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Abstract
A coreset of a dataset with 𝑛 examples and 𝑑
features is a weighted subset of examples that is
sufficient for solving downstream data analytic
tasks. Nearly optimal constructions of coresets
for least squares and ℓ𝑝 linear regression with a
single response are known in prior work. How-
ever, for multiple ℓ𝑝 regression where there can
be 𝑚 responses, there are no known constructions
with size sublinear in 𝑚. In this work, we con-
struct coresets of size �̃�(𝜀−2𝑑) for 𝑝 < 2 and
�̃�(𝜀−𝑝𝑑𝑝/2) for 𝑝 > 2 independently of 𝑚 (i.e.,
dimension-free) that approximate the multiple ℓ𝑝
regression objective at every point in the domain
up to (1 ± 𝜀) relative error. If we only need to
preserve the minimizer subject to a subspace con-
straint, we improve these bounds by an 𝜀 factor
for all 𝑝 > 1. All of our bounds are nearly tight.

We give two application of our results. First, we
settle the number of uniform samples needed to
approximate ℓ𝑝 Euclidean power means up to
a (1 + 𝜀) factor, showing that Θ̃(𝜀−2) samples
for 𝑝 = 1, Θ̃(𝜀−1) samples for 1 < 𝑝 < 2,
and Θ̃(𝜀1−𝑝) samples for 𝑝 > 2 is tight, an-
swering a question of Cohen-Addad, Saulpic,
and Schwiegelshohn. Second, we show that for
1 < 𝑝 < 2, every matrix has a subset of �̃�(𝜀−1𝑘)
rows which spans a (1+𝜀)-approximately optimal
𝑘-dimensional subspace for ℓ𝑝 subspace approxi-
mation, which is also nearly optimal.

1. Introduction
Least squares linear regression and ℓ𝑝 linear regression are
some of the most fundamental and practically valuable com-
putational problems in statistics and optimization. In this
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problem, our input is an 𝑛 × 𝑑 matrix A ∈ R𝑛×𝑑 and a
response vector b ∈ R𝑛, and our goal is to output an ap-
proximate minimizer x̂ ∈ R𝑑 such that

‖Ax̂− b‖𝑝𝑝 ≤ (1 + 𝜀) min
x∈R𝑑

‖Ax− b‖𝑝𝑝. (1)

Among the vast literature on ℓ𝑝 regression, sampling al-
gorithms and coresets, which are algorithms that select a
weighted subset of the rows of A and b that suffice to solve
ℓ𝑝 regression, have played major roles in the development
of efficient algorithms. That is, we seek a diagonal matrix
S ∈ R𝑛×𝑛 with few non-zero entries, i.e., nnz(S) ≪ 𝑛,
such that the weighted subset of rows SA and Sb are suffi-
cient to compute a solution x̂ satisfying (1). We will often
refer to nnz(S) as the sample complexity. We focus on ap-
proaches that construct S by i.i.d. sampling of each of the 𝑛
rows:

Definition 1.1 (ℓ𝑝 sampling matrix). Let 𝑝 ≥ 1. A random
diagonal matrix S ∈ R𝑛×𝑛 is a random ℓ𝑝 sampling matrix
with sampling probabilities {𝑞𝑖}𝑛𝑖=1 if for each 𝑖 ∈ [𝑛], the
𝑖th diagonal entry is independently set to be

S𝑖,𝑖 =

{︃
1/𝑞

1/𝑝
𝑖 with probability 𝑞𝑖

0 otherwise

Two well-studied guarantees for S are strong coresets and
weak coresets. Strong coresets refer to coresets that pre-
serve the value of the objective function at every point in
the domain, while weak coresets only guarantee that the
unconstrained minimizer is preserved. If we only care about
solving the unconstrained ℓ𝑝 regression problem, then weak
coresets are sufficient to solve this problem, and it is known
that weak coresets can be substantially smaller than strong
coresets in certain settings (Musco et al., 2022). On the
other hand, strong coresets are necessary when the objective
function must be evaluated at points away from the optimum,
for example for constrained optimization problems.

Definition 1.2 (Strong coreset). We say that S is a strong
coreset if ‖S(Ax− b)‖𝑝𝑝 = (1± 𝜀)‖Ax− b‖𝑝𝑝 simultane-
ously for every x ∈ R𝑑.

Definition 1.3 (Weak coreset). We say that S is a weak
coreset if

‖Ax̂− b‖𝑝𝑝 ≤ (1 + 𝜀) min
x∈R𝑑

‖Ax− b‖𝑝𝑝
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for x̂ = argminx∈R𝑑‖S(Ax− b)‖𝑝𝑝.

The efficient construction of coresets for ℓ𝑝 regression has
been studied in a long line of work (Clarkson, 2005; Drineas
et al., 2006a;b; Dasgupta et al., 2009) culminating in the ℓ𝑝
Lewis weight sampling algorithm (Lewis, 1978; Bourgain
et al., 1989; Talagrand, 1990; Ledoux & Talagrand, 1991;
Talagrand, 1995; Schechtman & Zvavitch, 2001; Cohen &
Peng, 2015; Woodruff & Yasuda, 2023a), which gives an
algorithm that constructs a strong coreset S with

nnz(S) =

{︃
�̃�(𝜀−2𝑑) 𝑝 ≤ 2

�̃�(𝜀−2𝑑𝑝/2) 𝑝 > 2
.

A related line of work in the active ℓ𝑝 regression setting
shows that weak coresets for ℓ𝑝 regression with

nnz(S) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
�̃�(𝜀−2𝑑) 𝑝 = 1

�̃�(𝜀−1𝑑) 1 < 𝑝 < 2

𝑂(𝜀−1𝑑) 𝑝 = 2

�̃�(𝜀−(𝑝−1)𝑑𝑝/2) 𝑝 > 2

can be constructed even without knowing b (Chen & Price,
2019; Chen & Derezinski, 2021; Parulekar et al., 2021;
Musco et al., 2022; Woodruff & Yasuda, 2023b). Note
that these bounds strictly improve over the strong coreset
guarantees of ℓ𝑝 Lewis weight sampling for 1 < 𝑝 < 3.

1.1. Multiple ℓ𝑝 regression

It is often the case that we are interested in more than just
one target b to predict, and in general, we may wish to
simultaneously fit 𝑚 target vectors that are given by a matrix
B ∈ R𝑛×𝑚 and solve the minimization problem

min
X∈R𝑑×𝑚

‖AX−B‖𝑝𝑝,𝑝 = min
X∈R𝑑×𝑚

𝑚∑︁
𝑗=1

‖AXe𝑗 −Be𝑗‖𝑝𝑝

This is known as the multiple response ℓ𝑝 regression prob-
lem, or simply the multiple ℓ𝑝 regression problem, and is
the focus of the present work.

1.1.1. CORESET CONSTRUCTIONS FOR 𝑝 = 2

For 𝑝 = 2, the construction of strong coresets for the mul-
tiple response problem follows almost immediately from
strong coresets for the single response problem due to or-
thogonality and the Pythagorean theorem, and we can con-
struct S such that

‖S(AX−B)‖2𝐹 = (1± 𝜀)‖AX−B‖2𝐹

with nnz(S) = �̃�(𝜀−2𝑑) samples. Indeed, assume with-
out loss of generality that A has orthogonal columns, and
suppose that S satisfies

• ‖SAx‖22 = (1± 𝜀)‖Ax‖22 for every x ∈ R𝑑 (i.e., S is
a subspace embedding)

• ‖S(AX* −B)‖2𝐹 = (1± 𝜀)‖AX* −B‖2𝐹 where X*

is the optimal minimizer

• ‖A⊤S⊤S(AX* − B)‖2𝐹 ≤ (𝜀2/𝑑)‖A‖2𝐹 ‖AX* −
B‖2𝐹 = 𝜀2‖AX* −B‖2𝐹

Then, the following argument of Section 7.5 of (Clarkson &
Woodruff, 2013) shows that S is a strong coreset. Indeed,

‖S(AX−B)‖2𝐹 = ‖SA(X−X*)‖2𝐹 + ‖S(AX* −B)‖2𝐹
+ 2 tr

(︀
(X−X*)⊤A⊤S⊤S(AX* −B)

)︀
by expanding the square, and the inner product term is
bounded by⃒⃒

tr
(︀
(X−X*)⊤A⊤S⊤S(AX* −B)

)︀⃒⃒
≤ ‖X−X*‖𝐹 ‖A⊤S⊤S(AX* −B)‖𝐹
≤ 𝜀‖A(X−X*)‖𝐹 ‖AX* −B‖𝐹
≤ 𝜀‖AX−B‖2𝐹

and S also preserves the quantities ‖SA(X−X*)‖2𝐹 and
‖S(AX*−B)‖2𝐹 up to (1±𝜀) relative error. A similar trick
is available in the weak coreset setting (see, e.g., Section 3.1
of Cohen et al. (2016)), which gives a bound of nnz(S) =
�̃�(𝜀−1𝑑) for this guarantee. Unfortunately, almost every
step in the above argument uses special properties of the ℓ2
norm that are not available for the ℓ𝑝 norm, and thus we will
need completely different arguments to handle 𝑝 ̸= 2.

1.1.2. CHALLENGES FOR 𝑝 ̸= 2

If we desire only weak coresets, then prior results on active
ℓ𝑝 regression in fact almost immediately provide a solution.
These results show that a weak coreset S for the single
response ℓ𝑝 regression problem can be constructed inde-
pendently of b, and with the dependence of nnz(S) on the
failure probability 𝛿 being polylogarithmic. Thus by setting
the failure rate to 𝛿 = 1/10𝑚, we can simultaneously solve
every column of B independently with overall probability
at least 9/10.

For strong coresets, however, such a column-wise strategy
must be implemented carefully. If we consider constructing
a strong coreset for a single column 𝑗 ∈ [𝑚], then the sam-
pling probabilities now depend on the target vector Be𝑗 , so
the sampling complexity would need to scale as 𝑚 rather
than poly log(𝑚) as in the previous upper bound weak core-
sets. On the other hand, another natural strategy is to mimic
the strategy for the 𝑝 = 2 case and take the sampling proba-
bilities to only guarantee an ℓ𝑝 subspace embedding for the
column space of A and that 𝑞𝑖 ≥ ‖e⊤𝑖 B*‖𝑝𝑝/‖B*‖𝑝𝑝,𝑝 for
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B* := AX* −B. This is a reasonable choice of sampling
probabilities, and indeed it is not hard to see that

‖S(AX−B)‖𝑝𝑝,𝑝 = (1± 𝜀)‖AX−B‖𝑝𝑝,𝑝

for any fixed X ∈ R𝑑×𝑚 with only nnz(S) = �̃�(𝜀−2𝑑)
samples for 𝑝 < 2 and nnz(S) = �̃�(𝜀−2𝑑𝑝/2) samples for
𝑝 > 2 via a Bernstein tail bound. However, it is unclear
how to extend a guarantee for any single X ∈ R𝑑×𝑚 to
a guarantee simultaneously for all X ∈ R𝑑×𝑚. Although
the dependence on the failure rate 𝛿 is logarithmic, a net
argument, or even more sophisticated chaining arguments,
over the possible choices of X ∈ R𝑑×𝑚 seem to require a
union bound over sets of size exp(𝑑𝑚), thus again intro-
ducing a linear dependence on 𝑚 in the sample complexity
nnz(S). As we show, a careful blend of these two ideas will
be necessary to obtain our strong coreset result.

1.2. Strong coresets for multiple ℓ𝑝 regression

Our first main result is the first construction of strong core-
sets for multiple ℓ𝑝 regression that is independent of 𝑚.

Theorem 1.4 (Strong coresets for multiple ℓ𝑝 regression).
Let A ∈ R𝑛×𝑑, B ∈ R𝑛×𝑚, and 𝑝 ≥ 1. There is an
algorithm which constructs S with

nnz(S) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑂(𝑑)

𝜀2

[︂
(log 𝑑)2 log

𝑑

𝜀
+ log

1

𝛿

]︂
1 ≤ 𝑝 < 2

𝑂(𝑑𝑝/2)

𝜀𝑝

[︂
(log 𝑑)2 log

𝑑

𝜀
+ log

1

𝛿

]︂
𝑝 > 2

such that with probability at least 1− 𝛿,

‖S(AX−B)‖𝑝𝑝,𝑝 = (1± 𝜀)‖AX−B‖𝑝𝑝,𝑝

simultaneously for every X ∈ R𝑑×𝑚. Furthermore, S can
be constructed in �̃�(nnz(A) + nnz(B) + poly(𝑑)) time.

We achieve a nearly optimal dependence on 𝑑 and 𝜀, as we
show that Ω(𝑑𝑝/2/𝜀𝑝) rows are necessary for strong coresets
in Theorem 5.1 for 𝑝 > 2, while it is known that Ω̃(𝑑/𝜀2)
rows are necessary even for 𝑚 = 1 for 𝑝 < 2 (Li et al.,
2021a). We note that our upper bound shows that multiple
ℓ𝑝 regression is as easy as single response ℓ𝑝 regression for
𝑝 < 2, while our lower bound demonstrates an interesting
separation between the two for 𝑝 > 2.

1.2.1. INITIAL log𝑚 BOUND

Our main technique is to generalize the “partition by sensi-
tivity” technique introduced in the active ℓ𝑝 regression work
of Musco et al. (2022) and show how this can be applied to
the strong coreset setting. We describe the idea for the case
of 𝑝 < 2, as the case of 𝑝 > 2 is analogous.

In the active ℓ𝑝 regression setting, we must show that we
can design sampling algorithms that preserve the objective

function value, even if we do not know the target vector
b. In this setting, one of the main observations of Musco
et al. (2022) is that even though we cannot preserve ‖Ax−
b‖𝑝𝑝 itself, we can actually preserve the difference ‖Ax−
b‖𝑝𝑝 − ‖b‖𝑝𝑝, if ‖b‖𝑝𝑝 = 𝑂(OPT𝑝) which is without loss
of generality. To see this idea, assume (without loss of
generality due to Dasgupta et al. (2009)) that we restrict
our attention to ‖Ax‖𝑝𝑝 = 𝑂(OPT𝑝). Then, the analysis of
Musco et al. (2022) proceeds by partitioning the coordinates
of b into two sets, those such that |b(𝑖)|𝑝 is larger than
𝜀−𝑝w𝑖OPT

𝑝 and those that are smaller than this threshold,
where w𝑖 is the 𝑖-th ℓ𝑝 Lewis weight of A. It is known
that w𝑖 bounds the sensitivities of A, that is, |[Ax](𝑖)|𝑝 ≤
w𝑖‖Ax‖𝑝𝑝 so it follows that for any |b(𝑖)|𝑝 ≥ 𝜀−𝑝w𝑖OPT

𝑝,
we have that

||[Ax− b](𝑖)|𝑝 − |b(𝑖)|𝑝| = 𝑂(𝜀)|b(𝑖)|𝑝

for any x ∈ R𝑑 with ‖Ax‖𝑝𝑝 = 𝑂(OPT𝑝). On the other
hand, if |b(𝑖)|𝑝 ≤ 𝜀−𝑝w𝑖OPT

𝑝, then we have by the trian-
gle inequality that

||[Ax− b](𝑖)|𝑝 − |b(𝑖)|𝑝| ≤ 𝑂(𝜀−𝑝)w𝑖OPT
𝑝.

Thus, up to an additive 𝑂(𝜀)(‖Sb‖𝑝𝑝 + ‖b‖𝑝𝑝) error,
||[Ax− b](𝑖)|𝑝 − |b(𝑖)|𝑝| has sensitivities which are con-
trolled by the ℓ𝑝 Lewis weights of A. This allows one to
show that sampling by the ℓ𝑝 Lewis weights of A preserves
‖Ax− b‖𝑝𝑝 − ‖b‖𝑝𝑝 for all ‖Ax‖𝑝𝑝 = 𝑂(OPT𝑝).

In order to apply this idea to the strong coreset setting, we
generalize the above argument to multiple scales. That is,
we replace OPT𝑝 by an arbitrary scale 𝑅 ≥ ‖b‖𝑝𝑝, and show
that for every ‖Ax‖𝑝𝑝 ≤ 𝑂(𝑅) that⃒⃒(︀

‖S(Ax− b)‖𝑝𝑝 − ‖Sb‖𝑝𝑝
)︀
−
(︀
‖Ax− b‖𝑝𝑝 − ‖b‖𝑝𝑝

)︀⃒⃒
≤ 𝜀(𝑅+ ‖Sb‖𝑝𝑝)

Finally, we can generalize this to the following guarantee by
union bounding over finitely many scales 𝑅, which holds
for every x ∈ R𝑑:⃒⃒(︀

‖S(Ax− b)‖𝑝𝑝 − ‖Sb‖𝑝𝑝
)︀
−
(︀
‖Ax− b‖𝑝𝑝 − ‖b‖𝑝𝑝

)︀⃒⃒
≤ 𝜀

(︀
‖b‖𝑝𝑝 + ‖Sb‖𝑝𝑝 + ‖Ax‖𝑝𝑝

)︀
(2)

This guarantee is in a form that can be summed over the 𝑚
columns of B. Thus, if a log𝑚 dependence is admissible,
then we can apply the above result with failure probability
1/10𝑚, union bound over the 𝑚 columns, and sum the
results to obtain⃒⃒

(‖S(AX−B)‖𝑝𝑝,𝑝 − ‖SB‖𝑝𝑝,𝑝)
−(‖AX−B‖𝑝𝑝,𝑝 − ‖B‖𝑝𝑝,𝑝)

⃒⃒
≤ 𝜀

(︀
‖B‖𝑝𝑝,𝑝 + ‖SB‖𝑝𝑝,𝑝 + ‖AX‖𝑝𝑝,𝑝

)︀
.

Now suppose that we additionally have
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• ‖SB‖𝑝𝑝,𝑝 = (1± 𝜀)‖B‖𝑝𝑝,𝑝

• ‖B‖𝑝𝑝,𝑝 = 𝑂(OPT𝑝) (which is without loss of gener-
ality by subtracting an 𝑂(1)-optimal solution)

Then, we have

‖S(AX−B)‖𝑝𝑝,𝑝
= ‖AX−B‖𝑝𝑝,𝑝 − ‖B‖𝑝𝑝,𝑝 + ‖SB‖𝑝𝑝,𝑝

±𝑂(𝜀)
(︀
‖B‖𝑝𝑝,𝑝 + ‖AX‖𝑝𝑝,𝑝

)︀
= ‖AX−B‖𝑝𝑝,𝑝 ± 𝜀‖B‖𝑝𝑝,𝑝 ±𝑂(𝜀)

(︀
‖B‖𝑝𝑝,𝑝 + ‖AX‖𝑝𝑝,𝑝

)︀
= ‖AX−B‖𝑝𝑝,𝑝 ±𝑂(𝜀)‖AX−B‖𝑝𝑝,𝑝

so we indeed have a strong coreset as desired.

1.2.2. REMOVING THE 𝑚 DEPENDENCE

Next, we show how to completely remove the 𝑚 depen-
dence, which requires additional ideas. When applying
(2) to each of the 𝑚 columns, suppose that we set the
failure probability to poly(𝜀𝛿) instead of 𝑂(1/𝑚). Then,
this guarantee will hold for a 1 − poly(𝜀𝛿) fraction of
“good” columns, for which we can obtain (1 ± 𝜀) approx-
imations. On the remaining poly(𝜀𝛿) fraction of “bad”
columns, note that the mass of B on these columns is at
most poly(𝜀𝛿)‖B‖𝑝𝑝,𝑝 with probability 1− 𝛿 by Markov’s
inequality. Then on these columns, ‖S(AX − B)e𝑗‖𝑝
is just ‖SAXe𝑗‖𝑝 up to a small total additive error of
poly(𝜀𝛿)‖B‖𝑝𝑝,𝑝. In turn, we have that ‖SAXe𝑗‖𝑝 =
(1± 𝜀)‖AXe𝑗‖𝑝 by using that S is an ℓ𝑝 subspace embed-
ding. Thus, by combining with the (1± 𝜀) approximation
on the rest of the “good” columns, we can still ensure that
‖S(AX−B)‖𝑝,𝑝 = (1± 𝜀)‖AX−B‖𝑝,𝑝.

1.3. Weak coresets for multiple ℓ𝑝 regression

In the weak coreset setting, we consider a generalized mul-
tiple ℓ𝑝 regression problem, where we are given a design
matrix A ∈ R𝑛×𝑑, an “embedding” G ∈ R𝑡×𝑚, and a
target matrix B ∈ R𝑛×𝑚, and we wish to approximately
minimize the objective function ‖AXG−B‖𝑝,𝑝.

As noted previously, for multiple ℓ𝑝 regression without an
embedding (i.e., G = I𝑡) the construction of weak coresets
follows relatively straightforwardly by applying active ℓ𝑝
regression results along each column. However, this strat-
egy fails when we must additionally handle the embedding
matrix G, as this constraint couples the columns of AX to-
gether. Furthermore, we argue that handling the embedding
G is substantially more interesting that the unconstrained
case. Indeed, as we see later in Sections 1.4 and 1.5, the
incorporation of the embedding G will allow us to handle
interesting extensions of our results to settings beyond the
entrywise ℓ𝑝 norm via the use of a linear embedding into

this norm. We will denote the optimal value as

OPT := min
X∈R𝑑×𝑡

‖AXG−B‖𝑝,𝑝

and let X* denote the matrix achieving this optimum unless
otherwise noted. We will prove the following result:

Theorem 1.5 (Weak coresets for multiple ℓ𝑝 regression).
Let A ∈ R𝑛×𝑑, G ∈ R𝑡×𝑚, B ∈ R𝑛×𝑚, and 1 ≤ 𝑝 < ∞.
There is an algorithm which constructs S independently of
B with

nnz(S) =
𝑂(𝑑)

𝜀2𝛿2

[︂
(log 𝑑)2 log

𝑑

𝜀
+ log

1

𝛿

]︂(︂
log log

1

𝜀

)︂2

for 𝑝 = 1,

nnz(S) =
𝑂(𝑑)

𝜀𝛿2

[︂
(log 𝑑)2 log

𝑑

𝜀
+ log

1

𝛿

]︂(︂
log log

1

𝜀

)︂2

for 1 < 𝑝 < 2, and

nnz(S) =
𝑂(𝑑𝑝/2)

𝜀𝑝−1𝛿𝑝

[︂
(log 𝑑)2 log

𝑑

𝜀
+ log

1

𝛿

]︂(︂
log log

1

𝜀

)︂𝑝

for 𝑝 > 2 such that with probability at least 1− 𝛿, for any
X̂ ∈ R𝑑×𝑡 such that

‖S(AX̂G−B)‖𝑝𝑝,𝑝 ≤ (1+𝜀) min
X∈R𝑑×𝑡

‖S(AXG−B)‖𝑝𝑝,𝑝,

we have

‖AX̂G−B‖𝑝𝑝,𝑝 ≤ (1 +𝑂(𝜀)) min
X∈R𝑑×𝑡

‖AXG−B‖𝑝𝑝,𝑝.

Conditioned on the event that ‖S(AX*G − B)‖𝑝𝑝,𝑝 =
𝑂(‖AX*G−B‖𝑝𝑝,𝑝) for the global optimizer X*, the de-
pendence on 𝛿 can be replaced by a single log 1

𝛿 factor and
the poly(log log 1

𝜀 ) factor can be removed. Furthermore, S
can be constructed in �̃�(nnz(A) + 𝑑𝜔) time.

We achieve a nearly optimal dependence on 𝑑 and 𝜀, as
we show that Ω(𝑑𝑝/2/𝜀𝑝−1) rows are necessary for weak
coresets in Theorem 5.2 for 𝑝 > 2. Our weak coreset upper
bound result together with our strong coreset lower bound
of Theorem 5.1 shows a tight 𝜀 factor separation between
the two coreset guarantees.

Note that in the statement of Theorem 1.5, the dependence
on the failure rate 𝛿 is polynomial. This is in fact necessary
if we restrict our algorithm to be of the form of “sample-
and-solve” algorithms whose sampling matrices S do not
depend on B, as demonstrated in a lower bound result of
Theorem 12.8 of (Musco et al., 2022). The only reason why
this dependence becomes necessary in the analysis of the
upper bound is that ‖S(AX*G−B)‖𝑝𝑝,𝑝 may be as large as
𝑂
(︀
1
𝛿

)︀
‖AX*G−B‖𝑝𝑝,𝑝 with probability at least 𝛿, and this is

the source of the hardness result of Theorem 12.8 of (Musco
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et al., 2022) as well. This is a mild problem and can be easily
circumvented in one of two ways. The first is to simply allow
the algorithm to incorporate the row norms of B into the
sampling probabilities just as in Theorem 1.4. However, this
would not give an active regression algorithm that makes
only polylogarithmic in 𝛿 many queries. If we wish for such
an active regression algorithm, then we can follow (Musco
et al., 2022) and consider the following two-stage procedure.
First, we can obtain a constant factor solution X̂ with a
polylogarithmic dependence on 𝛿 by employing a “median”-
like procedure (see Section 3.1 of (Musco et al., 2022)).
Then, we can run log 1

𝛿 copies of the algorithm, each of
which succeeds with probability 1−𝛿. Then, we can sort the
runs by their estimates ‖S(AX̂G−B)‖𝑝𝑝,𝑝 and discard half
of the runs with the highest values of ‖S(AX̂G−B)‖𝑝𝑝,𝑝.
This guarantees that the remaining runs have ‖S(AX*G−
B)‖𝑝𝑝,𝑝 = 𝑂(1)‖AX*G−B‖𝑝𝑝,𝑝 with probability at least
1 − 𝛿, which is enough for the rest of the argument to go
through with only a polylogarithmic dependence on 𝛿.

1.4. Applications: sublinear algorithms for Euclidean
power means

Our first application of our results on coresets for multiple
ℓ𝑝 regression is on designing coresets for the Euclidean
power means problem. In this problem, we are given as
input a set of 𝑛 points {b𝑖}𝑛𝑖=1 ⊆ R𝑡, and we wish to find
a center x̂ ∈ R𝑡 that minimizes the sum of the Euclidean
distances to x̂, raised to the power 𝑝. That is, we seek to
minimize the objective function given by

𝑛∑︁
𝑖=1

‖x− b𝑖‖𝑝2 = ‖1x⊤ −B‖𝑝𝑝,2

where 1 is the 𝑛 × 1 matrix of all ones, B ∈ R𝑛×𝑡 is the
matrix with b𝑖 in its 𝑛 rows, and ‖·‖𝑝,2 is the (𝑝, 2)-norm
of a matrix given by the ℓ𝑝 norm of the Euclidean norm of
the rows. This is a fundamental problem which generalizes
the well-studied problems of the mean (𝑝 = 2), geometric
median (𝑝 = 1), and minimum enclosing balls (𝑝 = ∞).
Coresets and sampling algorithms for this problem were
recently studied by Cohen-Addad et al. (2021), who showed
that a uniform sample of �̃�(𝜀−(𝑝+3)) points suffices to out-
put a center x̂ ∈ R𝑡 such that

‖1x̂⊤−B‖𝑝𝑝,2 ≤ (1+𝜀) min
x∈R𝑡

‖1x⊤−B‖𝑝𝑝,2 = (1+𝜀)OPT𝑝.

In comparison to the upper bounds, the lower bounds given
by Cohen-Addad et al. (2021) was Ω(𝜀−(𝑝−1)) which is
off by an 𝜀4 factor compared to the upper bound, which
was improved to Ω(𝜀−1) for 1 < 𝑝 < 2 by (Musco et al.,
2022) and Ω(𝜀−2) for 𝑝 = 1 by (Chen & Derezinski, 2021;
Parulekar et al., 2021).

One of the main open questions highlighted by the work
of Cohen-Addad et al. (2021) is to obtain tight bounds for

this problem: how many uniform samples are necessary and
sufficient to output a (1 + 𝜀)-approximate solution to the
Euclidean power means problem. Our main contribution is a
nearly optimal algorithm which matches the lower bounds of
Chen & Derezinski (2021); Parulekar et al. (2021); Cohen-
Addad et al. (2021); Musco et al. (2022).

Theorem 1.6. Let {b𝑖}𝑛𝑖=1 ⊆ R𝑑. Then, there is a sublinear
algorithm which uniformly samples at most

𝑠 =

⎧⎪⎨⎪⎩
𝑂(𝜀−2)

(︀
log 1

𝜀 + log 1
𝛿

)︀
log 1

𝛿 𝑝 = 1

𝑂(𝜀−1)
(︀
log 1

𝜀 + log 1
𝛿

)︀
log 1

𝛿 1 < 𝑝 ≤ 2

𝑂(𝜀1−𝑝)
(︀
log 1

𝜀 + log 1
𝛿

)︀
log 1

𝛿 2 < 𝑝 < ∞

rows b𝑖 and outputs a center x̂ such that

𝑛∑︁
𝑖=1

‖x̂− b𝑖‖𝑝2 ≤ (1 + 𝜀) min
x∈R𝑑

𝑛∑︁
𝑖=1

‖x− b𝑖‖𝑝2

with probability at least 1− 𝛿.

To apply the techniques developed in this work to the Eu-
clidean power means problem, we need to embed the (𝑝, 2)-
norm into the entrywise ℓ𝑝 norm. To make this reduction,
we use a classic result of Dvoretzky and Milman (Dvoretzky,
1961; Milman, 1971), which shows that a random subspace
of a normed space is approximately Euclidean. We will
need the following version of this result for ℓ𝑝 norms:

Theorem 1.7 (Dvoretzky’s theorem for ℓ𝑝 norms (Figiel
et al., 1977; Paouris et al., 2017)). Let 𝑝 ≥ 1 and 0 < 𝜀 <
1/𝑝. Let 𝑛 ≥ 𝑂(max{𝜀−2𝑘, 𝜀−1𝑘𝑝/2), and let G ∈ R𝑛×𝑘

be an i.i.d. random Gaussian matrix. Then, with probability
at least 2/3, ‖Gx‖𝑝𝑝 = (1± 𝜀)𝑛‖x‖𝑝2 for every x ∈ R𝑘.

Note then that if G is an appropriately scaled random Gaus-
sian matrix, then we have that

‖1x⊤ −B‖𝑝𝑝,2 = (1± 𝜀)‖1x⊤G−BG‖𝑝𝑝,𝑝

by the above result. We may now note that the latter opti-
mization problem is exactly of the form of an embedded
ℓ𝑝 regression problem, and thus our weak coreset results
immediately apply to this problem. In fact, handling this
Dvoretzky embedding is our main motivation for studying
the ℓ𝑝 regression problem with the embedding. We also note
that similar reductions are possible by making use of other
linear embeddings between ℓ𝑝 norms (Wang & Woodruff,
2019; Li et al., 2021b; 2023). The full argument is given in
Appendix D.1.

In addition to sharpening the bound of Cohen-Addad et al.
(2021) to optimality, we note that our techniques, both al-
gorithmically and in the analysis, are simpler than the prior
work of Cohen-Addad et al. (2021). The previous algo-
rithm required partitioning the dataset into “rings” of points
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with similar costs and preprocessing these rings. Further-
more, the analysis uses a specially designed chaining argu-
ment with custom net constructions that require terminal
Johnson–Lindenstrauss embeddings. On the other hand,
our algorithm simply runs multiple instances of a “sample-
and-solve” algorithm, where the run with lowest sampled
mass is kept. Furthermore, the analysis largely builds on
existing net constructions for ℓ𝑝 regression, and does not
need terminal embeddings. In fact, our proof for the power
means problem only need ℓ𝑝 regression net constructions in
𝑑 = 1 dimensions due to our use of Dvoretzky’s theorem,
which avoids the sophisticated constructions of Bourgain
et al. (1989) for large 𝑑 and only needs a standard volume
argument (Remark B.15). Our partition of sensitivity can
also be thought of as a coarse notion of rings, where we only
consider two classes of costs, “big” and “small”, whereas
prior work requires finer a classification of points into rings
of points whose costs are related up to a constant factor.

1.5. Applications: spanning coresets for ℓ𝑝 subspace
approximation

As a second application of our results, we give the first
construction of spanning coresets for ℓ𝑝 subspace approxi-
mation with nearly optimal size. The ℓ𝑝 subspace approxi-
mation is a popular generalization of the classic Frobenius
norm low rank approximation problem, where the input is
a set of 𝑛 points {a𝑖}𝑛𝑖=1 in 𝑑 dimensions, and we wish to
compute a rank 𝑘 subspace 𝐹 ⊆ R𝑑 that minimizes

𝑛∑︁
𝑖=1

‖a⊤𝑖 (I𝑑 −P𝐹 )‖𝑝2

where P𝐹 denotes the orthogonal projection matrix onto 𝐹 .
Equivalently, we can write this as

min
rank(𝐹 )≤𝑘

‖A(I𝑑 −P𝐹 )‖𝑝𝑝,2.

While strong and weak coresets for this problem have at-
tracted much attention (Feldman & Langberg, 2011; Shya-
malkumar & Varadarajan, 2012; Sohler & Woodruff, 2018;
Huang & Vishnoi, 2020; Feng et al., 2021; Woodruff &
Yasuda, 2023b), our main contribution to this line of re-
search is on a different coreset guarantee, which we call
spanning coresets. Spanning coresets are subsets of the
points a𝑖 which span a (1+𝜀)-optimal rank 𝑘 subspace, and
is another popular guarantee in this literature (Deshpande
& Varadarajan, 2007; Shyamalkumar & Varadarajan, 2012;
Clarkson & Woodruff, 2015). In addition to being an inter-
esting object in its own right (Shyamalkumar & Varadarajan,
2012), the existence of small spanning coresets have found
applications to constructions for strong and weak coresets
for ℓ𝑝 subspace approximation (Huang & Vishnoi, 2020).
Definition 1.8 (Spanning coreset). Let {a𝑖}𝑛𝑖=1 ⊆ R𝑑. A
subset 𝑆 ⊆ [𝑛] is a (1 + 𝜀)-spanning coreset if the points

{a𝑖}𝑖∈𝑆 span a 𝑘-dimensional subspace 𝐹 such that

‖A(I𝑑 −P𝐹 )‖
𝑝
𝑝,2 ≤ (1 + 𝜀) min

rank(𝐹 )≤𝑘
‖A(I𝑑 −P𝐹 )‖𝑝𝑝,2.

Our main result is the following upper bound on the size of
spanning coresets.

Theorem 1.9. Let {a𝑖}𝑛𝑖=1 ⊆ R𝑑, 1 ≤ 𝑝 < ∞, 𝑘 ∈ N, and
0 < 𝜀 < 1. Then, there exists a (1 + 𝜀)-spanning coreset 𝑆
of size at most

|𝑆| =

⎧⎪⎨⎪⎩
𝑂(𝜀−2𝑘)(log(𝑘/𝜀))3 𝑝 = 1

𝑂(𝜀−1𝑘)(log(𝑘/𝜀))3 1 < 𝑝 ≤ 2

𝑂(𝜀1−𝑝𝑘𝑝/2)(log(𝑘/𝜀))3 2 < 𝑝 < ∞

In particular, we improve the previous best result of
𝑂(𝜀−1𝑘2 log(𝑘/𝜀)) due to Theorem 3.1 of (Shyamalkumar
& Varadarajan, 2012) in the 𝑘 dependence for all 1 ≤ 𝑝 < 4.
The proof of this result is given in Section D.2. Furthermore,
we give the first lower bounds on the size of spanning core-
sets by generalizing an argument of (Deshpande & Vempala,
2006) for 𝑝 = 2, showing that spanning coresets must have
size at least Ω(𝜀−1𝑘) in Theorem 5.3. Together, our results
settle the size of spanning coresets up to polylogarithmic
factors for 1 < 𝑝 < 2. To obtain this result, we again use
Dvoretzky’s theorem to embed the problem to an embed-
ded entrywise ℓ𝑝 norm problem, and then apply our weak
coreset results.

Finally, we note that our spanning coreset lower bound im-
plies other interesting lower bounds for coresets. First, we
note that weak coresets for ℓ𝑝 subspace approximation are
automatically spanning coresets, so our lower bound for
spanning coresets also gives the first nontrivial lower bound
on the size of weak coresets for ℓ𝑝 subspace approximation.
Secondly, we note that our proof of Theorem 1.9 in fact
shows that any upper bound on weak coresets for ℓ𝑝 regres-
sion with an embedding implies upper bounds for spanning
coresets of the same size. Thus, our spanning coreset lower
bound in fact implies an Ω(𝑑/𝜀) lower bound on the size of
weak coresets for ℓ𝑝 regression with an embedding, which
establishes that our weak coreset upper bound for ℓ𝑝 regres-
sion (Theorem 1.5) is also nearly optimal for 1 < 𝑝 < 2 up
to polylogarithmic factors.

On the other hand, for 𝑝 > 2, our weak coreset lower
bound of Theorem 5.2 shows that our technique of reducing
spanning coresets to weak coresets cannot prove a better
upper bound than the result of Theorem 1.9, and thus new
ideas are required to improve upon the �̃�(𝜀−1𝑘2) spanning
coreset upper bound of Theorem 3.1 of (Shyamalkumar &
Varadarajan, 2012). This is an interesting open problem.
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1.6. Open directions

We conclude with several potential directions for future
research. One interesting question is to improve our under-
standing of upper bounds and lower bounds for coresets for
single response ℓ𝑝 regression.

Question 1.10. How many rows are necessary and suffi-
cient for strong and weak coresets for single response ℓ𝑝
regression?

For strong coresets, this questions is already nearly opti-
mally settled for 𝑝 < 2 with Θ̃(𝜀−2𝑑) rows known to be
necessary and sufficient (Li et al., 2021a). For 𝑝 > 2,
however, there is still a gap in our understanding, with the
best known upper bound being Θ̃(𝜀−2𝑑𝑝/2) via ℓ𝑝 Lewis
weight sampling while the best known lower bound is only
Ω(𝜀−1𝑑𝑝/2 + 𝜀−2𝑑). It is an interesting question to deter-
mine whether the lower bound can be improved to match
the ℓ𝑝 Lewis weight sampling upper bound or not.

For weak coresets, the deficiencies are much more glaring.
There are currently no known nontrivial lower bounds for
weak coresets, while the best known algorithms are the
better of the two upper bounds given by active ℓ𝑝 regression
and strong coresets, both of which are substantially more
restricted settings than weak coresets.

Finally, we highlight the question of obtaining a nearly
optimal upper bound on spanning coresets for ℓ𝑝 subspace
approximation for 𝑝 > 2.

Question 1.11. How many rows are necessary and sufficient
for spanning coresets for ℓ𝑝 subspace approximation?

We conjecture that our lower bound of Ω(𝑘/𝜀) is tight, while
the best known upper bound is the better of our Theorem
1.9 and �̃�(𝜀−1𝑘2) (Shyamalkumar & Varadarajan, 2012).

2. Preliminaries
2.1. ℓ𝑝 Lewis weights

Definition 2.1 (One-sided ℓ𝑝 Lewis weights (Jambulapati
et al., 2022; Woodruff & Yasuda, 2022)). Let A ∈ R𝑛×𝑑

and 𝑝 ∈ (0,∞). Let 𝛾 ∈ (0, 1]. Then, weights w ∈ R𝑛 are
𝛾-one-sided ℓ𝑝 Lewis weights if w𝑖 ≥ 𝛾 · 𝜏 𝑖(W

1/2−1/𝑝A),
where W := diag(w). If 𝛾 = 1, we just say that w are
one-sided ℓ𝑝 Lewis weights.

The following theorem collects the results of (Cohen &
Peng, 2015; Jambulapati et al., 2022) on the fastest known
algorithms for approximating one-sided ℓ𝑝 Lewis weights:

Theorem 2.2. Let A ∈ R𝑛×𝑑 and 𝑝 > 0. There is an algo-
rithm which computes one-sided ℓ𝑝 Lewis weights (Def. 2.1)
w such that 𝑑 ≤ ‖w‖1 ≤ 2𝑑 in �̃�(nnz(A) + 𝑑𝜔) time.

3. Strong coresets
Theorem 3.1 (Strong coresets for multiple ℓ𝑝 regression).
Let X̂ ∈ R𝑑×𝑚 satisfy

‖AX̂−B‖𝑝𝑝,𝑝 ≤ 𝑂(1) min
X∈R𝑑×𝑚

‖AX−B‖𝑝𝑝,𝑝

and let B̂ := AX̂ − B. Let S be the ℓ𝑝 sampling
matrix (Definition 1.1) with sampling probabilities 𝑞𝑖 ≥
min{1,w𝑖/𝛼 + v𝑖/𝛽} for 𝛾-one-sided ℓ𝑝 Lewis weights
w ∈ R𝑛, v𝑖 = ‖e⊤𝑖 B̂‖𝑝𝑝/‖B̂‖𝑝𝑝,𝑝,

𝛼 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑂(𝛾)𝜀2

[︂
(log 𝑑)2 log 𝑛+ log

1

𝛿

]︂−1

𝑝 < 2

𝑂(𝛾𝑝/2)𝜀𝑝

‖w‖𝑝/2−1
1

[︂
(log 𝑑)2 log 𝑛+ log

1

𝛿

]︂−1

𝑝 > 2

and 𝛽 = 𝑂(𝜀−2 log 1
𝛿 ). Then with probability at least 1− 𝛿,

‖S(AX−B)‖𝑝𝑝,𝑝 = (1± 𝜀)‖AX−B‖𝑝𝑝,𝑝

simultaneously for every X ∈ R𝑑×𝑚.

Our main technical lemma is the following result which
generalizes the sampling results of (Musco et al., 2022;
Woodruff & Yasuda, 2023b) on preserving differences. The
proof can be found in Appendix A.
Theorem 3.2. Let S be the ℓ𝑝 sampling matrix (Definition
1.1) with sampling probabilities 𝑞𝑖 ≥ min{1,w𝑖/𝛼} for
𝛾-one-sided ℓ𝑝 Lewis weights w ∈ R𝑛 and

𝛼 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑂(𝛾)𝜀2

𝜂2/𝑝

[︂
(log 𝑑)2 log 𝑛+ log

1

𝛿

]︂−1

𝑝 < 2

𝑂(𝛾𝑝/2)𝜀𝑝

𝜂‖w‖𝑝/2−1
1

[︂
(log 𝑑)2 log 𝑛+ log

1

𝛿

]︂−1

𝑝 > 2

.

For each x* ∈ R𝑑 and b* = Ax* − b, with probability at
least 1− 𝛿,⃒⃒(︀

‖S(Ax− b)‖𝑝𝑝 − ‖Sb*‖𝑝𝑝
)︀
−
(︀
‖Ax− b‖𝑝𝑝 − ‖b*‖𝑝𝑝

)︀⃒⃒
≤ 𝜀

(︂
‖b*‖𝑝𝑝 + ‖Sb*‖𝑝𝑝 +

1

𝜂
‖Ax−Ax*‖𝑝𝑝

)︂
simultaneously for every x ∈ R𝑑.

Given Theorem 3.2, the proof of Theorem 3.1 proceeds as
described in the introduction.

Proof of Theorem 3.1. By replacing B by B̂ − AX̂, we
assume that ‖B‖𝑝 = 𝑂(OPT). We apply Theorem 3.2 with
failure probability at 𝜀𝑝𝛿2. Now let 𝑆 ⊆ [𝑚] be the set of
columns for which the guarantee of Theorem 3.2 fails. Note
then that by Markov’s inequality,∑︁

𝑗∈𝑆

‖Be𝑗‖𝑝𝑝 = 𝑂(𝜀𝑝𝛿)‖B‖𝑝𝑝,𝑝
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with probability at least 1− 𝛿. We also have that∑︁
𝑗∈𝑆

‖SBe𝑗‖𝑝𝑝 ≤ 1

𝛿

∑︁
𝑗∈𝑆

‖Be𝑗‖𝑝𝑝 = 𝑂(𝜀𝑝)‖B‖𝑝𝑝,𝑝

with probability at least 1− 𝛿, again by Markov’s inequality.
Then,

‖S(AX−B)e𝑗‖𝑝𝑝 = (1± 𝜀)‖SAXe𝑗‖𝑝𝑝 ±
𝑂(1)

𝜀𝑝−1
‖SBe𝑗‖𝑝𝑝

= (1± 𝜀)2‖AXe𝑗‖𝑝𝑝 ±
𝑂(1)

𝜀𝑝−1
‖SBe𝑗‖𝑝𝑝

by using that S is a subspace embedding. Similarly, we have
that

‖(AX−B)e𝑗‖𝑝𝑝 = (1± 𝜀)‖AXe𝑗‖𝑝𝑝 ±
𝑂(1)

𝜀𝑝−1
‖Be𝑗‖𝑝𝑝.

Then summing over 𝑗 ∈ 𝑆 gives that∑︁
𝑗∈𝑆

‖S(AX−B)e𝑗‖𝑝𝑝 =
∑︁
𝑗∈𝑆

‖(AX−B)e𝑗‖𝑝𝑝±𝑂(𝜀)‖B‖𝑝𝑝,𝑝.

On the other hand, for 𝑗 /∈ 𝑆, Theorem 3.2 succeeds so we
have

‖S(AX−B)e𝑗‖𝑝𝑝 = ‖(AX−B)e𝑗‖𝑝𝑝
− ‖Be𝑗‖𝑝𝑝 + ‖SBe𝑗‖𝑝𝑝
± 𝜀
(︀
‖Be𝑗‖𝑝𝑝 + ‖SBe𝑗‖𝑝𝑝 + ‖AXe𝑗‖𝑝𝑝

)︀
Summing the guarantee over the 𝑚 columns 𝑗 gives

‖S(AX−B)‖𝑝𝑝,𝑝 = ‖AX−B‖𝑝𝑝,𝑝 − ‖B‖𝑝𝑝,𝑝 + ‖SB‖𝑝𝑝,𝑝
±𝑂(𝜀)

(︀
‖B‖𝑝𝑝,𝑝 + ‖AX‖𝑝𝑝,𝑝

)︀
= ‖AX−B‖𝑝𝑝,𝑝 ± 𝜀‖B‖𝑝𝑝,𝑝
±𝑂(𝜀)

(︀
‖B‖𝑝𝑝,𝑝 + ‖AX‖𝑝𝑝,𝑝

)︀
= ‖AX−B‖𝑝𝑝,𝑝 ±𝑂(𝜀)‖AX−B‖𝑝𝑝,𝑝.

4. Weak coresets
We sketch the proof of the following result in this section.
Full proofs can be found in Appendix C.

Theorem 4.1 (Weak coresets for multiple ℓ𝑝 regression).
Let S be the ℓ𝑝 sampling matrix (Definition 1.1) with sam-
pling probabilities 𝑞𝑖 ≥ min{1,w𝑖/𝛼} for 𝛾-one-sided ℓ𝑝
Lewis weights w ∈ R𝑛 and

𝛼 = 𝑂(𝛾)𝜀𝛿2
[︂
(log 𝑑)2 log 𝑛+ log

1

𝛿

]︂−1[︂
log log

1

𝜀

]︂−2

for 𝑝 < 2 and

𝛼 =
𝑂(𝛾𝑝/2)𝜀𝑝−1𝛿𝑝

‖w‖𝑝/2−1
1

[︂
(log 𝑑)2 log 𝑛+ log

1

𝛿

]︂−1[︂
log log

1

𝜀

]︂−𝑝

for 𝑝 > 2. Then, for any X̂ ∈ R𝑑×𝑡 such that

‖S(AX̂G−B)‖𝑝𝑝,𝑝 ≤ (1+𝜀) min
X∈R𝑑×𝑡

‖S(AXG−B)‖𝑝𝑝,𝑝,

we have

‖AX̂G−B‖𝑝𝑝,𝑝 ≤ (1 +𝑂(𝜀)) min
X∈R𝑑×𝑡

‖AXG−B‖𝑝𝑝,𝑝.

We first establish lemmas that relate approximation quality
to the closeness of solutions to the optimum in Section 4.1,
and we use this in an iterative argument in Section 4.2.

4.1. Closeness of nearly optimal solutions

The following lemma uses strong convexity for 𝑝 < 2 and
a Bregman divergence bound for 𝑝 > 2 to quantify the
difference between the ℓ𝑝 norms of two vectors.

Lemma 4.2. For any y,y′ ∈ R𝑛, we have

‖y′‖2𝑝 ≥ ‖y‖2𝑝−2‖y‖2−𝑝
𝑝 ⟨y∘(𝑝−1),y−y′⟩+𝑝− 1

2
‖y−y′‖2𝑝

if 1 < 𝑝 < 2 (Lemma 8.1 of (Ben-Tal et al., 2001)) and

‖y′‖𝑝𝑝 ≥ ‖y‖𝑝𝑝 − 𝑝⟨y∘(𝑝−1),y − y′⟩+ 𝑝− 1

𝑝2𝑝
‖y − y′‖𝑝𝑝

if 2 ≤ 𝑝 < ∞ (Lemmas 3.2 and 4.6 of (Adil et al., 2019)).

We need the following elementary computation.

Lemma 4.3 (Gradients of multiple ℓ𝑝 regression). The gra-
dient ∇X‖AXG−B‖𝑝𝑝,𝑝 is given by the formula

𝑛∑︁
𝑖=1

𝑚∑︁
𝑗=1

𝑝[AXG−B](𝑖, 𝑗)∘(𝑝−1)(A⊤e𝑖)(e
⊤
𝑗 G

⊤)

The following lemma uses Lemmas 4.2 and 4.3 to show that
if X achieves a nearly optimal value, then X must be close
to the optimal solution X*.

Lemma 4.4 (Closeness of nearly optimal solutions). Let
𝑝 > 1. For any X ∈ R𝑑×𝑡 such that ‖AXG−B‖𝑝,𝑝 ≤
(1 + 𝜂)OPT with 𝜂 ∈ (0, 1), we have that

‖AXG−AX*G‖𝑝,𝑝 ≤

{︃
𝑂(𝜂1/2)OPT 𝑝 < 2

𝑂(𝜂1/𝑝)OPT 𝑝 > 2

where X* := argminX∈R𝑑×𝑡‖AXG−B‖𝑝,𝑝.

4.2. Iterative size reduction argument

We now sketch the proof of Theorem 4.1.

We will need the following initial result to seed our iterative
argument. Note that the dependence on 𝜀 is suboptimal by
an 𝜀 factor for every 1 < 𝑝 < ∞.

8



Coresets for Multiple ℓ𝑝 Regression

Lemma 4.5. Let S be the ℓ𝑝 sampling matrix (Definition
1.1) with sampling probabilities 𝑞𝑖 ≥ min{1,w𝑖/𝛼} for
𝛾-one-sided ℓ𝑝 Lewis weights w ∈ R𝑛 and

𝛼 = 𝑂(𝛾)(𝜀𝛿)2
[︂
(log 𝑑)2 log 𝑛+ log

1

𝛿

]︂−1

for 1 ≤ 𝑝 < 2 and

𝛼 =
𝑂(𝛾𝑝/2)(𝜀𝛿)𝑝

‖w‖𝑝/2−1
1

[︂
(log 𝑑)2 log 𝑛+ log

1

𝛿

]︂−1

for 2 < 𝑝 < ∞. Then, for any X̂ ∈ R𝑑×𝑡 such that

‖S(AX̂G−B)‖𝑝𝑝,𝑝 ≤ (1+𝜀) min
X∈R𝑑×𝑡

‖S(AXG−B)‖𝑝𝑝,𝑝,

we have

‖AX̂G−B‖𝑝𝑝,𝑝 ≤ (1 +𝑂(𝜀)) min
X∈R𝑑×𝑡

‖AXG−B‖𝑝𝑝,𝑝.

Starting from this initial solution bound of Lemma 4.5, we
can proceed via an iterative argument similar to those of
(Musco et al., 2022; Woodruff & Yasuda, 2023b) which
alternates between using a bound on the closeness of the so-
lution to the optimal solution to improve the approximation
(Theorem 3.2), and using a bound on the approximation to
improve the closeness to the optimum (Lemma 4.4). More
specifically, we can show that for 1 < 𝑝 < 2, a bound of
𝐶/𝜀𝛽 on the sample complexity implies that a bound of
𝐶/𝜀2𝛽/(1+𝛽) is sufficient as well. Iterating this argument
starting from 𝛽 = 2 due to Lemma 4.5 for 𝑂(log log 1

𝜀 )
iterations yields the desired bound of 𝐶/𝜀, as claimed. Sim-
ilarly, for 𝑝 > 2, a bound of 𝐶/𝜀𝛽 implies a bound of
𝐶/𝜀𝑝𝛽/(1+𝛽), which results in a final bound of 𝐶/𝜀𝑝−1, as
claimed. The full details can be found in Appendix C.

5. Lower bounds
In this section, we complement our various upper bounds
with matching lower bounds. In the interest of space, the
proofs are given in Appendix E.

Theorem 5.1. Let 2 < 𝑝 < ∞ be fixed. Let 𝜀 ∈ (0, 1) be
less than some sufficiently small constant. Then, a strong
coreset S for multiple ℓ𝑝 regression requires nnz(S) =
Ω(𝜀−𝑝𝑑𝑝/2) non-zero rows.

Theorem 5.2. Let 2 < 𝑝 < ∞ be fixed. Let 𝜀 ∈ (0, 1) be
less than some sufficiently small constant. Then, a weak
coreset S for multiple ℓ𝑝 regression requires nnz(S) =
Ω(𝜀1−𝑝𝑑𝑝/2) non-zero rows.

Theorem 5.3. Let 1 ≤ 𝑝 < ∞ and

𝑐𝑝 =

{︃
1/6 𝑝 ≤ 2

1/(6 · 5𝑝/2−1) 𝑝 > 2

Let 𝑘 ∈ N. Then, there is a matrix B ∈ R𝑛×(𝑛+1) such that
for every 𝜀 ≥ 𝑘/𝑛 and any subset of 𝑠 ≤ (𝑐𝑝/4)𝜀

−1𝑘 rows,
any rank 𝑘 subspace 𝐹 ′ spanned by the 𝑠 rows must have

‖BP𝐹 ′ −B‖𝑝𝑝,2 > (1 + 𝜀) min
rank(𝐹 )≤𝑘

‖BP𝐹 −B‖𝑝𝑝,2.

Impact statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. ℓ𝑝 Lewis weight sampling for differences
Throughout this section, we fix the following notation:

Definition A.1.

• Let 1 ≤ 𝑝 < ∞.

• Let 𝜀 ∈ (0, 1) be an accuracy parameter and let 𝛿 ∈ (0, 1) be a failure probability parameter.

• Let A ∈ R𝑛×𝑑 and b ∈ R𝑛.

• Let w ∈ R𝑛 be 𝛾-one-sided ℓ𝑝 Lewis weights for A such that max𝑛𝑖=1 w𝑖 ≤ 𝑤.

• Let x* ∈ R𝑑 any center, let 𝜂 ∈ (0, 1) be a proximity parameter, and let 𝑅 ≥ ‖Ax* − b‖𝑝𝑝 be a scale parameter.

• For each 𝑖 ∈ [𝑛] and x ∈ R𝑑, let

∆𝑖(x) := |[Ax− b](𝑖)|𝑝 − |[Ax* − b](𝑖)|𝑝

Our main result of the section is the following:

Theorem A.2. Let S be the ℓ𝑝 sampling matrix (Definition 1.1) with sampling probabilities 𝑞𝑖 ≥ min{1,w𝑖/𝛼} for
𝛾-one-sided ℓ𝑝 Lewis weights w ∈ R𝑛 and

𝛼 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑂(𝛾)

𝜀2

𝜂2/𝑝

[︂
(log 𝑑)2 log 𝑛+ log

1

𝛿

]︂−1

𝑝 < 2

𝑂(𝛾𝑝/2)
𝜀𝑝

𝜂‖w‖𝑝/2−1
1

[︂
(log 𝑑)2 log 𝑛+ log

1

𝛿

]︂−1

𝑝 > 2

.

Then for each x* ∈ R𝑑 and 𝑅 ≥ ‖Ax* − b‖𝑝𝑝, with probability at least 1− 𝛿,

sup
‖Ax−Ax*‖𝑝

𝑝≤𝜂𝑅

⃒⃒(︀
‖S(Ax− b)‖𝑝𝑝 − ‖S(Ax* − b)‖𝑝𝑝

)︀
−
(︀
‖Ax− b‖𝑝𝑝 − ‖Ax* − b‖𝑝𝑝

)︀⃒⃒
≤ 𝜀(𝑅+ ‖S(Ax* − b)‖𝑝𝑝)

We will prove Theorem A.2 throughout this section. Before doing so, we state the following more convenient form of the
result:

Theorem 3.2. Let S be the ℓ𝑝 sampling matrix (Definition 1.1) with sampling probabilities 𝑞𝑖 ≥ min{1,w𝑖/𝛼} for
𝛾-one-sided ℓ𝑝 Lewis weights w ∈ R𝑛 and

𝛼 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑂(𝛾)𝜀2

𝜂2/𝑝

[︂
(log 𝑑)2 log 𝑛+ log

1

𝛿

]︂−1

𝑝 < 2

𝑂(𝛾𝑝/2)𝜀𝑝

𝜂‖w‖𝑝/2−1
1

[︂
(log 𝑑)2 log 𝑛+ log

1

𝛿

]︂−1

𝑝 > 2

.

For each x* ∈ R𝑑 and b* = Ax* − b, with probability at least 1− 𝛿,⃒⃒(︀
‖S(Ax− b)‖𝑝𝑝 − ‖Sb*‖𝑝𝑝

)︀
−
(︀
‖Ax− b‖𝑝𝑝 − ‖b*‖𝑝𝑝

)︀⃒⃒
≤ 𝜀

(︂
‖b*‖𝑝𝑝 + ‖Sb*‖𝑝𝑝 +

1

𝜂
‖Ax−Ax*‖𝑝𝑝

)︂
simultaneously for every x ∈ R𝑑.

Proof. We apply Theorem A.2 with 𝛿 set to 𝛿/𝐿 for 𝐿 = 𝑂(log(1/𝛿𝜀)) and 𝑅 set to 2𝑙‖Ax* −b‖𝑝𝑝 for 𝑙 ∈ [𝐿]. By a union
bound, the conclusion holds simultaneously for every 𝑙 ∈ [𝐿] with probability at least 1− 𝛿. Furthermore, by Markov’s
inequality, ‖S(Ax* − b)‖𝑝𝑝 = 𝑂(1/𝛿)‖Ax* − b‖𝑝𝑝 with probability at least 1− 𝛿.
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If ‖Ax −Ax*‖𝑝𝑝 ≤ 2𝐿‖Ax* − b‖𝑝𝑝 = poly(1/𝛿𝜀)‖Ax* − b‖𝑝𝑝, then the result follows immediately from applying the
conclusion of Theorem A.2 at the appropriate scale 𝑙 ∈ [𝐿]. Otherwise, we have that ‖Ax−Ax*‖𝑝𝑝 ≥ poly(1/𝛿𝜀)‖Ax* −
b‖𝑝𝑝, in which case

‖S(Ax−Ax*)‖𝑝𝑝 ≥ Ω(1)‖Ax−Ax*‖𝑝𝑝 ≥ poly(1/𝛿𝜀)‖Ax* − b‖𝑝𝑝
so

‖S(Ax− b)‖𝑝𝑝 − ‖S(Ax* − b)‖𝑝𝑝 = (1± 𝜀)‖S(Ax−Ax*)‖𝑝𝑝 ±
(1 + 𝜀)𝑝−1

𝜀𝑝−1
‖S(Ax* − b)‖𝑝𝑝

= (1± 𝜀)‖S(Ax−Ax*)‖𝑝𝑝 ±
(1 + 𝜀)𝑝−1

𝛿𝜀𝑝−1
‖Ax* − b‖𝑝𝑝

= (1±𝑂(𝜀))‖S(Ax−Ax*)‖𝑝𝑝

and similarly,
‖Ax− b‖𝑝𝑝 − ‖Ax* − b‖𝑝𝑝 = (1±𝑂(𝜀))‖Ax−Ax*‖𝑝𝑝.

Thus it suffices to have that ⃒⃒⃒
‖S(Ax−Ax*)‖𝑝𝑝 − ‖Ax−Ax*‖𝑝𝑝

⃒⃒⃒
≤ 𝜀

𝜂
‖Ax−Ax*‖𝑝𝑝.

In fact, standard ℓ𝑝 Lewis weight sampling guarantees give

⃒⃒⃒
‖S(Ax−Ax*)‖𝑝𝑝 − ‖Ax−Ax*‖𝑝𝑝

⃒⃒⃒
≤

⎧⎪⎪⎨⎪⎪⎩
𝜀

𝜂1/𝑝
‖Ax−Ax*‖𝑝𝑝 𝑝 < 2

𝜀𝑝/2

𝜂1/2
‖Ax−Ax*‖𝑝𝑝 𝑝 > 2

which is stronger.

Throughout our proof of Theorem A.2, we will assume without loss of generality that S𝑝
𝑖,𝑖 > 1, that is we only consider

rows that are sampled with probability 𝑞𝑖 < 1, since rows that are kept with probability 𝑞𝑖 = 1 do not contribute towards the
sampling error. Note first that we can write

⃒⃒(︀
‖S(Ax− b)‖𝑝𝑝 − ‖S(Ax* − b)‖𝑝𝑝

)︀
−
(︀
‖Ax− b‖𝑝𝑝 − ‖Ax* − b‖𝑝𝑝

)︀⃒⃒
=

⃒⃒⃒⃒
⃒

𝑛∑︁
𝑖=1

(S𝑝
𝑖,𝑖 − 1)∆𝑖(x)

⃒⃒⃒⃒
⃒.

The supremum of this quantity, normalized by (𝑅+ ‖S(Ax* − b)‖𝑝𝑝)𝑙, over
{︀
‖Ax−Ax*‖𝑝𝑝 ≤ 𝜂𝑅

}︀
is a random variable.

We will bound the 𝑙-th moment of this random variable for 𝑙 = 𝑂(log 1
𝛿 + log 𝑛).

We start with a standard symmetrization procedure (see, e.g., (Cohen & Peng, 2015; Chen & Derezinski, 2021)).

Lemma A.3 (Symmetrization).

E
S

⎡⎣ 1

(𝑅+ ‖S(Ax* − b)‖𝑝𝑝)𝑙
sup

‖Ax−Ax*‖𝑝
𝑝≤𝜂𝑅

⃒⃒⃒⃒
⃒

𝑛∑︁
𝑖=1

(S𝑝
𝑖,𝑖 − 1)∆𝑖(x)

⃒⃒⃒⃒
⃒
𝑙
⎤⎦

≤ 2𝑙 E
𝜀∼{±1}𝑛,S

⎡⎣ 1

(𝑅+ ‖S(Ax* − b)‖𝑝𝑝)𝑙
sup

‖Ax−Ax*‖𝑝
𝑝≤𝜂𝑅

⃒⃒⃒⃒
⃒

𝑛∑︁
𝑖=1

𝜀𝑖S
𝑝
𝑖,𝑖∆𝑖(x)

⃒⃒⃒⃒
⃒
𝑙
⎤⎦

Next, we replace the Rademacher process on the right hand side of Lemma A.3 by one which “removes” S𝑝
𝑖,𝑖, that is, one of

the form

E
𝜀∼{±1}𝑛

⎡⎣ sup
‖Ax−Ax*‖𝑝

𝑝≤𝜂𝑅

⃒⃒⃒⃒
⃒

𝑛∑︁
𝑖=1

𝜀𝑖∆𝑖(x)

⃒⃒⃒⃒
⃒
𝑙
⎤⎦. (3)

This is roughly done by noting that if we take SA to be a “part of” A, then the domain
{︀
‖Ax−Ax*‖𝑝𝑝 ≤ 𝜂𝑅

}︀
only dilates

by a constant factor as S preserves ℓ𝑝 norms in the column space of A. More formally, we have the following lemma:
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Lemma A.4. Let B ∈ R𝑚×𝑑 satisfy ‖Bx‖𝑝𝑝 ≤ 𝐶‖Ax‖𝑝𝑝 for every x ∈ R𝑑. For every fixing of S, let

BS :=

(︃
SA

B

)︃
be the concatenation of SA and B, and let

𝐹S = sup
‖Ax‖𝑝

𝑝≤1

⃒⃒
‖SAx‖𝑝𝑝 − ‖Ax‖𝑝𝑝

⃒⃒
.

Suppose that for every fixing of S and 𝑅′ ≥ 𝑅+ ‖S(Ax* − b)‖𝑝𝑝, we have that

E
𝜀∼{±1}𝑛

sup
‖BSx−BSx*‖𝑝

𝑝≤𝜂𝑅′

⃒⃒⃒⃒
⃒

𝑛∑︁
𝑖=1

𝜀𝑖S
𝑝
𝑖,𝑖∆𝑖(x)

⃒⃒⃒⃒
⃒ ≤ 𝜀𝑙𝛿𝑅′𝑙

Then,

E
S

1

(𝑅+ ‖S(Ax* − b)‖𝑝𝑝)𝑙
E

𝜀∼{±1}𝑛
sup

‖Ax−Ax*‖𝑝
𝑝≤𝜂𝑅

⃒⃒⃒⃒
⃒

𝑛∑︁
𝑖=1

𝜀𝑖S
𝑝
𝑖,𝑖∆𝑖(x)

⃒⃒⃒⃒
⃒
𝑙

≤ (2𝜀)𝑙𝛿
(︁
(1 + 𝐶)𝑙 +E

S
[𝐹 𝑙

S]
)︁

Proof. Note that

‖BS(x− x*)‖𝑝𝑝 = ‖SA(x− x*)‖𝑝𝑝 + ‖B(x− x*)‖𝑝𝑝 ≤ (1 + 𝐹S + 𝐶)‖A(x− x*)‖𝑝𝑝

so

E
𝜀∼{±1}𝑛

sup
‖Ax−Ax*‖𝑝

𝑝≤𝜂𝑅

⃒⃒⃒⃒
⃒

𝑛∑︁
𝑖=1

𝜀𝑖S
𝑝
𝑖,𝑖∆𝑖(x)

⃒⃒⃒⃒
⃒
𝑙

≤ E
𝜀∼{±1}𝑛

sup
‖BSx−BSx*‖𝑝

𝑝≤(1+𝐹S+𝐶)𝜂𝑅

⃒⃒⃒⃒
⃒

𝑛∑︁
𝑖=1

𝜀𝑖S
𝑝
𝑖,𝑖∆𝑖(x)

⃒⃒⃒⃒
⃒
𝑙

≤ 𝜀𝑙𝛿(1 + 𝐹S + 𝐶)𝑙(𝑅+ ‖S(Ax* − b)‖𝑝𝑝)𝑙

≤ 𝜀𝑙𝛿2𝑙−1((1 + 𝐶)𝑙 + 𝐹 𝑙
S)(𝑅+ ‖S(Ax* − b)‖𝑝𝑝)𝑙 Fact B.1

Taking expectations on both sides proves the lemma.

Note that if S is the ℓ𝑝 Lewis weight sampling matrix, then E[|𝐹S|𝑙] in Lemma A.4 is known to be bounded by 𝑂(1)𝑙 (that
is, S is an 𝑂(1)-approximate ℓ𝑝 subspace embedding) by standard results on ℓ𝑝 Lewis weight sampling (Cohen & Peng,
2015; Woodruff & Yasuda, 2023a).

Furthermore, we can design B such that the ℓ𝑝 Lewis weights of BS are uniformly bounded by 𝛼, where 𝛼 is the
oversampling parameter such that S samples the 𝑖th row with probability min{1,w𝑖/𝛼}. For 𝑝 < 2, this simply follows
by taking B to be a flattening of A where every row is duplicated 1/𝛼 times due to the monotonicity of ℓ𝑝 Lewis weights
(Cohen & Peng, 2015). For 𝑝 > 2, monotonicity of ℓ𝑝 Lewis weights does not hold, but Theorem 5.2 of (Woodruff &
Yasuda, 2023a) nonetheless shows that 𝛾-one-sided ℓ𝑝 Lewis weights can be constructed for BS with 𝛾 = Ω(1) that makes
a similar argument go through.

Finally, it remains to bound the Rademacher process of the form of (3), where A has 𝛾-one-sided ℓ𝑝 Lewis weights uniformly
bounded by 𝑤 = 𝛼. We will prove the following in Section B. Assuming this theorem, Theorem A.2 follows by setting
𝑤 = 𝛼 as stated.
Theorem A.5. For all 𝑙 ∈ N, we have

E
𝜀∼{±1}𝑛

sup
‖Ax−Ax*‖𝑝

𝑝≤𝜂𝑅

⃒⃒⃒⃒
⃒

𝑛∑︁
𝑖=1

𝜀𝑖∆𝑖(x)

⃒⃒⃒⃒
⃒
𝑙

≤ (𝜀𝑅)
𝑙 (4)

where

𝜀 =

⎧⎪⎨⎪⎩
𝑂(𝑤𝜂2/𝑝)1/2𝛾−1/2

[︁(︀
(log 𝑑)2 log 𝑛

)︀1+1/𝑙
+ 𝑙
]︁1/2

𝑝 < 2

𝑂(𝑤𝜂‖w‖𝑝/2−1
1 )1/𝑝𝛾−1/2

[︁(︀
(log 𝑑)2 log 𝑛

)︀1+1/𝑙
+ 𝑙
]︁1/𝑝

𝑝 > 2

.
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B. Rademacher process bounds
We continue to fix our notation from Definition A.1. We will prove Theorem A.5 in this section.

We split the sum in (4) into two parts: the part that is bounded by the 𝛾-one-sided Lewis weights of A, and the part that is
not. To this end, define a threshold

𝜏 :=

⎧⎪⎪⎨⎪⎪⎩
𝜂

𝛾𝑝/2𝜀𝑝
𝑝 < 2

𝜂‖w‖𝑝/2−1
1

𝛾𝑝/2𝜀𝑝
𝑝 > 2

where 𝜀 will be determined later, and define the set of “good” entries 𝐺 ⊆ [𝑛] as

𝐺 := {𝑖 ∈ [𝑛] : |[Ax* − b](𝑖)| ≤ 𝜏w𝑖𝑅} (5)

We then bound

E
𝜀∼{±1}𝑛

sup
‖Ax−Ax*‖𝑝

𝑝≤𝜂𝑅

⃒⃒⃒⃒
⃒

𝑛∑︁
𝑖=1

𝜀𝑖∆𝑖(x)

⃒⃒⃒⃒
⃒
𝑙

≤ 2𝑙−1 E
𝜀∼{±1}𝑛

sup
‖Ax−Ax*‖𝑝

𝑝≤𝜂𝑅

⃒⃒⃒⃒
⃒∑︁
𝑖∈𝐺

𝜀𝑖∆𝑖(x)

⃒⃒⃒⃒
⃒
𝑙

+ 2𝑙−1 E
𝜀∼{±1}𝑛

sup
‖Ax−Ax*‖𝑝

𝑝≤𝜂𝑅

⃒⃒⃒⃒
⃒⃒ ∑︁
𝑖∈[𝑛]∖𝐺

𝜀𝑖∆𝑖(x)

⃒⃒⃒⃒
⃒⃒
𝑙

using the Fact B.1, and separately estimate each term. We can think of the first term as the “sensitivity” term, where each
term in the sum is bounded by the Lewis weights of A, and the latter term as the “outlier” term, where each term in the sum
is much larger than the corresponding Lewis weights.

B.1. Preliminaries

We repeatedly use the following inequalities.
Fact B.1. For any 𝑝 ≥ 1 and any 𝑎, 𝑏 ∈ R, |𝑎+ 𝑏|𝑝 ≤ 2𝑝−1(|𝑎|𝑝 + |𝑏|𝑝) = 𝑂(|𝑎|𝑝 + |𝑏|𝑝).
Fact B.2 (Corollary A.2, (Makarychev et al., 2019)). For any 𝑝 ≥ 1, 𝜀 > 0, and any 𝑎, 𝑏 ∈ R, |𝑎 + 𝑏|𝑝 ≤ (1 + 𝜀)|𝑎|𝑝 +
(1+𝜀)𝑝−1

𝜀𝑝−1 |𝑏|𝑝.
Fact B.3. For any 𝑝 ≥ 1 and any 𝑎, 𝑏 ∈ R, |𝑎|𝑝 − |𝑏|𝑝 ≤ 𝑝|𝑎− 𝑏|(|𝑎|𝑝−1 + |𝑏|𝑝−1).

We will need the notion of weighted ℓ𝑝 norms ‖·‖w,𝑝:
Definition B.4. Let w ∈ R𝑛 be non-negative weights. Then for y ∈ R𝑛, we define

‖y‖w,𝑝 :=

(︃
𝑛∑︁

𝑖=1

w𝑖|y(𝑖)|𝑝
)︃1/𝑝

.

B.1.1. ℓ𝑝 LEWIS WEIGHTS

Lemma B.5 (One-sided Lewis weights bound sensitivities). Let A ∈ R𝑛×𝑑 and 0 < 𝑝 < ∞. Let w ∈ R𝑛 be 𝛾-one-sided
ℓ𝑝 Lewis weights. Then,

sup
x∈rowspan(A)∖{0}

|[Ax](𝑖)|𝑝

‖Ax‖𝑝𝑝
≤

{︃
𝛾−𝑝/2‖w‖𝑝/2−1

1 ·w𝑖 𝑝 > 2

𝛾−1 ·w𝑖 𝑝 < 2

Lemma B.6. Let A ∈ R𝑛×𝑑 and let w be 𝛾-one-sided ℓ𝑝 Lewis weights for A. Then,⃦⃦⃦
W1/2−1/𝑝Ax

⃦⃦⃦
2
≤

{︃
‖w‖1/2−1/𝑝

1 ‖Ax‖𝑝 𝑝 > 2

𝛾1/2−1/𝑝‖Ax‖𝑝 𝑝 < 2

Lemma B.7. Let A ∈ R𝑛×𝑑 and let 0 < 𝑝 < ∞. The following hold: Let w ∈ R𝑛 be 𝛾-one-sided ℓ𝑝 Lewis weights, and
let R be a change of basis matrix R such that W1/2−1/𝑝AR is an orthonormal matrix. Then, for each 𝑖 ∈ [𝑛],

w𝑖 ≥ 𝛾𝑝/2 ·
⃦⃦
e⊤𝑖 AR

⃦⃦𝑝
2
.
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B.1.2. GAUSSIAN PROCESSES

Theorem B.8 (Gaussian comparison, Equation 4.8, (Ledoux & Talagrand, 1991)). Let 𝐹 : R+ → R+ be convex and let
{x𝑖}𝑛𝑖=1 be a finite sequence in a Banach space. Then,

E
𝜀∼{±1}𝑛

𝐹

(︃⃦⃦⃦⃦
⃦

𝑛∑︁
𝑖=1

𝜀𝑖x𝑖

⃦⃦⃦⃦
⃦
)︃

≤ E
g∼𝒩 (0,I𝑛)

𝐹

(︃(︁𝜋
2

)︁1/2 ⃦⃦⃦⃦⃦
𝑛∑︁

𝑖=1

g𝑖x𝑖

⃦⃦⃦⃦
⃦
)︃
.

Theorem B.9 (Dudley’s entropy integral, Theorem 8.1.6, (Vershynin, 2018)). Let (𝑋𝑡)𝑡∈𝑇 be a Gaussian process with
pseudo-metric 𝑑𝑋(𝑠, 𝑡) := ‖𝑋𝑠 −𝑋𝑡‖2. Let 𝐸(𝑇, 𝑑𝑋 , 𝑢) denote the minimal number of 𝑑𝑋 -balls of radius 𝑢 required to
cover 𝑇 . Then, for every 𝑧 ≥ 0, we have that

Pr

{︂
sup
𝑠,𝑡∈𝑇

|𝑋𝑠 −𝑋𝑡| ≥ 𝐶

[︂∫︁ ∞

0

√︀
log𝐸(𝑇, 𝑑𝑋 , 𝑢) 𝑑𝑢+ 𝑧 · diam(𝑇 )

]︂}︂
≤ 2 exp(−𝑧2)

Integrating the tail bound gives moment bounds. The following is taken from Lemma 6.8 of (Woodruff & Yasuda, 2023c).

Lemma B.10 (Moment bounds). Let Λ be a Gaussian process with domain 𝑇 and distance 𝑑𝑋 . Let ℰ :=∫︀∞
0

√︀
log𝐸(𝑇, 𝑑𝑋 , 𝑢) 𝑑𝑢 and 𝒟 = diam(𝑇 ). Then, for 𝑙 ∈ N,

E
g∼𝒩 (0,I𝑛)

[|Λ|𝑙] ≤ (2ℰ)𝑙(ℰ/𝒟) +𝑂(
√
𝑙𝒟)𝑙

B.2. Estimates on the outlier term

We first bound the outlier terms (𝑖 /∈ 𝐺), which is much easier.

Lemma B.11. With probability 1, we have that

sup
‖Ax−Ax*‖𝑝

𝑝≤𝜂𝑅

∑︁
𝑖∈[𝑛]∖𝐺

|∆𝑖(x)| ≤ 𝑂(𝜀)𝑅.

Proof. For each 𝑖 ∈ [𝑛] ∖𝐺, we have that

|[Ax− b](𝑖)| ∈ |[Ax* − b](𝑖)| ± |[Ax* −Ax](𝑖)|

∈ |[Ax* − b](𝑖)| ± 𝛾−1/2‖w‖1/2−1/𝑝
1 w

1/𝑝
𝑖 ‖Ax* −Ax‖𝑝 Lemma B.5

∈ |[Ax* − b](𝑖)| ± 𝛾−1/2𝜂1/𝑝‖w‖1/2−1/𝑝
1 w

1/𝑝
𝑖 𝑅1/𝑝

∈ |[Ax* − b](𝑖)| ± 𝜀|[Ax* − b](𝑖)| 𝑖 ∈ [𝑛] ∖𝐺

Thus,
|∆𝑖(x)| ≤ 𝑂(𝜀)|[Ax* − b](𝑖)|𝑝

so ∑︁
𝑖∈[𝑛]∖𝐺

|∆𝑖(x)| ≤
𝑛∑︁

𝑖=1

𝑂(𝜀)|[Ax* − b](𝑖)|𝑝 = 𝑂(𝜀)‖Ax* − b‖𝑝𝑝 ≤ 𝑂(𝜀)𝑅.

B.3. Estimates on the sensitivity term

Next, we estimate the sensitivity term (𝑖 ∈ 𝐺),

E
𝜀∼{±1}𝑛

sup
‖Ax−Ax*‖𝑝

𝑝≤𝜂𝑅

⃒⃒⃒⃒
⃒∑︁
𝑖∈𝐺

𝜀𝑖∆𝑖(x)

⃒⃒⃒⃒
⃒
𝑙

.

To estimate this moment, we obtain a subgaussian tail bound via the tail form of Dudley’s entropy integral, and then integrate
it. We will crucially use that |∆𝑖(x)| for 𝑖 ∈ 𝐺 is bounded over all ‖Ax−Ax*‖𝑝𝑝 ≤ 𝜂𝑅, which gives the following
sensitivity bound:

17
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Lemma B.12. For all 𝑖 ∈ 𝐺, and x ∈ R𝑑 with ‖Ax − Ax*‖𝑝𝑝 ≤ 𝜂𝑅, we have |[Ax − b](𝑖)|𝑝 ≤ 𝑂(𝜏w𝑖𝑅) and
|∆𝑖(x)| ≤ 𝑂(𝜏w𝑖𝑅).

Proof. We have

|[Ax− b](𝑖)|𝑝 ≤ 2𝑝−1(|[Ax* − b](𝑖)|𝑝 + |[Ax−Ax*](𝑖)|𝑝) Fact B.1

≤ 2𝑝−1𝜏w𝑖𝑅+ 2𝑝−1𝛾−𝑝/2𝜂‖w‖0∨(𝑝/2−1)
1 w𝑖𝑅 𝑖 ∈ 𝐺 (see (5)) and Lemma B.5

≤ 𝑂(𝜏w𝑖𝑅)

The bound on ∆𝑖(x) follows easily from the above calculation.

B.3.1. BOUNDING LOW-SENSITIVITY ENTRIES

We now separately handle entries 𝑖 ∈ 𝐺 with small Lewis weight. To do this end, define

𝐽 :=
{︁
𝑖 ∈ 𝐺 : w𝑖 ≥

𝜀

𝜏𝑛

}︁
.

We then bound the mass on the complement of 𝐽 :

Lemma B.13. For all ‖Ax−Ax*‖𝑝𝑝 ≤ 𝜂𝑅, we have that∑︁
𝑖∈[𝑛]∖𝐽

|∆𝑖(x)| ≤ 𝑂(𝜀𝑅)

Proof. We have that for each 𝑖 ∈ [𝑛] ∖ 𝐽 , w𝑖 ≤ 𝜀/𝜏𝑛 so by Lemma B.12,

∑︁
𝑖∈[𝑛]∖𝐽

|∆𝑖(x)| ≤
∑︁

𝑖∈[𝑛]∖𝐽

𝑂(𝜏w𝑖𝑅) ≤
∑︁

𝑖∈[𝑛]∖𝐽

𝑂(𝜀)

𝑛
𝑅 ≤ 𝑂(𝜀𝑅)

B.3.2. BOUNDING HIGH-SENSITIVITY ENTRIES: GAUSSIAN PROCESSES

Finally, it remains to bound the Rademacher process only on the entries indexed by 𝑖 ∈ 𝐽 . By a Gaussian comparison
theorem (Theorem B.8), we may bound the Rademacher process above by a Gaussian process instead, that is,

E
𝜀∼{±1}𝑛

sup
‖Ax−Ax*‖𝑝

𝑝≤𝜂𝑅

⃒⃒⃒⃒
⃒∑︁
𝑖∈𝐽

𝜀𝑖∆𝑖(x)

⃒⃒⃒⃒
⃒
𝑙

≤
(︁𝜋
2

)︁𝑙/2
E

g∼𝒩 (0,I𝑛)
sup

‖Ax−Ax*‖𝑝
𝑝≤𝜂𝑅

⃒⃒⃒⃒
⃒∑︁
𝑖∈𝐽

g𝑖∆𝑖(x)

⃒⃒⃒⃒
⃒
𝑙

. (6)

We can now appeal to the theory of Gaussian processes to bound this quantity. Define a Gaussian process by

𝑋x :=
∑︁
𝑖∈𝐽

g𝑖∆𝑖(x)

with pseudo-metric

𝑑𝑋(x,x′) :=

(︂
E
g
|𝑋x −𝑋 ′

x|
2
)︂1/2

=

(︃∑︁
𝑖∈𝐽

(∆𝑖(x)−∆𝑖(x
′))2

)︃1/2

We will use Dudley’s entropy integral (Theorem B.9) to bound the tail of this quantity, and then integrate to obtain moment
bounds.

Using the sensitivity bound of Lemma B.12, we obtain a bound on the pseudo-metric 𝑑𝑋 .

18
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Lemma B.14. Let 𝑞 = 𝑂(log(𝜏𝑛/𝜀)). For x,x′ ∈ 𝑇 for 𝑇 = {‖Ax−Ax*‖𝑝𝑝 ≤ 𝜂𝑅}, we have that

𝑑𝑋(x,x′) ≤

{︃
𝑂(𝑤1/2)𝜂1/𝑝−1/2‖W−1/𝑝A(x− x′)‖𝑝/2w,𝑞𝑅

1/2 𝑝 < 2

𝑂(𝑤1/2)𝜏1/2−1/𝑝‖W−1/𝑝A(x− x′)‖w,𝑞𝑅
1−1/𝑝 𝑝 > 2

and

diam(𝑇 ) = sup
x,x′∈𝑇

𝑑𝑋(x,x′) ≤

{︃
𝑂(𝑤1/2𝜂1/𝑝𝛾−1/2𝑅) 𝑝 < 2

𝑂(𝜀𝑤1/2𝜏1/2𝑅) 𝑝 > 2

Proof. Let y = Ax− b and y′ = Ax′ − b. Note then that

𝑑𝑋(x,x′)2 =
∑︁
𝑖∈𝐽

(∆𝑖(x)−∆𝑖(x
′))2 =

∑︁
𝑖∈𝐽

(|y(𝑖)|𝑝 − |y′(𝑖)|𝑝)2

≤ 𝑝2
∑︁
𝑖∈𝐽

|y(𝑖)− y′(𝑖)|2(|y(𝑖)|𝑝−1 + |y′(𝑖)|𝑝−1)2 Fact B.3

For 𝑝 < 2, we have that

𝑑𝑋(x,x′)2 ≤ 𝑝2‖(y − y′)|𝐽‖𝑝∞
∑︁
𝑖∈𝐽

(|y(𝑖)− y′(𝑖)|)2−𝑝(|y(𝑖)|𝑝−1 + |y′(𝑖)|𝑝−1)2

≤ 2𝑝2‖(y − y′)|𝐽‖𝑝∞
∑︁
𝑖∈𝐽

(|y(𝑖)− y′(𝑖)|)2−𝑝(|y(𝑖)|2𝑝−2 + |y′(𝑖)|2𝑝−2)

≤ 2𝑝2‖(y − y′)|𝐽‖𝑝∞‖y − y′‖2−𝑝
𝑝 (‖y‖2𝑝−2

𝑝 + ‖y′‖2𝑝−2
𝑝 ) Hölder’s inequality

≤ 𝑂(𝜂2/𝑝−1)‖(y − y′)|𝐽‖
𝑝
∞𝑅.

where Hölder’s inequality is applied with exponents 𝑝
2−𝑝 > 1 and 𝑝

2𝑝−2 > 1. For 𝑝 > 2, we have that

𝑑𝑋(x,x′)2 ≤ 2𝑝2‖(y − y′)|𝐽‖
2
∞

𝑛∑︁
𝑖=1

|y(𝑖)|2𝑝−2 + |y′(𝑖)|2𝑝−2

≤ 2𝑝2 max{‖y|𝐽‖∞, ‖y′|𝐽‖∞}𝑝−2‖(y − y′)|𝐽‖
2
∞

𝑛∑︁
𝑖=1

|y(𝑖)|𝑝 + |y′(𝑖)|𝑝

≤ 𝑂(1)(𝜏𝑤𝑅)1−2/𝑝‖(y − y′)|𝐽‖
2
∞𝑅 Lemma B.12

Furthermore, we have that

‖(y − y′)|𝐽‖∞ = ‖(Ax−Ax′)|𝐽‖∞
= ‖W1/𝑝(W−1/𝑝Ax−W−1/𝑝Ax′)|𝐽‖∞
≤ 𝑤1/𝑝‖(W−1/𝑝Ax−W−1/𝑝Ax′)|𝐽‖∞
≤ 2𝑤1/𝑝‖W−1/𝑝Ax−W−1/𝑝Ax′‖w,𝑞

where the last step follows from the fact that w𝑖 ≥ 𝜀/𝜏𝑛 for 𝑖 ∈ 𝐽 and 𝑞 = 𝑂(log(𝜏𝑛/𝜀)). Combining these bounds gives
the claimed bound on 𝑑𝑋(x,x′).

Finally, we have by Lemma B.5 that

‖W−1/𝑝A(x− x*)‖∞ =
𝑛

max
𝑖=1

|[A(x− x*)](𝑖)|
w𝑖

≤

{︃
𝛾−1/𝑝‖A(x− x*)‖𝑝 𝑝 < 2

𝛾−1/2‖w‖1/2−1/𝑝
1 ‖A(x− x*)‖𝑝 𝑝 > 2

so we have the claimed diameter bound for the set {‖A(x− x*)‖𝑝𝑝 ≤ 𝜂𝑅}.

The following entropy bounds are obtained from (Woodruff & Yasuda, 2023c), which in turn largely follow (Bourgain et al.,
1989).
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Remark B.15. The following entropy bounds are net necessary if we only need this result for 𝑑 = 1, for example for
applications to Euclidean power means. In this case, standard volume arguments suffice (see, e.g., Lemma 2.4 of Bourgain
et al. (1989)).

Lemma B.16. Let 1 ≥ w ∈ R𝑛 be non-negative weights. Let 2 ≤ 𝑞 < ∞ and let A ∈ R𝑛×𝑑 be such that W1/2A is
orthonormal. Let 𝜏 ≥ max𝑛𝑖=1

⃦⃦
e⊤𝑖 A

⃦⃦2
2
. Let 𝐵𝑝

w(A) := {x : ‖Ax‖w,𝑝 ≤ 1}. Then,

log𝐸(𝐵2
w(A), 𝐵𝑞

w(A), 𝑡) ≤ 𝑂(1)
𝑛2/𝑞𝑞 · 𝜏

𝑡2

and

log𝐸(𝐵𝑝
w(A), 𝐵𝑞

w(A), 𝑡) ≤ 𝑂(1)
1

𝑡𝑝

(︂
log 𝑑

2− 𝑝
+ log 𝑛+ 𝑛2/𝑞𝑞

)︂
𝜏.

for 𝑝 < 2.

We may now evaluate Dudley’s entropy integral.

Lemma B.17 (Entropy integral bound for 𝑝 < 2). We have that∫︁ ∞

0

√︀
log𝐸(𝐵𝑝(A), 𝑑𝑋 , 𝑡) 𝑑𝑡 ≤ 𝑂(𝑤1/2𝛾−1/2𝜂1/2𝑅)

(︁
log

𝜏𝑛

𝜀

)︁1/2
log 𝑑

Proof. Note that it suffices to integrate the entropy integral to diam(𝑇 ), which is bounded in Lemma B.14. Note also that 𝑇
is just a translation of (𝜂𝑅)1/𝑝 ·𝐵𝑝(A), so we have

log𝐸(𝑇, 𝑑𝑋 , 𝑡) = log𝐸((𝜂𝑅)1/𝑝 ·𝐵𝑝(A), 𝑑𝑋 , 𝑡)

= log𝐸((𝜂𝑅)1/𝑝 ·𝐵𝑝(A),𝐾‖W−1/𝑝A(·)‖𝑝/2w,𝑞, 𝑡) Lemma B.14

= log𝐸(𝐵𝑝
w(W−1/𝑝A), 𝐵𝑞

w(W−1/𝑝A), 𝑡2/𝑝/𝐾2/𝑝(𝜂𝑅)1/𝑝)

where 𝐾 = 𝑂(𝑤1/2𝜂1/𝑝−1/2𝑅1/2).

For small radii less than 𝜆 for a parameter 𝜆 to be chosen, we use a standard volume argument, which shows that

log𝐸(𝐵𝑝
w(W−1/𝑝A), 𝐵𝑞

w(W−1/𝑝A), 𝑡) ≤ 𝑂(𝑑) log
𝑛

𝑡

so ∫︁ 𝜆

0

√︀
log𝐸(𝑇, 𝑑𝑋 , 𝑡) 𝑑𝑡 ≤

∫︁ 𝜆

0

√︂
𝑑 log

𝑛𝐾2/𝑝(𝜂𝑅)1/𝑝

𝑡2/𝑝
𝑑𝑡

≤ 𝜆
√︁

𝑑 log(𝑛(𝜂2/𝑝𝑤)1/𝑝) +
√
𝑑

∫︁ 𝜆

0

√︂
log

𝑅2/𝑝

𝑡2/𝑝
𝑑𝑡

≤ 𝜆
√︁

𝑑 log(𝑛(𝜂2/𝑝𝑤)1/𝑝) +
√
𝑑 ·𝑂(𝜆)

√︂
log

𝑅

𝜆

≤ 𝑂(𝜆)

√︂
𝑑 log

𝑛(𝜂2/𝑝𝑤)1/𝑝𝑅

𝜆

On the other hand, for large radii larger than 𝜆, we use the bounds of Lemma B.16. Note that the entropy bounds do not
change if we replace A by AR, where R is the change of basis matrix such that W1/2−1/𝑝AR is orthonormal. Then by
the properties of 𝛾-one-sided ℓ𝑝 Lewis weights (Lemma B.7), we have

‖e⊤𝑖 W−1/𝑝AR‖22 = w
−2/𝑝
𝑖 ‖e⊤𝑖 AR‖22 ≤ 𝛾−1.

Then, Lemma B.16 gives

log𝐸(𝐵𝑝
w(W−1/𝑝A), 𝐵𝑞

w(W−1/𝑝A), 𝑡2/𝑝/𝐾2/𝑝(𝜂𝑅)1/𝑝) =
𝑂(𝑤𝜂2/𝑝𝑅2)

𝛾𝑡2
log

𝜏𝑛

𝜀
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so the entropy integral gives a bound of

𝑂(𝑤1/2𝜂1/𝑝𝑅)

𝛾1/2

(︁
log

𝜏𝑛

𝜀

)︁1/2 ∫︁ diam(𝑇 )

𝜆

1

𝑡
𝑑𝑡 =

𝑂(𝑤1/2𝜂1/𝑝𝑅)

𝛾1/2

(︁
log

𝜏𝑛

𝜀

)︁1/2
log

diam(𝑇 )

𝜆
.

We choose 𝜆 = diam(𝑇 )/
√
𝑑, which yields the claimed conclusion.

An analogous result and proof holds for 𝑝 > 2.

Lemma B.18 (Entropy integral bound for 𝑝 > 2). Let 2 < 𝑝 < ∞. Let A ∈ R𝑛×𝑑 and let 0 ≤ w ∈ R𝑛 be 𝛾-one-sided ℓ𝑝
Lewis weights. Let 𝑤 = max𝑖∈[𝑛] w𝑖. Then,∫︁ ∞

0

√︀
log𝐸(𝐵𝑝(A), 𝑑𝑋 , 𝑡) 𝑑𝑡 ≤ 𝑂(𝑤1/2𝜀𝜏1/2𝑅)

(︁
log

𝜏𝑛

𝜀

)︁1/2
log 𝑑

Proof. Note that it suffices to integrate the entropy integral to diam(𝑇 ), which is bounded in Lemma B.14. Note also that 𝑇
is just a translation of (𝜂𝑅)1/𝑝 ·𝐵𝑝(A), so we have

log𝐸(𝑇, 𝑑𝑋 , 𝑡) = log𝐸((𝜂𝑅)1/𝑝 ·𝐵𝑝(A), 𝑑𝑋 , 𝑡)

= log𝐸((𝜂𝑅)1/𝑝 ·𝐵𝑝(A),𝐾‖W−1/𝑝A(·)‖w,𝑞, 𝑡) Lemma B.14

= log𝐸(𝐵𝑝
w(W−1/𝑝A), 𝐵𝑞

w(W−1/𝑝A), 𝑡/𝐾(𝜂𝑅)1/𝑝)

where 𝐾 = 𝑂(𝑤1/2𝜏1/2−1/𝑝𝑅1−1/𝑝).

For small radii less than 𝜆 for a parameter 𝜆 to be chosen, we use a standard volume argument, which shows that

log𝐸(𝐵𝑝
w(W−1/𝑝A), 𝐵𝑞

w(W−1/𝑝A), 𝑡) ≤ 𝑂(𝑑) log
𝑛

𝑡

so ∫︁ 𝜆

0

√︀
log𝐸(𝑇, 𝑑𝑋 , 𝑡) 𝑑𝑡 ≤

∫︁ 𝜆

0

√︂
𝑑 log

𝑛𝐾(𝜂𝑅)1/𝑝

𝑡
𝑑𝑡

≤ 𝜆
√︁
𝑑 log(𝑛𝑤1/2𝜂1/𝑝𝜏1/2−1/𝑝) +

√
𝑑

∫︁ 𝜆

0

√︂
log

𝑅

𝑡
𝑑𝑡

≤ 𝜆
√︁
𝑑 log(𝑛𝑤1/2𝜂1/𝑝𝜏1/2−1/𝑝) +

√
𝑑 ·𝑂(𝜆)

√︂
log

𝑅

𝜆

≤ 𝑂(𝜆)

√︂
𝑑 log

𝑛𝑤1/2𝜂1/𝑝𝜏1/2−1/𝑝𝑅

𝜆

On the other hand, for large radii larger than 𝜆, we use the bounds of Lemma B.16. Note that the entropy bounds do not
change if we replace A by AR, where R is the change of basis matrix such that W1/2−1/𝑝AR is orthonormal. Then by
the properties of 𝛾-one-sided ℓ𝑝 Lewis weights (Lemma B.7), we have

‖e⊤𝑖 W−1/𝑝AR‖22 = w
−2/𝑝
𝑖 ‖e⊤𝑖 AR‖22 ≤ 𝛾−1.

Then, Lemma B.6 and Lemma B.16 give

log𝐸(𝐵𝑝
w(W−1/𝑝A), 𝐵𝑞

w(W−1/𝑝A), 𝑡/𝐾(𝜂𝑅)1/𝑝)

≤ log𝐸(𝐵2
w(W−1/𝑝A), 𝐵𝑞

w(W−1/𝑝A), 𝑡/𝐾(𝜂𝑅)1/𝑝‖w‖1/2−1/𝑝
1 )

≤ 𝐾2(𝜂𝑅)2/𝑝‖w‖1−2/𝑝
1

𝛾𝑡2
log

𝜏𝑛

𝜀

≤ 𝑂(𝑤)𝜀2𝜏𝑅2

𝑡2
log

𝜏𝑛

𝜀
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so the entropy integral gives a bound of

𝑂(𝑤1/2𝜀𝜏1/2𝑅)
(︁
log

𝜏𝑛

𝜀

)︁1/2 ∫︁ diam(𝑇 )

𝜆

1

𝑡
𝑑𝑡 = 𝑂(𝑤1/2𝜀𝜏1/2𝑅)

(︁
log

𝜏𝑛

𝜀

)︁1/2
log

diam(𝑇 )

𝜆
.

We choose 𝜆 = diam(𝑇 )/
√
𝑑, which yields the claimed conclusion.

We are now ready to prove Theorem A.5.

Proof of Theorem A.5. We have by Lemma B.10 that the Gaussian process of (6) is bounded by

(2ℰ)𝑙(ℰ/𝒟) +𝑂(
√
𝑙𝒟)𝑙

where

ℰ ≤

⎧⎪⎨⎪⎩
𝑂(𝑤1/2𝛾−1/2𝜂1/𝑝𝑅)

(︁
log

𝜏𝑛

𝜀

)︁1/2
log 𝑑 𝑝 < 2

𝑂(𝜀𝑤1/2𝜏1/2𝑅)
(︁
log

𝜏𝑛

𝜀

)︁1/2
log 𝑑 𝑝 > 2

by Lemmas B.17 and B.18 and

𝒟 ≤

{︃
𝑂(𝑤1/2𝜂1/𝑝𝛾−1/2𝑅) 𝑝 < 2

𝑂(𝜀𝑤1/2𝜏1/2𝑅) 𝑝 > 2

by Lemma B.14. This gives a bound of (𝛼𝑅)𝑙 on (6), where

𝛼 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑂(𝑤1/2𝜂1/𝑝𝛾−1/2)

[︃(︂(︁
log

𝜏𝑛

𝜀

)︁1/2
log 𝑑

)︂1+1/𝑙

+
√
𝑙

]︃
𝑝 < 2

𝑂(𝜀𝑤1/2𝜏1/2𝑅)

[︃(︂(︁
log

𝜏𝑛

𝜀

)︁1/2
log 𝑑

)︂1+1/𝑙

+
√
𝑙

]︃
𝑝 > 2

We now set 𝛼 = 𝜀 and solve for the 𝜀 that we can obtain. From this, we see that we can set

𝜀 =

⎧⎪⎨⎪⎩
𝑂(𝑤𝜂2/𝑝)1/2𝛾−1/2

[︁(︀
(log 𝑑)2 log 𝑛

)︀1+1/𝑙
+ 𝑙
]︁1/2

𝑝 < 2

𝑂(𝑤𝜂‖w‖𝑝/2−1
1 )1/𝑝𝛾−1/2

[︁(︀
(log 𝑑)2 log 𝑛

)︀1+1/𝑙
+ 𝑙
]︁1/𝑝

𝑝 > 2

.

C. Missing proofs for weak coresets
C.1. Proof of the closeness lemma

Proof of Lemma 4.4. First note that

⟨
(AX*G−B)∘(𝑝−1),AX*G−AXG

⟩
=

𝑛∑︁
𝑖=1

𝑚∑︁
𝑗=1

[AX*G−B](𝑖, 𝑗)∘(𝑝−1)[A(X* −X)G](𝑖, 𝑗)

=

𝑛∑︁
𝑖=1

𝑚∑︁
𝑗=1

[AX*G−B](𝑖, 𝑗)∘(𝑝−1)
⟨︀
(A⊤e𝑖)(e

⊤
𝑗 G

⊤),X* −X
⟩︀

=

⟨
𝑛∑︁

𝑖=1

𝑚∑︁
𝑗=1

[AX*G−B](𝑖, 𝑗)∘(𝑝−1)(A⊤e𝑖)(e
⊤
𝑗 G

⊤),X* −X

⟩
.
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The left term in the product is the gradient of the objective at the optimum by Lemma 4.3, so this is just 0 for any X. Then
for 𝑝 < 2, we have by Lemma 4.2 that

‖AX*G−B‖2𝑝,𝑝 +
𝑝− 1

2
‖AXG−AX*G‖2𝑝,𝑝 ≤ ‖AXG−B‖2𝑝,𝑝 ≤ (1 + 𝜂)2‖AX*G−B‖2𝑝,𝑝

which rearranges to
‖AXG−AX*G‖𝑝,𝑝 ≤ 𝑂(𝜂1/2)OPT.

and for 𝑝 > 2, we have by Lemma 4.2 that

‖AX*G−B‖𝑝𝑝,𝑝 +
𝑝− 1

𝑝2𝑝
‖AXG−AX*G‖𝑝𝑝,𝑝 ≤ ‖AXG−B‖𝑝𝑝,𝑝 ≤ (1 + 𝜂)𝑝‖AX*G−B‖𝑝𝑝,𝑝

which rearranges to
‖AXG−AX*G‖𝑝,𝑝 ≤ 𝑂(𝜂1/𝑝)OPT.

C.2. Proof of the initial weak coreset bound

Proof of Lemma 4.5. We first show that

‖AX̂G−AX*G‖𝑝𝑝,𝑝 ≤ 𝑂

(︂
1

𝛿

)︂
OPT𝑝

with probability at least 1− 𝛿. By using the fact that S is an 𝑂(1)-approximate ℓ𝑝 subspace embedding, we have that

‖AX̂G−AX*G‖𝑝𝑝,𝑝 ≤ ‖S(AX̂G−AX*G)‖𝑝𝑝,𝑝
≤ 2𝑝−1

(︁
‖S(AX̂G−B)‖𝑝𝑝,𝑝 + ‖S(AX*G−B)‖𝑝𝑝,𝑝

)︁
Fact B.1

≤ 2𝑝+1‖S(AX*G−B)‖𝑝𝑝,𝑝 Approximate optimality of X̂

The latter quantity is at most 𝑂( 1𝛿 )OPT
𝑝 with probability at least 1− 𝛿 by Markov’s inequality. Thus, we may replace the

optimization of X̂ over all X ∈ R𝑑×𝑡 with optimization over the ball {X : ‖AXG−AX*G‖𝑝𝑝,𝑝 = 𝑂( 1𝛿 )OPT
𝑝}.

The rest of the proof now mimics the proof of Theorem 3.1. We apply Theorem 3.2 with accuracy parameter 𝜀 set to 𝜀𝛿,
failure parameter set to (𝜀𝛿)𝑝𝛿2, and proximity parameter 𝜂 set to 1. Let 𝑆 ⊆ [𝑚] be the set of columns for which Theorem
3.2 fails. Then by applying Markov’s inequality twice as in the proof of Theorem 3.1, we have that∑︁

𝑗∈𝑆

‖S(AX*G−B)e𝑗‖𝑝𝑝 = 𝑂((𝜀𝛿)𝑝)OPT𝑝

and ∑︁
𝑗∈𝑆

‖(AX*G−B)e𝑗‖𝑝𝑝 = 𝑂((𝜀𝛿)𝑝)OPT𝑝

and thus it follows that∑︁
𝑗∈𝑆

‖S(AXG−B)e𝑗‖𝑝𝑝 =
∑︁
𝑗∈𝑆

‖(AXG−B)e𝑗‖𝑝𝑝 ±𝑂(𝜀𝛿)
(︀
‖A(X−X*)G‖𝑝𝑝 + OPT𝑝

)︀
.

Summing this result with the rest of the columns 𝑗 /∈ 𝑆 gives that⃒⃒(︀
‖S(AXG−B)‖𝑝𝑝,𝑝 − ‖S(AX*G−B)‖𝑝𝑝,𝑝

)︀
−
(︀
‖AXG−B‖𝑝𝑝,𝑝 − ‖AX*G−B‖𝑝𝑝,𝑝

)︀⃒⃒
≤ 𝜀𝛿

(︀
‖AX*G−B‖𝑝𝑝,𝑝 + ‖S(AX*G−B)‖𝑝𝑝,𝑝 + ‖AXG−AX*G‖𝑝𝑝,𝑝

)︀
≤ 𝑂(𝜀)OPT𝑝

Thus, in the ball {X : ‖AXG−AX*G‖𝑝𝑝,𝑝 = 𝑂( 1𝛿 )OPT
𝑝}, we have that

‖S(AXG−B)‖𝑝𝑝,𝑝 = ‖AXG−B‖𝑝𝑝,𝑝 + (‖S(AX*G−B)‖𝑝𝑝,𝑝 − ‖AX*G−B‖𝑝𝑝,𝑝)±𝑂(𝜀)OPT𝑝.

It follows that X̂ must minimize ‖AXG−B‖𝑝𝑝,𝑝 up to an additive 𝑂(𝜀)OPT𝑝.
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C.3. Proof of the weak coreset construction

Proof of Theorem 4.1. Let

𝐶 =

⎧⎪⎪⎨⎪⎪⎩
𝑂(𝛾−1)𝛿−2‖w‖1

[︂
(log 𝑑)2 log 𝑛+ log

1

𝛿

]︂
𝑝 < 2

𝑂(𝛾−𝑝/2)𝛿−𝑝‖w‖𝑝/21

[︂
(log 𝑑)2 log 𝑛+ log

1

𝛿

]︂
𝑝 > 2

We will make use of the fact that ‖S(AX*G−B)‖𝑝𝑝,𝑝 = 𝑂( 1𝛿 )‖S(AX*G−B)‖𝑝𝑝,𝑝 with probability at least 1 − 𝛿 by
Markov’s inequality.

We will first give the argument for 𝑝 < 2. Suppose that 𝐶/𝜀𝛽 rows are needed for a (1 + 𝜀)-approximate weak coreset. Now
choose 𝑎 such that 𝑎 − 2 = −𝑎𝛽, that is, 𝑎 = 2/(1 + 𝛽). Then for 𝜂2/𝑝 = 𝜀𝑎, 𝐶𝜂2/𝑝/(𝜀𝛿)2 = 𝐶/𝜂(2/𝑝)𝛽 rows yields a
(1 + 𝜂2/𝑝)-approximate weak coreset. Then, a (1 + 𝜂2/𝑝)-approximate minimizer X satisfies

‖AXG−AX*G‖𝑝𝑝,𝑝 ≤ 𝑂(𝜂)‖AX*G−B‖𝑝𝑝,𝑝

by Lemma 4.4. For all such X, an argument as done in Theorem 3.1 and Lemma 4.5 shows that ‖S(AXG −B)‖𝑝𝑝,𝑝 −
‖S(AX*G−B)‖𝑝𝑝,𝑝 and ‖AXG−B‖𝑝𝑝,𝑝 − ‖AX*G−B‖𝑝𝑝,𝑝 are close up to an additive error of

𝜀𝛿

(︂
‖AX*G−B‖𝑝𝑝,𝑝 + ‖S(AX*G−B)‖𝑝𝑝,𝑝 +

1

𝜂
‖AXG−AX*G‖𝑝𝑝,𝑝

)︂
= 𝑂(𝜀)‖AX*G−B‖𝑝𝑝,𝑝

Thus, 𝐶/𝜂(2/𝑝)𝛽 rows in fact gives a (1 + 𝑂(𝜀))-approximate minimizer. That is, if 𝐶/𝜀𝛽 rows is sufficient for (1 + 𝜀)-
approximation, then 𝐶/𝜂(2/𝑝)𝛽 = 𝐶/𝜀𝑎𝛽 = 𝐶/𝜀2𝛽/(1+𝛽) rows is sufficient for (1 + 𝜀)-approximation as well. We may
now iterate this argument. Consider the sequence 𝛽𝑖 given by

𝛽0 = 2, 𝛽𝑖+1 =
2𝛽𝑖

1 + 𝛽𝑖
.

The solution to this recurrence is given by the following lemma, with 𝑝 = 2:

Lemma C.1. Let 𝑝 > 1 and let {𝛽𝑖}∞𝑖=0 be defined by the recurrence relation 𝛽0 = 𝑝 and 𝛽𝑖+1 = 𝑝𝛽𝑖/(1 + 𝛽𝑖). Then,

𝛽𝑖 =
1

𝑝−𝑖(𝑝−1 − (𝑝− 1)−1) + (𝑝− 1)−1

Proof. Note that 1
𝛽𝑖+1

= 1
𝑝

1
𝛽𝑖
+ 1

𝑝 so the sequence {𝑎𝑖}∞𝑖=0 given by 𝑎𝑖 = 1/𝛽𝑖 satisfies the linear recurrence 𝑎𝑖+1 = 1
𝑝𝑎𝑖+

1
𝑝 .

Note that this recurrence has the fixed point 𝑎 = 1/(𝑝− 1), so the sequence 𝑎′𝑖 = 𝑎𝑖 − 𝑎 satisfies 𝑎′𝑖+1 = 1
𝑝𝑎

′
𝑖, which gives,

𝑎′𝑖 = 𝑝−𝑖𝑎′0. Thus, 𝑎𝑖 − 𝑎 = 𝑝−𝑖(𝑎0 − 𝑎) so

𝛽𝑖 =
1

𝑎𝑖
=

1

𝑝−𝑖(𝑎0 − 𝑎) + 𝑎

=
1

𝑝−𝑖(𝑝−1 − (𝑝− 1)−1) + (𝑝− 1)−1
.

Thus, applying this argument 𝑂(log log 1
𝜀 ) times yields that 𝛽𝑖 ≤ 1+𝑂(1/ log( 1𝜀 )) which means that reading only 𝑂(1)𝐶/𝜀

entries suffices. Union bounding over the success of the 𝑂(log log 1
𝜀 ) rounds completes the argument.

Next, let 𝑝 > 2. Suppose that 𝐶/𝜀𝛽 rows are needed for a (1 + 𝜀)-approximate weak coreset. Now choose 𝑎 such that
𝑎− 𝑝 = −𝑎𝛽, that is, 𝑎 = 𝑝/(1 + 𝛽). Then for 𝜂 = 𝜀𝑎, 𝐶𝜂/𝜀𝑝 = 𝐶/𝜂𝛽 rows yields a (1 + 𝜂)-approximate weak coreset.
Then, a (1 + 𝜂)-approximate minimizer X satisfies

‖AXG−AX*G‖𝑝𝑝,𝑝 ≤ 𝑂(𝜂)‖AX*G−B‖𝑝𝑝,𝑝
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by Lemma 4.4. For all such X, an argument as done in Theorem 3.1 and Lemma 4.5 shows that ‖S(AXG −B)‖𝑝𝑝,𝑝 −
‖S(AX*G−B)‖𝑝𝑝,𝑝 and ‖AXG−B‖𝑝𝑝,𝑝 − ‖AX*G−B‖𝑝𝑝,𝑝 are close up to an additive error of

𝜀

(︂
‖AX*G−B‖𝑝𝑝,𝑝 +

1

𝜂
‖AXG−AX*G‖𝑝𝑝,𝑝

)︂
= 𝑂(𝜀)‖AX*G−B‖𝑝𝑝,𝑝

Thus, 𝐶/𝜂𝛽 rows in fact gives a (1 + 𝑂(𝜀))-approximate minimizer. That is, if 𝐶/𝜀𝛽 rows is sufficient for (1 + 𝜀)-
approximation, then 𝐶/𝜂𝛽 = 𝐶/𝜀𝑎𝛽 = 𝐶/𝜀𝑝𝛽/(1+𝛽) rows is sufficient for (1 + 𝜀)-approximation as well. We may now
iterate this argument. Consider the sequence 𝛽𝑖 given by

𝛽1 = 𝑝, 𝛽𝑖+1 =
𝑝𝛽𝑖

1 + 𝛽𝑖
.

Then by Lemma C.1, applying this argument 𝑂(log log 1
𝜀 ) times yields that 𝛽𝑖 ≤ (𝑝 − 1) + 𝑂(1/ log( 1𝜀 )) which means

that reading only 𝑂(1)𝐶/𝜀𝑝−1 entries suffices. Union bounding over the success of the 𝑂(log log 1
𝜀 ) rounds completes the

argument.

D. Missing proofs for applications
D.1. Sublinear algorithm for Euclidean power means

Theorem 1.6. Let {b𝑖}𝑛𝑖=1 ⊆ R𝑑. Then, there is a sublinear algorithm which uniformly samples at most

𝑠 =

⎧⎪⎨⎪⎩
𝑂(𝜀−2)

(︀
log 1

𝜀 + log 1
𝛿

)︀
log 1

𝛿 𝑝 = 1

𝑂(𝜀−1)
(︀
log 1

𝜀 + log 1
𝛿

)︀
log 1

𝛿 1 < 𝑝 ≤ 2

𝑂(𝜀1−𝑝)
(︀
log 1

𝜀 + log 1
𝛿

)︀
log 1

𝛿 2 < 𝑝 < ∞

rows b𝑖 and outputs a center x̂ such that
𝑛∑︁

𝑖=1

‖x̂− b𝑖‖𝑝2 ≤ (1 + 𝜀) min
x∈R𝑑

𝑛∑︁
𝑖=1

‖x− b𝑖‖𝑝2

with probability at least 1− 𝛿.

Proof. We will assume without loss of generality that by reading 𝑂(log 1
𝛿 ) rows of B, we can identify an 𝑂(1)-approximate

solution x̂ (see, e.g., Section 3.1 of (Musco et al., 2022)). Thus by subtracting off this solution, we may assume that
‖B‖𝑝𝑝,2 = 𝑂(OPT𝑝).

We then use Dvoretzky’s thoerem to embed this problem into the entrywise ℓ𝑝 norm, so that

‖1x⊤ −B‖𝑝𝑝,2 = (1± 𝜀)‖1x⊤G−BG‖𝑝𝑝,𝑝

for every center x ∈ R𝑑. This is now in a form where we may apply our weak coreset results for multiple ℓ𝑝 regression of
Theorem 1.5. Note that in this particular setting, the A matrix corresponds to the 𝑛× 𝑑 all ones matrix with 𝑑 = 1, and the
ℓ𝑝 Lewis weights can be taken to be uniform.

Now consider running 𝐿 = 𝑂(log 1
𝛿 ) independent instances of the weak coreset algorithm, each which has the property that

the algorithm makes at most

𝑂(𝜀−𝜌)

(︂
log

1

𝜀
+ log

1

𝛿

)︂
(7)

queries for 𝜌 = 2 for 𝑝 = 1, 𝜌 = 1 for 1 < 𝑝 < 2, and 𝜌 = 𝑝− 1 for 2 < 𝑝 < ∞, and that if ‖S(1(x*)⊤G−BG)‖𝑝𝑝,𝑝 =

𝑂(‖1(x*)⊤G−BG‖𝑝𝑝,𝑝) for the optimal solution x*, then it succeeds with probability at least 1− 𝛿/𝐿. By a union bound,
this holds for all 𝐿 instances.

By Markov’s inequality, each instance satisfies ‖SBG‖𝑝𝑝,𝑝 = 𝑂(‖BG‖𝑝𝑝,𝑝) with probability at least 9/10, so at least
2/3 of the 𝐿 instances must satisfy this bound with probability at least 1 − 𝛿. By Dvoretzky’s theorem, this means that
‖SB‖𝑝𝑝,2 = 𝑂(‖B‖𝑝𝑝,2). Then, if we restrict our attention to the (2/3)𝐿 instances with the smallest values of ‖SB‖𝑝𝑝,2, then
all of these instances must output a correct (1 + 𝜀)-approximately optimal solution, simultaneously with probability 1− 𝛿.
This gives a query bound of 𝐿 times (7).
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D.2. Spanning coresets for ℓ𝑝 subspace approximation

We show that weak coreset construction imply spanning sets for ℓ𝑝 subspace approximation.

Theorem 1.9. Let {a𝑖}𝑛𝑖=1 ⊆ R𝑑, 1 ≤ 𝑝 < ∞, 𝑘 ∈ N, and 0 < 𝜀 < 1. Then, there exists a (1 + 𝜀)-spanning coreset 𝑆 of
size at most

|𝑆| =

⎧⎪⎨⎪⎩
𝑂(𝜀−2𝑘)(log(𝑘/𝜀))3 𝑝 = 1

𝑂(𝜀−1𝑘)(log(𝑘/𝜀))3 1 < 𝑝 ≤ 2

𝑂(𝜀1−𝑝𝑘𝑝/2)(log(𝑘/𝜀))3 2 < 𝑝 < ∞

Proof. By first computing a strong coreset of size poly(𝑘/𝜀) (Huang & Vishnoi, 2020), we can assume that 𝑛, 𝑑 =
poly(𝑘/𝜀).

Let P = VV⊤ be the rank 𝑘 projection that minimizes ‖AP−A‖𝑝𝑝,2. Note then that

min
X∈R𝑘×𝑑

‖AVX−A‖𝑝𝑝,2 = ‖AP−A‖𝑝𝑝,2.

We then use Dvoretzky’s theorem to embed this problem into the entrywise ℓ𝑝 norm, so that

‖AVX−A‖𝑝𝑝,2 = (1± 𝜀)‖AVXG−AG‖𝑝𝑝,𝑝

for every X ∈ R𝑘×𝑑, for some fixed G ∈ R𝑑×𝑚 with 𝑚 = poly(𝑑/𝜀). Then by our weak coreset result for multiple ℓ𝑝
regression (Theorem 4.1), there is a diagonal matrix S with

nnz(S) ≤

⎧⎪⎨⎪⎩
𝑂(𝜀−2𝑘)(log(𝑘/𝜀))3 𝑝 = 1

𝑂(𝜀−1𝑘)(log(𝑘/𝜀))3 1 < 𝑝 ≤ 2

𝑂(𝜀1−𝑝𝑘𝑝/2)(log(𝑘/𝜀))3 2 < 𝑝 < ∞

such that any (1 + 𝜀)-approximate minimizer X̂ of ‖S(AVXG−AG)‖𝑝𝑝,𝑝 satisfies

‖AVX̂G−AG‖𝑝𝑝,𝑝 ≤ (1 + 𝜀) min
X∈R𝑘×𝑑

‖AVXG−AG‖𝑝𝑝,𝑝.

We will take X̂ to be

X̂ = arg min
X∈R𝑘×𝑑

‖S(AVX−A)‖𝑝𝑝,2

which is indeed a (1 + 𝜀)-approximate minimizer of ‖S(AVXG − AG)‖𝑝𝑝,𝑝 by Dvoretzky’s theorem. Then, again by
Dvoretzky’s theorem, we then have for this X̂ that

‖AVX̂−A‖𝑝𝑝,2 ≤ (1 +𝑂(𝜀)) min
X∈R𝑘×𝑑

‖AVX−A‖𝑝𝑝,2

= (1 +𝑂(𝜀))‖AP−A‖𝑝𝑝,2.

Finally, note that X̂ has row span contained in the row span of SA, since otherwise ‖S(AVX−A)‖𝑝𝑝,2 can be reduced by
projecting the rows of X onto rowspan(SA). Then, if P𝐹 is the projection matrix onto 𝐹 = rowspan(X̂), then for each
row 𝑖 ∈ [𝑛] of A,

‖P𝐹a𝑖 − a𝑖‖2 = min
x∈𝐹

‖x− a𝑖‖2 ≤ ‖X̂⊤V⊤a𝑖 − a𝑖‖2

so

‖AP𝐹 −A‖𝑝𝑝,2 ≤ ‖AVX̂−A‖𝑝𝑝,2.

We thus conclude that there is a rank 𝑘 subspace in the row span of SA that is (1 + 𝜀)-approximately optimal.
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E. Missing proofs for coreset lower bounds
We provide missing proofs from Section 5.

We will use the following lemma from coding theory.

Theorem E.1 ((Parampalli et al., 2013)). For any 𝑝 ≥ 1 and 𝑑 = 2𝑘 − 1 for some integer 𝑘, there exists a set 𝑆 ⊆ {−1, 1}𝑑
and a constant 𝐶𝑝 depending only on 𝑝 which satisfy

• |𝑆| = 𝑑𝑝

• For any 𝑠, 𝑡 ∈ 𝑆 such that 𝑠 ̸= 𝑡, |⟨𝑠, 𝑡⟩| ≤ 𝐶𝑝

√
𝑑

E.1. Strong coresets

Proof of Theorem 5.1. Let 𝑠 = 𝑑𝑝/2 and let 𝑆 ⊆ {±1}𝑑 be a set of |𝑆| = 𝑠 points given by Theorem E.1 such that
⟨a,a′⟩ ≤ 𝐶𝑝/2

√
𝑑 = 𝑂(

√
𝑑) for some 𝐶𝑝

𝑝/2 ≥ 1, for every distinct a,a′ ∈ 𝑆. Let 𝑚 = 𝑠𝜀−𝑝, let A ∈ {±1}𝑚×𝑑 be the
matrix with 𝜀−𝑝 copies of a in its rows for each a ∈ 𝑆, and let B = 𝑑 · I𝑚 be the 𝑚×𝑚 identity matrix scaled by 𝑑. For
each row 𝑖 ∈ [𝑚], we say that 𝑖′ ∈ [𝑠] is its group number if e⊤𝑖 A is the 𝑖′-th point in 𝑆.

Suppose for contradiction that S is a strong coreset with nnz(S) ≤ 𝑚/16 such that

‖S(AX−B)‖𝑝𝑝,𝑝 =

(︃
1± 𝜀

12𝐶𝑝
𝑝/2

)︃
‖AX−B‖𝑝𝑝,𝑝

for every X ∈ R𝑑×𝑚. Then, there is a subset 𝑇 ⊆ [𝑚] with |𝑇 | = 𝑚/16 such that S is supported on 𝑇 . For each 𝑖′ ∈ [𝑠], let
𝑇𝑖′ ⊆ 𝑇 denote the rows of 𝑇 whose rows in A with group number 𝑖′ ∈ [𝑠], so

∑︀𝑠
𝑖′=1|𝑇𝑖′ | = |𝑇 |. Then by averaging, there

are at least (3/4)𝑠 groups 𝑖′ ∈ [𝑠] such that |𝑇𝑖′ | ≤ 𝜀−𝑝/2. Thus, we may assume without loss of generality that |𝑇𝑖′ | = 𝜀−𝑝

for the first (1/4)𝑠 groups, |𝑇𝑖′ | = 𝜀−𝑝/2 for the last (3/4)𝑠 groups, and |𝑇 | = (5/8)𝑚.

Let 𝑊 :=
∑︀𝑚

𝑖=1|S𝑖,𝑖|𝑝 denote the total weight mass of S. Note then that by querying X = 0, we must have that

‖SB‖𝑝𝑝,𝑝 = 𝑊 = (1± 𝜀)‖B‖𝑝𝑝,𝑝 =

(︃
1± 𝜀

12𝐶𝑝
𝑝/2

)︃
𝑚.

Let 𝑊1 denote the sum of |S𝑖,𝑖|𝑝 on the first (1/4)𝑠 groups, and let 𝑊2 denote the sum of |S𝑖,𝑖|𝑝 on the last (3/4)𝑠 groups.
We will assume that 𝑊1 ≤ 𝑚/4, since the case of 𝑊1 ≥ 𝑚/4 is symmetric.

We now construct a query X ∈ R𝑑×𝑚 with the 𝑗-th column given by

Xe𝑗 =

{︃
𝜀 · e⊤𝑗 A 𝑗 ∈ 𝑇

0 𝑗 /∈ 𝑇

Note then that for each 𝑖, 𝑗 ∈ [𝑚],

e⊤𝑖 AXe𝑗 =

⎧⎪⎨⎪⎩
𝜀𝑑 e⊤𝑖 A = e⊤𝑗 A, 𝑗 ∈ 𝑇

𝜀𝐶𝑝/2

√
𝑑 e⊤𝑖 A ̸= e⊤𝑗 A, 𝑗 ∈ 𝑇

0 𝑗 /∈ 𝑇

Let 𝑖 ∈ [𝑚] and let 𝑖′ ∈ [𝑠] be its group number. Then the cost of row 𝑖 if 𝑖 ∈ 𝑇 is

‖e⊤𝑖 AX− e⊤𝑖 B‖𝑝𝑝 =

𝑚∑︁
𝑗=1

⃒⃒
e⊤𝑖 AXe𝑗 −B(𝑖, 𝑗)

⃒⃒𝑝
= (1− 𝜀)𝑝𝑑𝑝⏟  ⏞  

𝑖=𝑗

+(|𝑇𝑖′ | − 1) · 𝜀𝑝𝑑𝑝⏟ ⏞ 
e⊤
𝑖 A=e⊤

𝑗 A

+(|𝑇 | − |𝑇𝑖′ |) · 𝜀𝑝𝐶𝑝
𝑝/2𝑑

𝑝/2⏟  ⏞  
e⊤
𝑖 A ̸=e⊤

𝑗 A

= (1− 𝑝𝜀+ |𝑇𝑖′ |𝜀𝑝 + (5/8)𝐶𝑝
𝑝/2 + 𝑜(𝜀))𝑑𝑝
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while the cost of row 𝑖 ∈ [𝑚] if 𝑖 /∈ 𝑇 is

‖e⊤𝑖 AX− e⊤𝑖 B‖𝑝𝑝 =

𝑚∑︁
𝑗=1

⃒⃒
e⊤𝑖 AXe𝑗 −B(𝑖, 𝑗)

⃒⃒𝑝
= 𝑑𝑝⏟ ⏞ 

𝑖=𝑗

+|𝑇𝑖′ | · 𝜀𝑝𝑑𝑝⏟ ⏞ 
e⊤
𝑖 A=e⊤

𝑗 A

+(|𝑇 | − |𝑇𝑖′ |) · 𝜀𝑝𝐶𝑝
𝑝/2𝑑

𝑝/2⏟  ⏞  
e⊤
𝑖 A ̸=e⊤

𝑗 A

= (1 + |𝑇 ′
𝑖 |𝜀𝑝 + (5/8)𝐶𝑝

𝑝/2 + 𝑜(𝜀))𝑑𝑝.

Let

𝑐1 = (1− 𝑝𝜀+ 1 + (5/8)𝐶𝑝
𝑝/2 + 𝑜(𝜀))𝑑𝑝

𝑐2 = (1− 𝑝𝜀+ (1/2) + (5/8)𝐶𝑝
𝑝/2 + 𝑜(𝜀))𝑑𝑝

𝑐3 = (1 + (1/2) + (5/8)𝐶𝑝
𝑝/2 + 𝑜(𝜀))𝑑𝑝

Then, the total true cost is at least

‖AX−B‖𝑝𝑝,𝑝 =
𝑚

4
𝑐1 +

3𝑚

8
𝑐2 +

3𝑚

8
𝑐3

=
𝑚

4
𝑐1 +

3𝑚

4
𝑐2 +

3𝑚

8
(𝑐3 − 𝑐2)

≥ 𝑚

4
𝑐1 +

3𝑚

4
𝑐2 +

3𝑚

4
· (𝜀− 𝑜(𝜀))𝑑𝑝

while the strong coreset estimate is at most

‖S(AX−B)‖𝑝𝑝,𝑝 = 𝑊1𝑐1 +𝑊2𝑐2

= 𝑊1(𝑐1 − 𝑐2) + (𝑊1 +𝑊2)𝑐2

≤ 𝑚

4
(𝑐1 − 𝑐2) +

(︃
1 +

𝜀

12𝐶𝑝
𝑝/2

)︃
𝑚𝑐2

≤ 𝑚

4
𝑐1 +

3𝑚

4
𝑐2 +

𝜀

4
𝑚𝑑𝑝.

Furthermore,
𝜀

12𝐶𝑝
𝑝/2

(︂
𝑚

4
𝑐1 +

3𝑚

4
𝑐2 +

𝜀

4
𝑚𝑑𝑝

)︂
≤ 𝜀

4
𝑚𝑑𝑝

so (1 + 𝜀
12𝐶𝑝

𝑝/2

)‖S(AX−B)‖𝑝𝑝,𝑝 < ‖AX−B‖𝑝𝑝,𝑝 and thus S fails to be a strong coreset. Rescaling 𝜀 by constant factors

gives the desired result.

E.2. Weak coresets

Proof of Theorem 5.2. Our hard instance is identical to the one of Theorem 5.1, except that each group has 𝜀1−𝑝/2𝐶𝑝
𝑝/2

copies rather than 𝜀−𝑝 copies.

Note that if S does not sample some row 𝑖 ∈ [𝑚], then the 𝑖-th column of SB is all zeros, so the solution obtained by the
weak coreset is Xe𝑖 = 0, which has objective function value ‖Be𝑖‖𝑝𝑝 = 𝑑𝑝. On the other hand, the optimal value is at most
(1− 𝜀)𝑝𝑑𝑝 since we can set Xe𝑖 = 𝜀A⊤e𝑖 so that

‖(AX−B)e𝑖‖𝑝𝑝 ≤ (1− 𝜀)𝑝𝑑𝑝 +
𝜀1−𝑝

2𝐶𝑝
𝑝/2

· 𝜀𝑝𝑑𝑝 + 𝑑𝑝/2
𝜀1−𝑝

2𝐶𝑝
𝑝/2

· 𝐶𝑝
𝑝/2𝜀

𝑝𝑑𝑝/2

≤ (1− 𝜀)𝑝𝑑𝑝 +
𝜀

2
· 𝑑𝑝 + 𝜀

2
· 𝑑𝑝

≤ ((1− 𝜀)𝑝 + 𝜀)𝑑𝑝

which is a (1 + 𝜀) factor smaller for all 𝜀 sufficiently small. Thus, if nnz(S) ≤ 𝑚/2, then the solution X that minimizes
‖S(AX−B)‖𝑝𝑝,𝑝 must be at least an additive 𝜀𝑑𝑝 ·𝑚/2 more expensive than the optimal solution, and thus it fails to be a
(1 + 𝜀/2)-optimal solution.
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E.3. Spanning coresets

We generalize an argument of Section 4 of (Deshpande & Vempala, 2006).

Lemma E.2. Let 1 ≤ 𝑝 < ∞ and

𝑐𝑝 =

{︃
1/6 𝑝 ≤ 2

1/(6 · 5𝑝/2−1) 𝑝 > 2

Then, there is a matrix A ∈ R𝑛×(𝑛+1) such that for every 𝜀 ≥ 1/𝑛 and any subset of 𝑠 ≤ 𝑐𝑝𝜀
−1 rows, any rank 1 subspace

𝐹 ′ spanned by the 𝑠 rows must have

‖AP𝐹 ′ −A‖𝑝𝑝,2 > (1 + 𝜀) min
rank(𝐹 )≤1

‖AP𝐹 −A‖𝑝𝑝,2.

Proof. Let 𝑛 ≤ 𝜀−1 and let A be the 𝑛× (𝑛+ 1) matrix given by [𝑅 · 1𝑛, I𝑛] for some large enough 𝑅 > 0. That is, A is
𝑅 along the first column and the 𝑛× 𝑛 identity for the last 𝑛 columns. Note that the optimal value is upper bounded by

𝑛((1− 𝜀)2 + 𝜀2 · (𝑛− 1))𝑝/2 = 𝑛(1− 2𝜀+ 𝜀2𝑛)𝑝/2 = 𝑛(1− 𝜀)𝑝/2.

Let x ∈ R𝑠 be the coefficients of a linear combination of 𝑠 rows of A. We may assume the coefficients are non-negative,
since making the coefficients negative can only increase the cost. Note first that 1/2 ≤ ‖x‖1 ≤ 3/2 since otherwise

𝑛 · |𝑅−𝑅‖x‖1|𝑝 ≥ 𝑛 ·𝑅/2

which cannot be (1 + 𝜀)-approximately optimal for 𝑅 ≥ 2.

The cost of the 𝑖-th row is
(︀
(1− x𝑖)

2 + ‖x‖22 − x2
𝑖

)︀𝑝/2
=
(︀
1− 2x𝑖 + ‖x‖22

)︀𝑝/2
. If ‖x‖2 ≥ 2, then(︀

1− 2x𝑖 + ‖x‖22
)︀𝑝/2 ≥ (1− 2‖x‖2 + ‖x‖22)𝑝/2 = (‖x‖2 − 1)𝑝 ≥ 1

so this cannot produce a (1 + 𝜀)-approximately optimal solution. Thus, assume ‖x‖2 ≤ 2. Then,

(︀
1− 2x𝑖 + ‖x‖22

)︀𝑝/2
=
(︀
1 + ‖x‖22

)︀𝑝/2(︂
1− 2

1 + ‖x‖22
x𝑖

)︂𝑝/2

≥
(︀
1 + ‖x‖22

)︀𝑝/2(︂
1− 𝑝

1 + ‖x‖22
x𝑖

)︂
so summing over the rows gives a cost of

(︀
1 + ‖x‖22

)︀𝑝/2(︂
𝑛− 𝑝

1 + ‖x‖22
‖x‖1

)︂
=
(︀
1 + ‖x‖22

)︀𝑝/2
𝑛− 𝑝(1 + ‖x‖22)𝑝/2−1‖x‖1

≥
(︀
1 + ‖x‖21/𝑠

)︀𝑝/2
𝑛− 𝑝(1 + ‖x‖22)𝑝/2−1‖x‖1 since 1/2 ≤ ‖x‖1 ≤ 3/2

≥ (1 + 1/2𝑠)
𝑝/2

𝑛− (3/2)𝑝(1 + ‖x‖22)𝑝/2−1

≥ (1 + 𝑝/4𝑠)𝑛− (3/2)𝑝(1 + ‖x‖22)𝑝/2−1

≥

{︃
(1 + 𝑝/4𝑠)𝑛− (3/2)𝑝 𝑝 ≤ 2

(1 + 𝑝/4𝑠)𝑛− (3/2)𝑝 · 5𝑝/2−1 𝑝 > 2

Thus, this fails to be a (1 + 𝜀)-approximately optimal solution for

(𝑝/4𝑠)𝑛 ≥

{︃
(3/2)𝑝 𝑝 ≤ 2

(3/2)𝑝 · 5𝑝/2−1 𝑝 > 2

that is,

𝑠 ≤

{︃
𝑛/6 𝑝 ≤ 2

𝑛/(6 · 5𝑝/2−1) 𝑝 > 2
.
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We now extend Lemma E.2 to a general rank 𝑘 lower bound.

Proof of Theorem 5.3. Let 𝑛 = 𝜀−1 and let B be a 𝑘𝑛 × 𝑘(𝑛 + 1) block diagonal matrix with the 𝑛 × (𝑛 + 1) matrix
construction A ∈ R𝑛×(𝑛+1) of Lemma E.2 on the block diagonal. Consider any set 𝑆 of 𝑠 rows of B, and let 𝑆𝑖 denote the
set of |𝑆𝑖| = 𝑠𝑖 rows supported on the 𝑖-th block for each 𝑖 ∈ [𝑘]. Let 𝐹𝑖 denote the optimal subspace spanned by the rows
𝑆𝑖 on the 𝑖th block.

Let 𝑇 ⊆ [𝑘] denote the set of 𝑖 ∈ [𝑘] such that 𝑠𝑖 ≤ 𝑐𝑝𝑛. If 𝑖 ∈ 𝑇 , then we by Lemma E.2 that

‖AP𝐹𝑖
−A‖𝑝𝑝,2 >

(︂
1 +

𝑐𝑝
𝑠𝑖

)︂
min

rank(𝐹 )≤𝑘
‖AP𝐹 −A‖𝑝𝑝,2

Then, the additive error from these rows is bounded below by

∑︁
𝑖∈𝑇

𝑐𝑝
𝑠𝑖

min
rank(𝐹 )≤𝑘

‖AP𝐹 −A‖𝑝𝑝,2 ≥ |𝑇 | · 𝑐𝑝|𝑇 |∑︀
𝑖∈[𝑘]:𝑠𝑖≤𝑐𝑝𝑛

𝑠𝑖
min

rank(𝐹 )≤𝑘
‖AP𝐹 −A‖𝑝𝑝,2 AM-HM

≥ |𝑇 | · 𝑐𝑝|𝑇 |
𝑠

min
rank(𝐹 )≤𝑘

‖AP𝐹 −A‖𝑝𝑝,2

≥ 𝑐𝑝|𝑇 |2

𝑘𝑠
min

rank(𝐹 )≤𝑘
‖BP𝐹 −B‖𝑝𝑝,2

Note that |𝑇 | ≥ 𝑘/2 by averaging, so

𝑐𝑝|𝑇 |2

𝑘𝑠
≥ 𝑐𝑝𝑘

4𝑠
≥ 𝜀

which proves the theorem.

F. Experimental evaluation
We show that empirically, we indeed see that the trade-off between the number of uniform samples and the approximation
quality is independent of the dimension 𝑚 in the setting of Euclidean power means. We do this by plotting the sample
size against the resulting relative error for 𝑚 ∈ {100, 500}, where an 𝑚-dimensional dataset is constructed by sampling 𝑚
random features from the MNIST dataset. The results are shown in Figure 1 and the experiment code is provided in Section
F.1.
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Figure 1. Sample size vs relative error for 1-mean estimation

F.1. Experiment code

We provide the code snippet for the experimental evaluation below.

from keras.datasets import mnist
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf

np.random.seed(2024)

(train_X, train_y), (test_X, test_y) = mnist.load_data()
train_X = train_X.reshape(len(train_X), -1)
train_X = train_X / np.max(train_X)
n, d = train_X.shape

def power_mean_loss(train_ds, x, p=1):
x = np.expand_dims(x, axis=0)
x = np.repeat(x, repeats=n, axis=0)
e = train_ds - x
e = np.linalg.norm(e, axis=-1)
e = np.power(e, p)
return np.sum(e) / n

def run(train_ds, max_iter=200, p=1):
n, d = train_ds.shape
x0 = np.zeros(d)
x = tf.Variable(initial_value=x0)
opt = tf.keras.optimizers.Adam(learning_rate=0.5)
x.assign(x0)
def power_mean_loss_tf():

e = train_ds - x
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e = tf.norm(e, axis=-1)
e = tf.math.pow(e, p)
return tf.reduce_sum(e) / n

losses = []
while opt.iterations < max_iter:

opt.minimize(power_mean_loss_tf, var_list=[x])
loss = power_mean_loss_tf().numpy()
if np.isnan(loss):

print(x.numpy())
losses.append(loss)

return x.numpy(), losses

n, d = train_X.shape
sample_sizes = [100, 500, 1000, 5000, 10000]
for m in [100, 500]:

cols = np.random.choice(d, m)
train_m = train_X[:, cols]
x, losses = run(train_m)
OPT = losses[-1]
estimates = []
for sample_size in sample_sizes:

train_sample = np.random.choice(n, sample_size)
train_sample = train_m[train_sample, :]
x, losses = run(train_sample)
estimates.append(power_mean_loss(train_m, x))

relative_errors = [(e / OPT) - 1 for e in estimates]
print(’relative errors’, relative_errors)
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