to
traditional static embeddings, and tests whether our model
is learning anything more than just simple bag of word fea-
tures. To obtain sentence embeddings, we report results
using both the simple average of the word embeddings and
the average with stopwords removed following (Reimers
& Gurevych, 2019). The latter is generally stronger. An
even more powerful variant is Sent2Vec, which directly opti-
mises the averaged representation by using it to represent the
context. This comparison measures the utility BANYAN’s
flexible and parametrised composition process, compared
to an optimised average. Finally, for ROBERTA, we report
results using both the standard model, and again after en-
hancing ROBERTA through an extra round of contrastive
SIMCSE training (Gao et al., 2021), as a further non-lexical
baseline. Our pooling strategy is mean. To produce static
embeddings from ROBERTA to use in lexical evaluation,
we follow Bommasani et al. (2020) and average the contex-
tualised representations of all occurrences of the word in the
training set. The ROBERTA is intended as a stronger base-
line. It has significantly more parameters than BANYAN and
can model meaning in context unlike GLOVE and Sent2Vec.

Hyperparameters and Pre-Training Details: For all mod-
els we set the embedding size to 256. For SELF-STRAE
we use the configuration of (Opper et al., 2023b) and set
embeddings as square matrices (i.e., K=16 and U=16). For
BANYAN we set these values to K=128 and U=2, because
the more independent channels we allowed the better the

model seemed to perform. We refer the reader to Appendix
A for ablations. We also note that because we can perform
this reduction in channel size, the number of non-embedding
parameters for BANYAN drops to just 14, as these are di-
rectly proportional to U . The configuration for RoBERTa
medium is 8 layers, 8 attention heads, 2048 dimensional
feed forward layers, and relative positional embeddings. For
SELF-STRAE, BANYAN and Sent2Vec we pre-train on a
uniform subsample of English Wikipedia consisting of circa
10 million tokens. This represents the lower end of how
many tokens might be available in a low resource setting,
and allows us to test whether these methods are efficient.
Meanwhile for GLOVE and ROBERTA we pre-train on
Wiki-103 (Merity et al., 2016), to ensure that they are not
penalised by insufficient scale. Wiki-103 comprises circa
100 million tokens and therefore represents the very upper
end of what might be available in a low resource setting.
Further training details are in Appendix B.

5.2. Results:

Results are shown in Tables 1 to 3. On both the word level
and sentence level BANYAN does much better than SELF-
STRAE. We ablate the reasons for this in more detail later in
the manuscript. Both models suffer on SimLex because they
need to model both similarity and relatedness as the latter
dictates merge (related concepts often compose together).
However, the important thing to note is that the structured
models effectively transfer the same performance from the
word level to the sentence level. They can take advantage of
composition, and transfer the meaning of the parts to under-
standing the meaning of the whole. The GLOVE baseline is
good on the word level, but does not generalise to the sen-
tence level as well as the transformer, even when we give it
stopword removal. Similarly, Sent2Vec is extremely strong
on the word level, and while more effective than GLOVE,
neither approach seamlessly transfers semantic knowledge
to different levels of complexity. BANYAN can, and is able
to achieve comparable or better performance than the Sim-
CSE ROBERTA despite being much smaller and exposed to
10x less pre-training data. This means we have a structured
model that remains efficient and cheap, and also effective at
representation learning.
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Table 3: Sentence level results on retrieval and classification tasks for models pretrained on English.

Quora Arguana SST-2 MRPC

Model NDCG@1 NDCG@10 R@1 R@10 NDCG@1 NDCG@10 R@1 R@10 Acc F1

Self-StrAE 32.88 ± 0.28 40.02 ± 4.94 29.59 ± 0.23 44.77 ± 0.28 09.96 ± 0.11 15.48 ± 0.13 09.96 ± 0.11 21.48 ± 0.22 74.67 ± 0.52 80.34 ± 0.42

GloVe 29.99 ± 0.14 35.71 ± 0.15 26.08 ± 0.15 43.17 ± 0.25 06.19 ± 0.19 12.77 ± 0.24 06.18 ± 0.19 24.68 ± 7.40 75.83 ± 0.62 81 ± 0
+ stopword rm 44.41 ± 0.13 52.54 ± 0.17 38.78 ± 0.15 62.15 ± 0.25 09.89 ± 0.19 20.27 ± 0.09 09.89 ± 0.19 33.00 ± 0.26 76.50 ± 1.08 81 ± 0

Sent2Vec 36.12 ± 0.21 43.26 ± 0.15 31.33 ± 0.21 52.38 ± 0.05 09.60 ± 0.31 23.24 ± 0.15 09.60 ± 0.31 39.73 ± 0.89 76.53 ± 0.98 81 ± 0

RoBERTa 43.26 ± 0.76 49.97 ± 0.72 37.67 ± 0.68 58.78 ± 0.78 08.18 ± 0.43 17.60 ± 0.36 08.18 ± 0.43 28.85 ± 0.94 75.68 ± 0.96 81 ± 0
+ SimCSE 51.79 ± 2.12 59.30 ± 2.10 45.09 ± 1.60 68.74 ± 2.01 10.06 ± 1.27 21.84 ± 2.23 10.06 ± 1.27 37.36 ± 2.16 75.97 ± 1.08 80.83 ± 0.24

Banyan 57.74 ± 0.10 65.71 ± 0.14 50.14 ± 0.10 75.71 ± 0.14 12.42 ± 0.40 28.28 ± 0.17 12.42 ± 0.40 48.19 ± 0.18 75.96 ± 0.57 79.48 ± 0.42

Table 4: Multilingual Results. BANYAN performance over four random seeds. Baselines marked † finetuned on supervised
semantic similarity datasets. FT–unsupervised finetuning using masked language modelling on same corpora as BANYAN.

Model Indonesian Arabic Telugu Marathi Hausa Afrikaans Spanish Amharic Hindi Score

XLM-R 46.7 31.6 46.3 55.7 4.1 56.2 68.9 57.3 52.7 46.61
Llama-3.1 (8B) 53.4 31.1 65.6 63.4 6.1 65.4 66.7 64.1 61.7 53.06
Mistral Nemo 50.7 20.1 57 52.3 1.8 58.3 66.2 53.2 55.8 46.16

MiniLM-L12† 39 16.1 34.8 39.5 32.7 74.1 58.8 9.6 43.8 38.71
Paraphrase XLM-R† 46.1 61 58.1 79.6 22.5 76.8 71.7 64.6 52 59.16

XLM-R (FT) 47.9 33.6 68.8 75.1 14.6 72.6 72.8 59.6 57.6 55.84

BANYAN 41.90 42.28 71.58 66.38 49.68 79.35 60.88 66.40 61.63 60.01
± 0.56 ± 1.57 ± 1.24 ± 0.84 ± 0.75 ± 0.65 ± 0.86 ± 0.90 ± 0.43 ± 0.35

6. Experiments: Multilingual Evaluation
Goal: We’ve established that BANYAN is an efficient learner.
This implies potential use for languages that are not well
covered by current NLP approaches. Here we test that.

6.1. Experimental Setup and Evaluation:

Tasks: Learning semantic representations for low-resource
languages remains an ongoing challenge. A core problem is
not just the lack of training data, but also the lack of eval-
uation datasets. Recent work by Ousidhoum et al. (2024)
has sought to address this issue, providing semantic relat-
edness test sets for several low resource Asian and African
languages, evaluated by comparing embedding similarity to
human judgements. This means we can BANYAN’s ability
on Indonesian, Arabic, Telugu, Marathi, Hausa, Afrikaans,
Spanish, Amharic and Hindi—covering a broad spectrum
of resource extent. For example, Spanish is generally well
represented, while Hausa is considerably less so.

Baselines: We select XLM-R (Conneau et al., 2019): a
transformer encoder trained on 2TB of multilingual data.
Llama 3.1 8B (Dubey et al., 2024): a decoder only LLM
trained on 15 trillion tokens. Mistral Nemo 12B: a decoder
only LLM designed with multi-lingual capacities in mind.
In addition we also compare against two specialised embed-
ding models from the sentence transformers range (Reimers
& Gurevych, 2019): Mini-LM-L12-V2 and Paraphrase-
XLM-R-Multilingual-V1. These are pre-trained encoders

that have been finetuned on supervised datasets designed to
produce high quality semantic representations. The base-
lines we select here are emblematic of the kind of models
one might reach for in order to embed a corpus. For all base-
lines we use mean pooling following (Reimers & Gurevych,
2019). Finally, for parity we include an XLM-R baseline
which is finetuned on the same corpora as BANYAN.

Banyan Pre-training and Hyperparameters: For
Afrikaans, Spanish and Amharic we obtained corpora from
Leipzig Corpora Collection (Goldhahn et al., 2012). For
Amharic we utilised a MIT licenced pre-training set of 1 mil-
lion sequences available at this link. Hausa data was sourced
from Opus (Nygaard & Tiedemann, 2003). Each dataset
consists of roughly 10 million tokens. We utilise a pre-
trained BPE tokeniser for each language from the BPEMB
Python package (Heinzerling & Strube, 2018). BANYAN’s
hyperparameters remain the same as before. For XLM-R
we finetune for 100k steps with early stopping, using a lin-
early scheduled learning rate of 5e-5 with 10% of steps as
warmup. XLM-R runs at batch size 128 across 4xA40 cards.

6.2. Results

See Table 4. In Spanish, a well-resourced language with
high coverage, the transformer baselines almost all outper-
form BANYAN. However, as languages become lower re-
sourced the picture changes, and BANYAN outperforms or is
comparable to the baselines. This even includes the multilin-
gual XLM-R that has undergone supervised training. While
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Table 5: Number of non-embedding parameters.

Model BANYAN SELF-STRAE ROBERTA (M) All-MiniLM-L12-V2 XLM-R Llama 3.1 Mistral Nemo

Params 14 1072 ≈10M ≈21M ≈85M ≈8B ≈12B

Table 6: Ablations of modelling changes made for Banyan. Higher is better. Results averaged across four random
initialisations. Bolded results indicate no standard deviation overlap. Spearman’s ρ is * 100 following convention.

Model STS-12 STS-13 STS-14 STS-15 STS-16 STS-B SICK-R SemRel Score

Standard Trees 31.98 ± 0.58 53.88 ± 0.68 37.73 ± 0.70 55.23 ± 0.58 55.55 ± 0.47 39.53 ± 1.61 51.78 ± 0.29 50.05 ± 0.92 46.59 ± 0.43
+ diag functions 35.13 ± 0.33 56.05 ± 0.24 40.58 ± 0.05 58.83 ± 0.10 56.78 ± 0.21 44.10 ± 0.14 53.35 ± 0.17 52.65 ± 0.17 49.68 ± 0.06
++ CE loss 47.10 ± 1.04 61.85 ± 1.44 58.60 ± 1.34 70.45 ± 0.57 62.45 ± 0.70 59.50 ± 0.53 59.00 ± 0.26 60.33 ± 0.26 59.91 ± 0.54

Entangled Trees 38.98 ± 0.39 61.75 ± 0.14 43.65 ± 0.46 58.21 ± 0.41 55.29 ± 0.23 46.15 ± 0.71 53.93 ± 0.16 52.53 ± 0.09 51.31 ± 0.13
+ diag functions 44.15 ± 0.002 62.80 ± 0.002 48.30 ± 0.001 64.60 ± 0.002 60.30 ± 0.001 49.80 ± 0.002 55.14 ± 0.001 57.70 ± 0.001 55.23 ± 0.01
++ CE loss 51.38 ± 0.15 69.60 ± 0.37 63.20 ± 0.28 73.08 ± 0.26 67.18 ± 0.56 61.90 ± 0.63 55.23 ± 0.13 61.88 ± 0.22 62.97 ± 0.03

finetuning XLM-R improves performance the amount of
benefit it provides is not uniform and is insufficient to prove
viable in the very low resource cases. BANYAN is able to
learn competitive representations consistently across lan-
guages, unsupervised and with very little data, providing a
viable alternative for cheaply and efficient embeddings for
low resource languages.

7. Improvements and Ablations
7.1. Efficiency

Other than its embedding matrix, BANYAN only has com-
position and decomposition functions. Diagonalising these
makes them easier to compute and more lightweight than
standard weight matrices, (2U rather than 2U × U ), achiev-
ing a further order of magnitude reduction in parameters
compared with the already minimal SELF-STRAE. Table
Table 5 shows the difference, including a comparison to the
various baselines used throughout the paper. Despite its size
BANYAN remains competitive.

Secondly, by exploiting entangled tree structure the number
of nodes grows at a significantly reduced rate with batch
size compared with standard sentential trees (see Figure 4).
This is because the number of reused constituent nodes also
grows as batch size increases, and entangled trees capture
the set of all constituents, which consequently does not grow
as drastically. In practical terms, because entangled trees
requires fewer nodes, and each node requires two distinct
embeddings (ē and e) to be held for it, reducing the number
of nodes required leads to radical improvements in memory
efficiency. Put together, these changes mean that we can
train BANYAN very quickly as we can use large batches and
its small number of parameters ensure quick convergence.
On a single Nvidia A40 GPU with a batch size of 1024,
Banyan trains from scratch in under 50 minutes, meaning
that the total cost of pretraining a BANYAN model sits at
around 30 cents2. Free-tier Google Colab users can achieve

2Cloud computing costs from: https://www.runpod.io/pricing

Figure 4: Total number of nodes in entangled vs. sentential
trees as batch size grows.

similar results in about two hours with a smaller batch size.
Inference can also be performed on CPU on typical laptops,
because the model is so small. Combined with its data
efficiency, we believe this provides a promising alternative
for low resource languages and communities.

7.2. Ablations

Why is BANYAN so much more effective than its SELF-
STRAE predecessor? To probe the impact of each change,
we perform ablations using the English STS tasks (Table 6).

Beyond improving efficiency, changing to entangled trees
yields some benefits in terms of performance. The effect is
significantly more pronounced when using the contrastive
objective, as it removes the issue of false negatives as dis-
cussed in Section 4. However, it also yields some slight
benefit with the CE leaf reconstruction objective. Entan-
gling explicitly allows the model to take advantage of shared
constituency structure between complex sequences, as it
combines the information from all incoming parent mes-
sages. The slight edge this provides indicates that explicitly
allowing the model to take advantage of such systematic-
ity may be useful. However, in terms of performance, we
find that the choice of functions and objective plays a much
bigger role than entangling.
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(a) Uniformity (↓) and Alignment loss (↓)
analysis of BANYAN’s representations using:
CONTRASTIVE, CE and CE+DIAG.

(b) UMAP analysis of COMP and DECOMP
embeddings for a 30k node entangled tree
learned by CE w/o diagonal functions.

(c) UMAP analysis of COMP and DECOMP
embeddings for a 30k node entangled tree
learned by CE with diagonal functions.

Figure 5: Representation Analysis - UMAP Parameters in Appendix C.

Diagonal Functions: Perhaps the clearest benefits come
from the introduction of the diagonalised composition and
decomposition functions. These are bounded scalar values
(sigmoid) multiplied with embeddings to mimic the time
mixing blocks of SSMs (Gu & Dao, 2024). Hierarchically
decaying in the influence of embeddings further down the
structure through repeated application. This means that
the representations are restricted to conform to the com-
pression order it dictates, and we know from (Opper et al.,
2023b) that the more we enforce this constraint the better
our representations. Secondly, such simple message passing
functions bias the representation space towards informative
separability. There has to be some signal from which to
perform reconstruction, and all the pressure is now on the
representations. This is beneficial with the contrastive loss,
but really shines when we combine them with cross entropy.

Changing Objective: Our more instructive finding is that
cross entropy now outperforms the contrastive loss used
by Opper et al. (2023b), contrary to the earlier result that
the contrastive objective was critical. Figure 5 provides an
analysis with Figure 5a showing uniformity vs. alignment
metrics (↓) from Wang & Isola (2020). These measure (a)
how evenly spread embeddings are (uniformity) and (b) the
proximity of locally contextual composition embeddings
to their globally contextualised counterparts (alignment).
Success requires having low scores on both. We can see that
the contrastive loss does well, while cross entropy achieves
high uniformity, but not alignment without diagonal func-
tions. This is further confirmed when we look at the UMAP
(McInnes et al., 2018) analysis of BANYAN’s embeddings
with (5c) and without (5b) diagonal functions. Without
diagonal functions, composition and decomposition embed-
dings largely occupy separate subspaces, failing to amortise
over context. Introducing diagonal functions results in in-
credibly high overlap between the two, indicating effective
amortisation. We believe that this is due to their simplicity
and scaling constraints, restricting complex transformations
during message passing. This implicitly forces representa-
tions to optimise the same useful qualities as the contrastive

loss, without its propensity for shortcut solutions (Robinson
et al., 2021). As a result, we can switch objective without
compromising representation quality.

8. Conclusion, Limitations and Future Work
We introduce BANYAN, a Self-Structuring AutoEncoder.
BANYAN’s focus on global, entangled structure and sim-
plified message passing exploits the benefits of structured
compositions inherent in language data. It is more effective
and efficient than prior work from which we draw three
central conclusions.

Firstly, explicitly modelling structured compositions is an
effective inductive bias. Table 5 shows the parameters for
the structured models versus the baselines. The structured
models are far smaller, with tens or thousands of parameters
instead of millions or billions. And nonetheless, BANYAN is
still competitive across several metrics, indicating we have
found an efficient learning procedure.

Secondly, we have not yet fully exploited the potential of
the inductive bias. BANYAN still relies on greedy agglom-
erative clustering to induce structure. This is effective, but
sub-optimal. Future work could learn the structure induction
procedure. The type of structure models are exposed to im-
pacts the quality of learnt semantic representations (Opper
et al., 2023b). So if how we induce structure improves, the
model should learn better representations.

Finally, good and cheap embedding models are useful for
many applications. For example, the digital humanities need
to organise corpora of ancient languages, making it easier
for researchers to access texts they need. But these corpora
are small, and these languages are unlikely to be present
in pretraining corpora of larger models. BANYAN provides
an efficient solution for producing representations for both
these use cases and low resource languages and under repre-
sented communities more generally. To conclude, Banyan
addresses the problem of efficient learning in low-resource
settings.
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A. The k and u balance
The change to diagonal composition functions allows us to reduce the number of total parameters while maintaining
performance. This is because the number of parameters is directly proportional to channel size u. We show ablations for this
finding in Table 7. Our findings are similar to those of (Opper & Siddharth, 2024) the smaller the channel size the better the
model performs, although in our case we keep things stable between seeds whereas before simplification caused issues with
extreme instability during training. This is thanks to the new message passing functions.

Table 7: Performance Depending on k and u values using new functions. Scores are the average of four random seeds.

k u Lex Score STS Score

4 64 47.83 ± 0.2 55.50 ± 0.22
8 32 47.41 ± 1.0 62.58 ± 0.11
16 16 48.01 ± 1.1 62.73 ± 0.1
32 8 47.65 ± 1.1 62.79 ± 0.07
64 4 48.48 ± 0.7 62.63 ± 0.16
128 2 48.53 ± 1.33 62.97 ± 0.23
256 1 49.15 ± 0.6 62.61 ± 0.23

B. Hyperparameters:
We trained SELF-STRAE and BANYAN for 15 epochs (circa 15k steps and sufficient for convergence) using the Adam
optimiser (Kingma & Ba, 2015), with a learning rate of 1e-3 for BANYAN and 1e-4 for SELF-STRAE using a batch size
of 512. To process the graphs we used DGL (Wang et al., 2020). The GLOVE baseline was trained for 15 epochs with a
learning rate of 1e-3, and a window size of 10. We used the official C++ implementation. ROBERTA medium was trained
for 200,000 steps, (10% of which were used for warmup). We used a learning rate of 5e-5, and a linear schedule. Positional
embeddings are relative key-query. We used the Transformers library to implement and train the model (Wolf et al., 2020).
For SimCSE training, we used the default parameters and the official implementation for unsupervised ROBERTA training
from Gao et al. (2021). For Sent2Vec we used their official implementation and recommend hyperparameters.

C. UMAP Parameters:
For the UMAP visualisations, we set number of neighbours to 100, minimum distance to 0.3, the metric to cosine and local
connectivity to 3. However, the same patterns can we observed through a wide array of hyperparameters, and when changing
the metric to euclidean distance. The behavioural changes induced by the diagonal functions remain clear. We selected the
above purely based on aesthetic preference for the resulting plots.
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