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Abstract

Nowadays deep models are required to be versatile due to the increasing realistic
needs. Multi-task learning (MTL) offers an efficient way for this purpose to learn
multiple tasks simultaneously with a single model. However, prior MTL solutions
often focus on resolving conflicts and imbalances during optimization, which may
not outperform simple linear scalarization strategies [Xin et al., 2022]. Instead
of altering the optimization trajectory, this paper leverages mode connectivity to
efficiently approach the Pareto front and identify the desired trade-off point. Unlike
Pareto Front Learning (PFL), which aims to align with the entire Pareto front, we
focus on effectively and efficiently exploring optimal trade-offs. However, three
challenges persist: (1) the low-loss path can neither fully traverse trade-offs nor
align with user preference due to its randomness, (2) commonly adopted Bézier
curves in mode connectivity are ill-suited to navigating the complex loss landscapes
of deep models, and (3) poor scalability to large-scale task scenarios. To address
these challenges, we adopt non-uniform rational B-Splines (NURBS) to model
mode connectivity, allowing for more flexible and precise curve optimization.
Additionally, we introduce an order-aware objective to explore task loss trade-
offs and employ a task grouping strategy to enhance scalability under massive
task scenarios. Extensive experiments on key MTL datasets demonstrate that our
proposed method, EXTRA (EXplore TRAde-offs), effectively identifies the desired
point on the Pareto front and achieves state-of-the-art performance. EXTRA is also
validated as a plug-and-play solution for mainstream MTL approaches. Code is
avaliable at https://github.com/zzpustc/EXTRA.

1 Introduction

Deep models are widely deployed across various scenarios, with an increasing demand for efficiency,
such as reducing computational and storage costs. This growing need necessitates that deep models
be versatile. In this context, multi-task learning (MTL) has been extensively explored [Zhang and
Yang, 2018, Wang et al., 2013, Zhang et al., 2018]. MTL aims to achieve strong performance across
multiple tasks using a single model, in contrast to traditional deep learning approaches where the
number of parameters or models often scales with the number of tasks.

In recent years, significant attention has been devoted to optimization-based MTL [Sener and Koltun,
2018, Liu et al., 2021a, Zhou et al., 2025a], which assumes a fixed model architecture comprising
a task-shared backbone and multiple task-specific branches. The primary goal in this setting is to
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develop optimization algorithms that enable the backbone to effectively extract task-shared features.
However, this approach faces two major challenges: conflict and imbalance issues, wherein task
gradients may exhibit conflicts or significantly imbalanced norms.

To address these challenges, various solutions have been proposed, including gradient orthogonal
projection [Yu et al., 2020], Nash negotiation [Navon et al., 2022], and fair resource allocation
mechanisms [Ban and Ji, 2024], etc. Unfortunately, recent studies [Xin et al., 2022, Mueller et al.,
2024, Zhou et al., 2025b] have argued that altering the optimization trajectory through combinations
of task gradients may be less effective than anticipated. Notably, when dedicated tuning is applied
across all methods, these advanced approaches often fail to outperform a simple linear scalarization
strategy. These findings suggest the need to explore alternative paradigms for optimization in MTL.

Another research line is Pareto Front Learning (PFL), which aims to directly explore the entire
Pareto front, enabling the attainment of Pareto optimality based on user preferences. For instance,
inspired by mode connectivity, PaMaL [Dimitriadis et al., 2023] attempts to approach the Pareto front
through ensembles of single tasks. Several efficient variants [Tang et al., 2024, Dimitriadis et al.,
2024, Chen and Kwok, 2024] have since been proposed, incorporating techniques such as low-rank
approximations or mixtures of experts. However, challenges in manifold learning and the scalability
of PFL as the number of tasks increases remain unresolved and inapplicable, as we will empirically
verify in Section 4.

In this paper, rather than leveraging mode connectivity [Garipov et al., 2018] to achieve PFL, we
utilize it to address MTL. Unlike PFL, which optimizes endpoints and attempts to align with the
Pareto front in the manifold space, our approach optimizes the curve connecting the endpoints. This
requires only two endpoints and a few control points, ensuring that memory and storage costs do not
scale with the number of tasks. However, three challenges remain: (1) The low-loss path identified
by mode connectivity for MTL is random, lacking both trade-off traversal and alignment with user
preferences. (2) Commonly adopted curves (e.g., Bézier curves) lack local dynamics, making it
difficult to connect points with differing trade-offs. (3) Poor scalability of this framework to massive
task scenarios. To address these issues, we adopt non-uniform rational B-Splines (NURBS) for
mode connectivity, enabling the search for more intricate curves. Additionally, we introduce an
order-aware objective to encourage task loss trade-offs during optimization. Moreover, we employ
a task grouping strategy to enhance scalability under massive task scenarios. In a nutshell, we
summarize our contributions as three-fold:

• We conduct MTL through mode connectivity by optimizing the curve connecting endpoints
rather than the endpoints themselves, offering a more efficient way to leverage mode
connectivity compared to PFL.

• To traverse trade-offs and approach the Pareto front, we adopt flexible NURBS curves for
enhanced local adjustments. Additionally, we propose an order-aware objective to further
encourage trade-off traversal. Besides, a task grouping strategy is further employed to
address the scalability issue.

• Extensive experiments on key MTL datasets demonstrate that our method effectively iden-
tifies the desired point on the Pareto Frontier and achieves state-of-the-art (SOTA) perfor-
mance.

2 Related Work

This paper primarily bridges the gap between MTL and mode connectivity, exploring their intersection.
To provide context, we also introduce key developments in both domains. Additionally, we include
an overview in PFL to clarify the distinctions between our approach and PFL.

2.1 Optimization-based MTL

Optimization-based MTL focuses on developing optimization algorithms rather than architectural
changes to facilitate learning multiple tasks simultaneously. A significant body of work [Liu et al.,
2024, Chen et al., 2018, Zhou et al., 2024] has explored re-weighting task losses to balance their
learning progress. For instance, GradNorm defines a metric to quantify the learning progress of each
task and dynamically adjusts task weights during training. Similarly, FAMO [Liu et al., 2024] refines
this idea by providing a more precise estimation of progress.
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Another paradigm in optimization-based MTL involves combining task gradients to address conflict
and imbalance issues. MGDA [Sener and Koltun, 2018] employs the Frank–Wolfe algorithm to
find the least norm combination of gradients. PCGrad [Yu et al., 2020] projects task gradients onto
orthogonal directions to prevent conflicts. CAGrad [Liu et al., 2021a] balances global convergence and
conflict-averse goals by designing compromise objectives. Nash-MTL [Navon et al., 2022], adopting
a game-theoretic perspective, enables tasks to negotiate parameter updates for balanced progression.
Recently, FairGrad [Ban and Ji, 2024] built upon Nash-MTL by introducing a finer-grained constraint
to ensure balanced learning progress across tasks.

2.2 Mode Connectivity

Mode connectivity [Garipov et al., 2018] is a recently discovered phenomenon asserting that a low-loss
path can always be found to connect two local minima. It introduces practical methods using simple
curves (e.g., polygonal chains and Bézier curves) to identify such paths. Similarly, [Draxler et al.,
2018] employs a nudged elastic band (NEB) method to search for low-loss connections. Expanding on
this concept, SPRO[Benton et al., 2021] explores mode-connecting volumes, extending connectivity
beyond simple paths. CBFT [Lubana et al., 2023] leverages mode connectivity for efficient fine-
tuning in downstream tasks. Additionally, applications such as continual learning[Mirzadeh et al.,
2020, Wen et al., 2023] utilize mode connectivity to transfer models along low-loss paths for specific
objectives. Most existing works focus on optimizing the connected curve, which we categorize as
curve-based mode connectivity for clarity.

2.3 Pareto Front Learning
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Figure 1: Comparison of manifold PFL
and our work.

Unlike MTL, which seeks a single optimal point on the
Pareto front, Pareto front learning (PFL) aims to directly
construct the entire Pareto front, allowing for user-defined
trade-offs at test time. PHN [Navon et al., 2020] em-
ploys a hyper-network to generate Pareto-optimal mod-
els conditioned on preference vector inputs. In contrast,
COSMOS[Ruchte and Grabocka, 2021] eliminates the
parameter overhead of hyper-networks by conditioning
the model on preference vectors in the feature space. Pa-
MaL[Dimitriadis et al., 2023] learns the Pareto front in the
manifold space by optimizing endpoints, each dedicated
to a single task. To improve efficiency, subsequent works
have explored techniques such as low-rank approxima-
tions[Dimitriadis et al., 2024, Chen and Kwok, 2024] and
mixture-of-experts (MoE) [Tang et al., 2024] to reduce
the parameter burden of endpoints. These manifold-based PFL approaches can be categorized as
endpoint-based mode connectivity.

Connection and Difference with Counterparts: Inspired by mode connectivity, we aim to explore
different trade-offs by aligning the low-loss path with the Pareto front, specifically for MTL rather
than PFL. In other words, our focus is on obtaining desired points on the Pareto front for MTL by
optimizing the curve (path), rather than constructing the entire Pareto front by optimizing endpoints.
This distinction is illustrated in Figure 1 using simple two- and three-task instances. As shown,
(manifold-based) PFL seeks to cover the Pareto front by optimizing endpoints and deriving the desired
point through a linear combination of these endpoints. The limitations of this paradigm are discussed
in Section 4.1. In contrast, our approach focuses solely on identifying the best trade-off for MTL
by optimizing the curve. Moreover, our framework introduces a novel perspective for MTL, distinct
from previous paradigms that rely on re-weighting task losses or gradients.

3 Preliminary

3.1 Setup of Optimization-based MTL

Optimization-based multi-task learning (MTL) methods typically assume that the model consists
of a task-shared backbone network and task-specific branches. These methods aim to develop
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gradient combination strategies that optimize the backbone network to benefit all tasks simultaneously.
Consider a scenario with K ≥ 2 tasks, each associated with a differentiable loss function Li(θ),
where θ represents the model parameters. The objective of optimization-based MTL is to find the
optimal θ∗ ∈ Rm that minimizes the losses across all tasks.

3.2 Pareto Concept

Let us define the weighted loss as Lω =
∑K

i=1 ωiLi(θ), where ω ∈ W and W represents the
probability simplex over [K]. A point θ′ is said to Pareto dominate θ if and only if ∀i,Li(θ

′) ≤ Li(θ).
Pareto optimality occurs when no θ′ exists such that ∀i,Li(θ

′) ≤ Li(θ). Points satisfying this
condition form the Pareto set, and their corresponding solutions are called the Pareto front.

3.3 Mode Connectivity for MTL
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Figure 2: Illustration of mode connectiv-
ity for MTL.

For ease of explanation, we introduce the our application
of vanilla mode connectivity in a 2-task MTL setting. As
illustrated in Figure 2, the training process consists of two
stages:
(1) First stage: Train the single-task models to obtain opti-
mized weights, Θ1 and Θ2, each tailored for its respective
task.
(2) Second stage: Initialize the endpoints with the pre-
trained single-task weights, Θ1 and Θ2. Using these fixed
endpoints and trainable control points (e.g., θ1 and θ2), we
construct a curve function C(t) (e.g., Bézier curve, Polygonal Chain) that connects the endpoints.

During training, we uniformly sample points along the curve and minimize their corresponding losses
to obtain a low-loss path:

LT (θ) = Et∼U[0,1]
[L1(C(t; θ)) + L2(C(t; θ)) + λ ∗ Rreg] (1)

where U[0,1] denotes the uniform distribution over the interval [0, 1], and Rreg is the (L2 norm)
regularization item, and λ is the hyper-parameter.

4 Motivation and Observation

Since our work is closely related to the manifold-based PFL series—which also leverages mode
connectivity for multi-task learning—we draw motivation for our choice by analyzing their limitations.
In addition, we highlight the challenges of using curve optimization as an alternative approach for
MTL, which further motivates the designs introduced in the next section.

4.1 Limitations of Manifold-based PFL
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Figure 3: The results of PaMaL evaluated on the
CityScapes. (a) is the task losses while (b) is the
∆m% along the searched path (MC path).

To facilitate a clear discussion, we categorize the
scenarios into two-task and multi-task settings.
We adopt PaMaL as the baseline for our exper-
iments, since most existing manifold-based PFL
approaches that utilize mode connectivity are
either derived from or closely related to PaMaL.

Degeneration of 2-Task Scenario: In the 2-
task scenario, PaMaL reduces to linear mode
connectivity, as illustrated in Figure 1. In other
words, regardless of how the models (endpoints)
are trained, their final weighted combination, t ∗ θ1 + (1− t) ∗ θ2, lies along a linear path. However,
it is generally challenging to approximate the Pareto front using a linear path. To verify this, we
re-implemented PaMaL and evaluated it on the CityScapes dataset, presenting the results in Figure 3.
As shown in Figure 3(a), task losses along the path fall within a narrower range, forming a relatively
flat region rather than a well-defined Pareto front. Additionally, Figure 3(b) illustrates the changes in
∆m% (defined in Eqn. 8) along the path. Notably, ∆m% exhibits a monotonically decreasing trend,
which deviates from the expected characteristics of the Pareto front.
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(g) MTL Ability: Vanilla
Bézier curve (order-aware)
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Figure 4: The results of employing PolyChain, Bézier and NURBS curve for mode connectivity on
CityScapes. (a)-(d) are the loss landscapes (average task loss) and searched curves with respect to
different curves and objectives. • and ♦ are endpoint and control point, respectively, while − is the
searched curve. All endpoints are well trained single task weights. (e)-(h) are the mtl ability (∆m%)
evaluation along the corresponding searched curves.

Scaling Problem of Many Task Scenario: Since manifold-based PFL optimizes endpoints to approx-
imate the Pareto front, the number of endpoints must scale with the number of tasks. Consequently,
in scenarios involving many tasks (>2), this approach demands significant computational and storage
resources, making it challenging to optimize. We present the memory cost as the number of tasks
increases in Figure 5(a). As expected, PaMaL exhibits an almost linear increase in memory cost
with respect to the number of tasks 2. While subsequent methods, e.g., PaLoRA [Dimitriadis et al.,
2024], employ techniques like LoRA or MoE to address these scalability issues, they still encounter
optimization difficulties. Despite introducing additional parameters, their performance often lags
behind advanced MTL approaches. As illustrated in Figure 5(b), PaMaL and its efficient variant,
PaLoRA, achieve SOTA performance on the CityScapes dataset (2-task scenario). However, they are
less competitive on NYUv2 (3-task scenario), demonstrating the difficulty of such manifold-based
optimization 3.

4.2 Challenges of Curve-Based Mode Connectivity

To circumvent these issues intrinstic lie in the endpoint-based mode connectivity, we opt to the
curve-based ones. However, it will naturally encounters the following challenges:

4.2.1 Challenge 1: Randomness
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Figure 5: Analysis on PaMaL. (a) is the memory
cost of PaMaL with the increasing number of end-
points. (b) is the performance compared with ad-
vanced MTL on CityScapes and NYUv2 datasets.

The original mode connectivity approach seeks a
low-loss curve (e.g., Bézier or Polygonal Chain)
by minimizing task losses but lacks designs
specifically tailored for handling multi-task com-
petition. As a result, its effectiveness in MTL
exhibits randomness.

We verify this by visualizing the curve on the
loss landscape and computing its MTL ability,
quantified by ∆m% (defined in Eqn.8), along
different points of the curve, as shown in Fig-
ure 4(a)(e)-(b)(f). Although most points along

2More memory cost comparisons are presented in the Appendix (Sec. B.3).
3We calculate ∆m% according to the results provided in PaLoRA.
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the curve lie within a low-loss region, their MTL abilities fluctuate significantly, indicating a failure
to align with the Pareto front. This suggests that mode connectivity alone does not inherently promote
stable trade-offs and may struggle to identify the optimal trade-off point (i.e., the best MTL ability)
along the curve.

To address this randomness issue, we introduce an additional objective (see Section 5.1) to promote a
more structured exploration of trade-offs. Figure 4(c)(g) provides a preview of the benefits of our
approach. As shown, the proposed objective guides the curve through a broader low-loss region and
successfully identifies a better and more distinct optimal trade-off compared to Figure 4(a)(e)-(b)(f).

4.2.2 Challenge 2: Flexibility

Another challenge concerns the choice of curve. The commonly used Bézier curve in mode connec-
tivity is often too smooth [Draxler et al., 2018] to effectively explore diverse trade-offs. As shown
in Figure 4(b)(c), each control point exerts a global influence on the curve, limiting its ability to
capture local dynamics. In contrast, NURBS offers greater flexibility for local adjustment through
segmental modeling. As illustrated in Figure 4(d), even with uniformly sampled points, most lie
within a low-loss basin (Point Cluster) and demonstrate strong MTL performance, underscoring
NURBS’s advantage in modeling local variations.

4.2.3 Challenge 3: Scalability

The last challenge arises in terms of scalability when addressing scenarios involving a large number
of tasks. As shown in Figure 2, curve-based mode connectivity is primarily applicable to settings
involving two endpoints (tasks), which limits its utility in massive task scenarios—a critical aspect
of MTL. Although some prior works have attempted to extend mode connectivity to multiple
endpoints [Fort and Jastrzebski, 2019] or adopt manifold-based strategies [Benton et al., 2021], these
approaches are often difficult to optimize or require extensive pre-training of multiple endpoints.
These limitations are key reasons why we do not adopt endpoint-based mode connectivity in our
framework.

Remarks: This scalability issue is shared by both curve- and endpoint-based mode connectivity
approaches. However, they pursue different goals: endpoint-based mode connectivity aims to
approximate the entire Pareto front, while our curve-based approach focuses on exploring the optimal
trade-off point for MTL. This key difference allows us to apply endpoint clustering when facing
massive tasks—a strategy that is not feasible for the endpoint-based approach.

5 Principal Design

5.1 Injecting Order to Mode Connectivity

To address the Challenge 1, we begin by recalling a key property of the Pareto front: the ability
to traverse trade-offs. Building on this property, we propose the following order-aware objective.
Assume we sample two variables, t1 and t2, and obtain the corresponding weights, C(t1) and C(t2).
The objective is then defined as:

Ro =
1

2

[
e[L1(t1)−L1(t2)](t2−t1) + e[L2(t1)−L2(t2)](t1−t2)

]
(2)

where Li(tj) is the abbreviate of Li(C(tj ; θ)), and represent the losses of task i at C(tj ;θ). This
constraint explicitly encourages the task losses to exhibit different tendencies with respect to t. The
overall objective can then be defined as follows:

J (θ) = LT + α ∗ Ro (3)

where LT represents the mean task losses, and α is a hyper-parameter. This objective ensures the
low-loss property while encouraging the searched curve to gradually approach the Pareto front.

5.2 Enabling Complicated Path: NURBS

As Challenge 2 have mentioned, Bézier curves often suffer from an over-smoothing issue, making it
challenging to capture long-distance trade-offs. This limitation arises because the order of the curve
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is inherently tied to the number of control points, causing adjustments to any control point to shift the
entire curve [Piegl and Tiller, 2012]. To provide the curve with greater flexibility, we adopt NURBS,
which decouples the number of control points (knots) from the curve order. This approach enables
more localized dynamics without significantly affecting the global structure of the curve. Formally,
the adopted NURBS equation is defined as follows:

C(t) =
K∑
i=1

(
Ni,p(t)wi∑K
i=1 Ni,p(t)wi

)
θi (4)

where Ni,p(t) represents the p-th B-spline basis function, and θi is the i-th control point (knot), while
wi is the learnable weight factor. And the basis function Ni,p(t) is derived using the Cox-de Boor
recurrence formula [Boor, 1971], as follows:

Ni,1(t) =

{
1 ti ≤ t < ti+1,

0 otherwise
(5)

Ni,n(t) =
t− ti

ti+n−1 − ti
Ni,n−1(t) +

ti+n − t

ti+n − ti+1
Ni+1,n−1(t)

These segmentations of t enable the NURBS curve to capture local dynamics without significantly
altering the entire curve, making it more effective for exploring the complex loss landscape of this
task. We also present the corresponding visualization results of employing NURBS in Figure 4(d)-(h).
Compared to the Poly Chain and Bézier curves, NURBS exhibits greater flexibility, a longer low-loss
path, and improved MTL performance.

5.3 Scale to Many Task Scenarios

Equations 2 and 3 are specifically designed for two-task scenarios, facilitating trade-offs between the
two tasks. To address Challenge 3, we propose a warmup-based task grouping strategy that scales to
many-task settings by dividing tasks into three clusters.

Prior to the main training phase, we perform a warmup stage for e epochs to collect gradient statistics.
For a mini-batch, we obtain the set of task gradients {g1, ..., gK}. Based on these, we compute a

cosine similarity matrix A: Aij =
g⊤
i gj

|gi||gj | . Using A, we construct a graph G = (V, E), where each
node vi ∈ V represents a task and each edge eij ∈ E corresponds to Aij for i < j ≤ K. We then
apply spectral clustering [Ng et al., 2001] to partition G into three clusters P = {E1, E2, E3}.

After pretraining on clusters E1 and E2, we obtain their respective weights Θ1 and Θ2, which are
used to initialize the endpoints of the connectivity curve. To align the trade-offs across all clusters,
we introduce the following alignment objective:

Ralign = e−|t− 1
2 | · Lr (6)

where Lr denotes the average loss of tasks in cluster E3. The full training objective is then defined as:

J (θ) = LT + α · Ro +Ralign (7)

This formulation ensures that Lr reaches its minimum at t = 1/2 while maintaining mode connec-
tivity between E1 and E2. This enables aligned trade-offs across all task clusters at the center of the
curve. Note that K = 3 is a special case where grouping is not required.

6 Performance Evaluation

In this section, we first evaluate our method using mainstream MTL benchmarks and compare
it with the following baselines: Linear Scalarization (LS), Scale-Invariant (SI), RLW [Lin et al.,
2021], DWA [Liu et al., 2019], UW [Kendall et al., 2018], MGDA [Sener and Koltun, 2018],
GradDrop [Chen et al., 2020], PCGrad [Yu et al., 2020], CAGrad [Liu et al., 2021a], IMTL [Liu
et al., 2021b], Nash-MTL [Navon et al., 2022], FAMO [Liu et al., 2024], and FairGrad [Ban and Ji,
2024]. We also compare with several PFL approaches, including COSMOS [Ruchte and Grabocka,
2021], HPN [Navon et al., 2020], and PaMaL [Dimitriadis et al., 2023], to demonstrate EXTRA’s
ability to approach the Pareto front. Additionally, we provide further analysis, e.g., ablation study
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Table 2: Scene understanding (NYUv2, 3 tasks). We report MTAN model performance averaged
over 3 random seeds. The best scores are provided in gray , and the second scores are underlined.

Method
Segmentation ↑ Depth ↓ Surface Normal

MR ↓ ∆m% ↓
mIoU Pix. Acc. Abs. Err. Rel. Err. Angle Distance ↓ Within t◦ ↑

Mean Median 11.25 22.5 30

Independent 38.30 63.76 0.68 0.28 25.01 19.21 30.14 57.20 69.15 - -

LS 39.29 65.33 0.55 0.23 28.15 23.96 22.09 47.50 61.08 10.67 5.46
RLW 37.17 63.77 0.58 0.24 28.27 24.18 22.26 47.05 60.62 13.22 7.67
DWA 39.11 65.31 0.55 0.23 27.61 23.18 24.17 50.18 62.39 9.78 3.49
Uncertainty 36.87 63.17 0.54 0.23 27.04 22.61 23.54 49.05 63.65 9.67 4.01
MGDA 30.47 59.90 0.61 0.26 24.88 19.45 29.18 56.88 69.36 7.56 1.47
GradDrop 39.39 65.12 0.55 0.23 27.48 22.96 23.38 49.44 62.87 10.11 3.61
PCGrad 38.06 64.64 0.56 0.23 27.41 22.80 23.86 49.83 63.14 10.33 3.83
CAGrad 39.79 65.49 0.55 0.23 26.31 21.58 25.61 52.36 65.58 7.56 0.29
IMTL 39.35 65.60 0.54 0.23 26.02 21.19 26.20 53.13 66.24 6.67 -0.59
Nash-MTL 40.13 65.93 0.53 0.22 25.26 20.08 28.40 55.47 68.15 4.11 -4.04
FAMO 40.30 66.07 0.56 0.21 26.67 21.83 25.61 51.78 64.85 6.56 0.16
FairGrad 39.74 66.01 0.54 0.22 24.84 19.60 29.26 56.58 69.16 3.56 -4.66

EXTRA-L 40.90 66.67 0.54 0.22 25.16 19.88 28.79 55.94 68.50 3.67 -4.41±1.3

EXTRA-F 41.89 67.60 0.53 0.22 24.64 19.30 29.66 57.30 69.76 1.56 -6.30±1.2

(Sec. B.1), grouping strategy comparison (Sec. B.2), plug-and-play verification (Sec. B.4), analysis
on control point number (Sec. B.5), and hyper-parameter analysis (Sec. B.6), in Appendix to offer
deeper insights into the performance. All experiments were conducted on Tesla V100 GPUs. Please
refer to Appendix (Sec. A) for more implementation details.

Evaluation Metric. In addition to reporting individual performance, we also incorporate a widely
used metric, ∆m% [Maninis et al., 2019], which evaluates the overall degradation compared to
independently trained models that are considered as the reference oracles. The formal definition of
∆m% is given as:

∆m% =
1

K

K∑
k=1

(−1)δk(Mm,k −Mb,k)/Mb,k × 100 (8)

where Mm,k and Mb,k represent the metric Mk for the compared method and the independent model,
respectively. The value of δk is assigned as 1 if a higher value is better for Mk, and 0 otherwise.
Besides, we also report another popular metric named Mean Rank (MR), which computes the
average ranks of each methods across all tasks.

6.1 Overall MTL Evaluation
Table 1: Results on CelebA.

Method CelebA

MR ↓ ∆m% ↓
LS 8.00 4.15
SI 9.75 7.20
RLW 6.80 1.46
DWA 8.88 2.40
UW 7.48 3.23
MGDA 12.95 14.85
PCGrad 8.60 3.17
CAGrad 8.05 2.48
IMTL-G 6.45 0.84
Nash-MTL 6.53 2.84
FAMO 6.35 1.21
FairGrad 7.05 1.15

EXTRA-L 4.15 0.10±0.5

EXTRA-F 3.98 -0.11±0.2

In this section, we evaluate our method on two image classification
tasks, CelebA and MultiMNIST, as well as two scene understanding
datasets, CityScapes and NYUv2. CelebA serves as a multi-task dataset
to assess the model’s ability to handle a large number of tasks, while
MultiMNIST is a toy dataset used to demonstrate the model’s ability
to cover the Pareto front. Notably, ‘EXTRA-L’ represents equips with
LS trained endpoints, while ‘EXTRA-F’ represents equips with both LS
and FairGrad trained endpoints.

6.1.1 Scene Understanding

CityScapes: CityScapes is a large-scale dataset designed for scene un-
derstanding, which we use as an MTL benchmark focusing on the tasks
of semantic segmentation and depth estimation. The results, presented
in Table 3, demonstrate that EXTRA achieves SOTA performance based
on ∆m%, a key metric widely regarded as one of the most important in
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MTL. Additionally, it ranks highly in terms of the MR metric, which evaluates the ranking position
of EXTRA among various MTL approaches. Notably, our method is competitive with advanced
gradient-based MTL approaches, highlighting that our novel framework is as effective as the alter-
native optimization trajectory paradigm and offers a fresh perspective for advancing MTL research.

Table 3: Scene understanding (CityScapes, 2 tasks).

Method Segmentation ↑ Depth ↓ MR ↓ ∆m% ↓
mIoU Pix. Acc. Abs. Err. Rel. Err.

Independent 74.01 93.16 0.0125 27.77 - -

LS 75.18 93.49 0.0155 46.77 9.25 22.60
RLW 74.57 93.41 0.0158 47.79 12.00 24.37
DWA 75.24 93.52 0.0160 44.37 9.25 21.43
Uncertainty 72.02 92.85 0.0140 30.13 8.25 5.88
MGDA 68.84 91.54 0.0309 33.50 12.00 44.14
GradDrop 75.27 93.53 0.0157 47.54 8.75 23.67
PCGrad 75.13 93.48 0.0154 42.07 9.50 18.21
CAGrad 75.16 93.48 0.0141 37.60 8.50 11.58
IMTL 75.33 93.49 0.0135 38.41 6.75 11.04
Nash-MTL 75.41 93.66 0.0129 35.02 4.00 6.82
FAMO 74.54 93.29 0.0145 32.59 9.00 8.13
FairGrad 75.72 93.68 0.0134 32.25 2.50 5.18

EXTRA-L 75.53 93.63 0.0127 33.45 3.25 4.93±1.1

EXTRA-F 76.11 93.58 0.0126 30.20 2.00 1.63±1.6

NYUv2: NYUv2 is another indoor
scene understanding dataset com-
monly used for MTL benchmarking,
comprising three tasks: semantic seg-
mentation, depth estimation, and sur-
face normal prediction. We conducted
experiments on this dataset, and the
results are presented in Table 2. As
shown, EXTRA significantly outper-
forms its counterparts in both ∆m%
and MR. Moreover, it achieves top
performance on nearly every single
task, demonstrating EXTRA’s capabil-
ity to search for the optimal trade-
offs. We attribute this effectiveness to
our design, which facilitates travers-
ing trade-offs while maintaining low
losses along the searched path. Even
EXTRA-L exhibits competitive perfor-
mance though their endpoints are
naïvely trained with LS.

6.1.2 Image Classification

CelebA: CelebA [Liu et al., 2015] is a widely used facial attributes dataset containing over 200,000
images annotated with 40 binary attributes. Recently, it has been adopted as a 40-task multi-task
learning (MTL) benchmark to assess a model’s capacity to handle a large number of tasks. Following
the experimental setup of prior work [Liu et al., 2024, Ban and Ji, 2024], we evaluate EXTRA on
CelebA, with results presented in Table 1. FairGrad results are reported from three random runs using
the same seeds as EXTRA, based on its official implementation. As shown, EXTRA achieves SOTA
performance in both ∆m% and MR. These results indicate that EXTRA can enhance all individual
tasks simultaneously and underscore the effectiveness of our grouping strategy in large-scale task
scenarios.
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Figure 6: Results on MultiMNIST.

MultiMNIST: Following the experimental setup in Pa-
MaL [Dimitriadis et al., 2023], we evaluate EXTRA on
MultiMNIST, a widely used dataset for assessing how
MTL/PFL methods approach the Pareto front. The re-
sults are presented in Figure 6. As shown, the best trade-
off identified by EXTRA is competitive with SOTA MTL
methods. Additionally, EXTRA achieves broad coverage of
trade-offs without sacrificing performance, demonstrating
its superior ability to approach the Pareto front compared
to its counterparts in the 2-task scenario 4.

7 Conclusion

In this paper, we approach MTL from the perspective of mode connectivity, in contrast to traditional
gradient-based methods. Specifically, our focus is on exploring the optimal trade-offs that deliver
competitive MTL performance, rather than aiming to directly approach the Pareto front. By designing
an order-aware objective and employing a more flexible curve (NURBS), we show that optimizing
the curve, rather than just the endpoints, is both more efficient and effective for MTL. This approach

4We report the results of PFL approaches based on runs of PaMaL’s official implementation, while MTL
results are taken from PaMaL’s paper.
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is empirically validated across multiple mainstream datasets. We hope that our work offers valuable
insights for future research in the field of MTL.
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A Implementation Details

A.1 Evaluation Protocol

For scene understanding benchmarks such as CityScapes and NYUv2, mainstream multi-task learning
(MTL) approaches typically report the final performance by averaging results over the last 10 epochs,
due to the absence of a validation set. However, this evaluation protocol is not directly applicable to
our method, which generates a solution curve during training and evaluates sampled points along the
curve to demonstrate superior trade-offs. Specifically, we save the trained model at the final epoch
and evaluate MTL performance at t = 1

2 , which represents the midpoint of the curve.

For image classification benchmarks such as CelebA, we adopt the same training procedure as used
for the scene understanding benchmarks. However, we utilize a validation set to select the optimal
value of t and report the corresponding MTL performance.

A.2 Experimental Setting

In line with the implementation and training strategy of FairGrad [Ban and Ji, 2024], we construct
our model using SegNet [Badrinarayanan et al., 2017], with MTAN [Liu et al., 2019] employed as
the backbone. The model is trained using the Adam optimizer for 200 epochs. The initial learning
rate is set to 1e-4 and decayed by a factor of 2 after 100 epochs. The batch size is set to 2 for NYUv2
and 8 for CityScapes. The control point numbers are 4 and 5 on CityScapes and NYUv2, respectively,
with 2 and 3 trainable in the second stage.

For the CelebA dataset, we adopt a 9-layer convolutional neural network (CNN) as the backbone,
with task-specific linear heads appended. The model is trained with the Adam optimizer for 15 epochs
using an initial learning rate of 3e-4 and a batch size of 256. The control point number is 3, with 1
trainable in the second stage.

Regarding the MultiMNIST dataset, we follow the protocol described in PaMaL [Dimitriadis et al.,
2023]. Each MultiMNIST image is formed by sampling (with replacement) two MNIST digits
(28×28), which are placed at the top-left and bottom-right of a 36×36 grid. This composite image is
then resized to 28×28 pixels. The resulting dataset comprises 60,000 training, 10,000 validation, and
10,000 test samples. The model uses a LeNet-style shared-bottom architecture: the encoder contains
two convolutional layers with 10 and 20 channels (kernel size 5), each followed by max pooling and
ReLU activation. The encoder outputs a 50-dimensional embedding. Each decoder consists of two
fully connected layers, with the final output layer producing predictions over 10 classes. The model
is trained using Adam with a learning rate of 0.001, no learning rate scheduler, a batch size of 256,
and a total of 10 training epochs. The control point number is 3, with 1 trainable in the second stage.

B Additional Experiments

B.1 Ablation Study

Our system comprises multiple components, including the order-aware objective (Ro), alignment
objective (Ralign in Eqn.7), and curve selection. To evaluate the effectiveness and rationale behind
each component, we conduct an ablation study on the NYUv2 dataset, with the results presented in
Table 4. As shown, without Ralign, EXTRA still outperforms the baseline but falls short of the complete
system’s performance. This suggests that, while the model can minimize loss, it fails to properly
calibrate the remaining tasks at t = 1

2 . Additionally, EXTRA shows slight improvements without Ro,
demonstrating the strong capability of NURBS in capturing diverse trade-offs. This observation is
further corroborated by the comparison between NURBS and Bézier, which reveals a substantial
performance gap in MTL.

B.2 Grouping Strategy Comparison

To further demonstrate the effectiveness of the proposed grouping strategy, we compare it with two
alternative approaches: random grouping and K-means clustering. The corresponding results are
shown in Figure 7. In this experiment, the 40 tasks are grouped into 3 clusters using each of the
three strategies, followed by multi-task learning (MTL) training. As illustrated, our strategy achieves
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Table 4: Ablation study of EXTRA on NYUv2 (3 tasks).
Ro Ralign Bézier NURBS ∆m% ↓

-4.66
✓ ✓ -6.05

✓ ✓ -4.97
✓ ✓ ✓ -4.36

✓ ✓ ✓ -6.30

the best overall MTL performance, outperforming both random and K-means grouping. Notably,
K-means clustering fails to deliver satisfactory results due to imbalanced cluster sizes. Specifically,
we observe that two of the three K-means clusters contain only a single task, which hinders the
exploration of trade-offs under our training framework.
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Figure 7: Comparison of grouping strategies on CelebA. ‘Random’ represents the uniform division
for 40 tasks, while K-means represents leveraging K-means to cluster the warmup gradients of 40
tasks.

B.3 Memory Cost Analysis

To evaluate the efficiency and scalability of our method compared to endpoint-based approaches, we
statistically analyze their memory consumption during training across various MTL benchmarks, as
shown in Figure 8. As depicted, in the 2-task (CityScapes) and 3-task (NYUv2) settings, EXTRA incurs
slightly higher memory usage due to its two-stage training paradigm. However, in the large-scale
scenario with 40 tasks (CelebA), endpoint-based methods such as PaMaL require substantial memory
resources, resulting in an out-of-memory (OOM) issue during training. In contrast, EXTRA maintains
a manageable memory footprint, demonstrating better scalability.

B.4 Plug-and-Play Verification

In addition to LS and FairGrad, we further incorporate another mainstream MTL approach, CAGrad,
to demonstrate the plug-and-play capability of EXTRA, with the corresponding results shown in Table 5.
As illustrated, EXTRA also provides significant improvements when applied to CAGrad, following
the same trend observed with LS and FairGrad. Specifically, EXTRA not only enhances overall
MTL performance but also improves each individual metric, thereby verifying its plug-and-play
effectiveness.

B.5 Analysis on Control Point Number

We further analyze the effect of the number of bends in the NURBS representation on the CityScapes
dataset, with results presented in Figure 10. As shown, EXTRA-L achieves the best performance in
terms of ∆m% when the number of bends is set to 4. Notably, reducing the number of bends to
3 leads to a substantial drop in performance, likely due to the limited expressive capacity of the
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Figure 8: Memory Cost Comparison. ‘EXTRA-1’ and ‘EXTRA-2’ represents the first and second
training stage of EXTRA. Note that the memory consumption of PaMaL on the CelebA dataset is
estimated, as its actual training raises an out-of-memory (OOM) issue under our experimental settings.

Table 5: Scene understanding (CityScapes, 2 tasks). / indicates outperforms/underperforms their
vanilla versions. ‘EXTRA-L’, ‘EXTRA-C’, and ‘EXTRA-F’ are EXTRA augmented LS, CAGrad, and
FairGrad versions.

Method Segmentation ↑ Depth ↓
∆m% ↓

mIoU Pix. Acc. Abs. Err. Rel. Err.

Independent 74.01 93.16 0.0125 27.77 -

LS 75.18 93.49 0.0155 46.77 22.60
EXTRA-L 75.53 93.63 0.0127 33.45 4.93

CAGrad 75.16 93.48 0.0141 37.60 11.58
EXTRA-C 75.50 93.55 0.0135 35.73 8.61

FairGrad 75.72 93.68 0.0134 32.25 5.18
EXTRA-F 76.11 93.58 0.0126 30.20 1.63

NURBS curve. Conversely, increasing the number of bends to 5 or 6 does not yield performance
gains, which is somewhat counterintuitive. To investigate this further, we visualize the corresponding
loss landscapes in Figure 9. As illustrated, EXTRA-3 degenerates into a Bézier-like curve, exhibiting
excessive smoothness. Meanwhile, the curves produced by EXTRA-5 and EXTRA-6 appear irregular
and less stable, likely due to the increased difficulty in optimization, which in turns highlights the
superiority of choosing curve-based rather than endpoint-based mode connectivity for MTL.
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Figure 9: The loss landscape of employing NURBS with different control point number (including
endpoints). We abbreviate them as EXTRA-3, EXTRA-4, EXTRA-5, and EXTRA-6.

B.6 Hyper-parameter Analysis

We evaluate the impact of the hyperparameter α on the final performance and present the results in
Figure 11. As shown, the performance remains relatively stable across different values of α, with
the highest average performance achieved at α = 0.3. However, α = 0.5 offers a better trade-off
between average performance and variance. Therefore, we adopt α = 0.5 as the default setting in our
experiments.
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Figure 10: Analysis of number of bends on CityScapes, 2 tasks.

0.2 0.4 0.6 0.8
1.2

1.4

1.6

1.8

2.0

m
%

Figure 11: Analysis on α.

C Limitation and Discussion

Although EXTRA achieves state-of-the-art performance on mainstream MTL benchmarks, it faces
challenges in delivering user-preference MTL results when the number of tasks exceeds two. While
a Bézier surface can align mode connectivity with the Pareto front for three tasks, this approach
becomes progressively more difficult as the number of tasks increases, which represents a key
limitation of our method. Addressing this limitation will be a focal point of future work. Additionally,
one might raise concerns regarding the fairness of our evaluation, given that EXTRA utilizes multiple
points (endpoints and control points) to construct the curve, thereby increasing the model’s capacity.
While we acknowledge this concern, we emphasize that our work introduces a novel perspective
to MTL, potentially offering an alternative to gradient-based MTL approaches, which have been
debated for their effectiveness [Xin et al., 2022].
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