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ABSTRACT

Graph Neural Networks (GNNs) are popular models for machine learning on
graphs that typically follow the message-passing paradigm, whereby the feature
of a node is updated recursively upon aggregating information over its neighbors.
While exchanging messages over the input graph endows GNNs with a strong
inductive bias, it can also make GNNs susceptible to over-squashing, thereby
preventing them from capturing long-range interactions in the given graph. To
rectify this issue, graph rewiring techniques have been proposed as a means of
improving information flow by altering the graph connectivity. In this work, we
identify three desiderata for graph-rewiring: (i) reduce over-squashing, (ii) respect
the locality of the graph, and (iii) preserve the sparsity of the graph. We highlight
fundamental trade-offs that occur between spatial and spectral rewiring techniques;
while the former often satisfy (i) and (ii) but not (iii), the latter generally satisfy
(i) and (iii) at the expense of (ii). We propose a novel rewiring framework that
satisfies all of (i)–(iii) through a locality-aware sequence of rewiring operations.
We then discuss a specific instance of such rewiring framework and validate its
effectiveness on several real-world benchmarks, showing that it either matches or
significantly outperforms existing rewiring approaches.

1 INTRODUCTION

Graph Neural Networks (GNNs) (Sperduti, 1993; Goller & Kuchler, 1996; Gori et al., 2005; Scarselli
et al., 2008; Bruna et al., 2014; Defferrard et al., 2016) are widely popular types of neural networks
operating over graphs. The majority of GNN architectures act by locally propagating information
across adjacent nodes of the graph and are referred to as Message Passing Neural Networks (MPNNs)
(Gilmer et al., 2017). Since MPNNs aggregate messages over the neighbors of each node recursively
at each layer, a sufficient number of layers is required for distant nodes to interact through message
passing (Barceló et al., 2019). In general, this could lead to an explosion of information that needs
to be summarized into fixed-size vectors, when the receptive field of a node grows too quickly due
to the underlying graph topology. This phenomenon is known as over-squashing (Alon & Yahav,
2021), and it has been proved to be heavily related to topological properties of the input graph such as
curvature (Topping et al., 2022) and effective resistance (Black et al., 2023; Di Giovanni et al., 2023).

Since over-squashing is a limitation of the message-passing paradigm that originates in the topology
of the input-graph, a solution to these problems is graph rewiring (Topping et al., 2022), in which one
alters the connectivity of the graph to favor the propagation of information among poorly connected
nodes. Spatial rewiring techniques often connect each node to any other node in its k-hop (Brüel-
Gabrielsson et al., 2022; Abboud et al., 2022), or in the extreme case operate over a fully-connected
graph weighted by attention – such as for Graph-Transformers (Kreuzer et al., 2021; Mialon et al.,
2021; Ying et al., 2021; Rampasek et al., 2022). Spectral rewiring techniques instead aim to improve
the connectivity of the graph by optimizing for graph-theoretic quantities related to its expansion
properties such as the spectral gap, commute time, or effective resistance (Arnaiz-Rodríguez et al.,
2022; Karhadkar et al., 2022; Black et al., 2023).

While graph rewiring is a promising direction, it also introduces a fundamental trade-off between
the preservation of the original topology and the ‘friendliness’ of the graph to message passing.
Spatial rewiring techniques partly preserve the graph-distance information (i.e. its ‘locality’) by
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Figure 1: Difference between spectral (left), spatial (middle), and LASER (right) rewirings in green
with respect to the blue node of reference. Spectral rewirings are sparse and connect distant nodes.
Spatial rewirings are able to retain local inductive biases at the cost of sparsity. LASER remains both
local and sparse by optimizing over the edges to be added.

only adding edges within a certain radius or by relying on positional information. However, these
methods often result in a dense computational graph that increases memory complexity and can cause
issues such as over-smoothing (Nt & Maehara, 2019; Oono & Suzuki, 2020; Rusch & Mishra, 2020;
Di Giovanni et al., 2022). Conversely, spectral rewiring approaches add fewer edges according to
some optimization criterion and hence better preserve the sparsity of the input graph. However, these
methods ‘maximally’ destroy the locality induced by the graph since they typically insert very ‘long’
edges among distant nodes (see Figure 1). The following natural question then arises: Can we design
a general graph rewiring framework that leverages the inductive bias of spatial methods but in a
more edge-efficient way characteristic of spectral methods?

Contributions and outline. In this work, we address the above question by proposing a general
framework for graph-rewiring that improves the connectivity, while preserving locality and sparsity:

• In Section 3 we review existing rewiring approaches and classify them as either spatial or spectral,
highlighting their limitations. We then provide a general list of desiderata for rewiring that amounts
to (i) reducing over-squashing, and preserving both (ii) the graph-locality and (iii) its sparsity.

• In Section 4 we introduce a paradigm for rewiring that depends on arbitrary connectivity and
locality measures. We argue that in order to satisfy (i)–(iii) above, a single rewiring is not enough,
and instead propose sequential rewiring, where multiple graph snapshots are considered. Building
on Karhadkar et al. (2022), we also draw an important equivalence between graph-rewiring on one
side, and multi-relational GNNs and temporal-GNNs on the other.

• In Section 5 we present a specific instance of the aforementioned paradigm termed Locality-Aware
SEquential Rewiring (LASER). Our framework leverages the distance similarly to spatial rewiring
while also guaranteeing the efficiency of spectral techniques by sampling edges to add according to
equivariant, optimal conditions. We show that LASER reduces over-squashing and better preserves
the locality of the graph compared to spectral rewiring techniques.

• In Section 6 we validate LASER on different tasks, attaining performance that is on par or superior
to existing rewiring techniques. In particular, we present extensive ablation studies to support
our claim that LASER is more efficient than spatial methods while being better at preserving
graph-distance information in comparison to spectral approaches.

2 BACKGROUND

Preliminaries on graphs. Let G = (V,E) be an undirected graph with n nodes V and edges
E, which are encoded by the non-zero entries of the adjacency matrix A ∈ Rn×n. Let D be
the diagonal degree matrix such that Dvv = dv. We recall that the normalized graph Laplacian
∆ = D−1/2(D −A)D−1/2 is a symmetric positive semi-definite operator with eigenvalues 0 =
λ0 ≤ λ1 ≤ · · · ≤ λn−1. We assume that G is connected, so that λ1 > 0 and refer to it as the spectral
gap. From the Cheeger inequality, it follows that a larger λ1 generally means better connectivity of
G. We denote by dG(u, v) the shortest-path distance between the nodes u, v. We finally recall that
a random walk on G is a Markov chain on V with transition matrix D−1A and that the commute
time CT is defined as the expected number of steps required for a random walk to commute between
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two nodes. Note that the commute time CT(v, u) between two nodes v and u is proportional to their
effective resistance R(v, u) (Chandra et al., 1996) as CT(v, u) = 2|E|R(v, u).

The message-passing paradigm. We consider the case where each node v has a feature x(0)
v ∈ Rd.

It is common to stack the node features into a matrix X(0) ∈ Rn×d consistently with the ordering
of A. GNNs are functions defined on the featured graph that can output node, edge, or graph-level
values. The most common family of GNN architectures are Message Passing Neural Networks
(MPNN), which compute latent node representations by stacking T layers of the form:

x(t)
v = up(t)(x(t−1)

v , a(t)({{x(t−1)
u : (v, u) ∈ E}})), (1)

for t = 1, . . . , T , where a(t) is some permutation-invariant aggregation function, while up(t) updates
the node’s current state with aggregated messages from its neighbors.

Over-squashing and long-range interactions. While the message-passing paradigm usually
constitutes a strong inductive bias, it is problematic for capturing long-range interactions due to a
phenomenon known as over-squashing. Given two nodes u, v at distance dG(u, v) = r, an MPNN
will require T ≥ r layers to exchange messages between them. When the receptive fields of the nodes
expand too quickly (due to volume growth properties characteristic of many real-world scale free
graphs), the MPNN needs to aggregate a large number of messages into fixed-size vectors, leading
to some corruption of the information (Alon & Yahav, 2021). This effect on the propagation of
information has been related to the Jacobian of node features decaying exponentially with r (Topping
et al., 2022). More recently, it was shown that the Jacobian is affected by topological properties such
as effective resistance (Black et al., 2023; Di Giovanni et al., 2023).

3 EXISTING GRAPH-REWIRING APPROACHES AND THEIR LIMITATIONS

The main principle behind graph rewiring in GNNs is to decouple the input graph G from the
computational one. Namely, rewiring consists of applying an operation R to G = (V,E), thereby
producing a new graph R(G) = (V,R(E)) on the same vertices but with altered connectivity. We
begin by generalizing the MPNN formalism to account for the rewiring operationR as follows:

x(t)
v = up(t)(x(t−1)

v , a
(t)
G ({{x(t−1)

u : (v, u) ∈ E}}), a(t)R(G)({{x(t−1)
u : (v, u) ∈ R(E)}})), (2)

where a node feature is now updated based on information collected over the input graph G and the
rewired oneR(G), through (potentially) independent aggregation maps. Many rewiring-based GNN
models simply exchange messages overR(G), i.e., they take aG = 0. The idea of rewiring the graph
is implicit to many GNNs, from using Cayley graphs (Deac et al., 2022), to virtual nodes (Cai et al.,
2023) and cellular complexes (Bodnar et al., 2021). Other works have studied the implications of
directly changing the connectivity of the graph to de-noise it (Klicpera et al., 2019), or to explore
multi-hop aggregations (Abu-El-Haija et al., 2019; Ma et al., 2020; Wang et al., 2020; Nikolentzos
et al., 2020). Ever since over-squashing was identified as an issue in MPNNs (Alon & Yahav, 2021),
several novel rewiring approaches have been proposed to mitigate this phenomenon.

Related work on spatial rewiring. Most spatial rewiring models attempt to alleviate over-squashing
by adding direct connections between a node and every other node within a certain distance (Brüel-
Gabrielsson et al., 2022; Abboud et al., 2022) — with (dense) Graph Transformers being the extreme
case (Ying et al., 2021; Mialon et al., 2021; Kreuzer et al., 2021; Rampasek et al., 2022). These
frameworks follow equation 2, where aG and aR(G) are learned independently, or the former is zero
while the second implements attention over a dense graph. Spatial rewiring reduces over-squashing
by creating new paths in the graph, thus decreasing its diameter or pairwise effective resistances
between nodes. The rewired graph still preserves some information afforded by the original topology
in the form of distance-aware aggregations in multi-hop GNNs, or positional encoding in Graph-
Transformers. A drawback of this approach, however, is that we end up compromising the sparsity
of the graph, thereby impacting efficiency. Thus, a natural question is whether some of these new
connections introduced by spatial rewiring methods may be removed without affecting the improved
connectivity.

We also mention spatial rewiring methods based on improving the curvature of G by only adding
edges among nodes at distance at most two (Topping et al., 2022; Nguyen et al., 2022). Accordingly,
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these models may fail to significantly improve the effective resistance of the graph unless a large
number of local edges is added.

Table 1: Properties of different types of rewirings.

Property Spatial Spectral LASER
Reduce over-squashing ✓ ✓ ✓

Preserve locality ✓ ✗ ✓

Preserve sparsity ✗ ✓ ✓

Related work on spectral rewiring
methods. A different class of ap-
proaches consist of rewiring the graph
based on a global spectral quantity
rather than using spatial distance. Two
prototypical measures that have been
explored in this regard are spectral gap
(Karhadkar et al., 2022) and effective
resistance (Arnaiz-Rodríguez et al., 2022; Banerjee et al., 2022; Black et al., 2023). It has recently
been shown that a node v is mostly insensitive to information contained at nodes that have high
effective resistance (Black et al., 2023; Di Giovanni et al., 2023); accordingly, spectral rewiring
approaches alleviate over-squashing by reducing the effective resistance. Moreover, they achieve
that adding only a few edges by optimally increasing the chosen measure of connectivity, hence
maintaining the sparsity level of the input graph. However, the edges that are added in the graph
typically end up connecting very distant nodes (since the distance between two nodes is at least as
large as their effective resistance), hence rapidly diminishing the role of locality provided by distance
on the original graph.

An ideal rewiring approach. Given a graph G, an ideal rewiring mapR should satisfy the following
desiderata: (i) Reduce over-squashing: R increases the overall connectivity of G — according to
some topological measure — in order to alleviate over-squashing; (ii) Preserve locality: R preserves
some inductive bias afforded by G, e.g., nodes that are “distant” should be kept separate from nodes
that are closer in the GNN architecture; (iii) Preserve sparsity: R approximately preserves the
sparsity of G, ideally adding a number of edges linear in the number of nodes. While condition (i)
represents the main rationale for rewiring the input graph, criteria (ii) and (iii) guarantee that the
rewiring is efficient and do not allow the role played by the structural information in the input graph
to degrade too much. As discussed above and summarized in Table 1, spatial methods typically
satisfy only (i) and (ii), but not (iii), while spectral-methods meet (i) and (iii) but fail (ii).

Main idea. Our main contribution is a novel paradigm for graph rewiring that satisfies criteria (i)–(iii),
leveraging a key principle: instead of considering a single rewired graphR(G), we use a sequence
of rewired graphs {Rℓ(G)}ℓ such that for smaller ℓ, the new edges added inRℓ(G) are more ‘local’
(with respect to the input graph G) and sampled based on optimizing a connectivity measure.

4 A GENERAL PARADIGM: DYNAMIC REWIRING WITH LOCAL CONSTRAINTS

In this Section, we discuss a general graph-rewiring paradigm that can enhance any MPNN and
satisfies the criteria (i)–(iii) described above. Given a graph G, consider a trajectory of rewiring
operationsRℓ, starting at G0 = G, of the form:

G = G0
R1
↪−−→ G1

R2
↪−−→ · · · RL

↪−−→ GL. (3)

Since we think of Gℓ as the input graph evolved along a dynamical process for ℓ iterations, we refer to
Gℓ as the ℓ-snapshot. For the sake of simplicity, we assumeRℓ = R, though it is straightforward to
extend the discussion below to the more general case. In order to account for the multiple snapshots,
we modify the layer form in equation 2 as follows:

x(t)
v = up(t)

(
x(t−1)
v ,

(
a
(t)
Gℓ
({{x(t−1)

u : (v, u) ∈ Eℓ}})
)
0≤ℓ≤L

)
. (4)

Below we describe a rewiring paradigm based on an arbitrary connectivity measure µ : V × V→ R
and locality measure ν : V × V→ R. The measure µ can be any topological quantity that captures
how easily different pairs of nodes can communicate in a graph, while the measure ν is any quantity
that penalizes interactions among nodes that are ‘distant’ according to some metric on the input graph.
In a nutshell, our choice ofR samples edges to add according to the constraint ν, prioritizing those
that maximally benefit the measure µ. By keeping this generality, we provide a universal approach to
do graph-rewiring that can be of interest independently of the specific choices of µ and ν.
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Improving connectivity while preserving locality. The first property we demand of the rewiring
sequence is that for all nodes v, u, we have µGℓ+1

(v, u) ≥ µGℓ
(v, u) and that for some nodes, the

inequality is strict. If we connect all pairs of nodes with low µ-value, however, we might end up
adding non-local edges across distant nodes, hence quickly corrupting the locality of G. To avoid this,
we constrain each rewiring by requiring the measure ν to take values in a certain range Iℓ ⊂ [0,∞):
an edge (v, u) appears in the ℓ-snapshot (for 1 ≤ ℓ ≤ L) according to the following rule:

(v, u) ∈ Eℓ if
(
µG0

(v, u) < ϵ and νG0
(v, u) ∈ Iℓ

)
or (v, u) ∈ Eℓ−1. (5)

To make the rewiring more efficient, the connectivity and locality measures are computed once over
the input graph G0. Since the edges to be added connect nodes with low µ-values, the rewiring makes
the graphs Gℓ friendlier to message-passing as ℓ grows. Moreover, by taking increasing ranges of
values for the intervals Iℓ, we make sure that new edges connect distant nodes, as specified by ν,
only at later snapshots. Sequential rewiring allows us to interpolate between the given graph and one
with better connectivity, creating intermediate snapshots that progressively add non-local edges. By
accounting for all the snapshots Gℓ in equation 2, the GNN can access both the input graph, and more
connected ones, at a much finer level than ‘instantaneous’ rewirings, defined next.

Instantaneous vs sequential rewiring. As discussed in Section 3, existing rewiring techniques —
particularly those of the spectral type — often consider the simpler trajectory G0 ↪−→ R(G0) := G1

(“instantaneous rewiring”). The main drawback of this approach is that in order to improve the
connectivity in a single snapshot, the rewiring mapR is bound to either violate the locality constraint
ν, by adding edges between very distant nodes, or compromise the graph-sparsity by adding a large
volume of (local) edges. In fact, if that were not the case, we would still be severely affected by
over-squashing. Conversely, sequential rewiring allows a smoother evolution from the input graph G0

to a configuration GL which is more robust to over-squashing, so that we can more eeasly preserve
the inductive bias afforded by the topology via local constraints under equation 5.

An equivalent perspective: multi-relational GNNs. In Karhadkar et al. (2022) the notion of
relational rewiring was introduced for spectral methods. We expand upon this idea, by noticing
that the general, sequential rewiring paradigm described above can be instantiated as a family of
multi-relational GNNs (Battaglia et al., 2018; Barcelo et al., 2022). To this aim, consider a slightly
more specific instance of equation 4, which extends common MPNN frameworks:

x(t)
v = up(t)

(
x(t−1)
v ,

L∑
ℓ=0

∑
u:

(v,u)∈Eℓ

ψ
(t)
ℓ (x(t−1)

v ,x(t−1)
u )

)
, (6)

where ψ(t)
ℓ are learnable message functions depending on both the layer t and the snapshot ℓ. It

suffices now to note that each edge set Eℓ, originated from the rewiring sequence, can be given
its own relation, so that equation 6 is indeed equivalent to the multi-relation GNN framework of
Battaglia et al. (2018). In fact, since we consider rewiring operations that only add edges to improve
the connectivity, we can rearrange the terms and rename the update and message-function maps, so
that we aggregate over existing edges once, and separately over the newly added edges i.e. the set
Eℓ \ Eℓ−1. Namely, we can rewrite equation 6 as

x(t)
v = up(t)

(
x(t−1)
v ,

∑
u: (v,u)∈E

ψ
(t)
0 (x(t−1)

v ,x(t−1)
u ) +

L∑
ℓ=1

∑
u:

(v,u)∈Eℓ\Eℓ−1

ψ
(t)
ℓ (x(t−1)

v ,x(t−1)
u )

)
. (7)

Accordingly, we see how our choice of sequential rewiring can be interpreted as an extension of
relational rewiring in Karhadkar et al. (2022), where L = 1. Differently from Karhadkar et al. (2022),
the multiple relations ℓ ≥ 1 allow us to add connections over the graph among increasingly less local
nodes, meaning that the edge-type ℓ is now associated to a notion of locality specified by the choice
of the constraint ν(v, u) ∈ Iℓ. We finally observe that the connection between graph-rewiring and
relational GNNs is not surprising once we think of the sequence of rewiring in equation 3 as snapshots
of a temporal dynamics over the graph connectivity. Differently from the setting of temporal GNNs
(Rossi et al., 2020) though, here the evolution of the connectivity over time is guided by our rewiring
procedure rather than by an intrinsic law on the data. In fact, Gao & Ribeiro (2022) studied the
equivalence between temporal GNNs and static multi-relational GNNs, which further motivate the
analogy discussed above.

5



Published as a conference paper at ICLR 2024

5 LOCALITY-AWARE SEQUENTIAL REWIRING: THE LASER FRAMEWORK

We consider an instance of the outlined sequential rewiring paradigm, giving rise to the LASER
framework used in our experiments. We show that LASER (i) mitigates over-squashing, (ii) preserves
the inductive bias provided by the shortest-walk distance on G better than spectral approaches, while
(iii) being sparser than spatial-rewiring methods.

The choice of locality. We choose ν to be the shortest-walk distance dG. In particular, if in
equation 5 we choose intervals Iℓ = δℓ+1, then at the ℓ-snapshot Gℓ we only add edges among nodes
at distance exactly ℓ+ 1. Our constraints prevent distant nodes from interacting at earlier snapshots
and allows the GNN to learn message functions ψℓ in equation 7 for each hop level ℓ. If we choose
Eℓ \ Eℓ−1 to be the set of all edges connecting nodes whose distance is exactly ℓ+ 1, then equation 7
is equivalent to the L-hop MPNN class studied in Feng et al. (2022). This way though, we generally
lose the sparsity of G and increase the risk of over-smoothing. Accordingly, we propose to only add
edges that satisfy the locality constraint and have connectivity measure ‘small’ so that their addition
is optimal for reducing over-squashing.

The choice of the connectivity measure µ. Although edge curvature or effective resistance R
are related to over-squashing (Topping et al., 2022; Black et al., 2023; Di Giovanni et al., 2023),
computing these metrics incur high complexity – O(|E|d2max) for the curvature and O(n3) for R.
Because of that, we propose a more efficient connectivity measure:

µk(v, u) := (Ãk)vu, Ã := A+ I. (8)

Because of the self-loops, the entry (Ãk)vu equals the number of walks from v to u of length at
most k. Once we fix a value k, if µk(v, u) is large, then the two nodes v, u have multiple alternative
routes to exchange information (up to scale k) and would usually have small effective resistance. In
particular, according to Di Giovanni et al. (2023, Theorem 4.1), we know that the number of walks
among two nodes is a proxy for how sensitive a pair of nodes is to over-squashing.

LASER focus. We can now describe our framework. Given a node v and a snapshot Gℓ, we consider
the set of nodes at distance exactly ℓ+1 from v, which we denote byNℓ+1(v). We introduce a global
parameter ρ ∈ (0, 1] and add edges (with relation type ℓ as per equation 7) among v and the fraction ρ
of nodes in Nℓ+1(v) with the lowest connectivity score – if this fraction is smaller than one, then we
round it to one. This way, we end up adding only a percentage ρ of the edges that a normal multi-hop
GNNs would have, but we do so by prioritizing those edges that improve the connectivity measure the
most. To simplify the notations, we let N ρ

ℓ+1(v) ⊂ Nℓ+1(v), be the ρ-fraction of nodes at distance
ℓ + 1 from v, where µk in equation 8 takes on the lowest values. We express the layer-update of
LASER as

x(t)
v = up(t)

(
x(t−1)
v ,

∑
u: (v,u)∈E

ψ
(t)
0 (x(t−1)

v ,x(t−1)
u ) +

L∑
ℓ=1

∑
u∈Nρ

ℓ+1(v)

ψ
(t)
ℓ (x(t−1)

v ,x(t−1)
u )

)
. (9)

We note that when ρ = 0, equation (9) reduces to a standard MPNN on the input graph, while for ρ = 1
we recover multi-relational L-hop MPNNs (Feng et al., 2022). Although the framework encompasses
different choices of the message-functions ψℓ, in the following we focus on the LASER-GCN variant,
whose update equation is reported in Appendix (Section A).

We now show that the LASER framework satisfies the criteria (i)–(iii) introduced in Section 3. Let
J(r)(v, u) := ∂x

(r)
v /∂x

(0)
u be the Jacobian of features after r layers of GCN on G, and similarly

we let J̃(r)(v, u) be the Jacobian of features after r layers of LASER-GCN in equation 10. In the
following, we take the expectation with respect to the Bernoulli variable ReLU′ which is assumed
to have probability of success ρ for all paths in the computational graph as in Xu et al. (2018);
Di Giovanni et al. (2023). We recall that given i ∈ V and 1 ≤ ℓ ≤ L, di,ℓ enters equation 10.
Proposition 5.1. Let v, u ∈ V with dG(v, u) = r, and assume that there exists a single path of length
r connecting v and u. Assume that LASER adds an edge between v and some node j belonging to
the path of length r connecting v to u, with dG(v, j) = ℓ < r. Then for all m ≤ r, we have

∥E[J̃(r−ℓ+1)(v, u)]∥ ≥ (dmin)
ℓ√

dv,ℓ−1dj,ℓ−1

∥E[J(m)(v, u)]∥.
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The result is not surprising and shows that in general, the LASER-rewiring can improve the Jacobian
sensitivity significantly and hence alleviates over-squashing, satisfying desideratum (i). Next, we
validate that the effects of the local constraints when compared to unconstrained, global spectral
methods. Below, we let DG be the matrix of pairwise distances associated with the graph G, i.e.
(DG)vu = dG(v, u). We propose to investigate ∥DG −DR(G)∥F , where ∥ · ∥F is the Frobenius norm
and R(G) is either a baseline spectral rewiring, or our LASER-framework. We treat this quantity
as a proxy for how well a rewiring framework is able to preserve the inductive bias given by the
input graph. In fact, for many graphs (including molecular-type with small average degree), spectral
rewirings incur a larger Frobenius deviation even if they add fewer edges, since these edges typically
connect very distant nodes in the graph. To this aim, we show a setting where LASER preserves
more of the locality inductive bias than spectral-based methods provided we choose the factor ρ small
enough. Below, we focus on a case that, according to Di Giovanni et al. (2023); Black et al. (2023),
we know to be a worst-case scenario for over-squashing considering that the commute time scales
cubically in the number of nodes. Put differently, the graph below represents a prototypical case of
‘bottleneck’ encountered when information has to travel from the end of the chain to the clique.
Proposition 5.2. Let G be a ‘lollipop’ graph composed of a chain of length L attached to a clique of
size n sufficiently large. Consider a spectral rewiringR which adds an edge between nodes with the
highest effective resistance. We can choose the factor ρ ∈ (0, 1) as a function of L so that LASER
with a single snapshot, on average, adds a number of edges that guarantees:

∥DG −DR(G)∥F ≥ ∥DG −DLASER ∥F .

We refer to the Appendix (Section A) for an explicit characterization on how large n needs to be
depending on L and the proofs of the statements stated above. Finally, as desired in (iii), we observe
that compared to dense multi-hop GNNs, LASER is more efficient since it only adds a fraction ρ
of edges for each node v and each orbit-level Nℓ+1(v). In fact, for many sparse graphs (such as
molecular ones) the model ends up adding a number of edges proportional to the number of nodes
(see Section C.2 in the Appendix for a discussion and ablations).

6 EXPERIMENTS

In this section, we validate our claims on a range of tasks and benchmarks. Beyond comparing the
performance of LASER to existing baselines, we run ablations to address the following important
questions: (1) Does LASER improve the graph’s connectivity? (2) Does LASER preserve locality
information better than spectral rewiring approaches? (3) What is the impact of the fraction ρ of edges
sampled? (4) What if we sample edges to be added from Nℓ+1(v) randomly, rather than optimally
according to µ in equation 8? (5) Is LASER scalable to large graphs? In the Appendix (Section C),
we provide a density comparison between LASER and Multi-Hop GNNs, discuss our tie-breaking
procedure that guarantees equivariance in expectation and further improves performance, provide
an ablation using different underlying MPNNs, and discuss additional motivation for the need for
locality. We also provide, in Section D, a more thorough scalability analysis.

Table 2: Results for the Peptides-func,
Peptides-struct, and PCQM-Contact datasets.
Performances are Average Precision (AP) (higher is better),
Mean Absolute Error (MAE) (lower is better), and Mean
Reciprocal Rank (MRR) (higher is better), respectively.

Rewiring Peptides-func Peptides-struct PCQM-Contact

Test AP ↑ Test MAE ↓ Test MRR ↑
None 0.5930±0.0023 0.3496±0.0013 0.3234±0.0006

SDRF 0.5947±0.0035 0.3404±0.0015 0.3249±0.0006
GTR 0.5075±0.0029 0.3618±0.0010 0.3007±0.0022
FOSR 0.5947±0.0027 0.3078±0.0026 0.2783±0.0008
BORF 0.6012±0.0031 0.3374±0.0011 TIMEOUT

LASER 0.6440±0.0010 0.3043±0.0019 0.3275±0.0011

Benchmarks. We evaluate on the
Long Range Graph Benchmark
(LRGB) (Dwivedi et al., 2022)
and TUDatasets (Morris et al.,
2020). In the experiments, we
fix the underlying model to GCN,
but provide ablations with differ-
ent popular MPNNs in the Ap-
pendix (Section C.3). For spatial
curvature-based rewirings, we com-
pare against SDRF (Topping et al.,
2022) and BORF (Nguyen et al.,
2023). For spectral techniques, we
compare against FOSR (Karhadkar
et al., 2022), a spectral gap rewiring
technique, and GTR (Black et al., 2023), an effective resistance rewiring technique. We also compare
to DiffWire (Arnaiz-Rodríguez et al., 2022), a differentiable rewiring technique.
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Based on Karhadkar et al. (2022) and the parallelism we draw between rewiring and multi-relational
GNNs, for all techniques, we report results tuned over both a ‘standard’ and relational (Schlichtkrull
et al., 2018) model for the baselines, where we assign original and rewired edges distinct relational
types. In particular, R-GCN in these cases is then a special instance of equation 2. For additional
details on the tasks and hyper-parameters, we refer to the Appendix (Section B).

LRGB. We consider the Peptides (15 535 graphs) and PCQM-Contact (529 434 graphs)
datatsets, from the Long Range Graph Benchmark (LRGB). There are two tasks associated with
Peptides, a peptide function classification task Peptides-func and a peptide structure regres-
sion task Peptides-struct. PCQM-Contact is a link-prediction task, in which the goal is to
predict pairs of distant nodes that will be adjacent in 3D space. We replicate the experimental settings
from Dwivedi et al. (2022), with a 5-layer MPNN for each of the rewirings as the underlying model.
We choose the hidden dimension in order to respect the 500k parameter budget. In Table 2, we report
the performance on the three tasks. LASER convincingly outperforms all baselines on the three
tasks, while the other rewiring baselines frequently perform worse than the standard GCN model.
On PCQM-Contact, the rewiring time for BORF surpasses the 60 hour limit enforced by Dwivedi
et al. (2020) on our hardware, so we assign it a TIMEOUT score.

TUDatasets. We evaluate LASER on the REDDIT-BINARY, IMDB-BINARY, MUTAG,
ENZYMES, PROTEINS, and COLLAB tasks from TUDatasets, which were chosen by Karhadkar
et al. (2022) under the claim that they require long-range interactions. We evaluate on 25 random
splits, fixing the hidden dimension for all models to 64 and the number of layers to 4, as in Karhadkar
et al. (2022). We avoid the use of dropout and use Batch Norm (Ioffe & Szegedy, 2015). We refer
to the Appendix (Section B.2) for further details on the hyper-parameters and a discussion on some
drawbacks of these tasks. Table 3 shows the results on the aforementioned benchmarks. LASER
most consistently achieves the best classification accuracy, attaining the highest mean rank.
Table 3: Accuracy ± std over 25 random splits for the datasets and rewirings. Colors highlight First,
Second, and Third; we report the mean rank achieved on the valid runs. OOM is Out of Memory.

Rewiring REDDIT-BINARY IMDB-BINARY MUTAG ENZYMES PROTEINS COLLAB Mean Rank
None 81.000±2.717 64.280±1.990 74.737±5.955 28.733±5.297 64.286±2.004 68.960±2.284 4.83
DiffWire OOM 59.000±3.847 80.421±9.707 28.533±4.475 72.714±2.946 65.440±2.177 4.83
GTR 85.700±2.786 52.560±4.104 78.632±6.201 26.333±5.821 72.303±4.658 68.024±2.299 4.67
SDRF 84.420±2.785 58.290±3.201 74.526±5.355 30.567±6.188 68.714±4.233 70.222±2.571 4.50
FOSR 85.930±2.793 60.400±5.855 75.895±7.211 28.600±5.253 71.643±3.428 69.848±3.485 3.67
BORF 84.920±2.534 60.820±3.877 81.684±7.964 30.500±6.593 68.411±4.122 OOM 3.60
LASER 85.458±2.827 64.333±3.298 82.204±6.728 34.333±6.936 74.381±3.443 70.923±2.538 1.37

Ablation studies. In the following, we choose FOSR as a typical spectral rewiring approach, while
taking LASER with ρ = 1 as an instance of a dense, multi-hop GNN (i.e. classical spatial rewiring).
For the purpose of these ablations, we conduct experiments on the Peptides dataset. We start by
investigating questions (1) and (2), namely, how well LASER improves connectivity while respecting
locality. To this end, we increment the number of snapshots from 2 to 5 given densities ρ = 0.1 and
ρ = 1 for LASER and instead vary the number of edge additions of FOSR spanning the values 10,
20, 50, and 100. To assess the connectivity, we report the mean total effective resistance — which is a
good proxy for over-squashing (Black et al., 2023; Di Giovanni et al., 2023) — while for the locality,
we evaluate the norm of the difference between the original graph distance matrix and that of the
rewired graph ∥DG−DR(G)∥F as per Proposition 5.2. Figure 2 shows the results of this ablation. We
validate that the sparse LASER framework decreases the mean total effective resistance consistently
over increasing snapshots as well as other rewiring techniques. Moreover, we find that LASER
with ρ = 0.1 is better than dense spatial methods and especially surpasses spectral approaches at
preserving information contained in the distance matrix.

Table 4: Comparison between LASER and random
sampling, with L = 3 and ρ = 0.1.

Model Peptides-func ↑ Peptides-struct ↓
Random 0.4796±0.0067 0.3382±0.0019

LASER 0.6414±0.0020 0.3119±0.0005

Next, we investigate question (3), i.e. the impact
of the fraction ρ of edges being sampled, by
increasing the number of snapshots from 2 to 5
and varying the density ρ ranging 0.1, 0.25, 0.5,
and 1, with results reported in Figure 3. The
majority of the performance gains are obtained
through a sparse rewiring, as even with ρ = 0.1
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Figure 3: Performance on the Peptides tasks
when varying the number of snapshots from 2 to
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standard GCN model.

the performance is greatly increased over the baseline. The additional density in the orbits does seem
to help with performance, but this comes at the cost of density.

Finally, we address question (4), by evaluating how sampling edges uniformly over the nodes at
distance ℓ+1 given a density ρ, compares to our choice of prioritizing edges with lowest connectivity
score µ as per equation 8. We report the results in Table 4. We see that LASER greatly outperforms
the random rewiring, verifying our claim that guiding the rewiring through µ is a more sound
approach.

Scalability. The operations required to compute µ and ν in LASER are designed to be efficiently
implemented on modern hardware accelerators, mostly relying on matrix multiplication. Furthermore,
the rewiring operation is done once and stored for future runs. The ρ factor can be tuned to calibrate
the density of the rewiring, giving further control on the training efficiency. LASER does not seem to
significantly impact the run-time compared to the standard baseline models and we found through a
synthetic benchmarking experiment that our implementation of LASER is able to rewire graphs with
100k nodes and a million edges in 2 hours. This is in contrast to FOSR and SDRF that failed to finish
the computation within 24 hours. We report a large number of benchmarking experiments, alongside
a theoretical complexity analysis in the Appendix (Section D).

7 CONCLUSION

In this work, we have identified shortcomings of rewiring techniques and argued that a rewiring must:
(i) improve connectivity, (ii) respect locality, and (iii) preserve sparsity. Unlike current spectral and
spatial rewirings that compromise some of these properties, we have outlined a general rewiring
paradigm that meets criteria (i)–(iii) by interpolating between the input graph and a better connected
one via locally constrained sequential rewiring. We have then proposed a specific instance of this
paradigm — LASER — and verified, both theoretically and empirically, that it satisfies (i)-(iii).

Limitations and Future Work. In this paper, we considered a simple instance of the general
rewiring paradigm outlined in Section 4, but we believe that an interesting research direction would
be to explore alternative choices for both the connectivity and locality measures, ideally incorporating
features in a differentiable pipeline similar to Arnaiz-Rodríguez et al. (2022). Furthermore, the
identification between graph-rewiring on the one hand, and multi-relational GNNs and temporal-
GNNs on the other, could lead to interesting connections between the two settings, both theoretically
(e.g., what is the expressive power of a certain rewiring policy?) and practically, where techniques
working in one case could be effortlessly transferred to the other. Finally, we highlight that, as
is customary in rewiring approaches, it is always hard to pinpoint with certainty the reason for
any performance improvement, including whether such an improvement can be truly credited to
over-squashing and long-range interactions. We have tried to address this point through multiple
ablations studies.
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A ADDITIONAL DETAILS ON THEORY AND FRAMEWORK

In this Section, we report additional considerations about our framework and provide proofs for the
theoretical results stated in Section 5.

First, we report the variant of GCN-LASER to make things more concrete:

x(t)
v = ReLU

( ∑
u∈N1(v)∪{v}

1√
dvdu

W
(t)
0 x(t−1)

u +

L∑
ℓ=1

∑
u∈Nρ

ℓ+1(v)

1√
dv,ℓdu,ℓ

W
(t)
ℓ x(t−1)

u )
)
, (10)

where W
(t)
ℓ , for 0 ≤ ℓ ≤ L, are learnable weight matrices, while di,ℓ is equal to the degree induced

by the distance matrix associated with the value ℓ, for each node i ∈ V. We base most of our
evaluation on the model in equation 10.
Proposition A.1. Let v, u ∈ V with dG(v, u) = r, and assume that there exists a single path of length
r connecting v and u. Assume that LASER adds an edge between v and some node j belonging to
the path of length r connecting v to u, with dG(v, j) = ℓ < r. Finally, assume for simplicity that all
products of weight matrices have unit norm. Then for all m ≤ r, we have

∥E[J̃(r−ℓ+1)(v, u)]∥ ≥ (dmin)
ℓ√

dv,ℓ−1dj,ℓ−1

∥E[J(m)(v, u)]∥

Proof. We first note that extending the result to arbitrary weight matrices is trivial, since one would
just obtain an extra factor in the lower bound of the form ωr−ℓ+1/(ω′)m depending on the spectral
bounds (i.e. singular values bounds) of the weight matrices entering LASER -GCN and GCN,
respectively.

Following the assumptions, we can argue precisely as in Xu et al. (2018) and Di Giovanni et al. (2023,
Section 5) and write the Jacobian of node features after m layers of GCN (Kipf & Welling, 2017) as

E[J(m)(v, u)] = ρ

m∏
k=1

W(k)(Âm)vu,

where Â = D−1/2AD−1/2 is the symmetrically normalized adjacency matrix. In particular, we can
then estimate the norm of the Jacobian matrix simply by:

∥E[J(m)(v, u)]∥ = ρ∥
m∏

k=1

W(k)∥(Âm)vu = ρ(Âm)vu,

where we have used our simplifying assumption on the norm of the weights. In particular, since
dG(v, u) = r, if m ≤ r then the term above vanishes which satisfies the lower bound in the claim.
Let us then consider the case m = r. We can write the unique path of length r connecting v and u as
a tuple (v, u1, . . . , ur−1, u), so that

∥E[J(m)(v, u)]∥ = ρ
1√
dvdu

r−1∏
s=1

1

ds
.

Similarly, given our LASER -GCN framework in equation 10 and the assumptions, we can bound
the norm of the expected Jacobian as

∥E[J̃(r−ℓ+1)(v, u)]∥ = ρ∥
r−ℓ+1∏
k=2

W
(k)
0 W

(1)
ℓ−1∥(Âℓ−1)vj(Â

m−ℓ)ju = ρ(Âℓ−1)vj(Â
m−ℓ)ju,

where (Âℓ)ij = 1/
√
di,ℓdj,ℓ as defined in equation 10 if dG(i, j) = ℓ+ 1 and zero otherwise. If we

now take the ratio of the two expected values, we can bound them from below as

∥E[J̃(r−ℓ+1)(v, u)]∥
∥E[J(r)(v, u)]∥ =

(Âℓ−1)vj(Â
m−ℓ)ju

1√
dvdu

∏r−1
s=1

1
ds

≥ (Âℓ−1)vj
1√
dvdu

∏ℓ−1
s=1

1
ds

≥ (dmin)
ℓ√

dv,ℓ−1dj,ℓ−1

,

where we have used that by assumption there must exist only one path of length m− ℓ from j to u,
which has same degrees {ds}.

14



Published as a conference paper at ICLR 2024

Proposition A.2. Let G be a ‘lollipop’ graph composed of a chain of length L attached to a clique of
size n sufficiently large. Consider a spectral rewiringR which adds an edge between nodes with the
highest effective resistance. We can choose the factor ρ ∈ (0, 1) as a function of L so that LASER
with a single snapshot, on average, adds a number of edges that guarantees:

∥DG −DR(G)∥F ≥ ∥DG −DLASER ∥F .

Proof. Let us denote the end node of the chain by v, while z is the node belonging to both the chain
and the clique, and u be any node in the interior of the clique. It is known that the commute time
between v and u scales cubically in the total number of nodes (Chandra et al., 1996), so an algorithm
aimed at minimizing the effective resistance will add an edge between v and a point in the interior of
the clique — which we rename u without loss of generality. Accordingly, the distance between v and
any point in the interior has changed by at least (L+ 1)− 2. Besides, the distance between v and z
has changed by L− 2. We can then derive the lower bound:

∥DG −DR(G)∥F ≥
√
(n− 1)(L− 1)2 + (L− 2)2.

Let us now consider the case of LASER with a single snapshot. We want to choose ρ sufficiently
small so to avoid adding too many edges. In order to do that, let us focus on the chain. Any node in
the chain with the exception of the one before z, which we call z′ (which has the whole clique in its
2-hop), has a 2-hop neighbourhood of size at most 2. Accordingly, given a number of edges k we
wish to be adding, if we choose

ρ =
k

2L
,

it means that our algorithm, on average, will only add k edges over the chain. To avoid vacuous cases,
consider k ≥ 2. Accordingly, the pairwise distance between any couple of nodes along the chain is
changed by at most k. For what concerns the clique instead, let us take the worst-case scenario where
z′ is connected to any node in the clique. Then, the distance between any node in the clique and any
node in the chain has changed by (k + 1). If we put all together, we have shown that

∥DG −DLASER ∥F ≤
√
L2k2 + nL(k + 1)2.

Therefore, the bound we have claimed holds if and only if

L2k2 + nL(k + 1)2 ≤ (n− 1)(L− 1)2 + (L− 2)2. (11)

One can now manipulate the inequality and find that the bound is satisfied as long as

n ≥ k2L2 + 2L− 3

L2(1− k2)− 3L− 2kL+ 1

and note that the denominator is always positive if k2 < L/4 and L ≥ 8. Accordingly, we conclude
that if

ρ ≤
√
L/4

L
=

1

2
√
L

and L ≥ 8 our claim holds. In particular, LASER will have added k ∈ (0,
√
L/2) edges in total.

B EXPERIMENTAL DETAILS

Reproducibility statement. We release our code on the following URL https://github.
com/Fedzbar/laser-release under the MIT license. For the additional baselines, we bor-
rowed the implementations provided by the respective authors. We slightly amended the implementa-
tion of GTR as it would encounter run-time errors when attempting to invert singular matrices on
certain graphs.

Hyper-parameters. For the LRGB experiments, we use the same hyper-parameters and configura-
tions provided by Dwivedi et al. (2020), respecting a 500k parameter budget in all the experiments.
We lightly manually tune the number of snapshots with values L ∈ {2, 3, 4, 5} and the density
with values {1/10, 1/4, 1/2} for LASER. For FOSR, SDRF, and GTR we search the number of
iterations from {5, 20, 40}, similarly to their respective works. For BORF, as the rewiring is much
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more expensive, especially on these ‘larger’ datasets, we fix the number of iterations to 1. We point
out that with the implementation provided by the authors, BORF would exceed the 60 hours limit
imposed by Dwivedi et al. (2022) on our hardware for PCQM-Contact and for this reason we
assigned it a TIMEOUT value.

For the TUDatasets experiments, we use ADAM (Kingma & Ba, 2015) with default settings and
use the ReduceLROnPlateau scheduler with a patience of 20, a starting learning rate of 0.001,
a decay factor of 1/2, and a minimum learning rate of 1 × 10−5. We apply Batch Norm (Ioffe &
Szegedy, 2015), use ReLU as an activation function, and fix the hidden dimension to 64. We do
not use dropout, avoid using a node encoder and use a weak (linear) decoder to more accurately
compare the various rewiring methods. We lightly manually tune the number of snapshots with values
L ∈ {2, 3} and the density with values {1/10, 1/4, 1/2} for LASER. For FOSR, SDRF, and GTR
we search the number of iterations from {5, 20, 40}, similarly to their respective works. For BORF,
we sweep over {1, 2, 3} iterations. For DiffWire, we search between a normalized or Laplacian
derivative and set the number of centers to 5.

For both LRGB and the TUDatasets the additional baseline models are also further tuned using either
a relational or non-relational GCN. For instance, in the main text we group the results of FOSR
and R-FOSR together for clarity. In general, we found relational models to perform better than the
non-relational counter-parts. Such a result is consistent with results reported by other rewiring works.

Hardware. Experiments were ran on 2 machines with 4× NVIDIA Tesla T4 (16GB) GPU, 16 core
Intel(R) Xeon(R) CPU (2.00GHz), and 40 GB of RAM, hosted on the Google Cloud Platform (GCP).
For the PQCM-Contact experiments we increased the RAM to 80GB and the CPU cores to 30.

B.1 DATASETS

LRGB We consider the Peptides-struct, Peptides-func, and PCQM-Contact tasks
from the Long Range Graph Benchmark (LRGB) (Dwivedi et al., 2022). Peptides-func (15 535
graphs) is a graph classification task in which the goal is to predict the peptide function out of 10
classes. The performance is measured in Average Precision (AP). Peptides-struct (15 535
graphs) is a graph regression task in which the goal is to predict 3D properties of the peptides with the
performance being measured in Mean Absolute Error (MAE). PCQM-Contact (529 434 graphs) is
a link-prediction task in which the goal is to predict pairs of distant nodes (when considering graph
distance) that are instead close in 3D space. In our experiments, we follow closely the experimental
evaluation in Dwivedi et al. (2022), we fix the number of layers to 5 and fix the hidden dimension as
such to respect the 500k parameter budget. For Peptides we use a 70%/15%/15% train/test/split,
while for PCQM-Contact we use a 90%/5%/5% split. We train for 500 epochs on Peptides
and for 200 on PCQM-Contact. We would like to also point out that in work concurrent to ours,
Tönshoff et al. (2023) have shown that there are better hyper-parameter configurations than the ones
used by Dwivedi et al. (2022) for the LRGB tasks that significantly improve the performance of
certain baselines.

TUDatasets We consider the REDDIT-BINARY (2 000 graphs), IMDB-BINARY (1 000 graphs),
MUTAG (188 graphs), ENZYMES (600 graphs), PROTEINS (1 113 graphs), and COLLAB (5 000
graphs) tasks from TUDatasets (Morris et al., 2020). These datasets were chosen by Karhadkar et al.
(2022), under the claim that they require long-range interactions. We train for 100 epochs over 25
random seeds with a 80%/10%/10% train/val/test split. We fix the number of layers to 4 and the
hidden dimension to 64 as in Karhadkar et al. (2022). However, unlike Karhadkar et al. (2022), we
apply Batch Norm and set dropout to 0% instead of 50%. We also avoid using multi-layered encoders
and decoders, in order to more faithfully compare the performance of the rewiring techniques. The
reported performance is accuracy ± standard deviation σ. We note that Karhadkar et al. (2022)
report as an uncertainty value σ/

√
N with N being the number of folds. As they set N = 100, they

effectively report mean ±σ/10. We instead report simply the standard deviation σ as we deemed this
to be more commonly used within the community.
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B.2 DISCUSSION ON THE TUDATASETS

In Table 3, we show an evaluation of LASER on the REDDIT-BINARY, IMDB-BINARY, MUTAG,
ENZYMES, PROTEINS, and COLLAB tasks from the TUDatasets, which were chosen by Karhadkar
et al. (2022) under the claim that they require long-range interactions. We evaluate on a 80%/10%/10%
train/val/test split on 25 random splits. We fix the hidden dimension for all models to 64 and the
number of layers to 4 as in Karhadkar et al. (2022), but set dropout rate to 0% instead of 50% as we
deem this more appropriate. The goal of the evaluation is to compare the rewiring techniques directly,
while the high dropout may complicate a more direct evaluation. We train for 100 epochs. For these
experiments, we fix the underlying MPNN to GCN.

We point out that the datasets chosen in the evaluation of Karhadkar et al. (2022) have characteristics
that may be deemed problematic. First, many of the datasets contain few graphs. For instance, MUTAG
contains 188 graphs, meaning that only 18 graphs are part of the test set. Further, REDDIT-BINARY,
IMDB-BINARY, and COLLAB do not have node features and are augmented with constant feature
vectors. Consequently, is not immediately clear how much long-range interactions play a role in these
tasks, or in fact, how to even define over-squashing on graphs without (meaningful) features. For
these reasons, we believe the LRGB tasks to be more indicative of the benefits of graph-rewiring to
mitigate over-squashing.

Furthermore, the standard deviation of the reported accuracy is relatively large on some of the
benchmarks, especially on the smaller MUTAG and ENZYMES tasks. While we report directly the
standard deviation σ in our uncertainty quantification, Karhadkar et al. (2022) instead report σ/

√
N

with N being the number of folds. In Karhadkar et al. (2022) they set N = 100, meaning that
effectively they report the standard deviation divided by a factor of 10. The high uncertainty in these
datasets can be also seen in the results from Karhadkar et al. (2022). In particular, an accuracy of
≈ 68.3% on MUTAG is reported using a GCN without rewiring, while an accuracy of ≈ 49.9% is
reported on MUTAG with an R-GCN without rewiring. However, the two models should achieve
similar accuracy, as the R-GCN without rewiring is equivalent to a standard GCN model as there are
no further edge types in MUTAG.

For these reasons, we believe that while the results of LASER on the TUDatasets are strong and beat
the other baselines, any evaluation done on these tasks should be considered with a degree of caution
as the high standard deviation and quality issues of the chosen tasks leave the results possibly less
conclusive. Regardless, we retain such an evaluation in our work for completeness of comparison
with the benchmarks used by Karhadkar et al. (2022).

C ADDITIONAL RESULTS

In this Section, we provide additional results and ablations. In Section C.1, we discuss the orbit
sampling procedure that makes LASER permutation-equivariant in expectation. In Section C.2, we
provide a density comparison between LASER and multi-hop GNNs (ρ = 1). In Section C.3, we
show that LASER is able to work well over a range of popular MPNNs. Finally, in Section C.4, we
give further motivation for the need for locality.

C.1 PERMUTATION-EQUIVARIANCE OF LASER .

When selecting the edges that need to be rewired given the connectivity measure µ, care needs to be
given when handling the tie-breaks in order to remain permutation-equivariant. Assume we have to
select k nodes from a partially ordered set of size n > k, given a reference node v. Further assume
that nodes from k′ + 1 < k to p > k have equivalent connectivity measure, i.e. we are given a
sequence of nodes u1, . . . , un such that:

µ(v, u1) ≤ · · · ≤ µ(v, uk′) < µ(v, uk′+1) = · · · = µ(v, up) ≤ · · · ≤ µ(v, un).

We start by selecting the first k′ nodes u1, . . . , uk′ as they are the ones with lowest connectivity
measure. Next, we have to select the remaining k − k′ nodes from uk′+1, . . . , up. If we naively
select the nodes uk′+1, . . . , uk, we would encounter permutation-equivariance issues as we would be
relying on an arbitrary ordering of the nodes. Instead, in LASER we sample uniformly the remaining
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Table 5: Performance on the Peptides tasks given a LASER implementation that is not
permutation-equivariant (choosing top k based on µ and tie-breaks are chosen based on node id) and
one that is equivariant (through sampling uniformly from the tie-breaks). Bold denotes best.

Rewiring Peptides-func ↑ Peptides-struct ↓
LASER - Not Equivariant 0.6385±0.0048 0.3162±0.0032

LASER 0.6447±0.0033 0.3151±0.0006

Table 6: Mean added edges per graph given a LASER rewiring with a density of ρ = 0.1 and ρ = 1
on the Peptides dataset.

Density 2 Snapshots 3 Snapshots 4 Snapshots 5 Snapshots

LASER ρ = 0.1 148.9 296.5 442.4 587.2
LASER ρ = 1 205.8 434.7 691.6 986.1

k − k′ from the nodes k′ + 1, . . . , p that have equivalent connectivity measure, assuring permutation-
equivariance in expectation. Table 5 shows that the permutation-equivariant implementation performs
better than the naive implementation of simply selecting the first k nodes sorted with respect to µ. In
practice this shuffling can be implemented efficiently by sampling a random vector x ∼ N (0, σI),
with σ very small and then adding this to the vector of connectivity measures, i.e. µ̂ = µ+ x. When
σ is small enough, this has the effect of uniformly breaking the tie-breaks, without breaking the
absolute order of the connectivity measures.

C.2 DENSITY ABLATION.

Table 6 reports the mean added edges per graph (counting undirected edges only once) given ρ = 0.1
and ρ = 1 on the Peptides graphs. We note that regardless of ρ, we always add a minimum of 1
edge per node orbit. Given that the (molecular) graphs in peptides are very sparse graphs with an
average of 151 nodes and 307 edges, the table highlights a worst-case scenario for LASER as the
orbits grow relatively slowly. Having said this, the number of added edges grows at a significantly
lower rate given ρ = 0.1. This showcases the use of ρ to control the density of the graphs. The
minimum number of node rewirings added being set to 1 is a design choice and this can also be
further tuned to control the density, if desired.

C.3 PERFORMANCE WITH DIFFERENT UNDERLYING MPNNS

We run experiments to evaluate the performance of LASER operating over different MPNNs.
We evaluate on popular MPNN models: Graph Convolution Networks (GCNs) (Kipf & Welling,
2017), Graph Isomorphism Networks (GINs) (Xu et al., 2019), GAT Veličković et al. (2018), and
GraphSAGE (SAGE) Hamilton et al. (2017). Table 7 shows the results on Peptides-func and
Peptides-struct obtained by varying the underlying MPNN. We see that LASER improves
the baseline MPNN performance consistently reaching best or near best performance. This is not the
case for FOSR and SDRF that often end up harming the performance of the baseline MPNN, even
when using a relational model. This experiment provides evidence supporting the fact LASER is
able to function well regardless of the underlying convolution being considered.

C.4 MOTIVATING LOCALITY

In this section, we motivate the desire for a rewiring technique to respect the locality of the graph.
Preserving locality is a natural inductive bias to have whenever we assume that the graph-structure
associated with the data is aligned with the downstream task. For instance, molecular systems observe
long-range interactions that decay with the distance, in the form of Coulomb electrostatic forces.
This behaviour also naturally appears in social networks, transaction networks, or more generally in
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Table 7: Results for Peptides-func and Peptides-struct. Performances are Average
Precision (AP) (higher is better) and Mean Absolute Error (MAE) (lower is better), respectively.
Results in bold denote the best result for each MPNN.

Model Peptides-func Peptides-struct

Test AP ↑ Test MAE ↓
GCN 0.5930±0.0023 0.3496±0.0013
GCN-FOSR-R 0.4629±0.0071 0.3078±0.0026
GCN-SDRF-R 0.5851±0.0033 0.3404±0.0015
GCN-LASER 0.6440±0.0010 0.3043±0.0019

GIN 0.5799±0.0006 0.3493±0.0007
GIN-FOSR-R 0.4864±0.0054 0.2966±0.0024
GIN-SDRF-R 0.6131±0.0084 0.3394±0.0012
GIN-LASER 0.6489±0.0074 0.3078±0.0026

GAT 0.5800±0.0061 0.3506±0.0011
GAT-FOSR-R 0.4515±0.0044 0.3074±0.0029
GAT-SDRF-R 0.5756±0.0037 0.3422±0.0008
GAT-LASER 0.6271±0.0052 0.2971±0.0037

SAGE 0.5971±0.0041 0.3480±0.0007
SAGE-FOSR-R 0.4678±0.0068 0.2986±0.0013
SAGE-SDRF-R 0.5892±0.0040 0.3408±0.0011
SAGE-LASER 0.6464±0.0032 0.3004±0.0032

physical systems, in which interactions that are nearby are more likely to be important for a given
task. Accordingly, given a budget of edges to be added, it is sensible to prioritise adding connections
between nodes that are closer.

Through a spectral rewiring, one is able to efficiently improve the information flow, but this often
greatly modifies the information given by the topology of the graph, as shown in Figure 2. This may
be beneficial in tasks in which mixing all information quickly is important, but GNNs usually do
not operate under such conditions. In fact, in tasks in which locality ‘should’ be preserved, spectral
rewirings tend to perform poorly, as shown in Table 2. Furthermore, it is unclear to what extent
spectral graph-rewirings are able to deal with generalization to variying graph sizes. For instance,
a spectral rewiring on a very large peptide chain will connect the most distant parts of the peptide,
drastically reducing spatial quantities such as diameter. Instead, on a small molecule this change
in topology would be comparably much more tame. On the other hand, local rewiring techniques
naturally generalize to different graph sizes as the mechanism via which they alter the topology is
much more consistent, being a local procedure.

Figure 4 further motivates the need for locality in LASER and supports the claim that locality is
the main source of improvement, rather than the more expressive architecture capable of handling a
sequence of snapshots. In the experiment, we compare LASER to a version of FOSR in which each
snapshot contains 10 rewirings. We observe that for LASER a larger quantity of snapshots seems to
benefit the performance. Instead, with FOSR there is a slight degrade in performance. Regardless,
even with a growing number of snapshots, FOSR is not able to compete with LASER . This supports
the claim that even within our snapshot framework, it is important for the snapshots to remain local,
rather than acting globally as done in FOSR.

D SCALABILITY AND IMPLEMENTATION

In this section, we provide theoretical and practical insights on the scalability of LASER to large
graphs. We start by providing a theoretical complexity analysis, followed by benchmarking pre-
processing and training times for the various rewiring techniques under comparison on our hardware.
We find that the LASER rewiring procedure is able to scale to synthetically generated graphs with
100k nodes and a million edges. We further find that the densification due to the rewiring does not
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Figure 4: Average Precision (AP) on Peptides-func obtained by varying the number of snapshots
for LASER and FOSR, respecting the 500k parameter budget. For LASER , we fix ρ = 0.1. For
FOSR, each snapshot contains 10 iterations.

significantly impact the total training and inference time when compared to the underlying MPNN
without rewirings on real-world tasks.

D.1 COMPLEXITY ANALYSIS

The computations in LASER during the pre-processing time are achieved in two steps: (1) the
connectivity measure µ and locality measure ν are computed for the graph G and (2) µ is used to
guide the rewiring of the edges given the density factor ρ and constrained by the locality measure ν.
Algorithm 1 describes the computation done in step (1) and Algorithm 2 the computation in step (2).

Algorithm 1 Fast µ, ν Computation
Input: Adjacency matrix A, Number of snapshots L, Connectivity radius C = 8
Output: Locality matrix D, Connectivity matrix M

1: D← A
2: Acurr ← A
3: Anext ← A2

4: for r = 2, · · · , L do
5: Acurr ← clip(Acurr)
6: Anext ← clip(Anext)
7: D← D+ r(Anext −Acurr) ▷ Adds nodes at distance r to D.
8: Acurr ← Anext ▷ Setup next iteration.
9: Anext ← AnextA

10: end for
11: M← AC

12: return D,M

While the implementation depends on the choices for µ and ν in step (1), our specific choices are
particularly efficient. Both of our measures can be in fact computed with matrix multiplication and
other simple matrix operations that are highly efficient on modern hardware. For square matrices
of size n, we set the cost of matrix multiplication to O(n3) in our analysis for simplicity although
there are more efficient procedures for this operation. In particular the computational complexity –
assuming the number of snapshots L to be sufficiently small which is the case in practice – of µ and
ν is O(n3) with n being the number of nodes considered, while the memory complexity is O(n2).
We further note that while computing effective resistance also has a theoretical complexity of O(n3),
it involves (pseudo-)inverting the graph Laplacian which in practice has a significant prefactor when
compared to matrix multiplication and often runs into numerical stability issues.
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The computations in Algorithm 2 are similarly efficient and easily parallelizable as the computation
for each node is independent. We find that the computational complexity is O(n2) as each node-wise
calculation is O(n) and there are n such operations. Overall, the entire procedure of LASER
therefore has a cost ofO(n3), with the primary overhead being the cost of taking matrix powers of the
adjacency matrix A. In these calculations we are absorbing the costs due to the number of snapshots
L as a prefactor, which is a reasonable assumption as L is constant, small, and independent of n. As
shown in the benchmarking experiments, in practice the cubic cost shows very strong scalability as
the operations required in our computations are highly optimized on modern hardware accelerators
and software libraries.

Algorithm 2 LASER rewiring for locality value r
Input: Graph G, Locality matrix D, Connectivity matrix M, Locality value r, Density ρ
Output: Rewired edges E′

r for locality r
1: E′

r ← empty()
2: for node in G do
3: Dnode,Mnode ← D[node, :],M[node, :]
4: Mnode ←Mnode[Dnode = r] ▷ Consider only the nodes at locality value r.
5: k = round(ρ|Mnode|) ▷ Edges to add k are the fraction ρ of the orbit size.
6: Enode

r ← getNewEdgesRandomEquivariant(Mnode, k)
7: E′

r.addEdges(Enode
r )

8: end for
9: return E′

r

D.2 REAL-WORLD GRAPHS SCALING

In Table 8, we show rewiring pre-processing and training times on PCQM-Contact and pre-
processing times on PascalVOC-SP datasets from LRGB. PCQM-Contact has more than 500k
graphs with an average node degree of ≈ 30 per graph. We find that the rewiring and inference times
between FOSR, SDRF, and LASER are very similar. PascalVOC-SP is a dataset with ≈ 11k
graphs, but with a considerably larger average node degree of ≈ 480. We find that LASER is still
extremely efficient, especially when compared to SDRF, with FOSR being the fastest. We further
remark that the FOSR and SDRF implementations rely on custom CUDA kernel implementations
with Numba to accelerate the computations. We specifically avoided such optimizations in order to
preserve the clarity of the implementation and found the performance of LASER to be efficient enough
without such optimizations regardless. We envision that a custom CUDA kernel implementation of
LASER could be used for further speedups.

In Table 9, we show the training time impact of the various rewiring techniques with SAGE as the
underlying MPNN on the Peptides-func task. We find that the rewiring techniques overall add
small overhead to the SAGE implementation. In particular, LASER with L = 1 has the same training
time of FOSR and SDRF but achieves significantly higher performance.

Table 8: Rewiring and Training+Inference times for the PCQM-Contact and PascalVOC-SP
datasets.

Dataset FOSR SDRF LASER
PCQM Training+Inference Time (GIN) 11h 47m 11h 51m 12h 21m
PCQM Rewiring Time 5m 20s 5m 36s 4m 15s
PascalVOC-SP Rewiring Time 4m 3s 31m 30s 9m 6s

D.3 SYNTHETIC SCALING EXPERIMENT

To further benchmark the scalability of the rewiring time, we construct an Erdos-Renyi synthetic
benchmark with n nodes and Bernoulli probability p = 10/n, i.e. in expectation we have 10n edges.
In these synthetic experiments, we benchmark on a machine with 44 cores and 600GB of RAM.
Setting n = 10k (meaning ≈ 100k edges), LASER (ρ = 0.5, L = 1) takes 11s, while FOSR and
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Table 9: Run-time on Peptides-func with different rewirings and SAGE. For FOSR and SDRF
we set the number of iterations to 40 and for LASER we set ρ = 0.5. L denotes the number of
rewirings.

Model Training Time Rewiring Time L Parameters Test AP ↑
SAGE 46m 26s N/A 0 482k 0.5971±0.0041
SAGE-FOSR-R 55m 51s 35s 1 494k 0.4678±0.0068
SAGE-SDRF-R 54m 52s 21s 1 494k 0.5892±0.0040

SAGE-LASER 54m 50s 33s 1 494k 0.6442±0.0028
SAGE-LASER 1h 4m 28s 42s 3 495k 0.6464±0.0032

SDRF with 0.001n = 100 iterations take 45s and 5m 48s respectively. On n = 100k (meaning
≈ 1 million edges), LASER completes the computation in 2h 16m, while FOSR and SDRF do not
terminate after more than 24 hours of computation. We emphasize that these graphs are much larger
than what graph rewiring techniques are designed for, yet LASER is still able to handle them with
success due to its efficient design.

Overall, in these synthetic experiments, we found that LASER is able to scale to very large graphs
and with a reasonable run-time on modest hardware. Scaling to larger graphs with millions of nodes
would likely require some further form of sampling, with this being a common practice used to scale
GNNs to very large graphs (Hamilton et al., 2017).
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