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ABSTRACT

The success of Large Language Models has inspired the development of Genomic
Foundation Models (GFMs) through similar pretraining techniques. However, the
relationship between pretraining performance and effectiveness in downstream ge-
nomic tasks remains unclear. Additionally, the high computational cost of pre-
training raises questions about its cost-efficiency. To assess the usefulness of
pretraining in genomics, we evaluated seven different GFMs across 52 diverse
genomic tasks, comparing them to their counterparts with randomly initialized
weights. Across benchmarks, we find that randomly initialized models provide
surprisingly strong baselines and tokenizer and architecture choices strongly shape
both these baselines and the gains from pretraining. Specifically, character-token
models often match or exceed the performance of larger pretrained k-mer or BPE
models, whereas subword models appear to benefit from pretraining. We also
find that the evaluated GFMs fail to capture clinically relevant genetic mutations,
with embeddings and log-likelihood ratios showing limited sensitivity to anno-
tated variants. For the tasks we study, these results suggest that current NLP-style
pretraining strategies provide modest, tokenizer-gated improvements over strong
random baselines and motivate more biologically informed tokenization and
variant-aware objectives. Our code is available at github.com/z6JfFK/gfm.

1 INTRODUCTION

Recent advances in language modeling have led to the application of similar unsupervised pre-
training methods in genomics. This facilitated the emergence of Genomic Foundation Models
(GFMs) (Consens et al., 2025) which learn representations from genomic sequences. This line
of work has gained significant attention due to the potential of GFMs to revolutionize our under-
standing of genomics (Benegas et al., 2025b).

GFMs typically use a two-step training approach akin to Large Language Models: unsupervised
pretraining on a large dataset, followed by a supervised finetuning on a downstream task. The pre-
training phase usually involves either next token prediction (Brown et al., 2020) or masked language
modeling (Devlin et al., 2019). The promise of unsupervised pretraining is to extract knowledge
from vast genomic datasets (Consortium et al., 2015) and compress it into the model’s parameters,
with the aim of producing a generalist model applicable to a diverse set of tasks.

While some studies have explored scaling laws for GFMs (Nguyen et al., 2023; 2024), the rela-
tionship between pretraining and downstream performance remains unclear, with no single GFM
consistently proving to be the best (Marin et al., 2024). Combined with large model sizes (Dalla-
Torre et al., 2024), long input sequences (Nguyen et al., 2023; 2024; Brixi et al., 2025a) and massive
datasets, the pretraining step demands substantial computational resources.

The natural question arises: how effective is unsupervised pretraining in the genomics domain? To
answer this, we conduct extensive experiments with seven recent GFMs across finetuning, feature
extraction and genomic variation analysis as summarized in Fig. 2.

First, in standard finetuning tasks such as NT Benchmark (Dalla-Torre et al., 2024), GUE (Zhou
et al., 2024), and Genomic Benchmarks (Gresova et al., 2023), we now compare each pretrained
GFM directly to an identically configured model with random initialization (Fig. 1). Random base-
lines are surprisingly strong and depend strongly on tokenizer: character-level models (Caduceus,
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Figure 1: Tokenizer choice determines random baseline quality, while pretraining gains are
more complex. A comparison of an averaged performance of identical models with random ini-
tialization (z-axis) versus pretrained (y-axis) across (A) NT Benchmark (12 histone and enhancer
tasks), (B) GUE (7 task categories), and (C) Genomic Benchmarks (8 tasks). Points above the di-
agonal indicate a benefit from pretraining. Finding: The random baseline performance is strongly
determined by the tokenizer, with character models (Orange) consistently outperforming subword
models (Blue, Green). In contrast, the performance gains from pretraining are largest for subword
models (NT-500M A + 0.242 MCC on GUE) but are highly variable for character models. Marker
size is scaled with the number of model parameters.
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Figure 2: Overview of the experiments. (A) Finetuning: we finetune models on different func-
tional element classification tasks. (B) Feature Extraction: For biotype classification, we extract
embeddings from frozen models and train a simple classifier to predict gene types using these
embeddings. (C) Genomic Variation: We evaluate models’ ability to capture genetic variations
through: (1) Mutation sensitivity analysis measures how well models distinguish between origi-
nal and mutated sequences by computing embedding similarities, and (2) Ancestry prediction uses
model embeddings with XGBoost to classify population groups based on genomic variants.

HyenaDNA, Mistral) achieve higher performance from scratch than models using k-mer or BPE to-
kenization. At the same time, pretraining yields consistent gains for k-mer and BPE models, while
gains for character-token models are smaller and more architecture-dependent; a randomly initial-
ized Caduceus model often matches or exceeds much larger pretrained GFMs across benchmarks.

This surprising trend continues to be observed in feature extraction task (Table 2), where embeddings
from frozen models are used to train a simple classifier. One might expect the benefits of pretraining
to be most pronounced here, because randomly initialized models receive no tuning whatsoever
and their weights remain fully random. Instead, we find that randomly initialized models can be
competitive, and that simple architectural choices, particularly using a character tokenizer and a
larger embedding dimension, substantially improve their features. On the biotype classification
task, an untrained HyenaDNA variant yields the best performance among the GFMs we evaluate,
and a tokenizer ablation with matched HyenaDNA architectures (Table 3) shows that changing only
the tokenizer from characters to 6-mers increases average downstream MCC by ~ 0.19 despite a
slightly worse pretraining loss.

Finally, we assessed the models on one of the most practically important applications for genomics:
detecting subtle genomic variations (Section 3.5). This scenario requires models to be highly sen-
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Model #Params Architecture Tokenizer Vocab Size Seq Len (tokens) #Tokens Data
HyenaDNA 450K Decoder Char 12 1024 2.6B HRG
NT 500M 500M Encoder k-mer 4107 1000 300B 1000G
NTv2 50M 50M Encoder k-mer 4107 2048 300B Multispecies
GENA-LM 110M Encoder BPE 32000 512 1T HRG+1000G
DNABERTV2 117 Encoder BPE 4096 128 262B Multispecies
Caduceus SM Encoder Char 12 131K 35B HRG
Mistral 580M Decoder Char 12 4096 150B 1000G

Table 1: Description of models evaluated in this study. The analyzed models differ in architecture,
pretraining objective, tokenizer, model size, and pretraining dataset. We analyze the pretrained
models and their randomly initialized counterparts. #Tokens refers to the number of tokens seen by
the model during the pretraining. Data refers to the pretraining dataset source.

sitive to single nucleotide changes within long sequences. In our evaluation, we find that most
pretrained GFMs show limited sensitivity to these variants. For instance, even when up to half of
the nucleotides in a DNA sequence are changed, some GFMs still produce embeddings with cosine
similarity above 0.99, and ClinVar log-likelihood ratio tests yield AUROCS close to 0.5 (Table 4 and
Table 5). These results suggest that, in their current form, the evaluated GFMs provide limited util-
ity for applications that rely extensively on subtle mutation signals, including variant pathogenicity
prediction, eQTL (Zhou & Troyanskaya, 2015), sQTL (Garrido-Martin et al., 2021), and phenotype
prediction (Lello et al., 2018).

Our results call for a more careful view of current unsupervised pretraining methods in genomics,
suggesting that simply adapting NLP techniques is not yet sufficient to obtain broadly useful ‘foun-
dation’ models on regulatory classification tasks. Rather than continuing to invest substantial com-
putational resources in existing pretraining methods, we advocate for critically rethinking the fun-
damental building blocks of genomic foundation models. This includes developing biologically-
informed tokenization strategies and establishing new robust benchmarks that comprehensively test
for the understanding of genomic mechanisms.

2 MODELS

We selected six recently published GFMs for evaluation and also trained our own version of the
Mistral (Jiang et al., 2023) model on 50 samples from the 1000 Genomes dataset (Consortium et al.,
2015). The models in our analysis exhibit significant diversity in their architectures, pretraining
objectives, tokenizers, model sizes, and pretraining datasets. Our model selection includes both en-
coder and decoder architectures, transformer-based and state-space models, with model sizes rang-
ing from 450K to 580M parameters. Interestingly, our Mistral outperforms all other previous GFMs
on many tasks. We attribute the success of Mistral to an advanced architecture recipe which includes
RoPE, big embedding dimension and character tokenizer. Table 1 lists model configurations; model
descriptions are in the Appendix.

We excluded the EVO model (Nguyen et al., 2024) from our analysis as it was trained on bacterial
genomes and performed poorly in our preliminary tests on the Nucleotide Transformer Benchmark.

3 EXPERIMENTS AND RESULTS

3.1 FINETUNING

To verify the usefulness of pretraining, we finetuned both pretrained and randomly initialized (rand.
init.) versions of the models on Nucleotide Transformer Benchmark (Dalla-Torre et al., 2024),
Genome Understanding Evaluation (GUE) (Zhou et al., 2024), and Genomic Benchmarks
(GreSovd et al., 2023) with exactly the same set of hyperparameters. This set of benchmarks to-
gether constitutes 52 genomic classification tasks. In total, we conducted nearly 10,000 finetuning
experiments, this considers: seven models, both pretrained and random, evaluated across different
tasks, folds, and learning rates.
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To ensure robustness, we performed a broad hyperparameter search over learning rate, weight decay,
batch size, warm-up steps, LoRA (Hu et al., 2022) vs full finetuning, and others. Because perfor-
mance was most sensitive to the learning rate, the final run consisted of a sweep over six learning-rate
values, and we report the best result obtained. We also found that full finetuning consistently out-
performed LoRA (see Table 8 in Appendix), suggesting that it provides the best opportunity for the
model to reach the full score.

For each model, we now compare its pretrained checkpoint directly against an identically configured
version with random initialization. In Fig. 1, the x-axis shows the average performance of the
randomly initialized model and the y-axis shows the corresponding pretrained model on (a) NT
histone and enhancer tasks, (b) GUE task categories, and (c) Genomic Benchmarks. Points on the
diagonal correspond to identical performance, while the vertical distance from the diagonal measures
the gain or loss from pretraining.

Reading Fig. | along the x-axis reveals that the strength of the random baseline depends strongly on
the tokenizer. For instance, randomly-initialized character-token models (Caduceus, HyenaDNA)
are often indifferent or superior than their pretrained counterparts. We also note a near-consistent
trend of pretraining helping models trained using BPE or k-mer tokenizer, with the extent of gain
ranging from 0.05-0.25 MCC on NT and GUE, with model architecture a strong determining factor
of performance. Detailed per-task deltas comparing each pretrained model to the best random base-
line are provided in Appendix in Fig. 7. Additionally we also provide separated apples-to-apples
comparisons for each model between pretrained and rand. init. versions in Fig. 8 (NT Benchmark),
Fig. 9 (GUE), Fig. 10 (Genomics Benchmark) in Appendix.

Even after accounting for pretraining gains, small randomly initialized models remain competi-
tive in absolute terms. On NT Benchmark, for example, a randomly initialized Caduceus (8M pa-
rameters) achieves an average MCC of about 0.62 on the most challenging histone and enhancer
tasks (Fig. 1A), outperforming several larger pretrained models such as NT-500M, NTv2-50M,
and GENA-LM (110M parameters), and often matching or exceeding its own pretrained version.
DNABERTV2 (117M parameters) also provides a strong random baseline and, on several histone
tasks, outperforms pretrained NT-500M by sizable margins (Table 18).

The results on GUE in the middle part of Fig. 1 demonstrate that randomly initialized Caduceus
shows remarkable performance outperforming its pretrained version by 0.114 MCC. For instance,
on TF Prediction (Mouse) task in Fig. 9, randomly initialized Caduceus outperforms all 7 pretrained
models. Similar trend is observed on Core Promoter Detection Group where randomly initialized
Mistral outperforms all pretrained models including its own pretrained version. In general on GUE
benchmark the best randomly initialized model outperforms five to seven pretrained models (Fig. 7).
In Genomic Benchmarks similar trend of competitiveness of randomly initialized models can be
observed (Fig. 10).

The results across all three benchmarks demonstrate that while pretraining improves some GFMs
relative to their own random initialization, we also identified several randomly initialized models
like Caduceus, DNABERTV2, and HyenaDNA that can match or exceed pretrained performance
across a wide range of tasks.

Unlike foundation models in other domains, such as computer vision (Radford et al., 2021) and
NLP (Brown et al., 2020), where pretraining typically leads to significant improvements in down-
stream task performance, the current pretraining strategies in genomics are barely able to outper-
form randomly initialized models. Moreover, even in cases where pretrained models maintain an
advantage, the gains from pretraining are surprisingly small - typically within 2-3%. Together,
these modest gains may not justify the large amounts of compute required for pretraining in ge-
nomics (Dalla-Torre et al., 2024), especially for these commonly used fine-tuning tasks.

3.2 FINETUNING WITH LIMITED DATA

To examine whether pretraining is more beneficial when labels are scarce, we repeated finetuning
for four representative models: NT-50M (k-mer), DNABERT-2 (BPE) and GENA-LM (BPE), and
HyenaDNA (character), on four NT Benchmark tasks (H3K4mel, H3K4me3, H3K9ac, enhancers)
using 1%, 5%, 10%, and 50% of the training labels. For each combination of model, dataset, and
data fraction, we performed a full hyperparameter sweep over four learning rates (le-5, Se-5, le-4,
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Char tokenizer by default Subword tokenizer by default

Tokenizer Pretrain | Mistral HyenaDNA Caduceus | NTv250M GENA-LM DNABERTv2 NT 500M
default v ‘ 0.730 0.638 0.423 ‘ 0.679 0.704 0.654 0.662
default X 0.667 0.690 0.674 0.482 0.574 0.651 0.603
char X 0.666 0.690 0.674 0.642 0.668 0.696 0.669
+larger embed dim X 0.700 0.753 0.717 0.703 0.684 0.708 0.678
pretrained — random ‘ 3.0% -11.5% -29.4% ‘ -2.4% 2.0% -5.4% -1.6%

Table 2: Biotype classification F1 scores for pretrained vs. randomly initialized models. Optimizing
the tokenizer and embedding dimension (rows 3-4) allows most random models to surpass their
pretrained counterparts (last row).
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Figure 3: Pretraining benefit in low-resource regimes depends on tokenization. Performance
curves for H3K4mel and Enhancers at 1%, 5%, 10%, and 50% data fractions. Subword models
(DNABERT-2, GENA-LM) show consistent gains from pretraining (solid / pretrained vs dashed /

random lines), while the char-level model (HyenaDNA) often shows smaller benefits.

5e-4) trained for 30 epochs, ensuring that both pretrained and random baselines were compared at
their optimal settings. The results are displayed in Fig. 3. Pretraining yields consistent and some-
times large gains for the BPE models across all label fractions (with the largest absolute improve-
ments at 1-5%), whereas the character-level HyenaDNA model derives much smaller and sometimes
negligible gains from pretraining in the same regime. This confirms that the tokenizer-dependent
pattern persists, and is more pronounced, in low-resource settings.

3.3 TOKENIZER EFFECT ABLATION

To causally isolate the effect of tokenizer on model performance, we performed a controlled ablation
study. We pretrained two identical HyenaDNA models (same model size, same Human Reference
Genome dataset, same # of training iterations) differing only in their tokenizer; one using a character
tokenizer and the other using a 6-mer tokenizer. Both models were then finetuned on a representative
subset of the NT Benchmark, specifically the enhancers, H3K4me3, and H3K9ac tasks, and we
report the performance averaged across these three tasks. Results are presented in Table 3.

The results in Table 3 offer a critical insight. Although the character-level model achieved a lower
pretraining loss (1.180 vs 1.215), the k-mer model significantly outperformed it on downstream
tasks (+0.187 MCC advantage). This finding demonstrates that pretraining perplexity can be a mis-
leading proxy for downstream task performance. The k-mer tokenization may be providing a useful
inductive bias by forcing the model to learn representations of motif-like sequences from the outset,
a process that is likely translating to more effective performance on these functional genomics tasks.

3.4 FEATURE EXTRACTION

The biotype classification task assesses the quality of features extracted from both pretrained and
rand. init. models. Unlike in finetuning, this task does not involve updating model weights. In other
words, embeddings for randomly initialized models were extracted without any finetuning and were
entirely based on their initial random weights.
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Using sequences and biotype labels from the Gencode (Harrow et al., 2012), we extracted features
from models with frozen weights and applied max pooling along the token dimension. These pooled
features were then used to train an XGBoost classifier to predict among nine biotype labels. See
Appendix for dataset details.

We observed that the choice of tokenizer significantly impacts the performance of rand. init. en-
coder models. In particular, switching these models from their default k-mer or BPE tokenizers with
large vocabularies (Table 1) to a char tokenizer that has only four tokens substantially improved their
performance (third row of Table 2, right part). For example, for NTv2 50M, the performance in-
creased from 0.48 to 0.64. Char tokenizer is standard for decoder models, hence the identical results
in the second and third rows of Table 2 for decoder models. This improvement likely stems from
random models’ difficulty handling large vocabulary sizes. Initially, the random HyenaDNA model
achieved the highest F1 score (0.69) among random models despite its small 128-dimension em-
beddings, prompting us to investigate how embedding size affects performance. We tested various
embedding dimensions across all models, keeping other parameters constant and ensuring divisi-
bility by the number of attention heads. Complete embedding configurations are detailed in the
Appendix.

To decouple embedding dimension from initialization (random vs pretrained), we pretrained new
HyenaDNA models from scratch across a full range of embedding dimensions, and compared it to
its randomly initialized counterpart under the identical encoder, tokenizer (character), pooling, and
classifier setup. The paired curves in Fig. 5 show that pretraining provides an advantage only at
very small width (d=64); by d=128 the gap closes, and for all larger widths the randomly initialized
model matches or exceeds the pretrained model. Thus, on biotype, the effect of pretraining is brittle
with respect to model capacity.

In a related experiment, we find that (Fig. 4) as the embedding dimension of randomly initialized
models increases, their performance improves, for nearly all of the models we tested. HyenaDNA
shows consistent improvements, reaching an F1 score of nearly 0.75 at 4096 dimensions. NTv2
50M exhibited a more dramatic improvement, with its F1 score rising from 0.53 to 0.71. Further,
on GUE histone tasks (Appendix — Table 13), random HyenaDNA (d=2048) is best on 9/10 tasks,
again indicating that capacity interacts strongly with initialization. Also, as shown in the fourth row
of Table 2, increasing the embed. dim and using a char tokenizer allowed randomly init. models to
outperform pretrained in 5 out of 7 cases.
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Figure 6: (a) Mutation sensitivity—cosine similarity between reference and mutated sequences re-
mains high under both pooling schemes, indicating limited sensitivity to SNPs. (b) Ancestry clas-
sification (F1)—random Caduceus (0.76) is highest; random HyenaDNA (0.69) slightly exceeds its
pretrained counterpart; others are comparable.

3.5 GENOMIC VARIATION

This section transitions from functional element classification to genomic variation tasks, analyzing
mutations like single nucleotide polymorphisms (SNPs), insertions, and deletions between individu-
als. While functional elements remain largely consistent across populations, genomic variations are
individual-specific and can significantly impact phenotype and disease risk. These tasks present a
unique challenge for GFMs, which must detect and interpret subtle sequence differences, often down
to single nucleotide changes, to understand human genetic diversity and its health implications.

Ancestry prediction is a multilabel classification task that predicts an individual’s ancestry using a
small portion of their genome. We constructed an ancestry dataset from 1000G data (Consortium
et al., 2015), using HG38 and applying mutations from each 1000G sample to obtain 32K-base
consensus sequences. These sequences differ by 0.5% of positions, with an average of 33 variants
(SNPs, insertions, and deletions). Embeddings generated from these sequences were used as features
for XGBoost classification.

When generating the dataset, we selected eleven different regions of the genome, treating each as a
separate fold, and evaluated our models on each region independently, reporting average (Fig 6 (b)).
See Appendix for dataset details.

Results in Fig 6 (b) show that randomly initialized models generally match pretrained models’ per-
formance. Only Mistral and GENA-LM showed marginal improvement with pretraining (F1 differ-
ence: 0.07 and 0.03). Caduceus achieved the highest F1 score (0.76) in both random and pretrained
versions. The NT 500M model, despite being trained on 1000G variants, showed no advantage over
its random initialization. This performance pattern could stem from two factors: the high masking
probability (15%) in masked language modeling, which exceeds the natural mutation rate (0.5%),
and the k-mer tokenization (6 nucleotides) that poorly captures single nucleotide variations.

Mutation Sensitivity Analysis. We further investigated models’ limited ancestry prediction perfor-
mance and assess their capability in capturing subtle genomic variations, at the SNP-level. These
experiments verify the models’ ability to detect differences between reference sequences and se-
quences with inserted SNPs. We focused exclusively on SNPs to eliminate sequence length as a
confounding factor.

We measure the cosine similarity between the embeddings of the reference DNA sequence and the
embeddings of the same sequence with SNPs introduced, using both global last/CLS pooling and
mutation-site pooling that aggregates representations only at tokens overlapping the SNPs. Lower
similarity scores indicate better model sensitivity in detecting biologically significant changes, while
high scores suggest the model fails to distinguish important genetic variations.

To ensure robustness, we conducted this experiment by sampling twenty-five 1024-length sequences
from chromosomes 7, 11, 12, 17, and 19 in HG38, with five sequences per chromosome. The 1024-
length was chosen to avoid chunking effects, ensuring it fits within all models’ context windows. For
each sequence, we created variants by introducing mutations at increasing frequencies (1, 64, 128,
256, 512, 1024) at random positions. Embeddings for both the reference and mutated sequences
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Gene NT500M NTv250M HyenaDNA Mistral Caduceus GENA-LM DNABERTv2
BRCA2 0.511 0.478 0.439 0.495 0.505 0.408 0.535
CFTR 0.442 0.365 0.454 0.345 0.442 0.421 0.536

Table 4: Near-random AUROC scores from log-likelihood ratio tests on ClinVar variants, indicating
poor model sensitivity to clinically relevant mutations.

Gene Mutation Type | NT500M NTv250M DNABERTv2 HyenaDNA Mistral GENA-LM Caduceus
TPS3 Benign 0.985 0.991 0.995 0.999 0.976 1.000 0.985
Pathogenic 0.983 0.993 0.996 0.999 0.988 1.000 0.990
BRCA2 Benign 0.999 0.984 0.964 0.996 0.907 0.996 0.996
Pathogenic 1.000 0.984 0.955 0.999 0.981 1.000 0.973
CFTR Benign 1.000 0.998 0.998 1.000 0.999 1.000 0.999
Pathogenic 1.000 0.999 0.998 1.000 0.996 1.000 0.999

Table 5: Gene-specific Variant Detection. Distinguishing benign vs. pathogenic variants in TP53,
BRCAZ2 and CFTR genes. Lower values are better.

are then generated using different methods: last / cls tokens (based on the decoder or encoder), and
pooling the tokens only at mutation sites (denoted as “mutation® in Fig. 6). These two approaches
were tried to cover different ways of interpreting the embeddings generate by the model during
downstream evaluations.

Fig. 6 illustrates the cosine similarity between reference and altered sequences across different pool-
ing types. Despite the models using different tokenizers, the results are generally poor. For most
models, both last / cls and mutation pooling produced high cosine similarity values even for a single
mutation regime, typically 0.9 or higher. As the number of mutations increases the cosine simi-
larity also tends to increase, presumably due to averaging effect. Among the models tested, the
Mistral-based DNA model showed the lowest cosine similarity for last pooling and relatively low
cosine similarity for mutation pooling. In contrast, GENA-LM and NT 500M produced high co-
sine similarity scores close to 0.999 for both pooling types. These results indicate that most models
are not significantly affected by mutations, thereby highlighting their limited ability to detect subtle
sequence alterations, irrespective of their tokenizers.

ClinVar Experiments. To further investigate the sensitivity of GFMs to sequence alterations, we
conducted additional experiments using ClinVar data (Landrum et al., 2014), which includes genetic
variations among individuals. These experiments aim to verify our previous findings in a more
realistic setting, using real-world genetic variations from ClinVar. We analyze the TP53, BRCA2
and CFTR genes and obtained their gene sequences from NCBI (Sayers et al., 2022).

First, we filtered the variants to include only exonic mutations. This ensures a focus on mutations
that affect protein-coding regions, which are of greatest interest in clinical genetics. Next, we cat-
egorized the variants into two groups based on clinical significance: benign and pathogenic. The
benign group included variants labeled as Benign’, 'Likely benign’, or *Benign/Likely benign’,
while the pathogenic group comprised variants classified as *Pathogenic’, ’Likely pathogenic’, or
’Pathogenic/Likely pathogenic’. This grouping enables us to compare the model’s sensitivity to
mutations with different clinical impacts.

After preprocessing the data, we take five chunks of 1024 base pairs for each gene independently
that have both benign and pathogenic mutations. We created three sequences for each chunk: the
original reference, one with only pathogenic mutations, and one with only benign mutations. The
distribution of mutations is shown in the Appendix.

This variation in mutation density allows us to observe the model’s sensitivity across different levels
of sequence alteration. For each chunk, we applied max pooling to the model outputs and computed
the cosine similarity between the reference sequence and both the benign and pathogenic versions.
Finally, we averaged cosine similarity over five selected chunks. The results presented in Table 5
showed consistently high similarity scores across all models and mutation types, indicating the con-
sistent failure of models to reflect genomic variance in their embeddings.
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Log-Likelihood Ratio Analysis. To further probe the sensitivity of the models to single-nucleotide
changes, we evaluated them using log-likelihood ratios, following the methodology of Benegas
et al. (2025a). This approach allows us to assess each model’s ability to distinguish between alleles
without any finetuning. Specifically, for a single-nucleotide variant defined by a reference base
(REF) and an alternative base (ALT) at a given position, we compute the log-likelihood ratio:

log ggﬁ;};g . For encoder-only masked language models, we follow (Benegas et al., 2025a) and
approximate these log probabilities using the softmax scores at the masked variant position, holding
the surrounding context fixed. We applied this method to each pathogenic variant in the BRCA2 and
CFTR genes from our ClinVar dataset. Log probabilities for the mutated and reference nucleotides
were computed directly from the pretrained models at the specific mutation sites. We then used these
log-likelihood ratio values to compute AUROC scores for distinguishing pathogenic from benign
variants.

The results, presented in Table 4, show that model performance remained near random chance, with
AUROC scores between 0.345 and 0.536. This finding further supports our earlier conclusions,
providing site-specific evidence that existing pretrained GFMs have limited sensitivity to clinically
significant mutations.

4  DISCUSSION

We evaluated seven Genomic Foundation Models (GFMs) across 52 tasks spanning three standard
benchmarks under finetuning, frozen—feature, and variant sensitivity settings, and covering regu-
latory, functional, and structural genomics tasks. Two consistent observations emerge. First, the
random baseline is strongly influenced by tokenization, and the character-tokenized models often
attain high performance without pretraining, matching or surpassing much larger pretrained subword
models (Sec. 3.1). Second, the benefit of pretraining is conditional; we do observe it for subword
tokenizers and model/recipe combinations (that pose a harder from-scratch representation learning
problem), but find the pretraining gains are inconsistent for character tokenizers. The paired com-
parison in Fig. 1 makes these patterns explicit by plotting each model’s pretrained score against its
own randomly initialized counterpart.

What drives the baseline, and when does pretraining help? Reading Fig. 1 left-to-right (ran-
dom) and bottom-to-top (pretrained) shows that character tokenization provides a strong starting
point. Subword models (k-mer/BPE) frequently gain more from pretraining, whereas character
models display smaller or variable gains. Architecture matters as well — the character-tokenized
Mistral benefits from pretraining, indicating that tokenizer, architecture, and scale jointly determine
whether pretraining adds signal rather than noise. This tokenizer dependence persists in label-scarce
regimes (Fig. 3). With only 1-5% of labels, subword models (e.g., DNABERT-2, GENA-LM) show
improvements from pretraining (e.g., DNABERT-2 gains ~+0.25 MCC on H3K4mel at 1%), while
the character model (HyenaDNA) often shows negligible or negative transfer. In short, pretrain-
ing helps most when it amortizes a difficult token-representation problem that supervised finetuning
alone cannot solve within budget.

Mechanism - tokenizer inductive bias and a causal test. To ascertain the role of tokenizers in
leading to the results we observed, we further fixed the architecture and training recipe and changed
only the tokenizer for results reported in Table 3. Despite achieving a lower pretraining loss, the
character-tokenized model yielded substantially worse downstream MCC than its k-mer counter-
part (+0.187 average advantage for k-mer). Two implications follow. (i) Pretraining loss can be
a poor proxy for discriminative genomics: language-model objectives capture token predictability
that does not necessarily align with downstream labels. (ii) Tokenizer inductive bias can dominate
downstream performance independently of loss. Intuitively, these can be explained as follows. A
compact character vocabulary creates an easy input space for randomly initialized models, produc-
ing a strong baseline; whereas large subword vocabularies create a sparse, hard input space where
pretraining confers more value by learning token representations that finetuning alone struggles to
form.

Feature quality at zero training and evaluation hygiene. In the frozen-feature setting one might
expect pretrained features to dominate, since the random arm receives no weight updates. Instead,
modest architectural choices (character tokens and increased embedding dimension) make random
features competitive and often superior (Table 2; per-task details in the Appendix). Further, un-
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der a matched HyenaDNA architecture and a full embedding dimension sweep, pretraining helps
only at d=64 and loses its advantage from d=128 upward (Fig. 5), indicating that capacity rather
than pretraining drives most of the gains on that task. Together with our LoRA vs. full-finetuning
comparison (Table 8), we arrive at two main observations: (i) well-tuned random baselines (hy-
perparameters tuned, with lightweight architectural choices) can achieve competitive representation
quality; and (ii) cross-modal comparisons where random baselines are tuned with LoRA are likely
under-reporting performance for random baselines.

Variant sensitivity is a central gap. Many practical applications hinge on single-nucleotide differ-
ences. Across pooling schemes, including mutation-site pooling, embedding similarities between
reference and mutated sequences remain high (Figure 6), and ClinVar log-likelihood ratio tests yield
AUROC values near chance (Table 4). Character-tokenized models (e.g., Mistral, Caduceus) some-
times show lower similarity or stronger ancestry classification, but effect sizes are small. These
findings indicate that, regardless of pretraining status, common objectives and tokenizers do not re-
liably encode allele-level information needed for pathogenicity, eQTL/sQTL, or related tasks. This
points to the need for mutation-aware objectives, tokenization that preserves single-base signals, and
evaluation tasks that directly stress allele-level sensitivity.

Limitations and Outlook. Our study targets discriminative sequence classification and
frozen-feature quality. Several evaluated models also have short context windows (128-1024), which
limits our ability to conduct long-range experiments oftern requiring 100k or longer context. We do
not test generative sequence design or long-range modeling tasks such as gene-expression regression
or enhancer—promoter linkage, where specialized supervised models and new generative architec-
tures (Evo2 (Brixi et al., 2025b), GenomeOcean (Zhou et al., 2025), Enformer-style models) remain
strong baselines.

Limitations. (i) We analyze seven GFMs; broader coverage (e.g., quantized or graph-based models)
is outside scope. (ii) Variant sensitivity is evaluated with cosine similarity and site-wise LLR on se-
lected genes; further diagnostics (e.g., per-base in-silico mutagenesis with attribution maps; compar-
isons to CADD/Enformer; eQTL/sQTL ground truths) are natural extensions. (iii) Our mechanism
study isolates tokenizer effects; other factors (masking schedules, positional encodings, curriculum)
could be grounds of evaluation for future work. (iv) We focus on maximizing performance of each
model, and therefore limit our analysis to default precision. Extension to quantized models (e.g.,
GERM (Luo et al., 2025)) could be considered by the future studies.

Outlook. Three practical paths follow from these results. (i) Short-range classification — com-
pact, character-tokenized models are strong and compute-efficient random baselines; reporting well-
tuned random baselines should become standard practice. (ii) Subword models and label-scarce
regimes — expect gains from pretraining, but align the objective with use (e.g., mutation-aware
masking, contrastive signals anchored at variant loci, and multi-scale local—global supervision). (iii)
Variant-centric applications — clear evidence that the community should prioritize tokenizer and
objective function redesign before further scaling. In parallel, community benchmarks that couple
allele-level probes with long-range regulatory tasks, and require transparent architectural controls,
will better track genuine representation gains rather than proxy loss reductions.

5 CONCLUSION

Our comprehensive evaluation of GFMs highlights significant limitations in current pretraining
approaches. Across standard classification benchmarks, pretrained GFMs offer at most modest,
tokenizer- and architecture-dependent advantages over tuned randomly initialized counterparts. We
also found that existing GFMs exhibit insufficient sensitivity to variants, which limits their utility
in tasks requiring variant interpretation. We identify areas for methodological refinement, including
optimizing masking approach, employing character-level tokenization, and designing specialized
architectures better attuned to biological sequence complexity. Additionally, our extensive hyperpa-
rameter optimization helped ensure the robustness of these conclusions. While genomic pretraining
still holds promise, particularly in specialized generative contexts, realizing the vision of broadly
applicable, clinically relevant GFMs will require a fundamental reassessment of current practices.
We hope our findings encourage the genomic modeling community to develop more biologically
informed approaches, rigorous benchmarks, and targeted strategies, ultimately bridging the gap be-
tween computational advancements and tangible biomedical impacts.

10
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6 REPRODUCIBILITY STATEMENT

Our code is available at github.com/z6JfFK/gfm. In our study we used such publicly available
datasets as:

* 1000 Genomes Project VCF files can be accessed at International Genome Sample Resource
(IGSR) (Fairley et al., 2020).

* GRCh38 reference genome assembly can be downloaded from (National Center for Biotechnology
Information (NCBI)).

* Gencode (Frankish et al., 2019) gene annotation used for biotype labelling.

e NT Benchmark datasets are introduced in (Dalla-Torre et al., 2024).

* Genome Understanding Evaluation (GUE) multi-species benchmark is introduced in (Zhou et al.,
2024).

* Genomic Benchmarks is introduced in (GresSova et al., 2023).

* ClinVar variant records for TP53, BRCA2 and CFTR and corresponding gene sequences are down-
loaded from NCBI (National Center for Biotechnology Information (NCBI)).

Details on training hyperparameters for evaluations are provided in the Appendix. Finally, the Ap-
pendix includes a description of the computational environment used for our experiments.
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A APPENDIX

A.1 RELATED WORKS

Genomic Foundation Models. Encoder-only approaches have proven effective in sequence pre-
diction tasks, using k-mer tokenization (Ji et al., 2021; Dalla-Torre et al., 2024), Byte Pair Encod-
ing (Zhou et al., 2024; Sanabria et al., 2024), and learnable vector quantization codebooks (Li et al.,
2024) to enhance efficiency and manage longer sequences. Certain encoder architectures have been
enhanced with recurrent memory mechanisms (Fishman et al., 2025) to capture long-range depen-
dencies more effectively, while others utilize whole-genome alignments (Benegas et al., 2025a) to
incorporate evolutionary context. More recent work has explored pan-genome graph representa-
tions (Zhang et al., 2024) to better capture genetic variation diversity.
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Meanwhile, decoder-only architectures have shown potential by integrating structured state-space
models (Nguyen et al., 2023; Schiff et al., 2024), achieving competitive performance with minimal
parameters and supporting long context lengths. Hybrid architectures (Nguyen et al., 2024; Brixi
et al., 2025a), incorporating both attention and state-space blocks, have emerged, demonstrating
great generative capabilities spanning from molecular to genome scales. Our work introduces a
GFM based on Mistral architecture (Jiang et al., 2023) and performs performance analysis of the
most recent GFMs.

Genomic Foundation Models Analysis. It was shown that k-mer embeddings pretrained on ran-
dom DNA sequences can reach similar performance to those of trained on the real-world biological
data (Zhang et al., 2023). Another study found that character tokenization outperforms other meth-
ods in state-space models (Lindsey et al., 2024). Evaluation of GFMs across the BEND benchmark
reveals that they capture limited information on long-range features (Marin et al., 2024). It was also
shown that mean pooling improves performance of GFMs for genomic sequence classifications and
closes the performance gap between them (Feng et al., 2024). Pretrained DNA models were bench-
marked (Tang et al., 2024) showing they do not offer great advantage over conventional machine
learning methods. In contrast to this study, our analysis includes finetuning and variant-based tasks,
more models and also shows that randomly initialized models can be better as feature extractors.

A.2 MODELS

We use the following GFMs in our analysis:

* HyenaDNA (Nguyen et al., 2023): Decoder-only state-space model with 450K parameters. Uses
character tokenizer and was pretrained on the Human Reference Genome with a 1024 base pair
sequence length.

* Caduceus (Schiff et al., 2024): Decoder-only model with 8M parameters. Trained on sequences of
131k base pairs on HRG. Combines a bidirectionally equivariant decoder with character tokenizer.

* Mistral (our version): Decoder-only transformer model with 580M parameters. Uses character
tokenization and was trained on the 1000 Genomes dataset (Consortium et al., 2015).

* Nucleotide Transformer (Dalla-Torre et al., 2024): Encoder-only model presented in two ver-
sions: a 500M parameter model trained on the 1000 Genomes Project data and its v2 with S0M
parameter model trained on multispecies data. Both use k-mer tokenization.

* GENA-LM (Fishman et al., 2025): Encoder-only model with 110M parameters. Employs BPE
tokenizer and was pretrained on the HRG with 1000G augmentations.

* DNABERTYV2 (Zhou et al., 2024): Encoder-only model with 117M parameters. Uses BPE tok-
enization and was trained on multispecies data.

A.3 RANDOM WEIGHT INITIALIZATION

We initialized the model weights following a procedure using standard Hugging Face Transformers
library (Wolf et al., 2020) initialization methods:

¢ For Linear Layers: Weights were initialized from a normal distribution A/(0, 0.02), biases were
initialized to zero.

* For LayerNorm: The scaling factor (gamma) was initialized to 1. The bias term (beta) was
initialized to O.

* For Embedding Layers: Embeddings were initialized from the same normal distribution

N(0,0.02).

For Caduceus and HyenaDNA we performed prenorm residual rescaling, which is the default weight
initialization procedure for these models. Biases for linear layers were initialized as zeros.

A.4 MISTRAL PRETRAINING

We pretrain a Mistral model on 50 random individual samples from the Genome1000 project. Ta-
ble 6 provides the Mistral configuration details and Table 7 provides the Mistral training configura-
tion. Specifically, reverse complement of sequences formed with Genomel000 VCFs is used with
a probability of 0.5. All the chromosomes (chrl - chrX) are used for sequence formation from 50
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individuals. Individuals are sampled in a stratified way, 10 from each superpopulation. We filtered
out sequences where number of unknown nucleotides was more than half of sequence length. Total
number of tokens is 150B. We used PyTorch FSDP framework. Training was done on GPU cluster
using 6 nodes with 8 Nvidia H100 GPUs per node.

config value
tokenizer character
config value sequence_len 4096
num_hidden_layers 16 num_epochs 1
num_attention_heads | 16 initial_Ir 7.2e-4
hidden_size 1408 final_Ir 4.2e-5
vocab_size 12 optimizer_momentum | (1,82 = 0.9,0.95
intermediate_size 7168 Ir schedule cosine with warmup
batch_size 64
Table 6: Mistral model architecture. num_genomes 50

Table 7: Mistral training configuration.

A.5 COMPUTING INFRASTRUCTURE

We used the following computing infrastructure to run the experiments:
Hardware Specifications:

* GPU Cluster: 6 nodes with 8 Nvidia H100 GPUs per node (48 H100 GPUs total)
* GPU Memory: 80GB

Software Specifications:

* Framework: PyTorch with FSDP (Fully Sharded Data Parallel)
* CUDA Version: 12.1

A.6 FINETUNING EXPERIMENTS

We use the following datasets for finetuning, more details about them can be found in the corre-
sponding original papers:

* NT Benchmark (Dalla-Torre et al., 2024) consists of the following group of tasks histones, en-
hancers, promoters and splice sites.

* Genomic Benchmarks (Gresova et al., 2023) contains several datasets focused on regulatory
element classification tasks across three organisms: human, mouse, and roundworm.

* Genome Understanding Evaluation (GUE) (Zhou et al., 2024) is a comprehensive multi-species
benchmark containing 28 datasets across 7 genomic analysis tasks including promoter detection,
transcription factor prediction, splice site detection, etc. with sequence lengths ranging from 70
to 1000 base pairs.

We finetune random and pretrained initializations of the chosen model using the configuration pro-
vided in Table 9. In our preliminary experiments, we found that max pooling performed better than
cls / last pooling for randomly initialized models while maintaining performance for pretrained, so
we used max pooling consistently across all experiments.

Additionally, we perform an ablation for full finetuning vs LoRA (Hu et al., 2022) finetuning and
present the result in Table 8. In all the cases, full finetuning outperforms LoRA, suggesting that our
full finetuning method gives the best chance for the models (both pretrained and random) to achieve
their best scores.
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Figure 7: Pretraining provides limited or no advantage over randomly initialized models across
diverse genomic tasks. We plot the performance difference (A MCC or A Accuracy) between
seven pretrained GFMs and the best-performing randomly initialized model for each task. Red bars
indicate tasks where the randomly initialized model outperformed, whereas green bars indicate
tasks where the pretrained model performed better. The predominance of red bars provides strong
evidence that current pretraining paradigms, adapted from NLP, offer minimal benefit for genomics
tasks. Notably, smaller randomly initialized models (e.g., Caduceus) frequently achieve the best
performance, challenging the assumption that larger pretrained models are inherently superior.

config value
Model Method enhancers H3K4mel promoter_all splice_sites_all optimizer ﬁdgm;)z 5. 5¢.5
LoRA 0.449 0.260 0.908 0.501 learning_rate A
GENA-LM - - -
Full 0.560 0.466 0.966 0.935 . 8e-5, Ie-4, 3e-4
weight_decay 0
Mistral LoRA 0.470 0.267 0.906 0.525 8, =0.9
) Full 0.550 0.557 0.965 0.980 optimizer_momentum ﬂ; _ 0'9;)9
NTv2 50M LoRA 0.405 0.267 0.852 0.458 batch_size 32
Full 0.551 0.524 0.957 0.979 .
Ir schedule cosine
epochs 20/100

Table 8: LoRA vs. full finetuning on four representative

NT tasks. The metric is MCC for enhancers and histone, Table 9: Hyperparameters for fine-

and F1 for promoters and splice sites. Across all cases full tuning experiments. For GUE we

finetuning performs better than LoRA. finetune for 20 epochs for NT Bench-
mark and Genomic Benchmarks we
use 100 epochs.
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A.7 DETAILED FINETUNING PERFORMANCE BY TASK SUBGROUP

To showcase the individual performance of randomly initialized models, we present their results
on NT Benchmark alongside pretrained models in Fig. 8. For instance, the “Enhancers” subgroup
includes all enhancer-related tasks, while the “Histone” subgroup covers all histone tasks, and so
on. In addition, we also show this for GUE and Genomic Benchmarks in Fig. 9 and Fig. 10. We also
provide results for all models on NT Benchmark in Table 18.

The results presented in Fig. 8 highlight that randomly initialized models can perform remarkably
well across all subgroups of the NT Benchmark. In the Enhancers” subgroup, all randomly initial-
ized models perform comparably to their pretrained counterparts. In histone tasks, the best random
models, DNABERTV2 and Caduceus, reach average MCC scores of 0.62 and 0.63, outperform-
ing pretrained NTv2 50M, HyenaDNA, GENA-LM, and NT 500M. In case of randomly initialized
Caduceus it also outperforms its own pretrained version.

Enhancers Histones

SN\

NNNNEL

0

Figure 8: NT Benchmark performance per subgroup. Pretrained models (clear bars) vs randomly
initialized (dashed bars). Random models are competitive across all subgroups, with random Ca-
duceus outperforming five pretrained models on challenging histone tasks. Red dashed line shows
best random model score.

Epigenetic Marks Promoter Detection TF Prediction (Human)

Figure 9: GUE performance for each model. Solid bars indicate pretrained model, dashed bars
indicate random. Horizontal red dashed line indicates the performance of the best random model.
The best rand. init. model is consistently competitive with pretrained models.
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Figure 10: Genomic Benchmarks performance for each model. Solid bars indicate pretrained
model, dashed bars indicate randomly initialized. Horizontal red dashed line indicates the perfor-
mance of the best random model.

A.8 BIOTYPE CLASSIFICATION

Biotype task is a sequence classification task into nine different labels. Our dataset consists of a total
of 19605 sequences. The detailed statistics for sequences belonging to each gene type is provided
in Table 10. For the supervised training step, we perform a train-test split of 80% : 20% using
stratification by class label. We use XGBoost with the hyperparameters provided in Table 12. All
metrics are reported on the test set.

In addition, we also perform similar feature extraction experiments on the subset of GUE benchmark
displayed in Table 13. Randomly initialized HyenaDNA with large embedding size outperforms all
pretrained models.

Gene Type Count Avg Length Max Length Min Length
TEC 1056 1613.26 18662 87
IncRNA 3000 32359.59 957949 87
miRNA 1879 81.89 180 41
misc RNA 2212 206.49 464 57
processed pseudogene 3000 798.02 12016 28
protein coding 3000 69971.51 2059620 159
snRNA 1901 110.46 328 50
snoRNA 943 118.86 791 55
unprocessed pseudogene | 2614 5025.27 233909 28

Table 10: Statistics of biotype genes.
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Model Embedding Dimensions config value
HyenaDNA | 64, 128, 256, 512, 1024, 2048, 4096 objective multi:softmax
Caduceus 64, 128, 256, 512, 1024, 2048 num_classes | 9

NTv2 50M 64, 128, 256, 512, 1024, 2048, 4096 max_depth 3
DNABERTV2 | 48, 96, 192, 384, 768, 1152, 1536, 2304, 3072 learning_rate | 0.1
GENA-LM 48, 96, 192, 384, 768, 1152, 1536, 2304, 3072 n_estimators | 1000

NT 500M 100, 320, 640, 1280, 2560, 3840 eval_metric mlogloss
Mistral 64, 128, 256, 512, 1408, 2048, 4096 tree_method | hist

Table 11: Embedding dimensions for biotype Table 12: Biotype XGBoost configuration.

experiments.
Pretrained
Task HyenaDNA Random ED 2048 | Mistral HyenaDNA NTv250M GENA-LM DNABERTv2 NT 500M
H3 0.650 0.626 0.510 0.502 0.546 0.566 0.557
H3K14ac 0.275 0.227 0.190 0.272 0.208 0.338 0.220
H3K36me3 0.408 0.267 0.252 0.330 0.321 0.397 0.308
H3K4mel 0.320 0.224 0.211 0.275 0.244 0.295 0.267
H3K4me2 0.265 0.243 0.186 0.176 0.218 0.185 0.245
H3K4me3 0.207 0.126 0.105 0.147 0.113 0.189 0.121
H3K79me3 0.522 0.428 0.367 0.463 0.437 0.520 0.406
H3K9%ac 0.429 0.373 0.288 0.273 0.318 0.343 0.343
H4 0.671 0.649 0.491 0.575 0.577 0.658 0.612
H4AC 0.282 0.227 0.202 0.227 0.200 0.259 0.225
Average 0.403 0.339 0.280 0.324 0.318 0.375 0.330

Table 13: Feature Extraction on Histone Tasks from GUE. Embeddings extracted from pre-
trained and randomly initialized models were used to train an XGBoost classifier. Randomly initial-
ized HyenaDNA with embed_dim 2048 outperforms every pretrained model on every task except
H3K14ac. MCC on test set is reported.

A.9 ANCESTRY BENCHMARK

Each task is the sequence classification task with five labels, South Asian, European, African, Amer-
ican, East Asian. Each label is a superpopulation from 1000 Genomes dataset. We selected eleven
different regions on chromosome with the length of 32K nucleotides, where each region corre-
sponds to a different variant. The start indices with respect to the human reference genome used for
sequence construction is provided in Table 14. Each task has 3202 samples.

Training involves two stages: embedding generation from the model of interest and supervised train-
ing on the embeddings with XGBoost. During the embedding generation step, sequence embeddings
are constructed similarly to the biotype classification task. For the supervised training step, we split
the dataset into train, validation and test set with sizes 72%, 8%, and 20% respectively. We use
XGBoost with hyperparameters mentioned in Table 15. All metrics are reported on the test set and
averaged over eleven tasks across each chromosome.
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chromosome | start position

chrl 119478211 config value
chr3 2015011 objective multi:softmax
chr5 85769129 num-class 5

chr7 74672986 max_depth 3

chr9 75197358 learning_rate 0.1
chrll 62543311 n_estimators 1000
chrl3 52182164 colsample_bytree 0.5
chrl5 45995594 eval_metric mlogloss
chrl7 36628720 tree_method hist
chrl9 24308808 early_stopping rounds | 100
chr21 18354991

Table 15: Ancestry XGBoost configuration.
Table 14: Sample chromosome positions.

A.10 CLINVAR EXPERIMENTS

Each chunk used for ClinVar experiments consists of benign and pathogenic mutations. Three types
of sequences are formed: reference sequence, sequence with benign mutations, and sequence with
pathogenic mutations. The distribution of mutations in these chunks for all three genes is presented
in Table 16.

TP53 BRCA2 CFTR
Chunk Index . . . . . .
Benign Pathogenic Benign Pathogenic Benign Pathogenic
1 122 27 138 46 32 18
2 60 61 268 74 19 11
3 51 50 187 57 32 30
4 76 42 35 18 9 13
5 38 10 37 6 7 11

Table 16: Mutation Data Distribution by Gene and Chunk. Distribution of benign and pathogenic
mutations across different chunks for TP53, BRCA2, and CFTR genes.

A.11 MODEL CHECKPOINTS

Checkpoints for all the pretrained models were obtained from Hugging Face. Table 17 provides
detailed checkpoint IDs which can be loaded using the transformers library.

Model Checkpoint

NTv2 50M InstaDeepAl/nucleotide-transformer-v2-50m-multi-species

NT 500M InstaDeepAl/nucleotide-transformer-500m-1000g

Caduceus kuleshov-group/caduceus-ps_seqlen-131k_d_model-256_n_layer-16
HyenaDNA LongSafari/hyenadna-tiny-1k-seqlen-hf

DNABERTV2 | zhihan1996/DNABERT-2-117M

GENA-LM AIRI-Institute/gena-lm-bert-base-t2t

Table 17: Checkpoints used for pretrained models.
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