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Abstract

Diffusion models (DMs) have recently gained attention with state-of-the-art per-
formance in text-to-image synthesis. Abiding by the tradition in deep learning,
DMs are trained and evaluated on the images with fixed sizes. However, users are
demanding for various images with specific sizes and various aspect ratio. This
paper focuses on adapting text-to-image diffusion models to handle such variety
while maintaining visual fidelity. First we observe that, during the synthesis, lower
resolution images suffer from incomplete object portrayal, while higher resolution
images exhibit repetitively disordered presentation. Next, we establish a statistical
relationship indicating that attention entropy changes with token quantity, suggest-
ing that models aggregate spatial information in proportion to image resolution.
The subsequent interpretation on our observations is that objects are incompletely
depicted due to limited spatial information for low resolutions, while repetitively
disorganized presentation arises from redundant spatial information for high reso-
lutions. From this perspective, we propose a scaling factor to alleviate the change
of attention entropy and mitigate the defective pattern observed. Extensive experi-
mental results validate the efficacy of the proposed scaling factor, enabling models
to achieve better visual effects, image quality, and text alignment. Notably, these
improvements are achieved without additional training or fine-tuning techniques.

1 Introduction

Diffusion models have emerged as a powerful technique for image synthesis [10, 15, 46], achieving
state-of-the-art performance in various applications [12, 28, 14]. Among them, text-to-image diffusion
models have garnered significant attention and witnessed a surge in demand [40, 37, 36]. Traditionally,
diffusion models have adhered to the typical deep learning approach of training and testing on images
with predetermined sizes, which generally leads to high-quality results. They still exhibit a range of
visual defects and diverse flaws when confronted with a novel synthesizing resolution (e.g., 5122 in
training while 2242 in testing). However, real-world scenarios often demand the generation of images
with diverse sizes and aspect ratios, necessitating models that can handle such variety with minimum
loss in visual fidelity. The necessity becomes even more severe in the generation of large models.
As the size of models continues to increase, the associated training costs experience a substantial
surge, thereby posing financial challenges for average programmers and emerging startups, making it
unfeasible for them to train specialized models tailored to their specific needs. Consequently, there is
an urgent demand to explore methodologies that facilitate the full utilization of open-sourced models
trained on fixed sizes.

In regard to this limitation, our first key observation reveals that most instances of poor performance
could be attributed to two prevalent patterns: incomplete or inadequately represented objects and
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(b) Softail Deluxe

Figure 1: Synthesized results with the proposed scaling factor (marked with yellow icons) and
those with original scaling factor (marked with green icons). The method with our scaling factor
successfully synthesizes high-fidelity and natural images for different resolutions. Please zoom in for
better visual effect.

repetitively disordered presentations. We have included several examples of flawed synthesized
images in Figure 1, designated by green icons. Note that smaller images (e.g., images (a), (b), (c) and
(d)) conform to the first pattern, showcasing inadequately depicted objects. Conversely, larger images
(e.g., images (e), (f) and (g)) exhibit the second pattern, generating disordered objects in a repetitive
manner. This delineation, also observed in other problematic cases, allows us to formulate our second
key observation, where lower resolution images are more vulnerable to the first pattern, while
susceptibility to the second pattern increases in higher resolution images.

In this work, we tackle the challenge of adapting text-to-image diffusion models to proficiently
synthesize images spanning a wide range of sizes, encompassing both low and high resolutions. Our
goal is threefold: (1) achieve a higher level of fidelity regardless of synthesized image resolutions;
(2) mitigate the abovementioned two patterns; and (3) augment the semantic alignment between the
synthesized images and the text prompts.

To accomplish these, our approach centers around the concept of entropy, which measures the
spatial granularity of information aggregation. Specifically, when the attention entropy rises, each
token is attending to wider spatial information, otherwise the opposite. Bearing that in mind, we
establish the statistical relationship between the resolution (the number of tokens) and the entropy
of attention maps. Our finding signifies that the attention entropy varies in correspondence with the
quantity of tokens, which implies that models are aggregating spatial information in proportion to
resolutions. We then establish our key interpretations based on the proportionality. In particular, since
narrower attention is paid during the synthesis of low resolution images, models encounter difficulties
in representing complete objects with limited spatial information. Conversely, when synthesizing
high resolution images, each token tends to conduct a wide spatial aggregation which results in a
redundancy of analogous spatial information and the disordered presentations of repeated elements.

Based on the statistical relationship and interpretations, we propose a novel scaling factor specifically
designed for mitigating the change of the entropy in visual attention layers. We conduct qualitative
and quantitative experiments to validate the efficacy of our scaling factor, which synthesizes results
of varied resolutions with better visual effect and achieves better scores in image quality and text
alignment. It is worth noting that the improvement is implemented in a training-free manner by
replacing a single scaling factor in the attention layers.

The contributions are summarized as follows:

• We observe two distinct patterns of defects that low resolution images are prone to impaired
object portrayal while repetitively disordered presentation exhibits in high resolution images.

• We establish a statistical relationship between attention the entropy and the resolution, which
interprets the patterns by ascribing them to the lack or the surplus of the spatial information.
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• We propose a scaling factor to efficiently improve variable-sized text-to-image synthesis in a
training-free manner. We conduct various experiments and analysis to validate the efficacy.

2 Related Work

Image super-resolution and extrapolation. An alternative path to generate new images with
different resolutions is post-processing synthesized images with image super-resolution and extrapo-
lation methods. Super-resolution methods [18, 6, 53, 54] dedicate to exploiting the high frequency
information of images and extending both the height and width of images by a fixed factor, which
cannot change the aspect ratio of images. For extrapolation methods, they do have the ability to
change the aspect ratio by extending images beyond their boundaries [50, 58, 29]. However, these
methods are effective for signals that exhibit an intensive stationary component [5] (e.g., landscapes)
while we would like to generate images with various scenes. Additionally, extrapolation methods
might have discrepancy with diffusion models, resulting in inharmonious visual effect. Instead of
adding more methods for post-processing and making the pipeline lengthy, we seek to synthesize
high-fidelity images with diffusion models alone.

Diffusion models and attention mechanism. Diffusion models have emerged as a promising family
of deep generative models with outstanding performance in image synthesis [10, 15, 22, 45, 46, 47].
They have significantly revolutionized computer vision research in multiple areas, including image
editing [8, 12, 31], inpaintng [28, 39, 56], super-resolution [16, 41] and video synthesis [14, 17].
These models generate high-quality images by smoothly denoising a noisy image sampled from a
standard Gaussian distribution through multiple iterations. A key component in diffusion models is
the attention module. Previous works such as denoising diffusion probabilistic model [15], denoising
diffusion implicit model [46], latent diffusion model [37] have demonstrated the capability empowered
by the attention modules. Note that attention modules in diffusion models are dealing with thousands
of visual tokens and one of the most well-known research concern of attention is how to lower
its conventional quadratic complexity against the large token numbers. To deal with this, most
works define a sparse attention pattern to restrict each query to attend to a limited subset of tokens
exclusively. The sparse attention pattern could be either defined as fixed windows [23, 52, 49, 38, 30]
or learned during training [25, 34, 7, 4, 1, 60, 26, 57, 55, 9, 20]. We draw upon the insights in these
works for sparsity controlling and seek to efficiently adapt trained models for variable-sized data.

Attention entropy. Introduced in the information theory by [44], entropy serves as a measure for
information and uncertainty. Different research works have introduced entropy to attention maps in
various tasks, including semantic segmentation [24], text classification [2], text generation [48], active
visual exploration [33] and interpretability analysis [32]. Among them, the work in text generation
[48] closely aligns with ours on attention scaling, leveraging Transformers to accommodate sentences
of variable lengths. We draw upon the innovations in the entropy of attention maps for information
quantification and seek to exploit both of its practicability and interpretability.

3 Method

This section establishes the connection between the attention entropy and the token number in a
statistical manner and presents a scaling factor replaced into diffusion model for variable-sized image
synthesis. Our aim is to alleviate the fluctuation in attention entropy with varying token numbers.

3.1 Connection: the attention entropy and the token number

Diffusion models refer to probabilistic models that learn a data distribution by iteratively refining
a normally distributed variable, which is equivalent to learn the reverse process of a fixed Markov
Chain with a length of T . In image synthesis, the most efficacious models make use of a Transformer-
based encoder-decoder architecture for the denoising step. This step can be understood as an evenly
weighted chain of denoising autoencoders, which are trained to predict a filtered version of their input
via cross-attention. Yet the scaling factor inside the attention module of diffusion models is so far an
under-explored area of research. In this section, we focus on enhancing conditional diffusion models
by adaptively determining the scaling factor of Transformer encoder-decoder backbones.
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Let X ∈ RN×d denotes an image token sequence to an attention module, where N, d are the number
of tokens and the token dimension, respectively. We then denote the key, query and value matrices as
K = XWK ,Q and V, where WK ∈ Rd×dr is a learnable projection matrix and dr is the projection
dimension. The attention layer ([3, 51]) computes Attention(Q,K,V) = AV with the attention map
A calculated by the row-wise softmax function as follows:

Ai,j =
eλQiK⊤

j

∑N
j′=1 e

λQiK⊤
j′
, (1)

where λ is a scaling factor, usually set as 1/
√
d in the widely-used Scaled Dot-Product Attention [51]

and i, j are the row indices on the matrices Q and K, respectively. Following [2, 11], we calculate the
attention entropy by treating the attention distribution of each token as a probability mass function of
a discrete random variable. The attention entropy with respect to the ith row of A is defined as:

Ent(Ai) = −
N∑

j=1

Ai,j log(Ai,j), (2)

where the attention entropy gets its maximum when Ai,j = 1/N for all j and gets its minimum when
Ai,j′ = 1 and Ai,j = 0 for any j ̸= j′. It implies that the attention entropy measures the spatial
granularity of information aggregation. A larger attention entropy suggests that wider contextual
information is taken into account while a smaller entropy indicates only few tokens are weighed.

We now investigate the relation between the attention entropy and the token number. By substituting
Eq.(1) into Eq.(2), we have:

Ent(Ai) = −
N∑

j=1

[ eλQiK⊤
j

∑N
j′=1 e

λQiK⊤
j′
log

( eλQiK⊤
j

∑N
j′=1 e

λQiK⊤
j′

)]

≈ logN + logEj

(
eλQiK⊤

j
)
−

Ej

(
λQiK

⊤
j e

λQiK⊤
j
)

Ej

(
eλQiK⊤

j
) ,

(3)

where Ej denotes the expectation upon the index j, and the last equality holds asymptotically when
N gets larger. For the complete proof, please refer to the Supplementary Materials.

Given X as an encoded sequence from an image, each token Xj could be assumed as a vector sampled
from a multivariate Gaussian distribution N (µX ,ΣX). This prevailing assumption is widely shared
in the fields of image synthesis [13] and style transfer [19, 27, 21]. In this way, each Kj =

XjWK could be considered as a sample from the multivariate Gaussian distribution N (µK ,ΣK) =

N (µXWK , (WK)⊤ΣXWK). In regard to Kj , its dimension-wise linear combination yi = λQiK
⊤
j

could be treated as a scalar random variable sampled from the univariate Gaussian distribution yi ∼
N (µi, σ

2
i ) = N (λQi(µ

K)⊤, λ2QiΣ
KQ⊤

i ). Under this circumstance, we dive into the expectations
Ej

(
eλQiK⊤

j
)

and Ej

(
λQiK

⊤
j e

λQiK⊤
j
)

in Eq.(3):

Ej

(
eλQiK⊤

j
) .
= Ej

(
eyi

)
= eµi+

σ2
i
2

Ej

(
λQiK

⊤
j e

λQiK⊤
j
) .
= Ej

(
yie

yi
)
=

(
µi + σ2

i

)
eµi+

σ2
i
2 ,

(4)

For the complete proof, please refer to the Supplementary Materials. By substituting Eq.(4) into
Eq.(3), we have:

Ent(Ai) = logN + log
(
eµi+

σ2
i
2

)
−

(
µi + σ2

i

)
eµi+

σ2
i
2

eµi+
σ2
i
2

= logN − σ2
i

2
.

(5)

The observation is that the attention entropy varies correspondingly with N in a logarithm magnitude
while the latter item σ2

i = λ2QiΣ
KQ⊤

i is not relevant with the token number N in the setting of
images generation. This implies that each token intends to adaptively deal with wider contextual
information for higher resolutions, and narrower contextual information for lower resolutions.
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Figure 2: The illustration of our proposed pro-
cess of replacing the scaling factor without ad-
ditional training, where T and N denote the
number of tokens in the training phase and the
inference phase.

Interpretations on two observed patterns. Our
key insight lies in the correlation between the fluc-
tuating attention entropy and the emergence of two
defective patterns in our observations. Specifically,
when the model is synthesizing images with lower
resolutions, the attention entropy experiences a sta-
tistical decline of logN , leading to a reduced atten-
tion on contextual information. Consequently, each
token is processing discrete information in isolation
and the model struggles to generate objects with
intricate details and smooth transitions, giving rise
to the first observed pattern.

Conversely, in scenarios involving higher resolu-
tions, the attention entropy exhibits an upward
trend, accompanied by the utilization of over-
whelming amounts of global information for syn-
thesis. Consequently, each token is processing anal-
ogous information and the model generates repet-
itively disordered presentations, exemplifying the
second pattern.

3.2 A scaling factor for mitigating entropy fluctuations

To alleviate the fluctuating entropy with respect to different token numbers N in the inference phase,
considering the quadratic form in Eq.(5), we set the scaling hyper-parameter λ in the following form:

λ = c
√
logN, (6)

where c denotes a constant number. Note that when the token number N is set as the number of
tokens during training (denoted as T ), λ should specialize to 1/

√
d for the best stablization of entropy

(i.e., c
√
log T ≈ 1/

√
d). Thus, we have an approximate value of c and substitute it into Eq.(6):

λ ≈
√

1

d log T
·
√
logN =

√
logT N

d
. (7)

Intuitively, if the model is dealing with a token number N > T , the proposed scaling factor would
multiply the feature maps by a factor of squared logT N to maintain the rising entropy, and vice
versa. Thus, the proposed scaling factor is implemented in a training-free manner, which enjoys
better performances in synthesizing images of different resolutions. The illustration of our proposed
method is shown in Figure 2.

4 Experimental Results

In this section, we evaluate our proposed method on text-to-image synthesis and analyse the efficacy of
the proposed scaling factor. The quantitative and qualitative results demonstrate a better performance
of our scaling factor. Please refer to the Supplemental Materials for detailed experimental results.

4.1 Text-to-image synthesis

Experimental setup. We explore the adapting ability of the proposed scaling factor for diffusion
models in variable-sized text-to-image synthesis. In particular, we replace the scaling factor of self-
attention layers within diffusion models and evaluate their performance without any training upon a
subset of LAION-400M and LAION-5B dataset ([43, 42]), which contain over 400 million and 5.85
billion CLIP-filtered image-text pairs, respectively. We randomly choose text-image pairs out from
each dataset and generate images corresponding to texts in multiple settings for evaluation. As for the
diffusion models, we consider both Stable Diffusion [37] trained on LAION-5B and Latent Diffusion
[37] trained on LAION-400M to test the performances. The former (which is set to synthesize images
with a 512× 512 resolution by default) maintains 4x longer sequences compared with the latter (with
a default 256× 256 resolution) across all the layers. For more evaluation results and details, please
refer to the Supplementary Materials.
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Table 1: FID scores (↓) for Stable Diffusion and Latent Diffusion in different resolution settings.
Stable Diffusion scores 19.8168 for default 5122 and Latent Diffusion scores 20.4102 for default
2562.

Stable Diffusion - 512 Latent Diffusion - 256

Resolution Original Ours Resolution Original Ours

224 * 224 74.5742 41.8925 128 * 128 65.2988 57.5542
448 * 448 19.9039 19.4923 224 * 224 23.0483 22.7971
768 * 768 29.5974 28.1372 384 * 384 20.5466 20.3842
512 * 288 22.6249 21.3877 256 * 144 33.8559 33.0142
512 * 384 20.2315 19.8631 256 * 192 24.2546 23.9346

Table 2: CLIP scores (↑) for Stable Diffusion and Latent Diffusion in different resolution settings.
Stable Diffusion scores 0.3158 for default 5122 and Latent Diffusion scores 0.3153 for default 2562.

Stable Diffusion - 512 Latent Diffusion - 256

Resolution Original Ours Resolution Original Ours

224 * 224 0.2553 0.2764 128 * 128 0.2679 0.2747
448 * 448 0.3176 0.3180 224 * 224 0.3094 0.3096
768 * 768 0.3142 0.3152 384 * 384 0.3148 0.3156
512 * 288 0.3047 0.3066 256 * 144 0.2884 0.2890
512 * 384 0.3134 0.3139 256 * 192 0.3070 0.3075

Table 3: Results of human evaluation. We report the score of consistency (↑) for the text-to-image
results of Stable Diffusion in different resolution settings.

Resolution 224 * 224 448 * 448 768 * 768 512 * 288 512 * 384

Original 5.13 6.45 6.74 6.11 6.75
Ours 6.77 7.12 7.56 7.42 6.98

Quantitative comparison. We compare the performance of the proposed scaling factor against
the scaling factor λ = 1/

√
d for Stable Diffusion [37] and Latent Diffusion [37] in multiple squared

resolution settings (small, medium and large sizes according to their default training sizes). We
evaluate them with the metric of Fréchet Inception Distance (FID) [13], which measures image
quality and diversity. As shown in Table 1, our scaling factor universally improves FID for both
Stable Diffusion and Latent Diffusion in all resolution settings, especially for the images with
small resolution (a significant improvement from 74.6 to 41.9 for Stable Diffusion on the resolution
224× 224). It is worth noting that the proposed method needs no additional training and achieves
these in a plug-and-play manner with trivial complexity.

Besides FID, we also evaluate the degree of semantic alignment between text prompts and the
corresponding synthesized images with CLIP scores [35], which utilizes contrastive learning to
establish connections between visual concepts and natural language concepts. As shown in Table 2,
our scaling factor achieves better CLIP scores than the original one in all resolution settings. It shows
that our scaling factor performs better in the alignment of text prompts and the synthesized images.

Additionally, we present the results of user study in Table 3. We conduct a text-based pairwise
preference test. That is, for a given sentence, we pair the image from our model with the synthesized
image from the baseline model and ask 45 annotators in total to give each synthesized image a
rating score for consistency. For each human annotators, we pay $15 for effective completeness of
user study evaluation. We observe that users rate higher for our method, which suggests that the
synthesized images from our method are more contextually coherent with texts than the baseline.
Besides, with the refinement from the proposed scaling factor, the generated contents from our model
are able to convey more natural and informative objects.
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Figure 3: Qualitative comparison on the scale factors for the resolution 224× 224. The original
scaling factor misses out content or roughly depicts the objects in prompts while our scaling factor
manages to synthesize visual concepts in high fidelity and better illumination. Please zoom in for
better visual effect.

Qualitative comparison. In Figures 3 and 4, we show some visualization results for the qualitative
comparison between two scaling factors with Stable Diffusion. Paired images are synthesized with
the same seeds and text prompts. Please zoom in for the best visual effect. For Figure 3, we
demonstrate results under the proposed and the original scaling factors for Stable Diffusion with
224×224 resolution, which is lower than the default training resolution 512×512 of Stable Diffusion.
We observe that in the original Stable Diffusion setting, objects are either missed out (e.g., absent
dog, people and octopus) or roughly depicted (e.g., crudely rendered squirrel, cars and person with
sunglasses). Our interpretation is that for lower resolutions, according to Eq. (5), the model is
synthesizing images with a less entropy during the inference phase when compared to its training
phase, which implies that the model is suffering from deprived information. In this way, the model
has more difficulty in generating complex objects and cannot generate attractive images. As for the
results generated by the proposed scaling factor, we show that images are synthesized with better
alignments with prompts (e.g., clear presence of dog, people and octopus) and objects are generated
more vividly (e.g., realistic squirrel, cars and person with sunglasses). Note that our scaling factor
also performs better in the illumination and shading because of the utilization of more aggregated
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Figure 4: Qualitative comparison on the scale factors for the resolution 768× 768. The original
scaling factor generates objects in repeated and messy patterns while our scaling factor manages to
spatially arrange the visual concepts in clear order. Please zoom in for better visual effect.
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Figure 5: Analysis results on the average attention entropy with respect to the number of tokens for
Stable Diffusion model (left) and latent diffusion model (right). N refers to the number of tokens.
As shown in the figure, average attention entropy has a linear relationship with the logarithm of N ,
which confirms the effectiveness of our asymptotic equality in Eq.(5)

and contextualized information with higher entropy. Considering its flexibility, our method might
offer valuable insights into the fields of inpainting [28, 56] and compositional scene generation [59].

For Figure 4, we demonstrate the results of Stable Diffusion under the proposed and the original
scaling factors with the 768 × 768 resolution, which is higher than the default training resolution
512 × 512 of Stable Diffusion. Different from the rough objects in Figure 3, we note that objects
are depicted with overwhelming details in a messy and disordered manner (e.g., repeated hands, a
extended vehicle and messy seals). The reason is that for higher resolutions, according to Eq.(5), the
model are bearing more entropy than it does in the training period. As a result, tokens are attending
to numerous but redundant global information and the model depicts objects with burdensome details,
leading to the patterns observed. For the results by our scaling factor, we note that the repeated
patterns are greatly alleviated (e.g., a pair of normal hands and a regular vehicle) and synthesized
objects are spatially arranged in order without losing the details (three seals well depicted in order).

4.2 Analysis

In this section, we conduct a comprehensive analysis of the practical implications of our theoretical
findings. This analysis is of great importance due to the nature of our fundamental theoretical discov-
ery outlined in Eq.(5) . As an asymptotic equality, it might exhibit limitations in practical scenarios
where the token quantity, denoted as N , falls below a certain threshold. Thus, it becomes imperative
to assess the feasibility and the applicability of our theoretical finding under such circumstances.
Subsequently, we delve into an in-depth examination of the pivotal role played by the scaling factor
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Figure 6: Analysis results on the average attention entropy with respect to two scale factors for
two resolution. Layer ID refers to the index number of self-attention layers in the model and DM
stands for original diffusion model. The figure illustrate that the proposed scaling factor mitigates the
fluctuation of attention entropy.

in mitigating the fluctuations within the attention entropy, as presented in Section 3.2. This rigorous
analysis serves to substantiate and validate the insights elucidated in the aforementioned section.
To support our claims, we present visually intuitive representations of the empirical results, which
unequivocally demonstrate the alignment between our statements and the experimental outcomes.

The relationship between the attention entropy and the token number. We conduct an experi-
ment on text-to-image tasks to investigate the relation between the entropy and the token number N ,
which is statistically connected in Eq.(5). In particular, we synthesize images with various resolutions
(including 2242, 3842, 4482, 5122 and 7682 for Stable Diffusion and 1282, 2242, 2562 and 3842 for
Latent Diffusion model) and calculate their attention entropy during the inference period. We average
the results across attention heads and layers for 5K samples on each resolution. Figure 5 illustrates
that the average attention entropy has a linear relationship with the logarithm of the quantity of tokens
for both diffusion models, which accords with their asymptotic relationship proposed in Eq.(5). The
visualized results provide the empirical evidence that substantiates the efficacy of our theoretical
findings and the feasible extensions for those resolutions close to the mentioned resolutions.

The role of scaling factor for stabilizing the attention entropy. We conduct an experiment on the
mitigating effect of the proposed scaling factor onto the fluctuated attention entropy. Specifically,
with two scaling factors, we synthesize images with a lower and a higher resolution (including 2242

and 7682 for Stable Diffusion) and record their attention entropy for each attention layers. We average
the results across attention heads for 5K samples. As demonstrated in the Figure 6, the proposed
scaling factor does contribute to an increase in the synthesis process for the resolution 2242 and a
decrease in that for the resolution 7682, which accords with our motivation in Section 3.2 and shows
the efficacy of our scaling factor in mitigating the fluctuation of the attention entropy.

4.3 Difference with other candidate methods

In this section, we discuss upon the difference between the proposed method and other candidate meth-
ods for variable-sized image synthesis, including up/down-sampling methods and super-resolution
methods. While all the mentioned methods share the same goal to synthesis images of variable sizes,
there are three distinctive features setting our method apart from the rest.

Different aspect ratio. Other candidate methods do not support diffusion models to generate new
images with a different aspect ratio. In comparison, our method could improve image synthesis in
different aspect ratio, validated by both qualitative and quantitative experiments in Section 4.1.

Richness of visual information (important for higher resolutions). When users generate images
with higher resolutions, what they are expecting is not only more pixels but also richer semantic
information in images. Under this circumstance, our method augments semantic information by
enabling models to deal with more tokens in an adaptive manner, which enables images to possess
a more extensive range of content. As shown in Figure 7, our method generates images with more
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Figure 7: Qualitative results to illustrate the difference in visual information richness between up-
sampled methods, the original Stable Diffusion and the proposed method. Note that our method (right)
introduces more visual information with a different level of granularity compared with up-sampling
and super-resolution methods (left). Additionally, our method could better deal with repetitively
disordered pattern emerging in the original Stable Diffusion model (middle).

richness and expressiveness in semantics. In contrast, super-resolution and other methods scale up
the original images and focus on better image clarity and finer details instead of richer semantics,
introducing visual information at a different granularity level compared with the proposed method.

Time cost and memory usage (important for lower resolutions). For diffusion models adapted by
our method, their time cost and spatial usage become proportional to the generation resolution, while
down-sampling methods are constantly constrained to the fixed cost brought by training resolutions.
As a result, our method could efficiently enable low resolution image synthesis especially on portable
devices, which has a high demand for both time cost and memory usage other than image fidelity.
For more quantitative results to support this, please refer to the Supplementary Materials.

5 Conclusion

In this work, we delves into a new perspective of adapting diffusion models to effectively synthesize
images of varying sizes with superior visual quality, based on the concept of entropy. We establish a
statistical connection between the number of tokens and the entropy of attention maps. Utilizing this
connection, we give interpretations to the defective patterns we observe and propose a novel scaling
factor for visual attention layers to better handle sequences of varying lengths. The experimental
results demonstrate that our scaling factor effectively enhances both quantitative and qualitative
scores for text-to-image of varying sizes in a training-free manner, while stabilizing the entropy of
attention maps for variable token numbers. Moreover, we provide extensive analysis and discussion
for the efficiency and the significance of our method.

Limitations One limitation of this study pertains to the metrics used for quantitative evaluation.
While these metrics primarily evaluate the quality of the generated content, there is a lack of
methodology for evaluating the fidelity of images for different resolutions. The same issue applies for
the evaluation of repetitively disordered pattern, which is in part compensated by qualitative scores.
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