
Provably Optimal Memory Capacity for Modern
Hopfield Models: Transformer-Compatible Dense

Associative Memories as Spherical Codes

Jerry Yao-Chieh Hu∗†‡ Dennis Wu∗‡ Han Liu†‡§

†Center for Foundation Models and Generative AI, ‡Department of Computer Science, §Department of
Statistics and Data Science, Northwestern University, Evanston, IL 60208, USA

{jhu,hibb}@u.northwestern.edu, hanliu@northwestern.edu

Abstract

We study the optimal memorization capacity of modern Hopfield models and
Kernelized Hopfield Models (KHMs), a transformer-compatible class of Dense
Associative Memories. We present a tight analysis by establishing a connection
between the memory configuration of KHMs and spherical codes from information
theory. Specifically, we treat the stored memory set as a specialized spherical code.
This enables us to cast the memorization problem in KHMs into a point arrange-
ment problem on a hypersphere. We show that the optimal capacity of KHMs
occurs when the feature space allows memories to form an optimal spherical code.
This unique perspective leads to: (i) An analysis of how KHMs achieve optimal
memory capacity, and identify corresponding necessary conditions. Importantly,
we establish an upper capacity bound that matches the well-known exponential
lower bound in the literature. This provides the first tight and optimal asymptotic
memory capacity for modern Hopfield models. (ii) A sub-linear time algorithm
U-Hop+ to reach KHMs’ optimal capacity. (iii) An analysis of the scaling behavior
of the required feature dimension relative to the number of stored memories. These
efforts improve both the retrieval capability of KHMs and the representation learn-
ing of corresponding transformers. Experimentally, we provide thorough numerical
results to back up theoretical findings.

1 Introduction
We study the optimal memorization capacity of Kernelized modern Hopfield Models (KHMs) [Wu
et al., 2024a], propose a sublinear-time algorithm to achieve it, and analyze parameter selection for
these models. KHMs belong to a class of transformer-compatible Dense Associative Memory [Krotov
and Hopfield, 2021, 2016] known as Modern Hopfield Models (MHMs) [Wu et al., 2024a,b, Hu
et al., 2024a, 2023, Ramsauer et al., 2020]. The defining characteristics of these models include their
super-linear memory capacity and strong connection to transformer attention mechanisms [Vaswani
et al., 2017]. The former makes them interesting models for associative memory, and the latter makes
them versatile transformer-compatible backbones with diverse empirical successes [Burns, 2024,
Burns and Fukai, 2023, Hu et al., 2024a,c, Xu et al., 2024, Wu et al., 2024a,b, Hoover et al., 2023a,
Seidl et al., 2022, Fürst et al., 2022]. However, one major limitation of MHMs is their reliance on the
quality of memory distribution for effective pattern storage and retrieval [Wu et al., 2024a, Sec. 1].

Studying this limitation in these models is fundamental and of practical importance. One one hand, it
prevents MHMs from functioning as full-fledged content-addressable memory models. On the other
hand, it implies that the representation learning ability of current transformer attention [Vaswani et al.,
2017] is suboptimal [Wu et al., 2024a, Thm. 3.1]. Addressing this issue benefits both computational

∗Equal contribution. Code is available at GitHub. Latest version is on arXiv.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

mailto:jhu@u.northwestern.edu
mailto:hibb@u.northwestern.edu
mailto:hanliu@northwestern.edu
https://github.com/MAGICS-LAB/Optimal-Hopfield-Memory
https://arxiv.org/abs/2410.23126

neuroscience and large foundation model research [Bietti et al., 2024, Krotov, 2023, Kozachkov et al.,
2023, Cabannes et al., 2023, Hoover et al., 2023b]. Kernelized modern Hopfield Models (KHMs)
[Wu et al., 2024a] alleviate this issue by storing memories in the kernelized feature space. A key
advantage of KHMs is their ability to reposition memories in the feature space, resulting in larger
storage capacity. However, despite strong empirical performance, their capacity still lacks an optimal
guarantee [Wu et al., 2024a, Sec. 5]. In this work, we close this gap by establishing the optimality of
KHMs’ memory capacity and presenting a sublinear-time algorithm to achieve it.

Let Ξ := [ξ1, · · · , ξM] ∈ Rd×M be a set of memory patterns where each column (indexed by
µ ∈ [M]) represents a memory ξµ ∈ Rd, and let x ∈ Rd be the input query. The Hopfield models
[Hopfield, 1982] are energy-based associative memory models, which store memories on the local
minima of their energy functions. They retrieve a pattern by iteratively updating the query xt 7→ xt+1

with its update rule T (xt), for some t ∈ {0, 1, ...}. This update rule converge to a fixed point x⋆,
defined by x⋆ = T (x⋆). x⋆ is the retrieved pattern2 based on initial query x0.

Explicitly, iteratively updating x with T is defined as a process of minimization to an energy function
E(x). For example, the Modern Hopfield Model [Ramsauer et al., 2020] has the energy function:

E(x) =
1

2
⟨x, x⟩+ lse

(
β,ΞTx

)
, (1.1)

where lse(β, z) := log
(∑M

µ=1 exp{βzµ}
)

, with some β > 0. With the Concave-Convex Procedure
(CCCP) [Yuille and Rangarajan, 2001], (1.1) is monotonically decreased by an iterative update rule

xt+1 ← T (xt) = Ξ · Softmax(βΞTxt). (1.2)

This design boosts MHMs to store exponentially (in pattern dimension d) many memories compared
to the linear capacity of the classic Hopfield model [Hopfield, 1982]. It also provides a model-based
interpretation of the transformer attention mechanism [Wu et al., 2024a,b, Hu et al., 2024a,b, 2023,
Ramsauer et al., 2020]. However, their retrieval accuracy and memory capacity hinge on the quality
of the stored memory set [Wu et al., 2024a, Sec. 1], and hence are suboptimal in most scenarios.

To be concrete, for retrieving the µ-th memory (µ ∈ [M]), the retrieval error of MHM is exponentially
suppressed by the pattern separation: ∆µ := ⟨ξµ, ξµ⟩ − maxν,ν ̸=µ ⟨ξν , ξµ⟩ ([Wu et al., 2024a,
Eqn. 1.3] or [Hu et al., 2023, Eqn. 2.7]). This ∆µ-dependence in MHM retrieval accuracy also
manifests the ∆µ-dependence in memory capacity. To see this, recall that the standard memory
capacity is a high-probability bound based on thresholding the separation ∆µ for each pattern
µ ∈ [M] to determine storage and retrieval (Section 2.1). Explicitly, storing a pattern requires its
separation to exceed a threshold that decreases with the minimal separation: ∆min := minµ∈[M] ∆µ.
Namely, a larger ∆min leads to larger capacity (Appendix B.1). Thus, the capacity depends on ∆min.
Yet, ∆min depends on the stored memories Ξ. This Ξ-dependence makes the capacity suboptimal.

Wu et al. [2024a] relax such limitation by introducing a kernel as a learnable similarity measure, using
stored memory patterns as training data to enhance memory capacity. Specifically, they propose the
Kernelized Modern Hopfield Model (KHM) defined by following update rule and energy function:

xt+1 ← TΦ(xt) := Ξ · Softmax (βK(Ξ, x)) , EK(x) =
1

2
K(x, x) + lse (β,K(Ξ, x)) , (1.3)

where the kernel K(·, ·) := ⟨Φ(·),Φ(·)⟩ : Rd × Rd → R is associated with a learnable feature
map Φ : Rd → RDΦ . Here, K(·, ·) acts column-wise on matrix: K(Ξ, x) = [{K(ξµ, x)}Mµ=1] =

[{⟨Φ(ξµ),Φ(x)⟩}Mµ=1] ∈ RM . Importantly, KHMs shift the dependency on ∆min to ∆Φ
min, with

∆Φ
min := min

µ∈[M]
∆Φ

µ , where ∆Φ
µ := K (ξµ, ξµ)− max

ν,ν ̸=µ
K (ξν , ξµ) .

Notably, ∆Φ
min is learnable and parameterized via Φ. Wu et al. [2024a] point out that with Φ(x) =

Wx, where W ∈ Rd×DΦ , finding a suitable Φ that maximizes ∆Φ
min benefits memory storage. This

construction of Φ preserves key MHM properties, such as accurate [Wu et al., 2024a, Lemma 2.1]
and consistent [Wu et al., 2024a, Thm 2.1] retrieval. However, direct maximization of ∆Φ

min is

2x⋆ corresponds either to one of the memories or to a fuzzy combination of them. Please see [Ramsauer et al.,
2020, Sec. A.1.5] for an informal discussion, [Wu et al., 2024a, Sec. 1] for further discussion, and [Santos et al.,
2024, Wu et al., 2024a] for conditions of exact retrieval through sparsity [Wu et al., 2024b, Hu et al., 2023].

2

challenging due to its max-min nature. To circumvent, Wu et al. [2024a] propose a surrogate loss to
maximize ∆Φ

µ on average [Wu et al., 2024a, Def. 2.2]. As a result, their approach achieves strong
empirical results in memory retrieval for MHMs and supervised learning for transformer models.

Nevertheless, maximizing ∆Φ
µ on average, rather than ∆Φ

min, raises questions about how their
surrogate loss benefits memory storage. Moreover, the impact of ∆Φ

min on memory capacity lacks
a clear analytical characterization, and no theoretical analysis confirms whether maximizing ∆Φ

min
leads to optimal memorization capacity.

In this paper, we address these questions from the perspective of (optimal) spherical codes from
information thoery [Delsarte et al., 1991]. A spherical code is a set of points (vectors) distributed on
the surface of a hypersphere, and an optimal spherical code is when the minimum angular distance
between any two points is maximized. In other words, optimal spherical codes aim to spread the
points as evenly as possible over the surface of the sphere. This aligns with the intuition behind KHM
— increasing average separation between stored memories improves memory capacity. Therefore, we
treat the stored memory pattern set as a spherical code (Definition 2.3), and require this spherical
code to satisfy the well-separation condition [Hu et al., 2023, Thm 3.1]. We term this spherical code
as memory code. Surprisingly, this unique connection enables a tight analysis on KHMs’ capacity.

Contributions. Through the memory code perspective, this work makes three main contributions:

• Provably Optimal Capacity. We study the optimal memory capacity of KHMs and identify the
conditions necessary to achieve it. Specifically, we derive a provably tight and optimal capacity
by matching the well-known exponential lower bound for the memory capacity of MHMs [Wu
et al., 2024a,b, Hu et al., 2023, Ramsauer et al., 2020] with an upper bound in the low-temperature
region. Notably, we establish this tight bound by showing that KHMs store the most memories
when the memory set forms an optimal spherical code (Lemma 2.2). This result suggests a tight
exponential scaling of memory capacity with the pattern dimension DΦ (Proposition 2.1).

• Fast Algorithm. We introduce an algorithm, U-Hop+, that achieves the optimal capacity of KHM
in sublinear time. Theoretically, we show that, as temperature approaches zero, U-Hop+ finds the
optimal feature map for maximal KHM capacity (Theorem 3.1). This result bridges our theoretical
findings with practical applications and explains the empirical successes of [Wu et al., 2024a].

• Numerical Validation. Our experiments validate our theoretical analysis. We observe that (i)
U-Hop+ creates distinct low-energy regions for each memory pattern, addressing the memory
confusion problem in MHMs [Wu et al., 2024a, Krotov and Hopfield, 2016]; (ii) U-Hop+ signifi-
cantly reduces metastable states on both MNIST and synthetic datasets, indicating larger memory
capacity; (iii) with U-Hop+, the KHMs update rule converges to fixed points faster.

Organization. Section 1 presents a brief review of MHMs and KHMs. Appendix A includes related
work discussions. Section 2 presents our main results. Specifically, Section 2.1 presents a memory
capacity lower bound for KHMs, Section 2.2 presents the optimal capacity bound based on the
notation of memory code. Section 3.1 presents a sublinear time algorithm to search for the optimal Φ.
Section 3.2 discusses the relationship between Φ and M . Section 4 includes numerical experiments.

Notations. Lower case letters denote (column) vectors and upper case letters denote matrices. We
write ⟨a, b⟩ := aTb as the inner product for vectors a, b ∈ Rd. The index set {1, ..., I} is denoted
by [I], where I ∈ N+. The spectral norm is denoted by ∥·∥2 which is equivalent to the ℓ2-norm
when applied to a vector. We denote the memory patterns (keys) by ξ ∈ Rd and the query pattern
by x ∈ Rd, and Ξ := [ξ1, ..., ξM] ∈ Rd×M as shorthand for stored memory patterns {ξµ}µ∈[M].
Throughout this work, we use Ξ interchangeably to refer to either a d ×M matrix or a set of M
d-dimensional memory pattern vectors.

2 Main Theory
We provide a theoretical analysis on the optimal memory capacity of KHMs. First, we begin by
comparing the memory capacity between MHM and KHM using the standard high-probability lower
bound [Hu et al., 2023, Ramsauer et al., 2020]. Then, we present a spherical code perspective as a
framework for depicting the optimal memory capacity of both MHMs and KHMs. In our analysis,
we make the following pattern normalization assumption on memory patterns:3

3It is a common assumption adopted in [Santos et al., 2024, Wu et al., 2024a]. A justification is the connection
to transformer-attention. The modern Hopfield update rule (a.k.a. retrieval dynamics) is constantly compared to

3

Assumption 1. We assume memory patterns ∥ξµ∥ = 1 in the rest of our paper.

2.1 High-Probability Capacity Lower Bound
We start by showing the memory capacity of KHM using the standard capacity lower bound introduced
by Ramsauer et al. [2020]. This provides a direct comparison between KHMs and previous works.
The definition of the generalized fixed point [Sriperumbudur and Lanckriet, 2009] is

Definition 2.1 (Generalized Fixed Point [Sriperumbudur and Lanckriet, 2009]). We say a set S ⊆ Rd

is a generalized fixed point w.r.t. T if T (y) ∈ S for every y ∈ S.

Remark 1. In contrast to Definition 2.1, a fixed point of T is a point y satisfying T (y) = y.

Let SΦ
µ be a ball with radius RΦ

4 centered at every memory pattern in the feature space Φ(ξµ):

SΦ
µ = {y | ∥Φ(ξµ)− y∥ ≤ RΦ}, where RΦ :=

1

2
min

µ,ν∈[M]
µ̸=ν

∥Φ(ξµ)− Φ(ξν)∥. (2.1)

Following [Wu et al., 2024a], we define the memory storage and retrieval as:

Definition 2.2 (Pattern Storage and Retrieval). We say a memory pattern ξµ is stored if SΦ
µ is a

generalized fixed point of T , and there exists a fixed point x⋆
µ ∈ SΦ

µ . A memory pattern ξµ gets
ϵ-retrieved by T with an input query x if ∥T (x)− ξµ∥ ≤ ϵ.

This definition is compatible with both KHMs and MHMs (with identity feature map). Under
Definition 2.2, KHM’s memory capacity is lower bounded by the following lemma.

Lemma 2.1 (Memory Capacity of KHM). Let 1− p be the probability of successfully storing and
retrieving a pattern. Assuming the patterns are normalized, the number of patterns MΦ that can be
stored and retrieved by the KHM, following the update rule (1.3), is lower-bounded by:

MΦ ≥
√
pC(DΦ−1)/4,

where C is the solution to C = b/(W0(exp{a+ln b})), with W0(·) being the principal branch of Lambert
W function, a := (4/(DΦ−1)) (ln((2

√
p−2)/RΦ) + 1) and b := 4β/(5(DΦ−1)). For comparison, MΦ

reduces to MHM’s capacity lower bound by setting Φ = Id, with DΦ = d.

Proof. Our proof follows [Hu et al., 2023, Wu et al., 2024b]. See Appendix C.1 for a proof.

With a fixed DΦ, the highest lower bound of Lemma 2.1 corresponds to specific a Φ that maximizes
RΦ. This provides an intuitive insight on the design of separation loss [Wu et al., 2024a, Defini-
tion 2.2] for kernel learning in [Wu et al., 2024a, Algorithm 1]. With an additional feature space,
KHM has an exponential memory capacity in DΦ that does not depend on d. When DΦ = d, KHMs
obtain a tighter lower bound than MHMs if RΦ > R. This bound connects the storage capacities of
KHMs and MHMs, showing that their capacities scale exponentially with respect to DΦ and d.

2.2 Memory Code: Memories as Spherical Code
There are two aspects the lower bound in Lemma 2.1 does not address: the maximal capacity of
KHMs and the flexibility of choosing different Φ in KHMs. Therefore, we present a new framework
using spherical codes to take the above perspectives into consideration for further analysis. We begin
by introducing the concepts of spherical code and optimal spherical code.

Definition 2.3 (Spherical Code). A d-dimensional spherical code on the unit sphere Sd−1 is a finite
set CN = {c1, ..., cN} of Sd−1 with N points, where ci ∈ Rd for i ∈ [N] and |CN | = N .

Definition 2.4 (Minimal Separation). The minimal separation ρ(CN) of a spherical code CN is the
maximal inner product between two distinct points in CN :

ρ(CN) = max
ci,cj∈CN

⟨ci, cj⟩ , for every i ̸= j.

attention-mechanism and the input query and memory set correspond to Q, K for attention. As LayerNorm is a
commonly used strategy in attention layers, this setup can also be seen in real-world scenarios.

4By definition, neighborhoods do not overlap: SΦ
µ ∩ SΦ

ν = ∅ for ν ̸= µ.

4

Definition 2.5 (Optimal Spherical Code). Let CN = {c1, . . . , cN} ⊆ Sd−1 be a d-dimensional
spherical code with N points. An optimal spherical code C⋆N minimizes the maximal pairwise
inner product, which corresponds to maximizing the minimal separation between points in the code.
Formally, the optimal spherical code C⋆N is defined as:

C⋆N = argmin
CN⊂Sd−1

max
i ̸=j
⟨ci, cj⟩ , for i, j ∈ [N].

The minimal separation of the optimal spherical code is denoted as ρ⋆.a

aThe optimal arrangement of most spherical codes is unknown, except for specific pairs of (d,N). A
list of known optimal arrangements and minimal separations can be found at http://neilsloane.com/
packings/ and in [Conway and Sloane, 2013].

Next, we recall the function classH of the linear feature map introduced by Wu et al. [2024a]:

Definition 2.6. The function classH consists of linear maps that satisfy the following properties:
1. For all Φ ∈ H, Φ : Sd−1 → SDΦ−1 is a linear map defined by a matrix W ∈ Rd×DΦ .
2. The matrix W has full column rank.
3. When applying Φ to different inputs:

• For a vector ξ ∈ Rd, Φ(ξ) = WTξ ∈ RDΦ .
• For a matrix Ξ ∈ Rd×M , Φ(Ξ) = (Φ(ξ1), . . . ,Φ(ξM)) ∈ RDΦ×M .
• For a set of vectors V = {v1, . . . , vN}, Φ(V) = {Φ(v1), . . . ,Φ(vN)} with |Φ(V)| = N .

Definition 2.6 ensures KHMs with feature map Φ(·) ∈ H satisfying the defining characteristics of
MHMs: accurate [Wu et al., 2024a, Lemma 2.1] and consistent [Wu et al., 2024a, Thm 2.1] retrieval
according to Definition 2.2.5 Now, we combine the concept of spherical code and memory storage.

Definition 2.7 (Kernelized Well-Separation Condition [Wu et al., 2024a,b, Hu et al., 2023, Ramsauer
et al., 2020]). Given a set of kernelized memory patterns Φ(Ξ) = {Φ(ξµ)}Mµ=1 ⊆ SDΦ−1, the
kernelized memory pattern Φ(ξµ) satisfies the well-separation condition if the following holds:

∆Φ
µ ≥

1

β
ln

(
2(M − 1)

RΦ

)
, (2.2)

where the inverse temperature β is given by (1.3) and RΦ is defined by (2.1).

The inequality (2.2) is a necessary condition for the µ-th memory to have a well-defined attractor
basin. Hence, the more memories satisfying (2.2) the greater the memory capacity of the model.

Definition 2.8 (Memory Code). Let M ∈ N+, β > 0, DΦ > 1 and Φ ∈ H. For any finite set
Φ(Ξ) = {Φ(ξµ)}Mµ=1 ⊆ SDΦ−1, we say the set Φ(Ξ) is a memory code if all points in Φ(Ξ) satisfies
(2.2). Further, we denote ΛDΦ as the set of all memory codes in SDΦ−1, including all possible Ξ, Φ.

Notably, Λ includes all the possible pattern sets {Φ(Ξ)} that are able to be stored and retrieved by
kernelized Hopfield models and modern Hopfield models. Naturally, the optimal memory capacity is
the size of the largest memory code in SDΦ−1. This leads to our next definition:

Definition 2.9 (Optimal Memory Capacity). For DΦ > 1 and Φ ∈ H, the optimal capacity M⋆ is the
cardinality of the largest memory code in ΛDΦ , i.e., M⋆ := maxΦ(Ξ)∈Λ |Φ(Ξ)| for all possible Ξ, Φ.

Definition 2.9 specifies the largest possible memory code in ΛDΦ for a given DΦ. Let Ξ̃ denote the
memory set associated with M⋆, such that ∥Ξ̃∥ = M⋆. To store all patterns in Ξ̃, we need to find a
suitable feature map Φ̃ such that Φ̃(Ξ̃) is a valid memory code.

Following this definition, we present the next lemma and proposition on optimal memory capacity.

Lemma 2.2 (Capacity of Optimal Spherical Code). Given a fixed DΦ > 1, and its corresponding
M⋆, if an optimal code Copt is in SDΦ−1 and has size M⋆, then Copt ∈ ΛDΦ

.

5Note that, Definition 2.6 is sufficient but not necessary. It is possible to find a different H′ such that KHMs
with Φ ∈ H′ achieves desiring characteristics as [Wu et al., 2024a, Lemma 2.1] and [Wu et al., 2024a, Thm 2.1].

5

http://neilsloane.com/packings/
http://neilsloane.com/packings/

Proposition 2.1 (Optimal Memory Capacity). Following Lemma 2.2, we have

M⋆ ≍ cDΦ ,

for some c > 1. Here ≍ indicates matching upper and lower bounds up to constant factors.

Proof Sketch. We proof Lemma 2.2 by showing that the model capacity is a increasing function w.r.t.
the minimal separation value. For Proposition 2.1, we utilize the upper bound in [Kabatiansky and
Levenshtein, 1978] and lower bound in [Wyner, 1965, Shannon, 1959, Chabauty, 1953] to bound the
quantity. Please see Appendix C.2 for a detailed proof.

Proposition 2.1 indicates that the optimal capacity of MHMs and KHMs scales exponentially with
DΦ. This capacity bound is provably tight and optimal for large feature dimension DΦ. It echos the
exponential capacity lower bound in Lemma 2.1 and in prior works [Wu et al., 2024a,b, Hu et al.,
2024a,b,c, 2023, Ramsauer et al., 2020]. Moreover, Lemma 2.2 shows that achieving the maximal
capacity in any DΦ is equivalent to achieving optimal codes. Thus, for a given memory set Ξ of size
M , the memory storage problem with KHMs divides into two sub-problems:

(P1) Finding a sufficiently large DΦ (in Section 3.2), and
(P2) Finding a Φ such that Φ(Ξ) is an optimal spherical code (in Section 3.1).

Next, we examine these two sub-problems and present a sub-linear time algorithm to solve them.

3 Sub-Linear Time Algorithm for Optimal Memory Capacity
In this section, we present an sub-linear time algorithm that achieves optimal capacity. Then, we
analyze the scaling behavior of DΦ for KHMs to store any desired amount of memories.

3.1 Learning to Achieve Optimal Memory Code
Here we present an asymptotic result showing that an algorithm exists to find the optimal Φ for
maximizing memory storage in dimension DΦ. Building on the results from the previous sections,
we consider the following problem:

Problem 1 (HardMax Problem). Given a memory set Ξ = {ξ1, . . . , ξM}, and assuming that DΦ

is sufficiently large to satisfy (2.2), we define the HardMax problem as finding a Φ such that Φ(Ξ)
forms an optimal spherical code:

min
Φ∈H
LHardMax(Φ), where LHardMax(Φ) := max

ν,µ∈[M],ν ̸=µ
⟨Φ(ξµ),Φ(ξν)⟩ ≥ ρ⋆. (3.1)

This problem setup involves finding a Φ such that Φ(Ξ) forms an optimal spherical code. Ideally,
a more expressive function class H would simplify finding such a Φ; exploring explicit forms of
more powerful mappings is left for future work. Note that (3.1) represents a min-max optimization
problem. Achieving the global optimum is notoriously challenging [Hsieh et al., 2021, Daskalakis
et al., 2021, Shen et al., 2020]. Thus, we introduce a surrogate objective to solve (3.1):

Definition 3.1 (Average Separation Loss). For τ > 0, given a set of memory patterns Ξ and a feature
map Φ, we define the average separation loss as

L(Ξ, τ,Φ) := 1

M

M∑
µ=1

ℓµ(Ξ,Φ, τ), where ℓµ(Ξ,Φ, τ) := log

[
M∑
ν=1

exp

(
⟨Φ(ξµ),Φ(ξν)⟩

τ

)]
.

(3.2)

The primary difference between (3.1) and (3.2) is that (3.2) calculates average separation, whereas
(3.1) focuses on the maximum separation between a single pair. This surrogate loss alleviates the
challenging optimization, as (3.2) is convex. Therefore, with vanishing temperature τ , the next
theorem shows that (3.2) converges to the HardMax problem asymptotically.

Theorem 3.1. For any possible integer M , we have

lim sup
τ→0

(
argmin
Φ∈H

L(Ξ,Φ, τ)
)
⊆ argmin

Φ∈H
LHardMax(Φ).

6

Algorithm 1 U-Hop+
Input: Iterations N , feature map Φ(x) := Wx, memory set Ξ, learning rate γ ≤ 1/G where G is
the Lipschitz constant of L
Output: x

1: W0 ←W
2: for t = 0, ...N − 1 do
3: Wt+1 ← PGD (Wt, γ,Ξ) .
4: end for
5: return WN

Proof. we first introduce a helper function L0 in (C.10). We show that as τ → 0, L0 converges
uniformly to LHardMax. Then, we prove that optimizing L0 and L yields the same optimal solution.
Please see Appendix C.3 for a detailed proof.

Theorem 3.1 indicates that, with vanishing temperature, the minimiozation of (3.2) converges to
the HardMax problem, i.e., their share the same optimal solution. This provide a theoretical justi-
fication for the empirical success of [Wu et al., 2024a]. In particular, the surrogate objective – the
maximizing average separation between memories — leads to provably optimal memory capacity in
low-temperature region (i.e., τ → 0). Lastly, we remark that that this analysis provides theoretical
insights rather than practical guidance. To achieve high retrieval accuracy, the setting (τ = 1) in [Wu
et al., 2024a] is sufficient for a wide range of applications.

U-Hop+: Sub-Linear Time Algorithm for Achieving Optimal Memory Capacity. Next, we
present Algorithm 1 for finding a Φ such that Φ(Ξ) forms an optimal spherical code. To meet the
conditions in Definition 2.6, we use projected gradient descent to convert this constrained optimization
problem into an unconstrained one. Several methods satisfy the requirements in Definition 2.6; we
discuss them in Appendix B.2. We denote the learning rate as γ, the input matrix of the loss function
as X , and the weight matrix as W . We define a single Projected Gradient Descent (PGD) step as

Wt+1 = PGD(Wt, γ,X),

We defer the detailed formulation to Appendix B.2. Since the separation loss is convex and smooth,
using projected gradient descent with a learning rate γ ≤ 1/G, yields a sub-linear convergence rate
of O(1/N) [Iusem, 2003]. This provides an asymptotic solution to the first sub-problem ((P1)). Next,
we examine the relationship between feature dimension DΦ and the number of memories M .

3.2 Impact of DΦ

This subsection analyzes the minimum DΦ to store a given set of M memories. Based on the well-
separation condition and the derivation in Appendix C.2, the required ∆Φ

min to store M memories
scales as O(ln(M)). With this insight, the following proposition shows the scaling behavior of
required DΦ with respect to M and ∆Φ

min.

Proposition 3.1. Let M⋆ be the optimal memory capacity in SDΦ and Φ ∈ H. For any optimal code
C⋆ in SDΦ−1 of size M⋆, the minimal separation ρ(C⋆) is bounded by:

1

2

(√
π

M⋆
·
Γ
(
DΦ+1

2

)
Γ
(
DΦ

2 + 1
)) 2

DΦ−1

≤ max
Φ∈H

∆Φ
min ≤ 2

(
2
√
π

M⋆
·
Γ
(
DΦ+1

2

)
Γ
(
DΦ

2

)) 1
DΦ−1

,

where Γ(·) is the gamma function.

Remark 2. By gamma function asymptotics, Proposition 3.1 is consistent with Proposition 2.1.

Proof. Please see Appendix C.4 for a detailed proof.

Proposition 3.1 establishes the separation value for memory codes that achieve optimal capacity
in DΦ-dimensional space. Using this bound, for a given separation value ∆Φ

min, the minimum DΦ

required to store M points scales as log
(
M2/∆Φ

min

)
. We conduct an experiment to demonstrate the

bound’s tightness and provide an example with DΦ = 3 in Figure 3.

7

Table 1: Distribution of Metastable State (in %). For MNIST, we use the training set as memories and test
set as queries. For synthetic data, we randomly generate the memories and queries. ∥p∥0 denotes the size of
metastable state , which is the amount of non-zero entries of the probability distribution. For Softmax, we use a
threshold of 0.01. For hyperparameter settings, see Table 3.

Synthetic MNIST

Softmax 1.5-entmax sparsemax Softmax 1.5-entmax sparsemax

∥p∥0 - U-Hop+ - U-Hop+ - U-Hop+ - U-Hop+ - U-Hop+ - U-Hop+
1 0.0 90.0 0.0 100.0 0.0 100.0 3.48 100.0 69.2 100.0 88.1 100.0
2 0.0 8.0 0.0 0.0 20.0 0.0 2.16 0.0 8.6 0.0 5.2 0.0
3 0.0 0.0 0.0 0.0 30.0 0.0 1.57 0.0 3.9 0.0 2.6 0.0
4 0.0 2.0 0.0 0.0 50.0 0.0 1.23 0.0 2.3 0.0 1.6 0.0
5 6.0 0.0 0.0 0.0 0.0 0.0 1.2 0.0 1.6 0.0 1.1 0.0
6 10.0 0.0 25.0 0.0 0.0 0.0 0.95 0.0 0.9 0.0 0.8 0.0
7 20.0 0.0 25.0 0.0 0.0 0.0 1.04 0.0 0.6 0.0 0.4 0.0
8 16.0 0.0 0.0 0.0 0.0 0.0 0.84 0.0 0.6 0.0 0.1 0.0
9 20.0 0.0 22.5 0.0 0.0 0.0 1.03 0.0 0.3 0.0 0.0 0.0

10+ 28.0 0.0 27.5 0.0 0.0 0.0 86.5 0.0 12.0 0.0 0.1 0.0

4 Experimental Studies
4.1 U-Hop+ Reduces Metastable States
We compare the distribution of metastable state size under standard MHM and KHM update rules.
The results are in Table 1. In general, with more metastable state having the size of 1, meaning the
Hopfield model stores more memories as the query converges to a single memory. For metastable
state size larger than 1, it represents that the retrieved pattern converges near the mean of a subset of
memories, violating the requirement of SΦ

µ ∩ SΦ
µ = ∅.

Baselines. We compare different variants of MHMs and KHMs. Santos et al. [2024], Wu et al.
[2024b] provide comprehensive analyses of modern Hopfield models with various normalization
functions. Here, we consider softmax, 1.5-entmax, and sparsemax for normalization. We equip these
three baselines with U-Hop to compare against standard MHMs.

Settings and Metrics. Let p = Softmax(βxTΞ). We determine whether the update rule converges
to either a single memory or a mixture of memories by observing the probability distribution p. The
quantity ∥p∥0 represents the size of the metastable state, which is the number of non-zero entries in
the probability distribution. In the case of 1.5-entmax and sparsemax, we calculate ∥p∥0 directly. For
softmax, since it only generates non-zero entries, we use a threshold of 0.01 and consider the entries
under the threshold as 0. We conduct experiments using both synthetic and MNIST datasets. For
MNIST, we use the training set as memories and the test set as queries. For synthetic datasets, we
randomly generate memories and queries with Gaussian initialization. To ensure the convergence to
the fixed point, we perform multiple updates on the query. For more details, refer to Appendix D.1.

Results. On both synthetic and MNIST datasets, it is evident that under separation maximization,
the size of the metastable state dramatically decreases within just 20 iterations of Algorithm 1. This
result demonstrates that, with Algorithm 1, KHMs are capable of storing patterns that MHMs cannot
store. The significant percentage of size 1 metastable states in KHMs indicates that they circumvent
the memory confusion problem in dense associative memory models [Krotov and Hopfield, 2016].
For the MNIST dataset, we see MHMs show close performance with KHMs under 1.5-entmax and
sparsemax, showing that the methods in [Santos et al., 2024, Wu et al., 2024b, Hu et al., 2023]
also circumvent the memory confusion problem. Notably, KHMs require only one-fourth of the
dimensions to store memories while perfectly storing 60,000 MNIST patterns. These results suggest
that KHMs with Algorithm 1 efficiently utilize feature dimensions for memory storage.

4.2 Energy Landscape under U-Hop+ Stores More Memories
Settings and Metrics. We visualize the energy landscape of KHMs at different stages of Algorithm 1
using contour plots. The results are presented in Figure 1. We consider two settings: 2 and 4
memories stored in a 2-dimensional space. Ideally, the energy landscape should position memories in
multiple separated low-energy regions (valley), with each region isolated from others by high-energy
regions. If multiple memories share the same valley, it leads to memory confusion and the presence
of metastable states during energy minimization. For experiment details, refer to Appendix D.2.

Results. The first row in Figure 1 shows the raw energy landscape without KHM and Algorithm 1,
corresponding to the modern Hopfield energy landscape. On the right side of Figure 1, we observe
that MHMs are only able to store 2 out of 4 points, but KHMs are able to further separate one point

8

Figure 1: Energy Landscape under Different Iterations of Algorithm 1. Left: M = 2, Right: M = 4.
Lighter color represents higher energy. The first row represents the raw energy landscape without applying
U-Hop+. The second to last row represents the energy landscape when N = (1, 2, 5). The visualization shows
that Algorithm 1 not only separates the local minima better, but also pushes memories closer to the fixed point.

Table 2: Test AUC of Multiple Instance Learning Datasets. We compare the HopfieldPooling-based
model with and without U-Hop+. We use the dense [Ramsauer et al., 2020] and sparse [Hu et al., 2023] modern
Hopfield models as baselines. We use K-fold cross validation on all 4 datasets, with K = 10. The reported
AUC is the average AUC score across 10 folds. For the baselines, we use the results reported in [Hu et al., 2023].
For our method, we directly use the default hyperparameter without grid search instead of using hyperparameter
optimization (HPO) in [Hu et al., 2023, Ramsauer et al., 2020]. We exclude the variance as they are all smaller
than 0.07. The result shows that even without HPO, U-Hop+ is still able to obtain a performance gain.

Method Tiger Elephant Fox UCSB
Modern Hopfield 0.871 0.876 0.637 0.828
Modern Hopfield + U-Hop+ 0.881 0.921 0.648 0.831

Sparse Hopfield 0.884 0.914 0.610 0.796
Sparse Hopfield + U-Hop+ 0.887 0.921 0.638 0.805

from the others, resulting in memorizing one extra pattern. Lemma 2.2 and Theorem 3.1 indicate
that U-Hop+ pushes memories away from each other, providing more isolated SΦ

µ , for µ ∈ [M]. We
observe this phenomenon across all settings, especially under the 2-point configuration with Softmax
and 1.5-entmax, where the low-energy region is split into two distinct valleys as N increases. This
process shows how U-Hop+ is able to store memories that MHMs cannot. With energy minimization,
the query converges to either one of the minima instead of the mixture thereof (also showed in
Figure 2). Additionally, we also notice that the contour lines exhibit steep slopes between different
local minima in the 2-point setting under 1.5-entmax and sparsemax. This implies that U-Hop+ pushes
local minima further away from each other and deepens each one of them. Such sharp changes in
energies lead to faster convergence to fixed points due to larger gradients.

Basins of Attraction. Figure 2 shows the basins of attraction of queries w.r.t. MHM and KHM
under the scenario of storing 5 patterns. We randomly initialize 5 patterns with normal distribution.
We run the update rule for 5 iterations and see whether each query converges to a single memory
(colored) or to a metastable state (white). Following the above setting, we track the attraction basins
throughout each iteration of Algorithm 1. We defer more details to Appendix D.3. Specifically, most
MHM variants are not capable of converging to fixed points in 5 updates. While U-Hop+ dramatically
improves such aspect, where most queries are able to converge either one of the memories. Moreover,
the increased RΦ also leads to a larger SΦ

µ , making more queries to converge to a single memory.
Additionally, there is a performance gap between Softmax (α = 1) and other sparse variants, which
matches the findings in [Santos et al., 2024, Hu et al., 2023].

4.3 Multiple Instance Learning
We conduct multiple instance learning (MIL) on 4 real-world datasets using Hopfied-based models
with and without our U-Hop+ algorithm. We follow the setup in [Santos et al., 2024, Wu et al., 2024a,
Hu et al., 2023] by using a model with 1 embedding layer, 1 HopfieldPooling layer and a linear
readout layer. We first utilize Algorithm 1 to “pretrain” the embedding and HopfieldPooling layer,

9

Figure 2: Basins of Attraction Comparison of Algorithm 1. The first row represents the raw Basins of
Attraction without applying U-Hop+ or KHM. The second to last row shows the basins when N = (1, 2, 5).
Square points are memories. White area is where queries are not able to converge to a single memory. Colored
area is where queries converges to the corresponding memory. The result indicates that U-Hop+ is capable of
converging to fixed point fast and reduce metastable states. 1 and 2-entmax corresponds to Softmax [Ramsauer
et al., 2020] and Sparsemax [Hu et al., 2023].

and then fine-tune the whole model on the MIL task. The results are in Table 2. We observe that
both dense and sparse Hopfield-based models obtain performance boost when equipped with U-Hop+,
indicating our method is also effective in practical scenarios. Further, as demonstrated in Figure 5,
the separation loss converges fast, indicating U-Hop+ is a lightweight method for performance boost.

5 Discussion and Conclusion
This work complements U-Hop [Wu et al., 2024a] by establishing the optimal capacity of kernelized
modern Hopfield models (KHMs) and providing the first tight, optimal memory capacity bound for
transformer-compatible dense associative memories. We start by connecting stored memories in
KHMs to spherical codes from information theory. We then prove that maximizing memory storage
in KHMs requires arranging memories as an optimal spherical code in feature space. This allows us
to matches the well-known exponential lower bound [Wu et al., 2024a,b, Hu et al., 2024a,b,c, 2023,
Ramsauer et al., 2020] with an upper bound. This achievement is notable, as deriving such a tight
bound is challenging due to the max-min structure of maximal separation among stored memories
[Wu et al., 2024a, Section 5]. Moreover, we introduce a sub-linear time algorithm to achieve this
optimal capacity, U-Hop+ (Algorithm 1). U-Hop+ performs this rearrangement with a convergence
rate of O(1/N). Additionally, we analyze the minimum dimension DΦ required to store M memories.
Numerically, we validate the effectiveness of KHMs and demonstrate how Algorithm 1 enhances
memory storage in both KHM retrieval tasks and transformer representation learning tasks.

Can U-Hop+ Preserve Semantic Meanings? In representation learning, it is crucial to preserve
relationships in the feature space after encoding data [Wang et al., 2023, Neelakantan et al., 2022].
The primary strategy is to ensure the embeddings of similar instances share similar directions in
Euclidean space. At first glance, the approach of pushing all memories away from each other in
Equation (3.2) may seem counterintuitive. However, as detailed in Appendix D.5, we find that the
learned feature map still encodes similar instances closely together (Figure 4), even without semantic
information involved. This result indicates that U-Hop+ stores memories in a semantically coherent
manner. A discussion of the separation capability of Φ can be found in Figure 4.

Limitations. One limitation of our work only considers linear affine functions as the feature map
Φ ∈ H. Additionally, standard spherical code analysis focuses only on normalized points on a
hypersphere, ignoring memories with varying magnitudes. We leave them for future research.

10

Broader Impact
We expect no negative social impacts as this work mostly present theoretical results and numerical
simulations. As discussed in our introduction, this paper develops a theoretical framework to study
Kernelized Hopfield models, potentially benefit the area of computational associative (Hopfield)
memory models, transformer networks and large foundation models.

Acknowledgements
JH thanks Thomas Burns, Dmitry Krotov, Dino Feng, and Andrew Chen for enlightening discussions;
Robin Luo, Jiahao Yu, Weimin Wu, and Teng-Yun Hsiao for collaboration on related topics; the
Red Maple Family for their support; and Jiayi Wang for facilitating experimental deployments. The
authors also thank the anonymous reviewers and program chairs for their constructive comments.

JH is partially supported by the Walter P. Murphy Fellowship. DW is supported by NIH
R01LM1372201. HL is partially supported by NIH R01LM1372201, AbbVie and Dolby. This
research was supported in part through the computational resources and staff contributions provided
for the Quest high performance computing facility at Northwestern University which is jointly sup-
ported by the Office of the Provost, the Office for Research, and Northwestern University Information
Technology. The content is solely the responsibility of the authors and does not necessarily represent
the official views of the funding agencies.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,

Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Andreas Auer, Martin Gauch, Daniel Klotz, and Sepp Hochreiter. Conformal prediction for time
series with modern hopfield networks. Advances in Neural Information Processing Systems, 36:
56027–56074, 2023.

Yu Bai, Fan Chen, Huan Wang, Caiming Xiong, and Song Mei. Transformers as statisticians:
Provable in-context learning with in-context algorithm selection. arXiv preprint arXiv:2306.04637,
2023.

Alberto Bietti, Vivien Cabannes, Diane Bouchacourt, Herve Jegou, and Leon Bottou. Birth of a
transformer: A memory viewpoint. Advances in Neural Information Processing Systems, 36, 2024.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the opportuni-
ties and risks of foundation models. arXiv preprint arXiv:2108.07258, 2021.

Andrea Braides. A handbook of γ-convergence. In Handbook of Differential Equations: stationary
partial differential equations, volume 3, pages 101–213. Elsevier, 2006.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar,
Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general intelligence:
Early experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.

Thomas F Burns. Semantically-correlated memories in a dense associative model. arXiv preprint
arXiv:2404.07123, 2024.

Thomas F Burns and Tomoki Fukai. Simplicial hopfield networks. arXiv preprint arXiv:2305.05179,
2023.

Vivien Cabannes, Elvis Dohmatob, and Alberto Bietti. Scaling laws for associative memories. arXiv
preprint arXiv:2310.02984, 2023.

Claude Chabauty. Resultats sur lempilement de calottes egales sur une perisphere de rn et correction a
un travail anterieur. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE
DES SCIENCES, 236(15):1462–1464, 1953.

John Horton Conway and Neil James Alexander Sloane. Sphere packings, lattices and groups, volume
290. Springer Science & Business Media, 2013.

11

Constantinos Daskalakis, Stratis Skoulakis, and Manolis Zampetakis. The complexity of constrained
min-max optimization. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of
Computing, pages 1466–1478, 2021.

Philippe Delsarte, Jean-Marie Goethals, and Johan Jacob Seidel. Spherical codes and designs. In
Geometry and Combinatorics, pages 68–93. Elsevier, 1991.

Mete Demircigil, Judith Heusel, Matthias Löwe, Sven Upgang, and Franck Vermet. On a model of
associative memory with huge storage capacity. Journal of Statistical Physics, 168:288–299, 2017.

Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

Sjoerd Dirksen, Martin Genzel, Laurent Jacques, and Alexander Stollenwerk. The separation capacity
of random neural networks. Journal of Machine Learning Research, 23(309):1–47, 2022.

Irene Gil Fernández, Jaehoon Kim, Hong Liu, and Oleg Pikhurko. New lower bounds on kissing
numbers and spherical codes in high dimensions. arXiv preprint arXiv:2111.01255, 2021.

Andreas Fürst, Elisabeth Rumetshofer, Johannes Lehner, Viet T Tran, Fei Tang, Hubert Ramsauer,
David Kreil, Michael Kopp, Günter Klambauer, Angela Bitto, et al. Cloob: Modern hopfield
networks with infoloob outperform clip. Advances in neural information processing systems
(NeurIPS), 35:20450–20468, 2022.

Promit Ghosal, Srinath Mahankali, and Yihang Sun. Randomly initialized one-layer neural networks
make data linearly separable. arXiv preprint arXiv:2205.11716, 2022.

Florian Graf, Christoph Hofer, Marc Niethammer, and Roland Kwitt. Dissecting supervised con-
trastive learning. In International Conference on Machine Learning, pages 3821–3830. PMLR,
2021.

Zexue He, Leonid Karlinsky, Donghyun Kim, Julian McAuley, Dmitry Krotov, and Rogerio Feris.
Camelot: Towards large language models with training-free consolidated associative memory.
arXiv preprint arXiv:2402.13449, 2024.

Claus Hofmann, Simon Schmid, Bernhard Lehner, Daniel Klotz, and Sepp Hochreiter. Energy-based
hopfield boosting for out-of-distribution detection. arXiv preprint arXiv:2405.08766, 2024.

Benjamin Hoover, Yuchen Liang, Bao Pham, Rameswar Panda, Hendrik Strobelt, Duen Horng Chau,
Mohammed J Zaki, and Dmitry Krotov. Energy transformer. arXiv preprint arXiv:2302.07253,
2023a.

Benjamin Hoover, Hendrik Strobelt, Dmitry Krotov, Judy Hoffman, Zsolt Kira, and Duen Horng
Chau. Memory in plain sight: A survey of the uncanny resemblances between diffusion models
and associative memories. arXiv preprint arXiv:2309.16750, 2023b.

John J Hopfield. Neural networks and physical systems with emergent collective computational
abilities. Proceedings of the national academy of sciences, 79(8):2554–2558, 1982.

John J Hopfield. Neurons with graded response have collective computational properties like those of
two-state neurons. Proceedings of the national academy of sciences, 81(10):3088–3092, 1984.

Ya-Ping Hsieh, Panayotis Mertikopoulos, and Volkan Cevher. The limits of min-max optimization
algorithms: Convergence to spurious non-critical sets. In International Conference on Machine
Learning, pages 4337–4348. PMLR, 2021.

Wei-Yen Hsu. Application of competitive hopfield neural network to brain-computer interface
systems. International journal of neural systems, 22(01):51–62, 2012.

Jerry Yao-Chieh Hu, Donglin Yang, Dennis Wu, Chenwei Xu, Bo-Yu Chen, and Han Liu. On sparse
modern hopfield model. In Thirty-seventh Conference on Neural Information Processing Systems
(NeurIPS), 2023.

12

Jerry Yao-Chieh Hu, Pei-Hsuan Chang, Haozheng Luo, Hong-Yu Chen, Weijian Li, Wei-Po Wang,
and Han Liu. Outlier-efficient hopfield layers for large transformer-based models. In Forty-first
International Conference on Machine Learning (ICML), 2024a.

Jerry Yao-Chieh Hu, Bo-Yu Chen, Dennis Wu, Feng Ruan, and Han Liu. Nonparametric modern
hopfield models. arXiv preprint arXiv:2404.03900, 2024b.

Jerry Yao-Chieh Hu, Thomas Lin, Zhao Song, and Han Liu. On computational limits of modern
hopfield models: A fine-grained complexity analysis. In Forty-first International Conference on
Machine Learning (ICML), 2024c.

Jerry Yao-Chieh Hu, Weimin Wu, Zhuoru Li, Sophia Pi, , Zhao Song, and Han Liu. On statistical rates
and provably efficient criteria of latent diffusion transformers (dits). In Thirty-eighth Conference
on Neural Information Processing Systems (NeurIPS), 2024d.

Georgios Iatropoulos, Johanni Brea, and Wulfram Gerstner. Kernel memory networks: A unifying
framework for memory modeling. Advances in Neural Information Processing Systems, 35:
35326–35338, 2022.

Alfredo N Iusem. On the convergence properties of the projected gradient method for convex
optimization. Computational & Applied Mathematics, 22:37–52, 2003.

Matthew Jenssen, Felix Joos, and Will Perkins. On kissing numbers and spherical codes in high
dimensions. Advances in Mathematics, 335:307–321, 2018.

Yanrong Ji, Zhihan Zhou, Han Liu, and Ramana V Davuluri. Dnabert: pre-trained bidirectional
encoder representations from transformers model for dna-language in genome. Bioinformatics, 37
(15):2112–2120, 2021.

Jiachen Jiang, Jinxin Zhou, Peng Wang, Qing Qu, Dustin Mixon, Chong You, and Zhihui Zhu.
Generalized neural collapse for a large number of classes. arXiv preprint arXiv:2310.05351, 2023.

Grigorii Anatol’evich Kabatiansky and Vladimir Iosifovich Levenshtein. On bounds for packings on
a sphere and in space. Problemy peredachi informatsii, 14(1):3–25, 1978.

Pentti Kanerva. Sparse distributed memory. MIT press, 1988.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Advances in neural information processing systems, 35:
22199–22213, 2022.

Leo Kozachkov, Ksenia V Kastanenka, and Dmitry Krotov. Building transformers from neurons and
astrocytes. Proceedings of the National Academy of Sciences, 120(34):e2219150120, 2023.

Dmitry Krotov. A new frontier for hopfield networks. Nature Reviews Physics, 5(7):366–367, 2023.

Dmitry Krotov and John J Hopfield. Dense associative memory for pattern recognition. Advances in
neural information processing systems, 29, 2016.

Dmitry Krotov and John J. Hopfield. Large associative memory problem in neurobiology and machine
learning. In International Conference on Learning Representations (ICLR), 2021.

Mikhail A Lebedev and Miguel AL Nicolelis. Brain–machine interfaces: past, present and future.
TRENDS in Neurosciences, 29(9):536–546, 2006.

Anatole Lécuyer, Fabien Lotte, Richard B Reilly, Robert Leeb, Michitaka Hirose, and Mel Slater.
Brain-computer interfaces, virtual reality, and videogames. Computer, 41(10):66–72, 2008.

Debra A Lelewer and Daniel S Hirschberg. Data compression. ACM Computing Surveys (CSUR), 19
(3):261–296, 1987.

Xilin Liu, Milin Zhang, Basheer Subei, Andrew G Richardson, Timothy H Lucas, and Jan Van der
Spiegel. The pennbmbi: Design of a general purpose wireless brain-machine-brain interface
system. IEEE transactions on biomedical circuits and systems, 9(2):248–258, 2015.

13

Carlo Lucibello and Marc Mézard. Exponential capacity of dense associative memories. Physical
Review Letters, 132(7):077301, 2024.

Andre Martins, Vlad Niculae, and Daniel C McNamee. Sparse modern hopfield networks. In
Associative Memory & Hopfield Networks in 2023, 2023.

Michael H Moore. Vector packing in finite dimensional vector spaces. Linear Algebra and its
Applications, 8(3):213–224, 1974.

Megan Morrison, Pedro D Maia, J Nathan Kutz, et al. Preventing neurodegenerative memory loss in
hopfield neuronal networks using cerebral organoids or external microelectronics. Computational
and Mathematical Methods in Medicine, 2017, 2017.

Arvind Neelakantan, Tao Xu, Raul Puri, Alec Radford, Jesse Michael Han, Jerry Tworek, Qiming
Yuan, Nikolas Tezak, Jong Wook Kim, Chris Hallacy, et al. Text and code embeddings by
contrastive pre-training. arXiv preprint arXiv:2201.10005, 2022.

OpenAI. Sora: A video generative model based on transformer diffusion. OpenAI Research, 2024.
Accessed: 08/16/2024.

Toshihiro Ota, Ikuro Sato, Rei Kawakami, Masayuki Tanaka, and Nakamasa Inoue. Learning
with partial forgetting in modern hopfield networks. In International Conference on Artificial
Intelligence and Statistics (AISTATS), pages 6661–6673. PMLR, 2023.

Vardan Papyan, XY Han, and David L Donoho. Prevalence of neural collapse during the terminal
phase of deep learning training. Proceedings of the National Academy of Sciences, 117(40):
24652–24663, 2020.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF International Conference on Computer Vision (ICCV), pages 4195–4205, 2023.

Ben Peters, Vlad Niculae, and André FT Martins. Sparse sequence-to-sequence models. arXiv
preprint arXiv:1905.05702, 2019.

William Wesley Peterson and Edward J Weldon. Error-correcting codes. MIT press, 1972.

Adam Polyak, Amit Zohar, Andrew Brown, Andros Tjandra, Animesh Sinha, Ann Lee, Apoorv Vyas,
Bowen Shi, Chih-Yao Ma, Ching-Yao Chuang, et al. Movie gen: A cast of media foundation
models. arXiv preprint arXiv:2410.13720, 2024.

Boris T Polyak and Anatoli B Juditsky. Acceleration of stochastic approximation by averaging. SIAM
journal on control and optimization, 30(4):838–855, 1992.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Parameswaran Raman and Jiasen Yang. Optimization on the surface of the (hyper)-sphere. arXiv
preprint arXiv:1909.06463, 2019.

Ander Ramos-Murguialday, Doris Broetz, Massimiliano Rea, Leonhard Läer, Özge Yilmaz, Fabricio L
Brasil, Giulia Liberati, Marco R Curado, Eliana Garcia-Cossio, Alexandros Vyziotis, et al. Brain–
machine interface in chronic stroke rehabilitation: a controlled study. Annals of neurology, 74(1):
100–108, 2013.

Hubert Ramsauer, Bernhard Schäfl, Johannes Lehner, Philipp Seidl, Michael Widrich, Thomas Adler,
Lukas Gruber, Markus Holzleitner, Milena Pavlović, Geir Kjetil Sandve, et al. Hopfield networks
is all you need. arXiv preprint arXiv:2008.02217, 2020.

R Tyrrell Rockafellar and Roger J-B Wets. Variational analysis, volume 317. Springer Science &
Business Media, 2009.

Bishwajit Saha, Dmitry Krotov, Mohammed J Zaki, and Parikshit Ram. End-to-end differentiable
clustering with associative memories. In International Conference on Machine Learning, pages
29649–29670. PMLR, 2023.

14

Saul Santos, Vlad Niculae, Daniel McNamee, and Andre FT Martins. Sparse and structured hopfield
networks. arXiv preprint arXiv:2402.13725, 2024.

Philipp Seidl, Philipp Renz, Natalia Dyubankova, Paulo Neves, Jonas Verhoeven, Jorg K Wegner,
Marwin Segler, Sepp Hochreiter, and Gunter Klambauer. Improving few-and zero-shot reac-
tion template prediction using modern hopfield networks. Journal of chemical information and
modeling, 62(9):2111–2120, 2022.

Maryam M Shanechi. Brain–machine interfaces from motor to mood. Nature neuroscience, 22(10):
1554–1564, 2019.

Claude E Shannon. Probability of error for optimal codes in a gaussian channel. Bell System Technical
Journal, 38(3):611–656, 1959.

Jiayi Shen, Xiaohan Chen, Howard Heaton, Tianlong Chen, Jialin Liu, Wotao Yin, and Zhangyang
Wang. Learning a minimax optimizer: A pilot study. In International Conference on Learning
Representations, 2020.

Bharath K Sriperumbudur and Gert RG Lanckriet. On the convergence of the concave-convex
procedure. In Advances in neural information processing systems, volume 9, pages 1759–1767,
2009.

Thomas Strohmer and Robert W Heath Jr. Grassmannian frames with applications to coding and
communication. Applied and computational harmonic analysis, 14(3):257–275, 2003.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Nilesh Tripuraneni, Nicolas Flammarion, Francis Bach, and Michael I Jordan. Averaging stochastic
gradient descent on riemannian manifolds. In Conference On Learning Theory, pages 650–687.
PMLR, 2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Jeffrey Wang. Finding and investigating exact spherical codes. Experimental Mathematics, 18(2):
249–256, 2009.

Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang, Rangan Majumder, and Furu Wei. Improving
text embeddings with large language models. arXiv preprint arXiv:2401.00368, 2023.

Michael Widrich, Bernhard Schäfl, Milena Pavlović, Hubert Ramsauer, Lukas Gruber, Markus
Holzleitner, Johannes Brandstetter, Geir Kjetil Sandve, Victor Greiff, Sepp Hochreiter, et al.
Modern hopfield networks and attention for immune repertoire classification. Advances in Neural
Information Processing Systems, 33:18832–18845, 2020.

David J Willshaw, O Peter Buneman, and Hugh Christopher Longuet-Higgins. Non-holographic
associative memory. Nature, 222(5197):960–962, 1969.

Dennis Wu, Jerry Yao-Chieh Hu, Teng-Yun Hsiao, and Han Liu. Uniform memory retrieval with
larger capacity for modern hopfield models. In Forty-first International Conference on Machine
Learning (ICML), 2024a.

Dennis Wu, Jerry Yao-Chieh Hu, Weijian Li, Bo-Yu Chen, and Han Liu. Stanhop: Sparse tandem hop-
field model for memory-enhanced time series prediction. In The Twelfth International Conference
on Learning Representations (ICLR), 2024b.

Aaron D Wyner. Capabilities of bounded discrepancy decoding. Bell System Technical Journal, 44
(6):1061–1122, 1965.

Chenwei Xu, Yu-Chao Huang, Jerry Yao-Chieh Hu, Weijian Li, Ammar Gilani, Hsi-Sheng Goan, and
Han Liu. Bishop: Bi-directional cellular learning for tabular data with generalized sparse modern
hopfield model. arXiv preprint arXiv:2404.03830, 2024.

15

Alan L Yuille and Anand Rangarajan. The concave-convex procedure (cccp). Advances in neural
information processing systems, 14, 2001.

Zhihan Zhou, Yanrong Ji, Weijian Li, Pratik Dutta, Ramana Davuluri, and Han Liu. Dnabert-2: Effi-
cient foundation model and benchmark for multi-species genome. arXiv preprint arXiv:2306.15006,
2023.

Zhihan Zhou, Winmin Wu, Harrison Ho, Jiayi Wang, Lizhen Shi, Ramana V Davuluri, Zhong Wang,
and Han Liu. Dnabert-s: Learning species-aware dna embedding with genome foundation models.
arXiv preprint arXiv:2402.08777, 2024.

Zhihui Zhu, Tianyu Ding, Jinxin Zhou, Xiao Li, Chong You, Jeremias Sulam, and Qing Qu. A
geometric analysis of neural collapse with unconstrained features. Advances in Neural Information
Processing Systems, 34:29820–29834, 2021.

16

Appendix

A Related Works 18

B More Discussions 19
B.1 MHM Capacity . 19
B.2 Learning on Stiefel Manifolds . 19
B.3 KHMs as Brain-Machine Interface . 20

C Proofs of Main Text 21
C.1 Proof of Lemma 2.1 . 21
C.2 Proofs of Lemma 2.2 and Proposition 2.1 . 24
C.3 Proof of Theorem 3.1 . 26
C.4 Proof of Proposition 3.1 . 28

D Experimental Details 29
D.1 Metastable States . 29
D.2 Energy Landscape . 29
D.3 Basins of Attraction . 30
D.4 Simulation of Proposition 3.1 . 30
D.5 Assignment Problems . 30
D.6 Additional Experiments . 31

17

A Related Works
Hopfield and Dense Associative Memory Models. Associative memory models [Kanerva, 1988,
Willshaw et al., 1969] are extensively studied in neuroscience and machine learning due to their
biologically plausible designs. These models aim to store a set of memories and accurately retrieve
each one given an input query. Hopfield models [Hopfield, 1982] are a class of energy-based
associative memory models, beginning with classical versions [Hopfield, 1984, 1982] that handle
binary patterns and have a (sub-)linear memory capacity of O(d) for a pattern dimension d. Dense
associative memory models [Krotov and Hopfield, 2021, 2016, Ramsauer et al., 2020, Demircigil
et al., 2017] are later proposed with superlinear memory capacity enabled by sharper energy functions
(e.g., polynomial and exponential). Notably, the latest advancement in these dense models is their
exponential-in-d capacity [Lucibello and Mézard, 2024, Santos et al., 2024, Wu et al., 2024b, Hu
et al., 2024a,c,b, 2023, Ramsauer et al., 2020]. However, the current literature reports are mostly6

lower bound results for this exponential memory capacity. This work matches these lower bounds
with an upper bound, making the capacity both tight and provably optimal.

Transformer-Compatible Dense Associative Memories: Modern Hopfield Models. Recently, a
special class of dense associative memory models, modern Hopfield models (MHMs), has gained
increasing interest in deep learning due to their connection to the attention mechanism in transformers
[Wu et al., 2024a,b, Hu et al., 2024a,c,b, 2023, Ramsauer et al., 2020]. Therefore, we also refer to
them as transformer-compatible dense associative memories. Notably, the defining characteristic of
MHMs is that their single-step update is equivalent to the attention mechanism [Vaswani et al., 2017].
This striking feature makes them interesting given the prevalence and dominance of transformer
architectures in the era of large foundation models [Polyak et al., 2024, OpenAI, 2024, Hu et al.,
2024d, Peebles and Xie, 2023, Bubeck et al., 2023, Bai et al., 2023, Achiam et al., 2023, Zhou et al.,
2024, 2023, Ji et al., 2021, Touvron et al., 2023, Kojima et al., 2022, Bommasani et al., 2021, Radford
et al., 2019, Devlin, 2018].

As a result, such a connection facilitates the integration of associative memory models into modern
deep learning and large foundation models [Burns, 2024, Xu et al., 2024, Hu et al., 2024a,b, Hofmann
et al., 2024, Wu et al., 2024b, Auer et al., 2023, Burns and Fukai, 2023, Fürst et al., 2022, Krotov
and Hopfield, 2016]. Moreover, recent studies introduce several modern Hopfield model variants.
Hu et al. [2023] propose the sparse modern Hopfield model, a sparse counterpart to MHM with
larger capacity and lower retrieval error. Wu et al. [2024b], Santos et al. [2024], Martins et al. [2023]
introduce generalized sparse Hopfield models that unify all MHMs with different degrees of sparsity.
Hu et al. [2024b] present a nonparametric construction for deep learning compatible Hopfield layers
and several efficient modern Hopfield variants. Hu et al. [2024a] introduce OutEffHop, an outlier-
removing, deep learning compatible Hopfield layer for robust large pretrained model quantization.
Wu et al. [2024a] propose U-Hop facilitating memory retrieval in a learnable feature space (see
introduce for a review). Empirically, U-Hop improves the memory confusion problem [Krotov and
Hopfield, 2021] by a significant margin.

Applications of Modern Hopfield Models in Modern Machine Learning. Recently, modern
Hopfield models also achieve empirical success across various deep learning tasks [Krotov, 2023].
Starting with [Krotov and Hopfield, 2016], the polynomial Hopfield model is proposed for image
classification tasks (e.g., MNIST). Later, Ramsauer et al. [2020] introduce modern Hopfield layers
compatible with deep learning architectures. Since then, various modern Hopfield layers [Hu et al.,
2024a, Wu et al., 2024b, Hu et al., 2023] have been applied in many deep learning tasks, such as
language modeling [He et al., 2024], multiple instance learning [Ramsauer et al., 2020], immune
repertoire classification [Widrich et al., 2020], multivariate time series prediction [Wu et al., 2024b],
image generation [Hoover et al., 2023b], tabular learning [Xu et al., 2024], unsupervised clustering
[Saha et al., 2023], and image captioning [Fürst et al., 2022].

Additionally, modern Hopfield layers introduce new operations in large foundation models to improve
performance. For example, Wu et al. [2024b] leverage the retrieval dynamics of modern Hopfield
models to enable an external memory plugin in time series prediction, and Xu et al. [2024] apply a

6After completion of this work, the authors attended ICML 2024 and learned of an upper bound result
reported by [Santos et al., 2024], which also utilizes techniques from spherical codes. The authors regret missing
the dinner with Santos et al. [2024] at Vienna due to a tight schedule. The difference between this work and
[Santos et al., 2024] lies not only in scope but also in that our upper bound matches the lower bound in the
low-temperature region (Proposition 2.1).

18

similar approach to tabular data. In image captioning, Fürst et al. [2022] address issues with covariance
structure using modern Hopfield models. Hu et al. [2024a] propose an outlier-free Hopfield layer as a
quantization-strong and resource-efficient transformer backbone for large language models and large
foundation models. Ota et al. [2023] embed a partial forgetting functionality in modern Hopfield
models to enhance model performance.

Kernelized Hopfield Models. Wu et al. [2024a] propose kernelized Hopfield models (KHMs)7,
which have the capability to store memories in a learnable feature space. KHMs offer the flexibility
to relocate memories while maintaining several defining properties of modern Hopfield models
[Ramsauer et al., 2020, Theorems 1 to 4]. By maximizing the average separation between memories,
KHMs empirically achieve lower retrieval errors [Wu et al., 2024a, Section 4]. However, the
theoretical understanding of KHMs is larking due to their new flexibility in rearranging memories.
This work aims to fill this gap by analyzing the capacity limits and theoretical justifications for
KHMs.

Spherical Code. Spherical codes are mathematical constructions describing the arrangement of
M points on the surface of a d-dimensional hyper-sphere [Delsarte et al., 1991]. The main problem
around spherical codes is to arrange points in a way such that the minimum distance between any
two points are maximized. This arrangement is called the optimal spherical code. It is crucial for
minimizing errors and maximizing efficiency in signal transmission and data storage. In general, the
value of max minimal separation and arrangement of points is unsolved except for certain pairs of
(d,M) [Wang, 2009]. Various of fields such as communications [Strohmer and Heath Jr, 2003] and
data compression [Lelewer and Hirschberg, 1987]. Moreover, spherical codes are related to the area
of error-correcting codes [Peterson and Weldon, 1972], which are used to detect and correct errors in
data transmission and storage.

B More Discussions
B.1 MHM Capacity
We review the modern Hopfield capacity lower bound in [Ramsauer et al., 2020].

Lemma B.1 (Memory Capacity of MHM). Let 1− p be the probability of successfully storing and
retrieving a pattern. Assuming patterns are normalized, the amount of patterns randomly sampled
from a d-dimensional unit-sphere that the MHM with update rule in (1.2), can store and retrieve is
lower-bounded by

M ≥ √pC(d−1)/4,

where C is the solution to C = b/W0(exp{a+ln b}), with W0(·) being the principal branch of Lambert
W function, a := (4/d−1) (ln 2

√
p−2/R + 1) and b := 4β/5(d−1).

Observe W0 is an increasing function in exp{a+ ln b}, indicating that C is increasing in R (C is
increasing in a; a is decreasing with fixed R). Finally, we observe that under Assumption 1, we have
R = 1

2

√
2∆min, implying that the memory capacity of MHM is constrained by large ∆min.

B.2 Learning on Stiefel Manifolds
We review ways to do optimization on the surface of an unit-hypersphere (Stiefel manifold).

Projected Gradient Descent. Given any loss function L(·), an input matrix X , and learning rate γ,
a single gradient descent step at t-th time step is:

Wt+1/2 = Wt − γt∇XL(X). (B.1)

Projected gradient descent [Raman and Yang, 2019] then projects Wt+ 1
2

onto the feasible set, in this
case, the surface of a unit hypersphere

Wt+1 =
Wt+1/2∥∥Wt+1/2

∥∥ . (B.2)

7This is different from [Iatropoulos et al., 2022] while they share similar names.

19

Combining (B.1) and (B.2), we obtain the projected gradient descent step as

Wt+1 = PGD(Wt, γ,X).

Riemannian Optimization. [Tripuraneni et al., 2018] construct and analyze an approach on
optimization on Riemannian manifolds from a geometric perspective. Their adapt the Polyak-Ruppert
[Polyak and Juditsky, 1992] iterate averaging technique to the Riemannian setting. In general, with
carefully selected step-size, their method achieves O(1/N) convergence rate which is the same in the
euclidean setting. Overall, there are various of methods for optimization on Riemannian manifolds
with comparable convergence rate to Euclidean space. Thus, giving the advancement of Riemannian
optimization, our assumption in Definition 2.6 is reasonably mild.

L2 Regularization. A simple alternative to satisfy the norm constraint is through L2 regularization.
From the aspect of neural collapse [Papyan et al., 2020], learning under (3.2) is similar to learning
under cross-entropy loss or supervised contrastive learning without positive samples [Graf et al.,
2021]. Further, from the analysis on unconstrainted feature models [Zhu et al., 2021], we can see that
with carefully chosen coefficient on the regularization term on W , the optimal solution of (3.2) or
cross-entropy loss ended up outputting normalized features.

Based on the previous research, we are able to see that the constraint in Definition 2.6 is not difficult
to satisfy.

B.3 KHMs as Brain-Machine Interface
The ultimate goal in the field of Brain-Machine Interface (BMI) [Lebedev and Nicolelis, 2006] is
to design communication between human brains and external devices. It has potential in various
real-world applications such as medical treatment [Ramos-Murguialday et al., 2013, Shanechi, 2019],
virtual reality [Lécuyer et al., 2008], etc. While Hopfield models serve as computational models
for simulating human brains and their memory recall system [Liu et al., 2015, Hsu, 2012], KHMs
correspond to external devices (storage space) to assist/enhance the process of memory recall.

In this paper, we study the scenario where we try to optimize the usage of external neurons for
memory storage by increasing the separation between memories in such external space (Φ-space).
We show that to prevent memory confusion, minimizing separation loss is an effective way to utilize
the external space efficiently. The closest work we can find is [Morrison et al., 2017] and [Kozachkov
et al., 2023]. In particular, they use Hopfield (and modern Hopfield or dense associative memory)
models as the computational model for human brain. Specifically, Morrison et al. [2017] study the
case of memory loss caused by disease or injuries. Their proposed framework is able to consider
the level of memory damage and then estimate the required dimension to fully or partially recover
memories. Kozachkov et al. [2023] explore the potential of building biological computers through
links between transformers and modern Hopfield models. They show that neuron–astrocyte networks
can perform the core computations of a transformer. In this context, our work provide an improved
connection between brain and transformer models, offering a more learnable and powerful approach
to brain-machine interfaces (BMI).

20

C Proofs of Main Text
C.1 Proof of Lemma 2.1

We first introduce a helper lemma:

Lemma C.1 ([Ramsauer et al., 2020, Hu et al., 2023]). Given real numbers, a, b ∈ R. If the equation

ac+ c ln c− b = 0,

holds, then the solution is

c =
b

W0(exp{a+ ln b})
.

By [Hu et al., 2023, Corollary 3.1.1], we state the well-separation condition of dense modern Hopfield
model [Ramsauer et al., 2020].

Lemma C.2 (Well Separation Condition of Dense Modern Hopfield Model [Ramsauer et al., 2020]).
Following Definition 2.2, suppose the memory patterns {ξµ}µ∈[M] are located within the sphere
Sµ := {x|∥x− ξµ∥ ≤ R}. Then, assuming normalized memory patterns, the retrieval dynamics
TMHM maps the sphere Sµ onto itself under the following conditions:
1. The initial query x is located within the sphere Sµ, i.e. x ∈ Sµ.
2. The well-separation condition is satisfied, which is given by:

∆µ ≥
1

β
ln

2(M − 1)

R
+ 2R.

This specifies the necessary condition for a pattern ξµ to be stored in E and be able to retrieved by T .

Proof of Lemma 2.1. Let ∆Φ
min = Minµ∈[M] ∆

Φ
µ , and θµν,Φ be the angle between two patterns Φ(ξν)

and Φ(ξµ). Note that θΦ,µν ∈ [0, π].

By Definition 2.7, we have

∆Φ
min ≥

1

β
ln

(
2(M − 1)

RΦ

)
+ 2RΦ,

and

∆Φ
min = Min

1≤µ≤ν≤M
(1− cos(θΦ,µν)) = [1− cos(θmin)] ,

where θmin := Min1≤µ≤ν≤M (1− cos(θΦ,µν)) ∈ [0, π].

Then, it holds

[1− cos(θmin)] ≥
1

β
ln

(
2(M − 1)

RΦ

)
+ 2RΦ. (C.1)

Next, Let 1− p be the success storage and retrieval probability under Definition 2.7. We have

P

(
∆Φ

µ ≥
1

β
ln

(
2(M − 1)

RΦ

)
+ 2RΦ

)
= 1− p.

By (C.1), we have

P

(
1− cos(θmin) ≥

1

β
ln

(
2(M − 1)

RΦ,µ

)
+ 2RΦ

)
= 1− p. (C.2)

21

We observe that cos(θmin) connects to the maximal separation loss via

cos(θmin) =
LΦ(Ξ) + 2t

2t
.

Following the proof of [Hu et al., 2023, Lemma 3.1] and by Lemma C.1, it holds

M =
√
pC

d−1/4,

with some real value C ∈ R. Here C is solution to the upper branch of the Lambert W function
deduced from (C.2),

C =
b

W0(exp{a+ ln b})
, (C.3)

where

a :=
4

d− 1

{
ln

[
2(
√
p− 1)

RΦ

]
+ 1

}
, and b :=

4β

5(d− 1)
. (C.4)

Then, we arrive a lower bound on the exponential storage capacity M:

M ≥ √pC
d−1
4 . (C.5)

To compare the the results from [Ramsauer et al., 2020, Theorem 3] (with the assumption of pattern
normalization), we denote the results from [Ramsauer et al., 2020] with ·̃ notation, i.e.

ã :=
4

d− 1

{
ln

[
2(
√
p− 1)

R

]
+ 1

}
, and b̃ = b.

And we also have θ̃min := Min1≤µ≤ν≤M (1− cos(θµν)) ∈ [0, π] be the angle between two raw
memory patterns ξν , ξµ.

We denote the optimal separation loss be L⋆(Ξ), and the loss value at t-th step be Lt(Ξ).

We denote R⋆
Φ be the corresponding RΦ when LΦ(Ξ) is at its global minimum.

By (3.2), the convexity of LΦ, the optimality of LΦ gives

R⋆
Φ =

1

2

√
L⋆
Φ(Ξ)

−t
≥ RΦ.

Next, we prove that to achieve RΦ ≥ R, we need O
(

1
−4tR2−L⋆

Φ(Ξ)

)
sub linear time (iterations.).

Recall that R := 1
2 Minν,ν ̸=µ ∥ξν − ξµ∥. By RΦ =

√
LΦ(Ξ)/−t/2, for RΦ ≥ R, we need

1

2

√
LΦ(Ξ)

−t
≥ 1

2
Min
ν,ν ̸=µ

∥ξν − ξµ∥,

which implies, by t > 0,

LΦ(Ξ) ≤ −t · (2R)2. (C.6)

Subtracting −L⋆
Φ(Ξ) on both sides, we get

LΦ(Ξ)− L⋆
Φ(Ξ) ≤ −t · (2R)2 − L⋆

Φ(Ξ) := ϵ

22

Which implies the iteration number needed to achieve improved memory capacity bound is:

N = O
(

1

−4tR2 − L⋆
Φ(Ξ)

)
,

which gives us a sub-linear time complexity.

Let

a :=
4

d− 1

{
ln

[
2(
√
p− 1)

RΦ

]
+ 1

}
, and b :=

4β

5(d− 1)
.

As long as Algorithm 1 runs for O (1/−4tR2−L⋆
Φ(Ξ)) iterations, its output Φ satisfies

ã ≤ a, (C.7)

and

C̃ = W0

(
exp
{
ã+ ln b̃

})
≤W0 (exp{a+ ln b}) = C. (C.8)

Thus, we have the memory capacity comparison as

M =
√
pC

d−1
4 ≥ √pC̃

d−1
4 = M̃.

Since the upper branch of Lambert W function is monotonically increasing on its domain, RΦ > R
implies

M =
√
pC

d−1
4 ≥ √pC̃

d−1
4 = M̃.

Hence we finish the proof.

23

C.2 Proofs of Lemma 2.2 and Proposition 2.1

Lemma C.3 (Capacity of Optimal Spherical Code, Lemma 2.2 Restated). Given a fixed DΦ > 1,
and its corresponding M⋆, if an optimal code Copt is in SDΦ−1 and has size M⋆, then Copt ∈ ΛDΦ

.

Proposition C.1 (Optimal Memory Capacity, Proposition 2.1 Restated). Following Lemma 2.2, we
have

M⋆ ≍ cDΦ ,

for some c > 1. Here ≍ indicates matching upper and lower bounds up to constant factors.

Proof. By Assumption 1, all memories are normalized. Thus, we have

RΦ =
1

2

√
2− 2 max

µ,ν∈[M]
µ̸=ν

⟨Φ(ξµ),Φ(ξν)⟩
(
By (2.1)

)

=

√
1

2
∆Φ

min. (C.9)

Recall the storage condition

∆Φ
µ ≥

1

β
ln

(
2(M − 1)

RΦ

)
.

Here we consider the minimal ∆Φ
µ among all possible µ ∈ [M]. We plug (C.9) into the well-separation

condition and change ∆Φ
µ to ∆Φ

min. We arrive

∆Φ
min ≥

1

β
ln

(
2(M − 1)√
∆Φ

min/2

)
.

By rearranging terms, we get

∆Φ
min +

1

2β
ln

(
1

2
∆Φ

min

)
≥ 1

β
ln (2(M − 1)) .

The derivative w.r.t. ∆Φ
min on the LHS is

1 +
1

2β∆Φ
min

,

indicating that LHS is increasing in ∆Φ
min for all ∆Φ

min > 0. The derivative w.r.t. M on the RHS is

1

β(M − 1)
,

indicating that the RHS is increasing in M for all M > 1. Since we are handling ∆Φ
min, this property

holds for all ∆Φ
µ .

Let δ be the minimum value for ∆Φ
min that satisfies the storage condition such that

δ +
1

2β
ln

(
1

2
δ

)
≥ 1

β
ln (2(M − 1)) .

With the definition of optimal spherical code, we have δ ≤ 1− ρ⋆. Thus an optimal spherical code
must satisfy this inequality.

24

Now we further analyze the quantity M⋆. Let θ = arccos (ρ(Copt)), with θ ∈ (0, π/2), we apply the
upper bound in [Kabatiansky and Levenshtein, 1978], we get

eφ(θ)DΦ(1+o(1)) ≥M⋆.

where Φ ∈ H. With the above result, we get M⋆ = o(cDΦ) for some c > 1.

For the lower bound of M⋆, we use the classic sphere code bound in [Chabauty, 1953, Shannon,
1959, Wyner, 1965], and get

M⋆ ≥

[
1√
π

Γ(DΦ/2)

Γ(DΦ−1/2)

∫ θ

0

sinDΦ−2(x)dx

]−1

= (1 + o(1))
√

2πDΦ ·
cos(θ)

sinDΦ−1(θ)
,

where x ∈ SDΦ−1.

Therefore, we have

eφ(θ)DΦ(1+o(1)) ≥M⋆ ≥ (1 + o(1))
√
2πDΦ ·

cos(θ)

sinDΦ−1(θ)
,

where φ(θ) > − log sin(θ), and o(·) is “ strictly slower than” notation as DΦ →∞.

This completes the proof. Tighter bounds can be found in [Jenssen et al., 2018, Fernández et al., 2021].
We selected bounds that most clearly show the exponential scaling behavior for better intuition.

25

C.3 Proof of Theorem 3.1

We first restate Theorem 3.1:

Theorem C.1 (Theorem 3.1 Restated). For any possible integer M , we have

lim sup
τ→0

(
argmin
Φ∈H

1

M

M∑
µ=1

LΦ(ξµ, τ)

)
⊆ argmin

Φ∈H
LHardMax(Φ),

where allH is the hypothesis space of Φ.

Then we introduce a helper lemma.

Lemma C.4. Let L0(Φ, τ) be

L0 (Φ, τ) := τ · log
M∑
µ=1

LΦ(ξµ, τ).

L0(Φ, τ) converges uniformly to LHardMax(Φ) as τ → 0.

Proof of Theorem 3.1. We first organize terms in (3.2). We obtain:

LΦ(ξµ, τ) = −

[
log

(
exp

{
⟨Φ(ξµ),Φ(ξµ)⟩

τ

})
− log

(
M∑
ν=1

exp

{
⟨Φ(ξµ),Φ(ξν)⟩

τ

})]

= −

[
1

τ
− log

(
M∑
ν=1

exp

{
⟨ξµ, ξν⟩

τ

})]
.

We define a helper function L0, denoted as

L0 (Φ, τ) := τ · log
M∑
µ=1

ℓµ(Ξ,Φ, τ). (C.10)

We have

L0 (Φ, τ) := τ · log
M∑
µ=1

LΦ(ξµ, τ)

= τ log

M∑
µ=1

log

1 +

M∑
ν∈[M]\µ

exp

{
⟨Φ(ξν),Φ(ξµ)⟩ − 1

τ

} .

Due to the fact that x/(1+x) ≤ log(1 + x) ≤ x for all x > −1, we have:∑M
ν∈[M]\µ exp

{
⟨Φ(ξν),Φ(ξµ)⟩−1

τ

}
1 +

∑M
ν′∈[M]\µ exp

{
⟨Φ(ξν),Φ(ξµ)⟩−1

τ

}
≤ log

1 +

M∑
ν∈[M]\µ

exp

{
⟨Φ(ξν),Φ(ξµ)⟩ − 1

τ

}
≤

M∑
ν∈[M]\µ

exp

{
⟨Φ(ξν),Φ(ξµ)⟩ − 1

τ

}
. (C.11)

26

Given the fact that ⟨Φ(ξν),Φ(ξµ)⟩ − 1 ≤ 0 for all possible ν, µ. With the monotonicity of the
exponential function, we obtain:

M∑
ν∈[M]\µ

exp

{
⟨Φ(ξν),Φ(ξµ)⟩ − 1

τ

}
≤M − 1.

Combining this with LHS of (C.11), we have∑M
ν∈[M]\µ exp

{
⟨Φ(ξν),Φ(ξµ)⟩−1

τ

}
M

≤ log

1 +

M∑
ν∈[M]\µ

exp

{
⟨Φ(ξν),Φ(ξµ)⟩ − 1

τ

}
≤

M∑
ν∈[M]\µ

exp

{
⟨Φ(ξν),Φ(ξµ)⟩ − 1

τ

}
.

Summing over all possible µ ∈ [M] we have

M∑
µ=1

∑M
ν∈[M]\µ exp

{
⟨Φ(ξν),Φ(ξµ)⟩−1

τ

}
M

≤
M∑
µ=1

log

1 +

M∑
ν∈[M]\µ

exp

{
⟨Φ(ξν),Φ(ξµ)⟩ − 1

τ

}
≤

M∑
µ=1

M∑
ν∈[M]\µ

exp

{
⟨Φ(ξν),Φ(ξµ)⟩ − 1

τ

}
.

Using the property of max function, we further get

max
µ,ν∈[M],µ ̸=ν

exp
{

⟨Φ(ξν),Φ(ξµ)⟩−1
τ

}
M

≤
M∑
µ=1

∑M
ν∈[M]\µ exp

{
⟨Φ(ξν),Φ(ξµ)⟩−1

τ

}
M

,

≤
M∑
µ=1

log

1 +

M∑
ν∈[M]\µ

exp

{
⟨Φ(ξν),Φ(ξµ)⟩ − 1

τ

}
≤M · (M − 1) · max

µ,ν∈[M],µ ̸=ν
exp

{
⟨Φ(ξν),Φ(ξµ)⟩ − 1

τ

}
.

Now by taking logarithmic on both sides and multiplying all three terms by τ we get

max
µ,ν∈[M],µ̸=ν

(⟨Φ(ξν),Φ(ξµ)⟩ − 1)− τ logM ≤ L0(Φ, τ) ≤ τ log (M · (M − 1)) + max
µ,ν∈[M],µ̸=ν

(⟨Φ(ξν),Φ(ξµ)⟩ − 1) .

27

By maxµ,ν∈[M],µ̸=ν (αµ,ν) = LHardMax(Φ)− 1, we have

LHardMax(Φ)− τ logM − 1 ≤ L0(Φ, τ) ≤ τ logM · (M − 1) + LHardMax(Φ)− 1.

Therefore, for any ϵ > 0, by taking τ0 = ϵ
max (logM,log(M ·(M−1))) , we have

|L0(Φ, τ)− LHardMax(Φ)| ≤ τ max{logM, log(M · (M − 1))} ≤ ϵ,

for any τ < τ0. That is, L0(Φ, τ) converges uniformly to LHardMax(Φ), leading to Lemma C.4.

Now we know L0(Φ, τ) converges uniformly to LHardMax(Φ) as ϵ → 0, by [Rockafellar and Wets,
2009, Proposition 7.15], we have L0(Φ, τ) Γ-converges to LHardMax(Φ) as well. By [Braides, 2006,
Theorem 2.10], we have

lim inf
τ→0

argmin
Φ∈H

L0(Φ, τ) ⊆ argmin
Φ∈H

LHardMax(Φ).

This completes the proof8.

C.4 Proof of Proposition 3.1
Proof. We first define the one-vs-one distance.

Definition C.1 (one-vs-one distance). We define the one-vs-one distance of a set of points V =
{vµ}Mµ=1 ⊆ Sd−1, with |V| = M , as

ρone-vs-one (V) := min
µ∈[M]

min
ν ̸=µ
∥vν − vµ∥.

The one-vs-one distance is lower bounded as following

Lemma C.5. [Jiang et al., 2023, Lemma C.13][√
π

M

Γ
(
d+1
2

)
Γ
(
d
2 + 1

)] 1
d−1

≤ max
V⊆Sd−1

ρone-vs-one (V) . (C.12)

Note that by the definition of the one-vs-one distance, we have the equivalent expression such that

ρ2one-vs-one (V)
2

≡ min
ν,µ∈[M]

⟨vµ, vµ⟩ − ⟨vµ, vν⟩ .

Combining the above property, Lemma C.5 and a known upper bound in [Moore, 1974, Theorem 1],
we obtain:

1

2

[√
π

M

Γ
(
DΦ+1

2

)
Γ
(
DΦ

2 + 1
)] 2

DΦ−1

≤ ∆Φ
min ≤ 2

[
2
√
π

M

Γ
(
DΦ+1

2

)
Γ
(
DΦ

2

)] 1
DΦ−1

.

The upper bound in [Moore, 1974] is derived by the normalized surface area of a spherical cap of
angular radius θ.

8In general, L0 converges uniformly to Lhardmax as τ goes to 0 with an error rate of |L0 − Lhardmax| ≤
2τ log(M).

28

D Experimental Details
Computational Environments. All experiments are conducted on the platform with NVIDIA
GEFORCE RTX 2080 Ti and INTEL XEON SILVER 4214 @ 2.20GHz. We use PyTorch 1.8.0
for all experiments. The experiments are relatively lightweight which can also be ran on CPU-only
environments.

D.1 Metastable States
Hyperparameters. The hyperparameters we used for the metastable state experiment is listed in
Table 3.

Table 3: Hyperparameter used Metastable State Experiment.

parameter Synthetic MNIST
Optimizer Adam Adam
Learning Iteration N 20 20
Batch Size 10 16
Update Rule Iteration 20 5
Learning Rate 0.1 0.1
Memory set size M 10 60000
Pattern Dimension d 5 784
Feature Dimension DΦ 5 200
β 4 0.1
threshold for p 0.01 0.01

Implementation Details. The batch size in Table 3 denotes the batch size we use to train the feature
map Φ. For the synthetic dataset, we directly train Φ on the whole memory set. For the softmax
threshold, we follow the settings used in [Santos et al., 2024].

D.2 Energy Landscape
Hyperparameters. The hyperparameters we used for the basins of attraction experiment is listed
in Table 5.

Table 4: Hyperparameter used in the energy landscape experiment.

parameter 2-Points 4-Points
Optimizer SGD SGD
Learning Iteration N 5 5
Learning Rate 0.1 0.1
Memory set size M 2 4
Pattern Dimension d 2 2
Feature Dimension DΦ 2 2
β 20 0.9−1

query grid resolution 40× 40 40× 40
color map hot hot

Implementation Details. We first prepare a set of randomly generated patterns as memories. Next
we record its energy landscape with respect to different query (the coordinate in the figure). Next
we train Φ for 5 iterations and record its resulting energy landscape with N = 1, 2, 5. We use the
entmax and sparsemax package used in [Peters et al., 2019].

29

D.3 Basins of Attraction
Hyperparameters. The hyperparameters we used for the basins of attraction experiment is listed
in Table 5.

Table 5: Hyperparameter used in the basins of attraction experiment.

parameter Synthetic
Optimizer Adam
Learning Iteration N 5
Update Rule Iteration 5
Learning Rate 0.1
Memory set size M 5
Pattern Dimension d 5
Feature Dimension DΦ 5
β 20
query grid resolution 100× 100

Implementation Details. We specifically set the update rule iteration to 5 as we see the sharp
energy gradient in Figure 1. Demonstrating that the standard MHM and its variants are not able to
converge to fixed points fast.

D.4 Simulation of Proposition 3.1
We provide a numerical simulation of our bound with DΦ = 3. We take the known solution of
minimal separation published in http://neilsloane.com/packings/ a ground truth.

Figure 3: Separation Bound Numerical Simulation We visualize the bound presented in Proposi-
tion 3.1 in 3-D dimension. The bound goes tighter as the number of points increases.

D.5 Assignment Problems
Here we conduct the point assignment problem in 2D space. In 2D space, the optimal arrangement of
six points is well-established: they equally divide the unit circle, with each point neighboring two
others.

We consider the case where we try to learn a feature map Φ under U-Hop+ with 6 different images
sampled from CIFAR10 We sample each image from cat, dog, car, truck, deer and horse class.
Intuitively, cat has closer semantic relationship with dog, car is more similar to truck and deer has
closer semantic relationship with horse [Jiang et al., 2023, Neelakantan et al., 2022]. We show that
our learned feature map consistently puts similar pairs closer to each other in 7 out of 10 trials. This

30

http://neilsloane.com/packings/

implies that while our method does not force or even considers the underlying semantic meanings
behind each memories, our feature map is still able to present such relationship. The result is in
Figure 4.

Discussion. The separation loss encourages the feature map to make the whole dataset the most
linearly separable to each instance. A similar analysis can be found in [Dirksen et al., 2022, Ghosal
et al., 2022], where they found out that if data has subtle clustered structure, a random neural network
is able to make it linearly separable with high probability.

Figure 4: Assignment Problem in 2D We observe that the learned feature map consistently put
similar pairs closer to each other, leading to preserving some level of semantic information.

D.6 Additional Experiments
Here we observe the loss curve of L w.r.t. different memory set size. We aim to verify whether L is
able to converge well through proposed algorithm.

Figure 5: Loss Curve of L w.r.t. different memory set size. We run separation maximization for 100
epochs on MNIST under 2 settings, M = 100/200. We set τ = 0.1, learning rate 1e-3, DΦ = 100.
The result shows L converges fast, which echoes our sub-linear time complexity.

31

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?
Answer: [Yes]
Justification: In our abstract, we claim we propose a new framework to describe the optimal
memory capacity of kernelized Hopfield models (KHMs) and modern Hopfield models. We
consdier stored memory sets as a special type of spherical code that all points in the set satisfies
the well-separation condition. Next, we show there is a sublinear time algorithm to find an optimal
feature map for KHMs to achieve maximal memory capacity. The main claims are detailed
described in the following sections
• Optimal memory capacity for KHMs and MHMs: Section 2, Lemma 2.2.
• Memory code: Section 2.2, Definition 2.8.
• Optimal capacity algorithm: Section 3.1, Algorithm 1.
Guidelines:
• The answer NA means that the abstract and introduction do not include the claims made in the

paper.
• The abstract and/or introduction should clearly state the claims made, including the contribu-

tions made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discussed our limitations in the last section, the limitations paragraph. The time
complexity of Algorithm 1 was discussed in Section 3.1.
Guidelines:
• The answer NA means that the paper has no limitation while the answer No means that the

paper has limitations, but those are not discussed in the paper.
• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to violations of

these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to
provide closed captions for online lectures because it fails to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms
that preserve the integrity of the community. Reviewers will be specifically instructed to not
penalize honesty concerning limitations.

32

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?
Answer: [Yes]
Justification: We have several theoretical results:
(a) Lemma 2.1: Proof in Appendix C.1.
(b) Lemma 2.2: Proof in Appendix C.2.
(c) Theorem 3.1: Proof in Appendix C.3.
(d) Proposition 3.1: Proof in Appendix C.4.
The main assumption we made is normalized memory patterns, which is described in Lemma 2.1
and Lemma 2.2. Similar assumption was also made in [Santos et al., 2024, Wu et al., 2024a].
Guidelines:
• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they appear

in the supplemental material, the authors are encouraged to provide a short proof sketch to
provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experi-
mental results of the paper to the extent that it affects the main claims and/or conclusions of the
paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Our experimental results are in Section 4. We describe our experimental details in
both Section 4 and Appendix D.
Guidelines:
• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well by

the reviewers: Making the paper reproducible is important, regardless of whether the code and
data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to
make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might
suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary
to either make it possible for others to replicate the model with the same dataset, or provide
access to the model. In general. releasing code and data is often one good way to accomplish
this, but reproducibility can also be provided via detailed instructions for how to replicate the
results, access to a hosted model (e.g., in the case of a large language model), releasing of a
model checkpoint, or other means that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submissions to
provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe the

architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should either

be a way to access this model for reproducing the results or a way to reproduce the model
(e.g., with an open-source dataset or instructions for how to construct the dataset).

33

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?
Answer: [Yes]
Justification: We provide the code in our supplementary materials. As for data, we mainly use
synthetic data and MNIST in all experiments. We also describe the data generation and download
in our code and experimental details.
Guidelines:
• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code,
unless this is central to the contribution (e.g., for a new open-source benchmark).

• The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

• Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?
Answer: [Yes]
Justification: The details are fully described in Appendix D.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that is

necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The results are ran over at least 5 runs with different random seeds.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.

34

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably

report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of
errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they
were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experi-
ments?

Answer: [Yes]

Justification: We describe our computational environment in the first paragraph of Appendix D.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud

provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual experi-

mental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than the

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it
into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The authors have read and agreed to every aspect of the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a deviation

from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration

due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?

Answer: [Yes]

Justification: The broader impacts can be found in the section right after conclusions.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact or

why the paper does not address societal impact.

35

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,
disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to par-
ticular applications, let alone deployments. However, if there is a direct path to any negative
applications, the authors should point it out. For example, it is legitimate to point out that
an improvement in the quality of generative models could be used to generate deepfakes for
disinformation. On the other hand, it is not needed to point out that a generic algorithm for
optimizing neural networks could enable people to train models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms
for monitoring misuse, mechanisms to monitor how a system learns from feedback over time,
improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release
of data or models that have a high risk for misuse (e.g., pretrained language models, image
generators, or scraped datasets)?

Answer: [NA]

Justification: The experiments conducted are mostly numerical simulations which does not serve
practical usage.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with necessary

safeguards to allow for controlled use of the model, for example by requiring that users adhere
to usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?

Answer: [Yes]

Justification: For our experiments, we only use datasets provided or generated by PyTorch.
PyTorch’s licenses can be found in https://github.com/pytorch/pytorch/blob/
main/LICENSE.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service of

that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a dataset.

36

https://github.com/pytorch/pytorch/blob/main/LICENSE
https://github.com/pytorch/pytorch/blob/main/LICENSE
paperswithcode.com/datasets

• For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not provide new assets.
Guidelines:
• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create
an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well as
details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve any crowdsourcing our human subjects experiments.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with human

subjects.
• Including this information in the supplemental material is fine, but if the main contribution of

the paper involves human subjects, then as much detail as possible should be included in the
main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution) were
obtained?
Answer: [NA]
Justification: This paper does not involve any crowdsourcing our human subjects experiments.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with human

subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent) may be

required for any human subjects research. If you obtained IRB approval, you should clearly
state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines
for their institution.

• For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.

37

	Introduction
	Main Theory
	High-Probability Capacity Lower Bound
	Memory Code: Memories as Spherical Code

	Sub-Linear Time Algorithm for Optimal Memory Capacity
	Learning to Achieve Optimal Memory Code
	Impact of

	Experimental Studies
	+ Reduces Metastable States
	Energy Landscape under + Stores More Memories
	Multiple Instance Learning

	Discussion and Conclusion
	Related Works
	More Discussions
	MHM Capacity
	Learning on Stiefel Manifolds
	KHMs as Brain-Machine Interface

	Proofs of Main Text
	Proof of
	Proofs of and
	Proof of
	Proof of

	Experimental Details
	Metastable States
	Energy Landscape
	Basins of Attraction
	Simulation of
	Assignment Problems
	Additional Experiments

