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ABSTRACT

Graph Contrastive Learning (GCL) has recently gained popularity owing to its
ability to learn efficient node representations in a self-supervised manner. These
representations are typically used to train a downstream classifier. In several real-
world datasets, it is difficult to acquire sufficient clean labels for classification and
instead, we have weak or noisy labels available. There is little known about the
robustness of the node representations learnt by the current GCL methods in the
presence of weak labels. Moreover, GCL has been successfully adapted to a super-
vised setting where class labels are used to contrast between pairs of nodes. Can
weak labels similarly be leveraged to learn better node embeddings? In this pa-
per, we first empirically study the robustness of current GCL node representations
to weak supervision. Then, we introduce Weakly Supervised Graph Contrastive
Learning, WSNET, a novel method that incorporates signals from weak labels
for the contrastive learning objective. We evaluate WSNET on five benchmark
graph datasets comparing its performance with state-of-the-art GCL and noisy-
label learning methods. We show that WSNET outperforms all baselines, partic-
ularly in the high noise setting. We conclude that although current GCL methods
show great promise in the weak supervision paradigm, they are still limited in
their capacity to deal with label noise and, utilizing signals from weak labels is an
effective way to improve their performance.

1 INTRODUCTION

Despite the great success of graph neural networks (Kipf & Welling, 2016a; Veličković et al., 2017;
Xu et al., 2018; Wu et al., 2020) in learning node representations, their reliance on large and clean
sets of labelled data is a bottleneck (Sun et al., 2020; Zhou et al., 2019). In real-world settings, it is
often challenging to procure abundant training labels to train these models. One strategy proposed
to alleviate this problem is self-supervised learning (SSL) that learns graph representations without
depending on training labels (Xie et al., 2022; Hu et al., 2019; Liu et al., 2021). Among SSL
methods, graph contrastive learning (GCL) (Veličković et al., 2018; Hassani & Khasahmadi, 2020;
You et al., 2020) typically constructs multiple “views” of an input graph via augmentations and
contrasts positive pairs against negative samples to learn representations. For each given node,
its positive samples are often chosen as the corresponding representations in another view, while
negatives are selected from other nodes in the same view. The SSL objective has also been adapted
to a supervised setup. In particular, supervised contrastive learning (SupCon) (Khosla et al., 2020b)
which extends contrastive learning to a fully supervised setting has shown superior performance on
the large-scale ImageNet classification task. SupCon pulls representations of nodes from the same
class closer together and pushes those from different classes away from each other. Recently, the
same idea was applied with success to graph contrastive learning and combined with cluster-aware
data augmentation in ClusterSCL (Wang et al., 2022).

In between self-supervised and fully supervised learning, there is also weakly supervised learning,
where each data point is associated with (multiple) noisy label(s). This is a common setup, for ex-
ample, in crowdsourcing with multiple crowd workers, and when real-world datasets are labelled
using a combination of rules and heuristics. Notably, the paradigm of programmatic weak supervi-
sion (Ratner et al., 2016) has proven practical in many applications (Fries et al., 2022; 2021; 2019).
In this paper, we consider the scenario of weakly supervised graph contrastive learning. While there
are several systematic reviews of GCL and SSL methods for graphs (Zhu et al., 2021a; Liu et al.,
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2021; Xie et al., 2022; Wu et al., 2021), there are no works, to the best of our knowledge, that
systematically study the robustness of the node representations learned by GCL methods to label
noise. To this end, we first provide an extensive evaluation of existing GCL methods for the node
classifications with noisy labels. Such a comparative study has not been done before and can reveal
scope for further research in this direction.

Secondly, we explore whether weak labels help improve the quality of node representations learned
using GCL. In particular, we consider the task of weakly supervised node classification, where each
node has multiple noisy labels. Noisy supervision often incorrectly draws node representations of
similar nodes away from each other in the embedding space. Instead of relying entirely only on the
weak label of a node, we consider the distribution of weak labels of its related nodes. More clearly,
we propose relying on the graph structure, specifically graph communities to find related nodes.
Graph communities are relevant in several real-world graphs. For example, in social networks,
individuals may be grouped together based on their interests, or in citation networks, communities
may represent researchers working on closely related areas. GCL leveraging graph communities is
currently under-explored. In our work, we introduce WSNET, a novel GCL method that leverages
signals from both weak labels and graph communities to learn node representations.

We highlight that our setting is different from noisy label learning (NLL) where each node has
one noisy label. In these cases, most solutions are focused on denoising the labels and/or loss
regularization (Dai et al., 2021; Du et al., 2023). There have also been early efforts on incorporating
GCL for noise robust learning (Yuan et al., 2023). In our setup, we have multiple weak labels
assigned to each node, as is the norm in programmatic weak supervision.

To summarize, through this paper, we ask two main research questions. RQ1: How robust are the
node representations learned using GCL to weakly supervised classification? RQ2: Can weak labels
be used to learn more robust embeddings? We experiment with several GCL methods on multiple
graph datasets and combine graph communities and weak labels to introduce WSNET, a new weakly
supervised GCL method. We believe that answering these questions is vital in designing solutions
for weakly supervised classification problems in graphs. An anonymized version of our code is
released - https://anonymous.4open.science/r/StructNet-93E0/

2 RELATED WORK

In this section we touch upon prominent works in four related fields and we highlight how they are
different from our work.

Programmatic Weak Supervision: In this paradigm, multiple weak supervision sources such as
heuristics, knowledge bases, pre-trained models, etc are encoded into labeling functions (LFs). They
are user-defined programs that provide labels for a subset of the data, collectively generating a large
training set(Zhang et al., 2022). The LFs may be noisy, erroneous and, provide conflicting labels. To
address this, label models were developed that aggregate the noisy votes of the LFs to obtain training
labels which are then used to train models for downstream tasks(Ratner et al., 2016; 2019; Varma
et al., 2019; Fu et al., 2020). Our work is related to PWS in that it utilizes multiple weak labels but
our method is not focused on label aggregation. We simply use the signals from the weak labels
to improve the contrastive learning process. We use majority vote (MV), which is the simplest and
most straightforward strategy for label aggregation which chooses a label based on consensus from
all the LFs. Other approaches which were designed to consider input features for a classification
task either can not directly be applied to graphs, rely on pre-trained language models, or require
additional inputs such as error rates of LFs or a set of labelled data (Zhang et al., 2022). We do not
compete with these approaches as our focus is not on weak label aggregation or label denoising but
rather studying its effects on GCL.

Noisy Label Learning: When there are multiple weak labels associated with each data sample
(like in our problem setting), also known as programmatic weak supervision (Ratner et al., 2016;
2019), majority vote (MV) is the simplest and most straightforward strategy for label aggregation
which chooses a label based on consensus from all the weak labelers. However, these MV aggre-
gated labels are still noisy. The most common approaches for neural networks dealing with noisy
labels are data-driven (Van Rooyen & Williamson, 2017), learning objective (Reed et al., 2014) or
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optimization based (Arpit et al., 2017). PI-GNN (Du et al., 2023) is a recent work that introduces
an adaptive noise estimation technique leveraging pairwise interactions between nodes for model
regularization. NRGNN (Dai et al., 2021) is another recent work that utilizes edge prediction to
predict links between unlabelled and labelled nodes and expands the training set with pseudo labels,
making it more robust to label noise. Unlike these works, our method does not handle or ‘clean’
label noise but rather uses the weak signals to improve the node representation learning.

Graph Contrastive Learning: Contrastive learning focuses on pulling a node and its positive
sample closer to each other in the embedding space, while pushing it away from its negative sam-
ples (Khosla et al., 2020a; Chen et al., 2020). For contrastive learning in graphs, node and graph
level augmentations are often contrasted in different ways. DGI (Veličković et al., 2018) contrasts
graph and node embeddings within one augmented view. GraphCL (You et al., 2020) maximizes
the agreement between two augmented views of the same graph. MVGRL (Hassani & Khasahmadi,
2020) augments the graph using node diffusion whereas GRACE (Zhu et al., 2020) augments graph
views using edge removal and feature masking. CSGCL (Han et al., 2023) uses graph augmentations
based on community strength and structure while GCA (Zhu et al., 2021b) uses adaptive augmen-
tations based on topological and semantic graph properties. GAE (Kipf & Welling, 2016b) learns
node embeddings by reconstructing the adjacency matrix. BGRL (Thakoor et al., 2021) predicts al-
ternative augmentations for the nodes and alleviates the need for negative contrast pairs. GMI (Peng
et al., 2020) formally generalizes mutual information for the graph domain. SUGRL (Mo et al.,
2022) complements structural and neighborhood information to enlarge intra-class variation with-
out any graph augmentations. Similarly, iGCL (Li, 2023) introduces an invariant-discriminant loss
that is free from augmentations and negative samples. SelfGNN (Kefato & Girdzijauskas, 2021)
proposes a GCL approach that uses feature augmentations over topological augmentations and does
away with negative sampling. gCooL (Li et al., 2022) jointly learns the community partition and
node representations in an end-to-end fashion showing that community information is beneficial
to the overall performance. Our contrastive learning method differs from these approaches in one
major way in that it leverages signals from weak labels.

Supervised Graph Contrastive Learning: SupCon (Khosla et al., 2020b) introduced supervised
contrastive learning for ImageNet classification and was adapted to graphs in ClusterSCL (Wang
et al., 2022). To negate impacts of SupCon induced by the intra-class variances and the inter-class
similarities they combine it with node clustering and cluster-aware data augmentation. JGCL (Akkas
& Azad, 2022) further incorporates both supervised and self-supervised data augmentation and pro-
pose a joint contrastive loss. None of these were explicitly designed to work with one or many weak
labels. (Zheng et al., 2021) proposed a weakly supervised contrastive learning framework for image
classification and used node similarity to obtain weak labels. These weak labels are dependent on the
augmented views of their graph and are inherently different from the noisy class labels in our setting.
Moreover, they optimize a loss combination of contrasting image crops (cannot directly be applied
to graphs), LSupCon and augmented views. We compare WSNET with the graph-adapted version of
SupCon (Wang et al., 2022), which is essentially a combination of the latter two loss components.
Clear (Luo et al., 2022) also relies on graph clusters to improve contrastive learning embeddings.
However, ours is different in that we use graph communities for sampling positive pairs while Clear
contrasts different clusters with each other for capturing underlying structural semantics. Moreover,
we also leverage weak/noisy label signals while sampling positives. Recently, (Cui et al., 2023)
discussed theoretically that noisy labels do not help with contrastive learning. More specifically,
that it does not help select “clean labels” for training. Our work is different as firstly, we do not
focus on clean label selection and secondly, our work relies on signals from multiple weak labels.
Thirdly, our method also draws on valuable information from the graph structure which we show
helps learning robust node embeddings.

3 PRELIMINARIES

Graph notation: We represent a graph G = (V,E), where V = {1, 2, ..., N} is the set of nodes
and E is the set of edges. For a given node i in V , its neighborhood N (i) is defined as {∀j ∈
V |(i, j) ∈ E}. Each node i is represented by a d−dimensional input vector Xi from the node
feature matrix X ∈ RN×d and also has an unobserved true label yi ∈ {1, 2, ..., C}. Y = [y1, ...yN ]
represents the true labels for all N nodes in the graph.
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Weak labels: For the setting under consideration, each node i is associated with m weak labels.
These weak labels are assumed to be obtained from m different sources also known as labelling
functions (LF) that map an input node to a label. Each LF (λj) when applied on Xi produces a weak
label Λij ∈ {−1, 1, 2, . . . , C} where -1 indicates no output/abstain. pa or probability of abstain
controls how many times a LF returns -1 and pc or probability of correctness, controls the accuracy
of the weak labels. 1 - pc thus indicates the noise ratio in the labels. Each node i is then associated
with a weak label vector Λi = Λ[Vi] = [λ1(Vi) . . . λm(Vi)] and Λ ∈ {−1, 1, 2, . . . C}N×m gives
the weak label matrix for all N nodes in the graph. Given Λi, an aggregated label ỹi is obtained
by MajorityV ote(Λij)

m
j=1 which is the label that most frequently appears in Λi. Ỹ = [ỹ1, ..., ỹN ]

represents the aggregated labels for all N nodes in the graph. Henceforth in this paper, weak label
refers to Λ, aggregated label means Ỹ and ρ is noise ratio.

Problem statement: Given G, X , Λ and Ỹ , the goal is to learn robust node representations H
such that a downstream classifier model f : H, Ỹ → Y can be learned.

4 METHODOLOGY

WSNET consists of a simple graph convolution layer parameterized by WA, that aggregates a node
i’s input features (xi) with that of its neighbors (N (i)) followed by a linear layer parameterized by
WL and B to obtain hidden representations hi (Equation 1).

hi = E(xi,N (i)) = WL(ReLU(WAAVG({xi} ∪ {xv|∀v ∈ N (i)})) +B (1)

These hidden representations are then mapped to the output dimension space by a fully connected
linear layer followed by softmax to obtain a probability distribution over all the class labels. Drawing
on ideas from information theory, WSNET optimizes a contrastive learning objective function (as
per Equation 2) by maximizing the mutual information between a node and two sets of its positive
samples while contrasting it with two sets of its negative samples. This contrastive loss L consists
of two-parts that rely on signals from the graph structure and weak node labels respectively.

L = LS + LSupCon (2)
The first part LS (given by Equation 3) is based on the assumption that nodes with a similar graph
structure are more likely to belong to the same class. To find a given node’s positive sample, we ran-
domly choose a node from its graph community. This forces nodes belonging to the same commu-
nity to have similar representations. Extending to graph community instead of the immediate node
neighborhood helps improve the quality of node representations particularly in non-homophilous
networks, as confirmed by our experiments. Additionally, we also consider the similarity between
the weak label distributions of nodes while selecting positives and negatives. More clearly, for a
given node, we calculate the dot product similarity between the frequency vector of its weak labels
and those of all other nodes belonging to its community and pick the node with the highest similarity.
Likewise, the negatives are sampled from outside of the community based on their dissimilarity with
the given node’s weak label frequency vector. We used the popular Louvain algorithm for finding
graph communities. This process is outlined in Algorithm 1.

LS = −
|V |∑
i=1

log
exp (hi.h

+
i /τ)∑

j∈K̃i
exp (hi.hj/τ) + exp (hi.h

+
i /τ)

(3)

Here h+
i is the positive sample for node i, K̃i is the set of its r negative samples and τ is the

temperature parameter. ‘.’ indicates dot product.

The second part LSupCon (given by Equation 4) is the SupCon loss function. Here, we sample a
node’s positive from the set of nodes that has the same aggregated label and negatives from the
remaining nodes. Typically, SupCon is used in a semi-supervised setting with a small percentage
of labelled nodes which limits its performance. In our setting, since weak labels are cheap, we can
obtain them for all nodes, thus providing some label information for all the nodes and improving the
effect of using the SupCon loss.

LSupCon = −
|V |∑
i=1

∑
p∈Pi

log
exp (hi.hp/τ)∑

n∈Ki
exp (hi.hn/τ) +

∑
p∈Pi

exp (hi.hp/τ)
(4)
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Pi is the set of nodes with the same aggregated class label as node i and hp indicates the correspond-
ing node representations. Ki indicates the r negative samples and τ is the temperature parameter.
The procedure for obtaining Pi and Ki is outlined in lines 15 and 16 in Algorithm 2.

The loss function L is optimized to learn the model parameters and obtain embeddings that can
then be fed into a downstream classifier such as a logistic regression model and trained using the
aggregated labels. Algorithm 2 details the steps involved in WSNET.

Algorithm 1 FINDCONTRASTPAIRS

Input: Λ, Comms, Vi, V , r
Output: V +

i , V −
i

1: ll← Λ[Vi]
2: fi ← frequncyCounter(ll) ▷ counts the frequency of each class in ll
3: Ci ← Comms[Vi]
4: NCi ← V \ Comms[Vi]
5: prob+ ← emptyList(size = |Ci|)
6: prob− ← emptyList(size = |NCi|)
7: for j ∈ Ci do
8: λj ← Λ[j]
9: fj ← frequncyCounter(λj)

10: prob+[j]← fi · fj ▷ cosine similarity
11: end for
12: V +

i ∼ randomChoice(Ci, prob
+) ▷ sample from prob+

13: for j ∈ NCi do
14: λj ← Λ[j]
15: fj ← frequncyCounter(λj)
16: prob−[j]← 1− (fi · fj) ▷ cosine dissimilarity
17: end for
18: V −

i ← emptyList(size = r)
19: for k ∈ [1 . . . r] do
20: V −

i [k]← v− ∼ randomChoice(NCi, prob
−) ▷ sample from prob−

21: end for
22: return V +

i , V −
i

5 EXPERIMENTS

We ran two sets of experiments to address RQ1 and RQ2 described as follows. First, we evaluated
the node embeddings learned by various GCL methods on their robustness to aggregated labels in
a downstream node classification task. We compared across different styles of contrastive learning
with and without augmented views, negative sampling and neighbourhood based positive sampling
with the goal of studying any correlation with their performance on weakly supervised classification.
Second, we evaluated WSNET for the same task and compared it to relevant baselines, including
self-supervised learning (SSL), noisy label learning (NLL) and supervised GCL (Sup-GCL).

For both experiments, we synthetically created weak labels using Algorithm 3 for fixed coverage
(pc), while varying accuracy (pa) and number of weak labels (m). We use a simple majority vote
strategy to aggregate the m weak labels to get a single aggregated label for each node. The values of
(m, pa) were arbitrarily chosen [(5, 0.45), (10, 0.65), (50, 0.55)] to ensure that the aggregated labels
have accuracy of around 47%, 68% and 90%, i.e, having a label noise rate of 53%, 32% and 10%
respectively. These values were chosen to correspond to a high, medium and low noise setting for
evaluating our method. pa was fixed at 0.2 to simulate a difficult setup where 80% of the time, each
of the LFs (λj) returned −1.

We repeated each experiment 5-times on different 80-20 train-test splits and reported the average and
standard deviation across all the runs. For each run, both the GCL component and the downstream
classifier had access to weak labels only from the train split during training. For all baselines, we
used their official code base available online and retained all the default hyperparameter settings.
For WSNET, we set r to be 10 and τ as 0.65 based on grid-search and T (training epochs) to be 300.
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Algorithm 2 WSNET

Input: X , Λ, V , E, T
Hyperparameters: r, τ
Output: H

1: t← 1
2: Comms← Louvain(V,E,X ) ▷ Finding communities using (Blondel et al., 2008)
3: Labels←MajorityV ote(Λ)
4: while t ≤ T do
5: for xi ∈ X do
6: hi ← E(xi,N (i)) ▷ Using Equation 1
7: V +, V − ← FINDCONTRASTPAIRS(Λ, Comms, Vi, V , r) ▷ Using Algorithm 1
8: h+

i ← E(xV + ,N (V +))

9: K̃i ← emptyList(size = r)
10: for j ∈ [1 . . . r] do
11: K̃i[j]← E(xV −

j
,N (V −

j ))

12: end for
13: end for
14: Calculate LS using Equation 3
15: Pi ← Vk : Labels[Vk] = Labels[Vi]
16: Ki ← Vk : Labels[Vk] ̸= Labels[Vi]
17: Calculate LSupCon using Equation 4
18: L = LS + LSupCon

19: Backpropagate L and update all parameter weights
20: t← t+ 1
21: end while
22: H ← [E(Xi,N (i))|∀i ∈ V ]
23: Return: H

For all GCL methods, the learned embeddings were used to train a downstream Logistic Regression
classifier unless specified otherwise and the classification performance on the test set was reported.
All the experiments were run on a local 8-cpu core Macbook M2 computer.

Algorithm 3 SYNTHETICLABELING

Input: y, C, pc, pa, m
Output: λ̂

1: L← [0, 1 . . . C,−1]
2: λ̂← emptylist(size = m)
3: for i ∈ [1 . . .m] do
4: P ← emptylist(size = C + 1)
5: P [−1]← pa ▷ prob. of abstain
6: P [y]← (1−pa)×pc ▷ prob. of voting× accuracy
7: for l ∈ L \ {−1, y} do
8: P [l]← ((1− pa)× (1− pc))/(C − 1)
9: end for

10: λ̂[i] ∼ randomChoice(L,P ) ▷ sample a label at random with probability P
11: end for
12: Return: λ̂

Datasets: We run our experiments on five benchmark node classification datasets, namely Cora,
Citeseer, Pubmed, Texas and Wisconsin. The first three are citation networks where the nodes are
academic papers, edges indicate if a paper was cited/cites another paper and classes are topics that
the papers belong to. Texas and Wisconsin are college webpage datasets where the nodes represent
webpages, edges are hyperlinks between them and the nodes may be classified as student, staff, etc1.

1Texas and Wisconsin were taken from Non-Homophily-Large-Scale. All other datasets are from Deep
Graph Library.
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Cora, Citeseer and Pubmed are homophilous whereas Texas and Wisconsin as non-homophilous.
Algorithm 3 was used to generate the weak labels for all the datasets. These graphs also vary in
their properties such as number of nodes, edges, classes and homophily as summarized in Table 1.
Due to its large size, while selecting negative pairs for Pubmed, only 1000 out-of-community nodes,
chosen at random, were considered.

Table 1: Dataset statistics. |V |, |E| and C are the number of nodes, edges and classes in the graph
respectively. Homophily shows to what degree neighboring nodes have the same label and Commu-
nities represents the number of groups found by the Louvain algorithm.

Dataset |V | |E| C Homophily Communities
Cora 2995 8158 7 0.83 81
Citeseer 4230 5337 6 0.71 537
Pubmed 19717 44324 3 0.79 39
Texas 183 350 5 0.11 62
Wisconsin 251 482 5 0.21 88

GCL methods: For RQ1, we compare the performance of several GCL baselines highlighted in
Table 4. We include GCL methods that rely on using augmented views of nodes, contrasting with
negative samples, sampling positives from node neighborhoods or some combination of these.

WSNET falls under the category of weakly supervised graph contrastive learning (WS-GCL) and
for RQ2, we compare it with baselines from related areas namely self-supervised learning (SSL)
or GCL, noisy label learning (NLL) and supervised graph contrastive learning (SupGCL). For SSL,
we use the same baselines from Table 4. NLL baselines include recent works NRGNN (Dai et al.,
2021) and PI-GNN (Du et al., 2023) both of which explicitly deal with noisy labels while performing
node classification. From Sup-GCL, we include SupCon (Khosla et al., 2020a), Joint Training of
an augmented view contrastive loss and SupCon similar to (Akkas & Azad, 2022) and included in
(Cui et al., 2023) and ClusterSCL (Wang et al., 2022) that learns cluster assignments for nodes along
with supervised GCL.

RQ1 Results - Robustness of GCL to label noise: The results for the first set of experiments are
in Table 2. The values in the table indicate the weighted F1 classification score and the values within
brackets show the percentage decrease in weighed F1 due to label noise. i.e, the same embeddings
are used to train two logistic regression models with the true labels and weak labels respectively and
their difference is tabulated to measure their robustness to noise.

In the high and medium label noise settings (Tables 2a and 2b), we see that the performance of
almost all baselines are very close and there is no clear winner across all datasets. The three base-
lines that use neighbourhood-based sampling of positive pairs do better than others in the high noise
setting. For example, see SUGRL (Mo et al., 2022) on Citeseer and iGCL (Li, 2023) on Wisconsin
from Table 2a. Such neighborhood based sampling that contrasts views of neighboring nodes in-
stead of augmented views of the same nodes, allows the learned embeddings to contain even more
information about the neighbors, contributing to their robustness. When the noise ratio is low (Table
2c), MVGRL (Hassani & Khasahmadi, 2020) and GraphCL (You et al., 2020) are best performing
in the homophilous datasets (Cora, Citeseer and Pubmed). However, no clear recommendations can
be made as to the effect of augmentations or negative sampling on the classification performance.
These results provide reasonable evidence that there is a need for methods specifically focusing on
weakly supervised classification.

RQ2 Results - Performance of WSNET: Table 3 presents the weighted F1 classification score
and results of the second experiment. We carry over the best performing result from Table 2 to com-
pare it with the remaining baselines. WSNET + LR uses the embeddings learned by our method to
train a logistic regression model for classification and WSNET + RF uses a random forest classifier.
We included the RF downstream classifier to make it a fairer competitor to the NLL baselines as it
is known to be more robust to label noise compared to logistic regression (Ishii & Ljunggren, 2021).
WSNET + LR is more comparable to all the GCL baselines including Sup-GCL. First, we note that
WSNET + LR outperforms all SSL and Sup-GCL methods on Cora, Citeseer, Texas and Wisconsin
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Table 2: Robustness comparison of GCL methods to label noise. We compare the classification
performance (weighted F1 score) of different GCL methods in three noise settings: low, medium,
and high. In parenthesis, we report the percentage decrease in performance compared to when the
method has access to the true labels. We observe that the performance of all methods degrades as
label noise increases and there is no single method that clearly outperforms others across different
noise settings.

Cora Citeseer Pubmed Texas Wisconsin
DGI (Veličković et al., 2018) 0.26 (70.1%) 0.29 (67.6%) 0.37 (57.0%) 0.25 (38.8%) 0.45 (18.8%)
GAE (Kipf & Welling, 2016b) 0.23 (28.5%) 0.29 (34.1%) 0.42 (49.5%) 0.23 (54.6%) 0.38 (15.0%)
CSGCL (Han et al., 2023) 0.32 (59.3%) 0.31 (63.0%) 0.41 (49.8%) 0.15 (62.8%) 0.35 (6.40%)
GRACE (Zhu et al., 2020) 0.32 (58.4%) 0.33 (60.8%) 0.41 (51.6%) 0.26 (37.5%) 0.30 (12.7%)
MVGRL (Hassani & Khasahmadi, 2020) 0.33 (60.9%) 0.32 (64.7%) 0.40 (53.9%) 0.28 (25.9%) 0.37 (5.32%)
GraphCL (You et al., 2020) 0.32 (62.6%) 0.26 (70.5%) 0.38 (56.4%) 0.16 (53.0%) 0.32 (31.2%)
GCA (Zhu et al., 2021b) 0.34 (58.9%) 0.31 (63.6%) 0.42 (50.2%) 0.28 (22.5%) 0.24 (38.0%)
BGRL (Thakoor et al., 2021) 0.33 (48.4%) 0.31 (49.6%) 0.44 (38.9%) 0.26 (21.5%) 0.37 (8.53%)
GMI (Peng et al., 2020) 0.31 (49.3%) 0.34 (53.6%) 0.37 (48.3%) 0.29 (15.1%) 0.42 (8.13%)
SUGRL (Mo et al., 2022) 0.32 (51.3%) 0.38 (47.2%) 0.39 (45.9%) 0.30 (15.7%) 0.33 (24.6%)
iGCL (Li, 2023) 0.32 (49.8%) 0.28 (58.3%) 0.41 (44.8%) 0.21 (21.0%) 0.45 (0.63%)
SelfGNN (Kefato & Girdzijauskas, 2021) 0.24 (55.5%) 0.28 (56.3%) 0.42 (43.3%) 0.32 (7.94%) 0.41 (15.4%)

(a) High noise setting: ρ = 53%

Cora Citeseer Pubmed Texas Wisconsin
DGI (Veličković et al., 2018) 0.53 (35.8%) 0.55 (38.1%) 0.62 (28.9%) 0.20 (64.6%) 0.38 (25.1%)
GAE (Kipf & Welling, 2016b) 0.46 (24.5%) 0.51 (21.9%) 0.62 (26.6%) 0.21 (51.5%) 0.33 (41.9%)
CSGCL (Han et al., 2023) 0.48 (38.8%) 0.53 (37.1%) 0.58 (28.7%) 0.22 (48.6%) 0.28 (10.9%)
GRACE (Zhu et al., 2020) 0.46 (39.5%) 0.53 (37.6%) 0.60 (28.2%) 0.16 (61.6%) 0.34 (10.5%)
MVGRL (Hassani & Khasahmadi, 2020) 0.57 (34.2%) 0.60 (32.8%) 0.61 (28.9%) 0.21 (45.5%) 0.36 (18.0%)
GraphCL (You et al., 2020) 0.58 (33.1%) 0.57 (34.0%) 0.61 (30.2%) 0.12 (75.2%) 0.36 (36.0%)
GCA (Zhu et al., 2021b) 0.54 (33.6%) 0.51 (39.2%) 0.58 (29.5%) 0.29 (22.4%) 0.33 (25.4%)
BGRL (Thakoor et al., 2021) 0.48 (33.2%) 0.47 (35.8%) 0.57 (25.5%) 0.30 (26.1%) 0.38 (5.88%)
GMI (Peng et al., 2020) 0.53 (28.5%) 0.56 (32.1%) 0.60 (25.9%) 0.17 (48.5%) 0.36 (13.7%)
SUGRL (Mo et al., 2022) 0.57 (27.3%) 0.58 (27.3%) 0.60 (24.5%) 0.22 (29.6%) 0.47 (15.2%)
iGCL (Li, 2023) 0.49 (32.9%) 0.53 (31.7%) 0.59 (26.9%) 0.13 (29.5%) 0.35 (7.36%)
SelfGNN (Kefato & Girdzijauskas, 2021) 0.51 (31.5%) 0.53 (29.9%) 0.60 (25.6%) 0.13 (15.9%) 0.34 (9.10%)

(b) Medium noise setting: ρ = 32%

Cora Citeseer Pubmed Texas Wisconsin
DGI (Veličković et al., 2018) 0.79 (6.73%) 0.80 (7.83%) 0.72 (17.5%) 0.35 (11.2%) 0.39 (25.9%)
GAE (Kipf & Welling, 2016b) 0.77 (10.7%) 0.72 (7.37%) 0.70 (16.3%) 0.49 (15.1%) 0.43 (8.54%)
CSGCL (Han et al., 2023) 0.72 (7.25%) 0.78 (8.26%) 0.69 (17.3%) 0.37 (22.1%) 0.37 (6.38%)
GRACE (Zhu et al., 2020) 0.70 (10.7%) 0.79 (7.17%) 0.71 (16.7%) 0.33 (10.2%) 0.34 (4.59%)
MVGRL (Hassani & Khasahmadi, 2020) 0.81 (6.49%) 0.81 (9.42%) 0.72 (16.5%) 0.48 (0.73%) 0.36 (5.69%)
GraphCL (You et al., 2020) 0.80 (5.43%) 0.81 (7.35%) 0.72 (17.2%) 0.43 (10.5%) 0.32 (32.3%)
GCA (Zhu et al., 2021b) 0.74 (8.50%) 0.77 (8.36%) 0.69 (17.3%) 0.49 (4.85%) 0.34 (18.5%)
BGRL (Thakoor et al., 2021) 0.73 (7.67%) 0.72 (10.3%) 0.69 (14.4%) 0.53 (5.57%) 0.39 (0.45%)
GMI (Peng et al., 2020) 0.76 (5.04%) 0.79 (7.04%) 0.72 (14.4%) 0.44 (10.6%) 0.47 (2.65%)
SUGRL (Mo et al., 2022) 0.77 (6.60%) 0.78 (6.87%) 0.71 (14.2%) 0.43 (2.60%) 0.39 (12.8%)
iGCL (Li, 2023) 0.76 (5.98%) 0.77 (9.25%) 0.71 (15.5%) 0.42 (1.63%) 0.42 (2.15%)
SelfGNN (Kefato & Girdzijauskas, 2021) 0.74 (6.71%) 0.76 (7.77%) 0.71 (14.4%) 0.42 (1.80%) 0.39 (11.5%)

(c) Low noise setting: ρ = 10%

for all noise settings. On Cora, Texas and Wisconsin, it also beats the NLL baselines. WSNET +
RF further outperforms all baselines particularly in the high noise setting. When the noise ratio is
medium and low, WSNET performs best on Cora, Citeseer, Texas and Wisconsin. It is particularly
worth noting that WSNET + RF outperforms noisy label learning methods like NRGNN and PI-
GNN. These NLL baselines are strong contenders on the homophilous graphs, especially Pubmed,
but do not perform as well on Texas and Wisconsin. We highlight that WSNET particularly works
very well on these non-homophilous graphs which we believe can be attributed to our community-
based sampling approach. Texas is a small dataset with only 183 nodes, and although on average
it seems that WSNET’s performance on high noise setting is better compared to medium noise, we
observe a high variance in the results resulting in an overlap in the ranges. This is also only ob-
served using LR classifier and not RF. Thus, more than the quality of the WSNET embeddings, this
behaviour may party be attributed to the simplicity of the downstream LR classifier.

We also include two ablations of our method where either part of the two-part loss function is
removed, indicated by −LS and −LSupCon. We see that our method combining the two is best per-
forming especially in the high noise setting. Additionally, WSNET facilitates the pre-computation of
the positive and negative samples for all nodes as they only depend on the graph structure and weak
labels and not on the learned embeddings. Moreover, on Pubmed, the negative pairs of nodes were
selected based on weak label dissimilarity from 1000 randomly chosen out-of-community nodes,
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without practically harming the performance. Thus, WSNET can also be adapted to be scaled to
large graphs.

Table 3: Performance of the proposed WSNET compared to baselines of different type: SSL (Self-
Supervised Learning), NLL (Noisy Label Learning), and Sup-GCL (Supervised Graph Contrastive
Learning). Our method is the first proposal for a Weakly Supervised Graph Contrastive Learning
(WS-GCL) approach. The results are weighted F1 classification score averaged across 5 train-
test splits. We can see that WSNET has a clear advantage in the high noise setting and overall
performs better than all the baselines. The bold and overline show the best and second best F1
scores respectively for each dataset.

Method Cora Citeseer Pubmed Texas Wisconsin Type

Best from Table 2 0.34 ± 0.20 0.38 ± 0.03 0.44 ± 0.14 0.32 ± 0.01 0.45 ± 0.19 SSL
NRGNN (Dai et al., 2021) 0.21 ± 0.23 0.18 ± 0.35 0.24 ± 0.02 0.09 ± 0.08 0.31 ± 0.04

NLLPI-GNN (Du et al., 2023) 0.65 ± 0.04 0.61± 0.29 0.50± 0.09 0.13 ± 0.13 0.35 ± 0.10
SupCon (Khosla et al., 2020b) 0.48 ± 0.14 0.54 ± 0.30 0.34 ± 0.03 0.43 ± 0.04 0.35 ± 0.10

Sup-GCLJoint Training (Cui et al., 2023) 0.48 ± 0.15 0.47 ± 0.19 0.28 ± 0.06 0.46 ± 0.05 0.35 ± 0.03
ClusterSCL (Wang et al., 2022) 0.35 ± 0.06 0.49 ± 0.11 0.39 ± 0.04 0.30 ± 0.05 0.37 ± 0.09
WSNET- LSupCon 0.44 ± 0.07 0.49 ± 0.11 0.40 ± 0.01 0.41 ± 0.10 0.56 ± 0.10
WSNET- LS 0.67 ± 0.04 0.55 ± 0.05 0.32 ± 0.01 0.53± 0.07 0.50 ± 0.09 WS-GCL
WSNET + LR 0.68 ± 0.02 0.54 ± 0.05 0.41 ± 0.01 0.68 ± 0.09 0.59± 0.07 (ours)
WSNET + RF 0.67± 0.08 0.85 ± 0.16 0.60 ± 0.01 0.41 ± 0.04 0.62 ± 0.09

(a) High noise setting: ρ = 53%

Method Cora Citeseer Pubmed Texas Wisconsin Type

Best from Table 2 0.58 ± 0.22 0.60 ± 0.31 0.62 ± 0.06 0.30 ± 0.03 0.47 ± 0.04 SSL
NRGNN (Dai et al., 2021) 0.81± 0.05 0.23 ± 0.14 0.75 ± 0.12 0.17 ± 0.15 0.40 ± 0.10 NLL
PI-GNN (Du et al., 2023) 0.77 ± 0.07 0.69± 0.34 0.86 ± 0.00 0.43 ± 0.05 0.43 ± 0.08
SupCon (Khosla et al., 2020b) 0.48 ± 0.12 0.65± 0.22 0.38 ± 0.05 0.45 ± 0.03 0.36 ± 0.03

Sup-GCLJoint Training (Cui et al., 2023) 0.49 ± 0.14 0.48 ± 0.27 0.35 ± 0.04 0.48 ± 0.04 0.35 ± 0.04
ClusterSCL (Wang et al., 2022) 0.27 ± 0.07 0.59 ± 0.19 0.29 ± 0.07 0.23 ± 0.03 0.37 ± 0.04
WSNET- LSupCon 0.50 ± 0.01 0.52 ± 0.16 0.59 ± 0.01 0.31 ± 0.04 0.54 ± 0.08
WSNET- LS 0.81± 0.01 0.59 ± 0.06 0.62 ± 0.01 0.49 ± 0.07 0.55 ± 0.06 WS-GCL
WSNET + LR 0.80 ± 0.04 0.65 ± 0.10 0.59 ± 0.01 0.56± 0.08 0.63± 0.08 (ours)
WSNET + RF 0.83 ± 0.03 0.87 ± 0.14 0.76± 0.01 0.58 ± 0.05 0.66 ± 0.07

(b) Medium noise setting: ρ = 32%

Method Cora Citeseer Pubmed Texas Wisconsin Type

Best from Table 2 0.81 ± 0.13 0.81 ± 0.05 0.72 ± 0.21 0.53 ± 0.02 0.47 ± 0.16 SSL
NRGNN (Dai et al., 2021) 0.75 ± 0.12 0.44 ± 0.13 0.82± 0.01 0.42 ± 0.03 0.35 ± 0.13 NLLPI-GNN (Du et al., 2023) 0.83 ± 0.05 0.89 ± 0.04 0.87 ± 0.01 0.53 ± 0.01 0.43 ± 0.08
SupCon (Khosla et al., 2020b) 0.35 ± 0.15 0.65 ± 0.21 0.35 ± 0.07 0.50 ± 0.06 0.38 ± 0.07

Sup-GCLJoint Training (Cui et al., 2023) 0.27 ± 0.13 0.49 ± 0.30 0.30 ± 0.06 0.49 ± 0.02 0.38 ± 0.04
ClusterSCL (Wang et al., 2022) 0.44 ± 0.09 0.75 ± 0.25 0.35 ± 0.08 0.45 ± 0.03 0.37 ± 0.06
WSNET- LSupCon 0.79 ± 0.07 0.76 ± 0.08 0.70 ± 0.01 0.52 ± 0.05 0.53 ± 0.06
WSNET- LS 0.94± 0.01 0.58 ± 0.03 0.71 ± 0.01 0.68 ± 0.04 0.61 ± 0.08 WS-GCL
WSNET + LR 0.92 ± 0.02 0.85± 0.09 0.70 ± 0.01 0.72± 0.06 0.75± 0.07 (ours)
WSNET + RF 0.95 ± 0.01 0.89 ± 0.03 0.81 ± 0.01 0.77 ± 0.08 0.83 ± 0.09

(c) Low noise setting: ρ = 10%

6 CONCLUSION

In this paper, we systematically explored the robustness of GCL methods to label noise and piloted
studies on weakly supervised graph contrastive learning. We found that current GCL and supervised
GCL solutions can be made more robust to weak labels and to this end proposed WSNET that
leverages signals from the graph community structure as well as weak labels. WSNET improves
upon unsupervised and supervised GCL as well as noisy label learning methods on 5 graph datasets,
especially on non-homophilous graphs. Despite its effectiveness, our method is constrained by the
quality of the community detection algorithm used and one future direction of research includes
improving on them. Another direction is to explore weakly supervised GCL as a regularization term
in noisy label learning methods.
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programming: Creating large training sets, quickly. Advances in neural information processing
systems, 29, 2016.

Scott Reed, Honglak Lee, Dragomir Anguelov, Christian Szegedy, Dumitru Erhan, and Andrew
Rabinovich. Training deep neural networks on noisy labels with bootstrapping. arXiv preprint
arXiv:1412.6596, 2014.

Ke Sun, Zhouchen Lin, and Zhanxing Zhu. Multi-stage self-supervised learning for graph convo-
lutional networks on graphs with few labeled nodes. In Proceedings of the AAAI conference on
artificial intelligence, volume 34, pp. 5892–5899, 2020.

Shantanu Thakoor, Corentin Tallec, Mohammad Gheshlaghi Azar, Mehdi Azabou, Eva L Dyer,
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A GCL METHODS

We provide a summary of the different GCL methods compared in our work in Table 4. We also
indicate whether a GCL method includes augmentation, negative sampling, neighborhood-based
sampling, supervisory signals or weak labels.

B SENSITIVITY TO PARAMETER r

r indicates the number of negative pairs sampled for the contrastive loss. Generally, the higher
the value of r, the better the performance. However, with higher values of r, the computational
complexity also increases as the denominator term in the LS (Equation 3). We ran experiments
on the Cora dataset for varying values of r and reported the results in Table 5 below. We observe
a similar performance for r = 10 and r = 20 with slight increase in runtime. Given that the
performance is similar, we stick to r = 10 as in our experiments in the paper.
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Method Augmentation Negatives Neighbourhood-based Supervision Weak Labels
DGI (Veličković et al., 2018) ✗ ✓ ✗ ✗ ✗
CSGCL (Han et al., 2023) ✓ ✓ ✗ ✗ ✗
GRACE (Zhu et al., 2020) ✓ ✓ ✗ ✗ ✗
MVGRL (Hassani & Khasahmadi, 2020) ✓ ✓ ✗ ✗ ✗
GraphCL (You et al., 2020) ✓ ✓ ✗ ✗ ✗
GCA (Zhu et al., 2021b) ✓ ✓ ✗ ✗ ✗
BGRL (Thakoor et al., 2021) ✓ ✗ ✗ ✗ ✗
GMI (Peng et al., 2020) ✗ ✓ ✓ ✗ ✗
SUGRL (Mo et al., 2022) ✗ ✓ ✓ ✗ ✗
iGCL (Li, 2023) ✗ ✗ ✓ ✗ ✗
SelfGNN (Kefato & Girdzijauskas, 2021) ✓ ✗ ✗ ✗ ✗
SupCon (Khosla et al., 2020b) ✓ ✓ ✗ ✓ ✗
Joint Training (Cui et al., 2023) ✓ ✓ ✗ ✓ ✗
ClusterSCL (Wang et al., 2022) ✓ ✓ ✗ ✓ ✗
WSNET (Ours) ✗ ✓ ✓ ✗ ✓

Table 4: Summary of different GCL methods. Our method does not use augmentations and is
designed to work with weak labels. ✓ indicates presence of that property and ✗ indicates absence.

Cora 53% 32% 10% Runtime (s)

r = 5 0.40 ± 0.04 0.74 ± 0.07 0.93 ± 0.05 25.4
r = 10 0.68 ± 0.02 0.80 ± 0.04 0.92 ± 0.02 28.3
r = 20 0.68 ± 0.04 0.80 ± 0.06 0.93 ± 0.07 28.6

Table 5: F1 classification score on Cora dataset for varying noise levels and different values of r.

C TRAINING DETAILS AND RUNTIME COMPLEXITY

All the experiments were run locally on an 8-cpu core Macbook M2 computer. WSNet was trained
for 50 epochs and the results averaged over 5 runs is reported in the paper. For all the other GCL
methods, we used the official code released by the authors of the respective papers and tried our best
to use the recommended hyperparameters wherever relevant.

Community detection and identifying both positives and negatives has a total runtime complexity of
O(nlogn) + O(np2) where n is the number of nodes in the graph and p is the size of the largest
community in the graph and p << n.

D VISUALIZATION OF LEARNED EMBEDDINGS

We plot the TSNE representations of the embeddings learned by WSNET on Cora dataset and base-
lines including ClusterSCL, SelfGNN, iGCL, SUGRL and BGRL (before the classification compo-
nent) in Figure 1. The colors in the plot represent the class labels (7 classes in Cora). We observe
that WSNET embeddings are most separabale with respect to class labels compared to other GCL
methods despite being affected by the noise in the weak labels. Apart from WSNET and Cluster-
SCL, the other GCL method do not use any label information and hence are not affected by the noise
in the labels. Compared to ClusterSCL which is also cluster-based and using the noisy weak labels
for contrastive learning, we show that WSNET achieves better class separability.

Additionally, we further study the embeddings of WSNET, ClusterSCL and SUGRL by training a
linear classifier (Logistic Regression) that we used in our experiments. We also plotted the TSNE
representations of the predicted probability vectors under different levels of noise in Figure 2.
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Figure 1: TSNE representations of embeddings learned by various methods on Cora dataset. The
colors indicate class labels. WSNET shows most separability of classes.

Figure 2: TSNE representations of predicted probability vectors under different levels of noise on
Cora dataset. Colors indicate class labels. We observe better class separability for WSNET across
different noise levels especially compared to ClusterSCL.
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