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ABSTRACT

Large-scale neuronal activity recordings with fluorescent calcium indicators are
increasingly common, yielding high-resolution 2D or 3D videos. Traditional anal-
ysis pipelines reduce this data to 1D traces by segmenting regions of interest,
leading to inevitable information loss. Inspired by the success of deep learning on
minimally processed data in other domains, we investigate the potential of fore-
casting neuronal activity directly from volumetric videos. To capture long-range
dependencies in high-resolution volumetric whole-brain recordings, we design a
model with large receptive fields, which allow it to integrate information from dis-
tant regions within the brain. We explore the effects of pre-training and perform
extensive model selection, analyzing spatio-temporal trade-offs for generating ac-
curate forecasts. Our model outperforms trace-based forecasting approaches on
ZAPBench, a recently proposed benchmark on whole-brain activity prediction in
zebrafish, demonstrating the advantages of preserving the spatial structure of neu-
ronal activity.

1 INTRODUCTION

Recent advances in imaging techniques have enabled the recording of neuronal activity at unprece-
dented resolution and scale. Light-sheet imaging allows recording of whole-brain activity for small
animals, such as the larval zebrafish (Hillman et al., 2019). Raw recordings are in the form of volu-
metric videos, with hundreds of millions voxels per time step, recorded over hours. Typically, heavy
postprocessing is applied to reduce dimensionality of this data down to 1D time traces of activity
for distinct regions of interest representing individual neurons or clusters of cells (Abbas & Masip,
2022). Inspired by the success of deep learning models in analyzing minimally processed data in
other fields, such as weather and climate forecasting (Rasp et al., 2020; Andrychowicz et al., 2023),
we explore the potential of building predictive models directly on such volumetric videos, avoiding
any information loss.

The ability to predict future behavior based on past observations is a cornerstone of scientific model-
ing across a diverse range of domains, ranging from physics to social sciences. Until now, it has not
been applied in the context of whole-brain activity in a vertebrate. The recently introduced Zebrafish
Activity Prediction Benchmark (ZAPBench) (Anonymous, 2024) aims to change that, taking advan-
tage of datasets that can now be acquired with modern microscopy techniques. ZAPBench provides
a rigorous evaluation enabled by the comparison of future brain activity predicted from past brain
activity to actual experimental recordings, thereby achieving an objective measure for evaluating
predictive models of brain function. The dataset used in ZAPBench is a whole-brain recording from
a larval zebrafish, collected using a light-sheet microscopy setup (Vladimirov et al., 2014). The raw
volume is made of ∼1.5 trillion voxels, which is reduced in size by three orders of magnitude to a
trace matrix of time series by applying a neuron segmentation mask. ZAPBench is the first bench-
mark that poses the forecasting problem for a significant fraction of neurons in a single brain and
provides the raw volumetric recordings for the experiments.

To test the viability of end-to-end forecasting on such data, we propose to use a video model based
on techniques that have not been applied to this domain previously. Since processing in the brain
is highly distributed (Urai et al., 2022; Naumann et al., 2016), we hypothesize that large receptive
fields are important. Furthermore, in comparison to models applied to activity traces, we expect the
following advantages. First, by utilizing the entire video as input, a video-based model is not reliant
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Figure 1: We propose to model light-sheet microscopy recordings of neural activity directly as
volumetric video for forecasting instead of extracting and modelling neuron traces. Specifically, we
train a model directly on the video and mask the output to optimize the per-neuron mean absolute
error (MAE). We find that a UNet performs particularly well for small temporal context and can
more effectively utilize spatial contextual information than trace-based time series models.

on the precision of neuron segmentation masks (masks are still applied to predicted frames for direct
comparison to trace-based methods). Second, the inherent grid structure of the video preserves the
spatial relationships between neurons, information that is otherwise lost during trace extraction.
Finally, such a model can leverage potentially relevant visual cues present in the voxels between
segmented cells or within the voxels of individual cell masks to enhance forecasting accuracy.

Building a model for this problem poses fundamental engineering challenges. Standard video mod-
els operate on 2D frames, and the presence of the additional Z dimension naturally complicates
scaling. In ZAPBench, a single XY slice of a 3D frame has a native size of 2048×1328 pixels, and is
thus comparable to a frame of a natural 1080p video. Every 3D frame is composed of 72 such slices,
increasing the volume of the input data by up to two orders of magnitude relative to such videos and
resulting in several hundreds of megabytes per frame.

For our model, we choose a variant of the UNet (Ronneberger et al., 2015) and adapt it to 4D
data. We also develop a data input pipeline where both input and model are spatially sharded across
multiple hosts and accelerators. To maintain a manageable size of the intermediate activations,
we represent temporal input frames as channels. This approach allows us to explore the impact
of varying spatial context by manipulating the receptive field while keeping computational cost
(FLOPS) roughly constant.

We perform extensive experiments to construct an effective video model for neuronal activity fore-
casting on ZAPBench. Despite the success of pre-training in other domains (Devlin, 2018; Bao
et al., 2021), we find it not to be a useful technique for improving forecast accuracy, even when us-
ing an order of magnitude more data recorded from other specimens of the same species. Further, we
investigate the effect of input resolution, spatial context, and temporal context of the model on the
forecast accuracy. Surprisingly, we find that lowering input resolution by up to 4x can be beneficial
for performance and observe a clear trade-off between spatial and temporal context.

Our models, which implicitly capture the spatial relationships within their field of view, can improve
forecast accuracy beyond that achieved by trace-based models on ZAPBench, especially when only
short temporal context is available. On ZAPBench, multivariate trace-based models, which can
in principle learn functional relationships between cells, do not perform significantly better than
univariate models that treat all cells independently and identically. Our proposed model is therefore
the only multivariate model that can consistently outperform univariate models on this benchmark.1

In summary, our contributions are as follows:

1. We propose to forecast zebrafish neuronal activity recorded using light-sheet microscopy
directly in the native domain as volumetric video (3D + time).

1Comparisons between video and trace-based models are also included in ZAPBench (Anonymous, 2024).
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2. We empirically show that the input resolution and pre-training on additional volumetric
videos from similar specimens have negligible impact on the results.

3. We perform exhaustive model selection to quantify the impact of spatial (XYZ) and tempo-
ral context size for activity forecasting accuracy and find a clear trade-off.

4. On ZAPBench, our proposed model is the only approach that consistently benefits from
multivariate information, and therefore achieves leading performance for short temporal
context.

2 FORECASTING NEURONAL ACTIVITY FROM VIDEO

We propose to forecast neuronal activity in the ZAPBench dataset (Anonymous, 2024) directly in
the volumetric video domain. Specifically, we utilize a temporal context of C video frames to
predict the subsequent H frames. Per-neuron forecasts and loss are then computed by applying the
segmentation mask to the predicted video frames. This contrasts with the traditional approach, which
applies the segmentation mask to the original video data to extract activity traces before performing
any forecasting. See Figure 1 for a comparison of these two approaches.

The ZAPBench dataset comprises high-resolution, whole-brain activity recordings of a larval ze-
brafish engaged in various behavioral tasks. Data was acquired using light-sheet fluorescence mi-
croscopy, enabling real-time imaging of neuronal activity at cellular resolution. This was made
possible by using an animal genetically modified to express GCaMP (Dana et al., 2019), a flu-
orescent calcium sensor, in the nuclei of its neurons. ZAPBench provides both preprocessed ac-
tivity traces for approximately 70,000 neurons and the corresponding raw volumetric video data.
This raw data, denoted as Y, has dimensions of 2048×1152×72×7879 (XYZT) and a resolution of
406 nm×406 nm×4 µm×914 ms. We use a center crop of 1328 voxels in Y due to negligible cell
activity in the border regions. Models forecasting H = 32 time steps are benchmarked using short
(C = 4) or long (C = 256) temporal context.

Anonymous (2024) preprocess the raw volumetric video by aligning each frame to a
reference volume for stabilization so that the neuron segmentation masks can be stat-
ically applied throughout the experiment. Further, a standard “∆F/F ” normalization
scheme is applied to the voxel intensities, with F denoting a baseline value (Mu
et al., 2019; Zhang et al., 2023). The normalized signal is in the [−0.25, 1.5] range.

Intra-cell 
variation

Imperfect 
mask

Inter-cell 
activity

Figure 2: Illustration of potential loss of
information when segmenting neurons.
The colored objects are predicted seg-
mentation masks. A fragment of a 2d
slice of the activity video is shown in
greyscale.

The neuron segmentation model is specifically trained
for the dataset and yields 71,721 neurons. Formally,
the segmentation mask can be considered as a map-
ping seg : N → 2S from integer identity of a neuron
N = [71721] to a set of three-dimensional spatial indices,
which is an element of the power set of index locations
S = [2048]× [1328]× [72]. The neuron activity at an ar-
bitrary timestep t is then given by averaging the activity
over spatial locations associated with each cell, i.e.:

yn(t) =
1

| seg(n)|
∑

s∈seg(n)

Ys(t). (1)

While this is a natural choice, it loses information related
to cell size, position and spatial distribution of intensities
within it, and completely discards voxels that are not part
of any segmentation mask or incorrectly segmented. Fig-
ure 2 depicts these potential issues.

We instead apply a video model to the raw input frames
and directly forecast volumetric frames while optimizing
and measuring the mean absolute error (MAE) on the seg-
mented neurons. Prior work in neural response prediction (Schoppe et al., 2016; Cadena et al., 2019)
has proposed additional metrics that explicitly take trial-to-trial variability into account. The exper-
imental setting used in ZAPBench did not allow for sufficiently numerous trial repetitions to make
these metrics applicable, but we note them as an interesting direction to explore in future work if
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Figure 3: Architecture and input sharding overview. A: We use a variation of the UNet architec-
ture (Ronneberger et al., 2015) with 3D spatial input and treat the C input frames as channels.
Further, we use a fixed number of features at every resolution to improve scalability. The net-
work is conditioned on the time horizon H and outputs a single volumetric frame at a time, similar
to MetNet-3 (Andrychowicz et al., 2023). To control for spatial context at constant FLOPS, four
blocks at the lowest resolution can be replaced by one block of higher resolution. B: Data loading
and the network are spatially sharded and allow for flexible scaling to full resolution inputs.

calcium recordings made with increased number of trials become available. In addition to MAE, we
also report correlations between the predicted and actual activity in App. A.4.

One frame of the volumetric video can be described as Y(t) ∈ V with V = R2024 × R1152 × R72.
A video model with a P -dimensional weight vector w ∈ RP can then be denoted as f : VC×RP →
VH . That means the video model f receives a 4D volumetric input with C frames, outputs H frames,
and is parameterized with weights w. We obtain the prediction of the h-th frame as

Ŷ(t, h) = fh(Y(t), . . . ,Y(t + C),w), (2)

and denote by ŷ(t, h) the corresponding 1D trace vector computed using Eq. 1. For a fair compar-
ison with trace-based models in ZAPBench we optimize the trace-based MAE L over all training
timesteps Ttrain with respect to the model parameters w

L(w) =
1

|Ttrain|H |N |
∑

t∈Ttrain

∑
h∈[H]

∑
n∈N
|yn(t + h)− ŷn(t, h)| . (3)

If we instead optimize the voxel-wise MAE, the models perform relatively worse when evaluated
on the trace-based MAE because it corresponds to a different weighting of neurons by their size in
number of voxels.

3 SCALABLE VOLUMETRIC VIDEO ARCHITECTURE

Efficiently training models consuming high-resolution volumetric video of varying input context
sizes C requires a scalable architecture and data loading system. We achieve this by extending a
standard UNet architecture (Ronneberger et al., 2015) to 4D by mapping temporal input context
to features of the first convolutional layer, conditioning on lead-time to predict only single frames,
and sharding both the model and the data loading process. Figure 3 shows the intermediate resolu-
tions and representation sizes. The network comprises a series of pre-activation residual convolu-
tional blocks (He et al., 2016) with fixed feature size F = 128, each with two group normalization
layers (Wu & He, 2018) using 16 groups, Swish activation (Ramachandran et al., 2017), and 33

convolutions for XYZ throughout.

3.1 TEMPORAL INPUT CONTEXT AS FEATURES

Typically, video UNet variations use color channels as input features (Gao et al., 2022; Ho et al.,
2022a) and convolve over frames using a temporal convolution (Ho et al., 2022b). This approach

4
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is intractable in our case because of the additional Z dimension. Instead, we treat the temporal
input context of C frames as input features to the UNet. This confers the following advantages:
1) the temporal sizes of the input and output are decoupled, 2) the network parameter count is
easily controlled, 3) representation sizes and computation requirements are reduced while using
more features, and 4) early layers of the network have access to long-range temporal dependencies.
Our model is similar to architectures used in standard time series models, which often treat temporal
context as features (Zeng et al., 2023; Chen et al., 2023).

3.2 VARYING THE RECEPTIVE FIELD

We design a flexible UNet architecture that can adapt the receptive field while keeping the computa-
tional cost (FLOPS) fixed. We find that full native resolution is not necessary for optimal prediction
accuracy (see Sec. 4.1), and thus downsample the input by a factor of 4 in XY using averaging. The
first resampling block then uses a factor 2 in XY to achieve roughly isotropic resolution in XYZ,
while the following ones downsample equally in all dimensions. We always use four residual blocks
at the lowest resolution, and three at all other resolutions. This allows us to change the receptive
field while keeping the FLOPS roughly fixed by removing the four lowest resolution blocks and
instead adding one block to the respective next higher resolution. This is because one block at the
higher resolution requires as many FLOPS as four blocks after downsampling by a factor of two
in X and Y. In an ablation, we show that controlling for FLOPS is sensible because increasing the
parameter count does not increase performance further (see Figure 7).

The receptive field along a dimension depends on the cumulative product of the downsampling
factors and the number of convolutions at the lowest resolution,

receptive fielddim = cum downsampling factordim × num blocks× 4,

where the factor 4 is because every block has two convolutions, each of which increase the receptive
field by two. For a network that does not downsample at all, as for example used in Sec. 4.1.1,
to account for the input and output convolutions and the center voxel, we have to increase the re-
ceptive field size by five. Therefore, the architecture depicted in Figure 3 has a receptive field of
(1024, 1024, 128) in XYZ comparable to the size of the complete frame. We tried to further enhance
the receptive field to cover the whole frame using a multi-axis vision transformer (Tu et al., 2022) at
the lowest resolution, but did not observe any accuracy gains. For the output, we upsample twice to
obtain the original resolution, and use one residual block per resolution, but with a reduced feature
dimension of F ′ = 32 to keep hidden representations at a manageable size.

3.3 LEAD-TIME CONDITIONING

0.0 0.5 1.0

training progress

0.026

0.028

0.030

va
l. 

M
AE

Direct MAE
Cond MAE
Cond HLG

Figure 4: Comparison of direct MAE
and lead-time conditioned variants.

Instead of forecasting autoregressively or predicting the
complete horizon of H frames in a one-shot way, we
condition the network on an integer lead-time h ∈ [H]
and predict the corresponding single frame independently
as proposed by Andrychowicz et al. (2023) for weather
forecasting. During data loading, we sample a lead time
and the corresponding target frame uniformly at random
from [H]. This requires loading only a single target
frame per sample and, in line with previous results from
weather forecasting (Rasp et al., 2020), performs better
than frame-level autoregressive prediction on our prob-
lem. Every convolutional block in the network is condi-
tioned using a FiLM layer (Perez et al., 2018) on the lead
time encoded using a 32-dimensional sinusoidal embed-
ding (Vaswani et al., 2017). Figure 4 shows that directly predicting all H frames tends to overfit
while lead-time conditioning performs equally well with both MAE and HL-Gauss (Farebrother
et al., 2024), a distributional regression objective that results in slightly faster model convergence.
However, in our experiments we use the conditioned MAE for its simplicity and because it does not
require binning, which might complicate pre-training on datasets of slightly different scale.
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3.4 SHARDED DATA LOADING AND MODEL

Despite the scalability features of the proposed UNet model for volumetric video, in practice apply-
ing it requires distributing the input and hidden representations across accelerators and machines.
We train all models in Sec. 4 using a single sample per batch, noting that this can already correspond
to several GBs of input data. We use spatial sharding in XY using the jax.Array API (Bradbury
et al., 2018) so that each box in Figure 3B is handled by an individual accelerator. We also imple-
ment a custom data loader that distributes data loading across hosts so that each machine only loads
the necessary boxes. To achieve this, we chunk our data in the zarr3 format (Miles et al., 2023)
and use the TensorStore API (TensorStore developers, 2024) to load and collate chunks. Our data
loader follows the jax sharding automatically.

4 EXPERIMENTAL RESULTS

We present experimental results evaluating the proposed volumetric video model on ZAPBench, a
benchmark for whole-brain neuronal activity prediction for a larval zebrafish (Anonymous, 2024).
Uniquely, ZAPBench provides the raw volumetric recordings for most of the neurons in the brain
enabling data-driven approaches like ours. First, in Sec. 4.1 we empirically select and validate
the final architecture variant used for the benchmark. In particular, we investigate the trade-off
between temporal context C and spatial context in the form of the receptive field to assess the need
for multivariate models. Further, we evaluate the feasibility of pre-training on additional zebrafish
specimens as well as the effect of input resolution. We identify the model depicted in Figure 3 as
a strong model for the short context size C = 4, where we achieve the best performance across
the benchmark, as presented in Sec. 4.2. For the long temporal context C = 256, we only see an
improvement of forecast accuracy in specific cases.

Hyperparameters. Unless stated otherwise, we train every model for 250k to 500k steps by opti-
mizing the trace-based MAE with a batch size of 1 using the AdamW optimizer (Loshchilov et al.,
2017) using an initial learning rate of 10−4 decayed using a cosine schedule (Loshchilov & Hut-
ter, 2017) to 10−7 and a weight decay factor of 10−5. Due to their tendency to overfit, we use a
dropout rate of 0.1 on the features for long-context models with C = 256. These hyperparameters
were optimized on the validation set during development. We choose checkpoints based on the val-
idation performance monitored during training. We present experimental results in terms of mean
performance and report two standard errors over at least three random seeds that control data load-
ing and parameter initialization. The only exception to this are the high resolution results presented
in Sec. 4.1.3, where we only report a single result because of their compute requirements. Most
individual training experiments use 16 A100 40GB GPUs.

4.1 MODEL SELECTION

We compare between different methods and models to improve performance on the ZAPBench
benchmark. For Sec. 4.1.1 and 4.1.2, we downsample the volumetric frames by a factor of four in XY
using averaging to 512×288×72. The segmentation mask is downsampled to the same shape using
striding. We investigate the effect of spatial and temporal context and the potential for pre-training
on related datasets. In Sec. 4.1.3, we use the full resolution ZAPBench targets and segmentation,
and assess the importance of input resolution on performance.

4.1.1 SPATIAL VS. TEMPORAL CONTEXT

We use UNets with different numbers of downsampling blocks to vary the spatial context but keep
the FLOPS fixed (see Sec. 3), and find that there is a trade-off between the spatial (S) and tempo-
ral (C) context. We compare models without any downsampling blocks, with two downsampling
blocks, and with four. The models have spatial contexts S of 21, 64, and 256 in XY, respectively.
Details on the architecture and computation of the receptive field can be found in App. A.1.1. Also
note that the spatial context at full resolution of these models would be 4× higher. Figure 5 shows
that a short temporal context requires larger spatial context to obtain optimal performance. For long
temporal context, however, the models with large spatial context start to overfit and underperform.
The effect becomes apparent between a temporal context of 16 and 64. This result suggests that
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Figure 5: Validation and test performance for varying temporal context sizes C as well as spatial
context sizes S with networks having comparable FLOPS. We find that there is a trade-off between
spatial and temporal context with a cross-over point between C = 16 and C = 64, where spatial
context stops being useful and leads to overfitting. The periodicity of many conditions is roughly
64, which might explain spatial context becoming redundant. We report the mean and two standard
errors.

video models are able to exploit multivariate information for short temporal context but provide
little benefit for long context, where univariate models perform equally well (Anonymous, 2024).

4.1.2 PRE-TRAINING ON OTHER SPECIMENS

SETTING TEST MAE
Train 0.02573± 0.00005
Pre-train +2 0.02590± 0.00005
Pre-train +8 0.02591± 0.00001
Train + Val 0.02534± 0.00010

Table 1: Training on more data from the
same specimen (“Train + Val”) improves
performance more than pre-training and
finetuning on others. Results shown for
C = 4 and data 4× downsampled in XY.

We attempt to pre-train a model on other specimens
recorded and preprocessed in a similar way to the ze-
brafish used for ZAPBench. We pre-train the model ei-
ther on two additional specimens recorded in the same
experimental session, or on these two and six more
from two other sessions. Because there is no seg-
mentation available for the other specimens, the model
is pre-trained using voxel-based MAE for 800k steps,
and then fine-tuned on the ZAPBench dataset for 200k
steps using the trace-based MAE. We use three different
learning rates, 10−4, 10−5, and 10−7, for fine-tuning,
and select the best model by validation performance,
which was obtained by fine-tuning with the lowest learning rate. Table 1 shows that pre-training
with fine-tuning does not improve performance over standard training. However, training on ∼14%
more data from the same specimen does improve performance significantly. Confidence intervals
shown are calculated as two standard errors.

4.1.3 EFFECT OF INPUT RESOLUTION

We assess the relevance of input resolution when forecasting neuronal activity, and find that, surpris-
ingly, predicting from a lower resolution performs best. We compare three variants of our model:
a model that predicts from data 4× downsampled in XY, as depicted in Figure 3, one that down-
samples only by factor 2, and one that is parameterized at full native resolution. Therefore, the
full-resolution model loads and processes 16× more data. We achieve almost perfectly linear scal-
ing by using proportionally more compute resources, maintaining the same throughput thanks to the
sharded data input pipeline and model (see Sec. 3). In all cases, we scale the field of view of the
network so that its size in physical units remains constant between experiments (see App. A.1.3).

INPUT TEST MAE
Downsample 4× 0.0267± 0.0002
Downsample 2× 0.0268
Full resolution 0.0273

Table 2: Increasing input resolution does
not improve performance, and decreases
it slightly at full resolution.

For C = 4, Table 2 shows that the model with the low-
est input resolution obtains a trace-based test MAE that
is statistically identical with that of the model using in-
termediate resolution inputs. However, the full resolu-
tion model performs significantly worse. This suggests
that despite the short temporal context input resolution
does not play a major role in improving performance,
and that the intracellular voxel-to-voxel variations in
the recorded images do not carry information useful for
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forecasting, which might have applications to the de-
sign of future zebrafish activity recording experiments. We suspect that the decreased performance
of the full resolution model could be caused by the significantly increased input voxel-to-parameter
ratio while keeping the number of training examples fixed.

4.2 PERFORMANCE ON ZAPBENCH

We evaluate the best-performing architectures on ZAPBench for both short and long context settings.
In Figure 6, we report the trace-based MAE versus forecasting steps in comparison to the best-
performing trace-based models (Anonymous, 2024). We average performance across test sets of
different stimulus conditions. For trace-based models, TSMixer (Chen et al., 2023) achieves best
performance for short context, C = 4, and a univariate MLP for long context, C = 256. We use
the video-based architecture depicted in Figure 3 for the short context that has a spatial context of
1024×1024×72 in XYZ, which is global except in X where it covers half the voxels. For the long
temporal context, we use a model that does not downsample further than (4, 4, 1) at the input, which
we found in Sec. 4.1.1 to work best for this case. This model has a spatial context of 64×64×21,
which corresponds to 26 µm×26 µm×84 µm in XYZ.
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0.04

M
AE

Test C = 4

10 20 30

steps ahead

Test C = 256

10 20 30

steps ahead

Holdout C = 4
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steps ahead

Holdout C = 256

Video
Trace

Figure 6: Comparison of volumetric video model with best-performing trace-based model for short
(left) and long (right) context on the benchmark test set (averaged over eight conditions) and the
experimental condition held out from the training data. We report the mean and two standard errors.

We find that the volumetric video models achieve the best performance in the short context C = 4
setting. For C = 256, there is no significant difference between the univariate trace-based model
and the video model on the test set when evaluated with MAE, but the video model does improve
correlation metrics (App. A.4). This aligns with our observation in Sec. 4.1.1, where longer tem-
poral context requires less spatial context for the same forecast accuracy. ZAPBench also holds out
one stimulus condition entirely from training. We find that video models generalize better on this
holdout condition for one-step-ahead forecasts but not for longer horizons. In App. A.3, we further
show model performance separately for each experimental condition. For the short context, we find
that the video model performs better in six, equally well in one, and worse in two out of the nine
conditions.

More precisely, when evaluated with a context length C = 4 on both the test and holdout sets,
the video model demonstrates a significant improvement in one-step-ahead forecasting accuracy,
achieving about 10 percentage point reduction in error compared to the best performing trace-based
model. With C = 256, the video model exhibits marginally superior performance in the first few
forecasting steps, achieving up to a 2 percentage point reduction in MAE at the first step. Beyond
the initial steps, both models demonstrate comparable accuracy on the test set.

What explains the improved performance of the video model relative to the trace-based approaches?
In App. A.2 we report results of an experiment in which we masked out all unsegmented voxels,
which did not reduce the grand test-MAE. This suggests that segmentation quality is not a significant
limitation, that no significant information is contained in the unsegmented regions of the dataset,
and that he accuracy gains can be attributed to the better utilization of the spatial distribution of
the recorded fluorescence signal. Furthermore, the results in Table 2 and Figure 5 suggest that it
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is specifically the correlations between cells in the recorded fluorescence signals, rather than the
distribution of signals within individual cells, that drives these improvements.

5 CONCLUSION

We presented an approach for forecasting of zebrafish neuronal activity based on utilizing the raw
neural recording data as a volumetric video to make predictions. We find that this method has several
advantages over traditional trace-based methods. In particular, video-based prediction leverages
spatial relationships between neurons that are hard to exploit when reducing the data to 1D traces.
This allows for more accurate predictions, especially when working with short temporal contexts.
This advance comes at the expense of a significant increase in computational cost (2-3 orders of
magnitude relative to trace-based models, see App. A.5 for details).

We report several findings that were contrary to our expectations. First, we surprisingly find that
using higher resolution input frames does not improve performance. Second, the commonly used
paradigm of pre-training on a larger data set and fine-tuning only leads to reduced forecast accuracy
in our experiments. In contrast, we observe that more data from the same specimen does improve
performance, so we hypothesize that pre-training may be complicated by distribution shifts between
specimens, such as differences in signal and noise levels. Finally, increasing model capacity does
not always translate to performance improvements but instead leads to overfitting for long temporal
context.

Future work could explore the use of probabilistic models, latent space representations, and more
sophisticated regularization methods and input augmentations to further improve the accuracy of
video forecasting for neuronal activity.

REPRODUCIBILIY STATEMENT

All relevant code and interactive visualizations of the predictions will be made publicly available
following double blind review.
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A APPENDIX

A.1 ARCHITECTURAL DETAILS

Every network has an embedding 33 convolutional layer mapping from temporal context C to F
features, and an output convolutional layer mapping from F ′ (when upsampling) or F to 1 feature,
giving the single lead-time conditioned forecast frame. In the downsampling pathway, we apply one
convolutional block at every resolution. During symmetric upsampling, we use three convolutional
blocks at the lowest resolution, and two for all higher resolutions. Before upsampling to super-
resolution (i.e., resolution that is higher than that of the input), we use a convolution to map from
F to F ′ features to reduce the size of intermediate representations. During super-resolution upsam-
pling we use one convolutional block per resolution. Each convolutional block has a pre-activation
residual design with the following chained layers: group normalization, swish activation, 33 convo-
lution, group normalization, conditioning on lead time using a FiLM layer, swish activation, optional
feature dropout (only used with rate 0.1 for C = 256), and lastly the second 33 convolution. The
UNet-structure is realized by adding the representations obtained during sequential downsampling
to the upsampled representation. The number of features at every resolution is fixed to F = 128,
except for the super-resolution upsampling, where it is F ′ = 32.

A.1.1 SPATIAL VS. TEMPORAL MODELS

This study employs three distinct models based on the aforementioned design.

The first model, maintaining a consistent spatial dimension of 512×288×72, forgoes downsampling
and upsampling blocks. It incorporates four processing blocks at this resolution, along with two
convolutional layers at the input and output stages. The receptive field, calculated as S = 1 + (4×
2+2)×2 = 21, is determined by considering the central voxel and adding 2 for each 33 convolution.

The second model, downsamples the input data to 64×64×32 and has a receptive field of S = 64.
This is derived from the cumulative downsampling factors of (4, 4, 2) in the X, Y, and Z dimensions,
respectively, and applying Equation 4.

Similarly, the third model employs downsampling factors of (16, 16, 8), resulting in a
256×256×128 receptive field. This translates to a global receptive field along the Z-axis, a near-
global receptive field along the Y-axis, and a receptive field encompassing half of the total extent
along the X-axis.

A.1.2 LEAD-TIME CONDITIONING

For the results shown in Figure 4, we use three different losses: direct MAE, conditioned MAE,
and conditioned HL-Gauss. Apart from the FiLM layers to condition on lead-time, the architecture
is the same in all cases, with the exception of the last layer which maps from F to the output
dimensionality. The output dimensionality for the direct MAE is the number of forecast timesteps H .
For the conditioned MAE, it is simply 1, as also described in Figure 3. For the conditioned HL-
Gauss loss, it is 32, which is equal to H , and each output corresponds to a discretized bin of the data
range. The HL-Gauss loss transforms a real value by representing it as a weighted average of bin
mean-values, for details see (Farebrother et al., 2024).

A.1.3 MODELS FOR DIFFERENT INPUT RESOLUTIONS

To investigate the influence of input resolution on model performance, we conducted a comparative
analysis. We compared our primary model, which operates on data downsampled by a factor of 4 in
the XY plane, with two alternative configurations: one employing a downsampling factor of 2, and
another utilizing full-resolution input.

To ensure equitable comparison, the architectures of these models were kept broadly consistent, with
necessary adjustments to accommodate the differing input resolutions, while maintaining a consis-
tent full-resolution output frame. Specifically, for the model operating on 2× downsampled input,
we augmented the architecture with three additional blocks at the input resolution and removed one
upsampling block, relative to the architecture depicted in Figure 3. In contrast, the model utilizing

12
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full-resolution input incorporated two initial downsampling blocks with factors (2, 2, 1) and omitted
any super-resolution components, resulting in a conventional UNet architecture.

A.2 IMPACT OF UNSEGMENTED VOXELS

In contrast to video models which analyze all voxels of the calcium movie, the trace extraction pro-
cess ignores voxels that do not correspond to segmented cells. This potentially discards information
that could be useful in forecasting. To test to which degree this is indeed the case, we trained the
C = 4 video forecasting model with the unsegmented voxels set to constant value (0). The grand
average test MAE for that model (0.02663±0.00003) was not significantly different from that of the
video model processing the complete volume (0.02672 ± 0.00010). This indicates that the unseg-
mented voxels are unlikely to contain information that could improve forecasts and that any gains
relative to the trace-based models can be attributed to the utilization of the spatial distribution of the
underlying calcium signals within the segmented cells.

A.3 ADDITIONAL EXPERIMENTAL RESULTS

In Figure 8 and 9, we show a fine-grained version of the benchmark of the trace and video-based
models in the main text (Figure 6). The figures show the performance per experimental condition
the fish was exposed to. For more details on these conditions, we refer to ZAPBench (Anonymous,
2024). For short context, C = 4, we observe that the video-based model performs better on six
experimental conditions, and worse for many steps ahead on the “dots”, “taxis”, and “open loop”
conditions. For long context, the video-based model performs almost identical. As in the main text,
we display two standard errors about the mean in with shaded regions.

Figure 10 reports performance relative to four trace-based models included in ZAPBench. Figure 11
illustrates MAE differences for a few example frames.

0.0 0.5 1.0

training progress

0.028

0.030

va
l. 

M
AE

Width 128
Width 256

Figure 7: Ablation on increasing param-
eter count instead of receptive field.

On the right in Figure 7, we further show an ablation to
confirm that the improvement of multivariate video mod-
els is due to increased receptive field and not because of
using more parameters. In particular, in our experimen-
tal setup in Sec. 4.1.1 we keep FLOPS fixed instead of
number of parameters. In the example on the right, we
instead increase the width by a factor of two leading to
an incrase in FLOPS by a factor of 4 while keeping the
receptive field fixed. We observe that increasing FLOPS
at the same spatial context leads statistically to the same
performance. Therefore, the performance improvement
observed in Figure 5 is likely due to the increased recep-
tive field, especially for short context. The example on
the right is for the case of C = 4.
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Figure 8: Comparison of volumetric video to best trace-based model on all conditions for short
context, C = 4.
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Figure 9: Comparison of volumetric video to best trace-based model on all conditions for long
context, C = 256.
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Figure 10: Comparison of volumetric video model with four trace-based models from ZAP-
Bench (Anonymous, 2024) for short (left) and long (right) context on the benchmark test set (av-
eraged over eight conditions) and the experimental condition held out from the training data. In
remaining figures, we report performance relative to TSMixer and Time-Mix (a univariate MLP) for
short and long context, respectively. Note that MAEs of TiDE on the holdout are higher than the
axis limits, which is due to its reliance on stimulus covariates. We report the mean and two standard
errors.

Figure 11: Illustration of MAE differences. Top row shows the MAE between target and predicted
activity for a video model on five test set frames for the gain condition, C = 4, at 32 steps predicted
ahead, with brighter colors indicating higher error. Bottom row shows corresponding MAEs on these
frames for a trace-based model. When MAEs are averaged across all test set frames and neurons for
this condition, the MAE difference between these models is approximately 0.005.
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Figure 12: Illustration of the two types of correlation metrics (for a single neuron). Top: actually
recorded activity (green) is aligned in experiment time t with predicted snippets (blue) of activ-
ity of length H = 32 starting from various offsets. Bottom: correlations are always computed
over 32 time steps between predicted activity and corresponding real recording. In CorrH, complete
predicted snippets are correlated with the recordings, and then averaged over starting points. In
CorrW, snippets are assembled from predictions at a specific lead time h, and correlated with the
corresponding recordings. Reported metrics are averaged over all neurons.

A.4 CORRELATION METRICS

Table 3: Test set CorrH ± 2 SE.
Context Video Trace

C = 4 0.1511 ± 0.0021 0.1080 ± 0.0090

C = 256 0.1874 ± 0.0004 0.1650 ± 0.0022

To better measure the quality of the temporal structures predicted by the model, we also computed
two types of correlation metrics CorrW and CorrH, which compare recorded and predicted activity
over H = 32 steps, with the predictions assembled at constant lead time h or from a specific starting
point t, respectively (see Figure 12).

The correlation metrics paint a picture broadly consistent with that shown by the MAE, except in
the long-context regime C = 256 where the video model outperfoms the trace-based models (see
Table 3, Figure 13).

A.5 COMPUTATIONAL COST ESTIMATES

The loss ablation in Figure 4 required around 5k GPU hours, pre-training and fine-tuning as shown
in Sec. 4.1.2 around 14k GPU hours, comparing spatial to temporal context in Sec. 4.1.1 around 50k
GPU hours, and the final results including the ablation on input resolution another 30k GPU hours.
This makes a total of roughly 100k GPU hours used for the experiments presented in the paper.

A single training run of the best performing video model for C = 4 required 36 h, whereas the model
for C = 256 required 120 h, both using 16 A100 GPUs. This compute cost is two to three orders

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

10 20 30
steps ahead

0.0

0.2

0.4

0.6
Co

rr W

Test C = 4

10 20 30
steps ahead

Test C = 256

Video
Trace

Figure 13: Comparison of volumetric video model with best-performing trace-based model in terms
of CorrW for short (left) and long (right) context on the benchmark test set (averaged over eight
conditions), higher is better. We report the mean and two standard errors.

of magnitude higher than that incurred by training the baseline trace-based models, which require
about 2 h on a single A100 GPU. However, video models require less raw data preprocessing relative
to time series models, partially offsetting the increased cost.
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