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Abstract

Chinese Spelling Correction (CSC) aims to de-
tect and correct misspelled characters in Chi-
nese text, a prerequisite for reliable down-
stream Natural Language Processing (NLP) ap-
plications. Although existing methods have
achieved promising performance, they still
suffer from spurious correlations caused by
long-tailed data distributions, leading to over-
correction of head-frequency mappings and
under-correction of rare or unseen mappings.
To address this, we propose Counterfactual
Generation for Chinese Spelling Correction
(CG-CSCO), a causally grounded framework
that synthesises counterfactual pairs to balance
the training data distribution. Experimental
results on three widely used SIGHAN bench-
marks show that our method significantly im-
proves correction performance, particularly on
rare and out-of-training cases, demonstrating
enhanced robustness and generalization.

1 Introduction

Chinese Spelling Correction (CSC) is a fundamen-
tal Natural Language Processing (NLP) task (Gao
et al., 2010), it aims at automatically detecting
and correcting misspelled characters in Chinese
text, with critical applications in Optical Character
Recognition (OCR) (Afli et al., 2016), Automatic
Speech Recognition (ASR) (ERRATTAHI et al.),
and Al-based language processing systems (Dong
and Zhang, 2016). Despite recent progress driven
by pre-trained language models (PLMs) and large
language models (LLMs), a persistent challenge
arises from spurious correlations that degrade cor-
rection robustness, which are statistical associa-
tions learned from unbalanced training data.
Current CSC models trained by supervised learn-
ing on labeled parallel datasets are fundamen-
tally constrained by the training datasets that have
an unbalanced distribution (Hong et al., 2019;
Zhang et al., 2020; Huang et al., 2021; Zhu et al.,
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Figure 1: (a) The distribution of ‘“misspelled-to-
correction” mappings in the SIGHANI1S training/
dataset. The red box highlights the out-of-training
(OOT) mappings that only appear in the test set. (b) An
example of spurious correlation from the CSC model.
The misspelled/ground-truth characters are highlighted
in red/blue.

2022; Huang et al., 2023; Xu et al., 2021; Wu
et al., 2024a). These datasets exhibit long-tailed
distributions, where a small fraction of frequent
“misspelled-to-correction” mappings dominate the
training instances while many rare mappings are
underrepresented. For instance, Figure 1(a) shows
that 21% of head mappings in SIGHAN1S5 capture
60% of the training data, leaving the remaining
79% of mappings (including low-frequency and
out-of-training (OOT) mappings highlighted in red
in Figure 1(a)) undersampled. This leads to two
critical issues:

1. Over-correction fueled by spurious correla-
tions: Models prioritize high-frequency mappings,
even when semantically invalid. For example, Fig-
ure 1(b) shows a trained model correct the “/E”
(zud, meaning abstract behavior or result) to “ft{”
(zud, meaning “concrete thing or action”) or change
“fA” (jiso, meaning “role”) to “#” (jido, meaning
“teach”), where “/E—{i{” and “f —#{" are high-
frequency mappings.



(2) Under-correction due to distributional
bias: Low-frequency or OOT mappings (e.g., in
Figure 1(b), “VE” (zud) or “ff” (jido) need to
be corrected as “#%” (jido, meaning “compare”),
where “VE—% and “ff -5 are low-frequency
or OOT mappings.) are ignored because the model
never observed their mappings during training.
Such mappings represent unseen semantic relation-
ships in training data, hindering generalization.

Recent LLM-based approaches, such as
ARM (Liu et al., 2024), enhance the performance
of supervised-learning-based CSC model (Zhang
et al., 2020; Zhu et al., 2022; Li et al., 2022) by
adjusting the probability distributions of character
predictions using LLMs. While these methods are
effective to some extent—leveraging additional
contextual information to guide the corrector
toward accurate predictions—they fail to address
the root cause: the inherent tendency of supervised
CSC models to favor high-frequency mappings
statistically, rather than to infer corrections based
on the causal relationship between context and
character semantics.

To address these challenges, we propose a novel
Counterfactual Generation method for CSC (CG-
CSC). We first explain the relationship between
the correction result and various dependent fea-
tures from a causal perspective, and then intro-
duce a counterfactual mechanism to mitigate these
spurious correlations from unbalanced distribu-
tion training data. Specifically, we design a soft-
sampler to synthesize counterfactual pairs (e.g.,
“fE—”) by exploiting character-level features
such as pronunciation similarity and glyph struc-
ture. These generated instances allow the model to
awake additional mappings and thereby enhance
its robustness. We evaluate our method on three
widely used CSC benchmark datasets (SIGHAN13,
SIGHAN14, SIGHAN15), where CG-CSC outper-
forms the PLM fine-tuned baseline on all metrics
on all three benchmarks. Additionally, an ablation
study highlights the significance of counterfactual
texts on CSC performance.

2 Related Work

2.1 Causal Inference

Causal inference aims to eliminate confounders be-
tween variables to determine causal effects (Pearl,
2009). As a result, it has become an effective
method for debiasing in various fields, including
computer vision (Niu et al., 2021), recommenda-

tion systems (Zhang et al., 2021c), and natural lan-
guage processing (Tian et al., 2022). These works
are mainly inspired by counterfactual reasoning
and causal intervention. For example, (Niu et al.,
2021) proposed addressing language bias in visual
question answering by subtracting the outcomes of
a counterfactual language-only model from those
of a standard language-vision model. Addition-
ally, counterfactual reasoning is widely employed
to address spurious correlations between inputs
and labels in various tasks, including natural lan-
guage understanding (Tian et al., 2022; Wu et al.,
2024c), Named Entity Recognition (Yang et al.;
Zhang et al., 2021b), Sentiment Analysis (Wu et al.,
2024b). (Liu et al., 2022) proposed a method to
de-confound objects from their context in object de-
tection using backdoor adjustment. This approach
involves approximating inverse probability weights
to estimate the do-operator.

In this paper, we adopt a causal perspective to
analyze and identify that spurious correlations in
existing CSC models are a key bottleneck imped-
ing further improvements in model performance.
These spurious correlations primarily stem from
unbalanced training datasets. To address this issue
and enable the model to uncover the main causal
effects, we propose using counterfactual generation
for CSC.

2.2 Chinese Spelling Correction

Chinese spelling correction (CSC) has received
extensive attention over the last two decades due
to its uniqueness and challenges, and many works
have significantly improved the performance (Hong
et al., 2019; Zhang et al., 2021a; Huang et al., 2021;
Zhu et al., 2022; Zhang et al., 2020; Huang et al.,
2023). Especially, inspired by masked language
model (MLM) (Devlin et al., 2019), which predicts
each character to be corrected using the fusion fea-
tures from contextual, phonological, and visual
information. For example, (Cheng et al., 2020)
reported SpellGCN, which integrates phonologi-
cal and visual similarity information into charac-
ter classifiers using a graph network, which then
feeds the graph representation into MLM. To make
full use of information from all dimensions, Re-
aLise is proposed by (Xu et al., 2021), they employ
three distinct feature networks to capture phonetic,
graphemic, and semantic features, ultimately pass-
ing the fused representation through MLM. These
methods focus on constructing CSC features and
feeding them into an MLM-based corrector. In



contrast, FASPell (Hong et al., 2019) leverages
phonological and visual similarity features to con-
struct a filtering model, selects the most suitable
candidate Chinese characters from a pre-trained
Language Model (PLM). In addition, some meth-
ods (Zhang et al., 2020, 2021a; Huang et al., 2023;
Zhu et al., 2022) follow the detection-correction
framework, which first uses an error detection mod-
ule to detect the position information of misspelled
characters and then feeds the detection results to the
correction module to get predictions. Specifically,
SoftMasked-BERT (Zhang et al., 2020) uses a two-
stage detection and correction pipeline method,
which linearly combines each token embedding
with the embedding of [MASK], and predicts the
error character based on a fine-tuned masked lan-
guage model. MDCSpell (Zhu et al., 2022) uses
parallel detection and correction feature represen-
tation modules, and the corrector receives the de-
tector’s hidden states, thus, the inference in cor-
rection incorporates the feature from both detec-
tion and correction. Different from those works,
MLM-phonetics (Zhang et al., 2021a) and DR-CSC
(Huang et al., 2023) further introduce phonological
and visual information into the detection-correction
framework.

Despite their notable success, these methods of-
ten struggle to achieve further performance gains
when faced with unbalanced training data. When
confronted with unbalanced training datasets, these
models tend to focus disproportionately on high-
frequency mappings, persistently memorizing these
common patterns. As a result, they create spurious
correlations between character semantic represen-
tations and predicted corrections, often neglecting
corrections for low-frequency mappings. To ad-
dress this issue, recent work such as ARM (Liu
et al., 2024) leverages LLLM to refine the correction
probabilities of existing CSC models. While ARM
has demonstrated some improvements, it does not
fundamentally resolve the underlying challenge. In
contrast, our work takes a causal perspective to ana-
lyze the limitations of current models and proposes
a counterfactual generation-based soft-sampler that
synthesizes balanced training data, leading to more
robust and effective CSC performance.

3 Methodology

3.1 Problem Formulation

The Chinese spelling correction (CSC) task aims
to detect and correct the misspelled characters in

C: input text

P: pronunciation

G: glyph

S: semantic representation

Y: prediction logits

Figure 2: (a) a unified structured causal model for Chi-
nese spelling correction. (b) causal interventions on
semantic representation .S.

a Chinese sentence. Formally, given an input tex-
tual sequence ¢ = (wy, we, - - - , wy, ), Where each
w; 1s a character from a predefined vocabulary V/,
the CSC model’s goal is to produce a corrected
sequence Yy = (¥1,Y2, " ,Yn), witheach y; € V
representing the suggested correction for the corre-
sponding character.

3.2 A Causal View

In the task of CSC, the unbalanced training data in-
troduces serious data bias, leading to spurious cor-
relation, and then misleads the error correction of
models. To understand the causal relationships, we
introduce a Structural Causal Model (SCM) (Pearl,
2009) to reformulate existing methods based on
sequence labeling. As Fig. 2 (a) shows, S repre-
sents the semantic representation of a character, P
and G represent phonetic and glyph, Y is the pre-
dicted character, and C' is the confounders, such as
training data distribution bias.

To formalize, we use G = {V,F,U} to ex-
press SCM, where V = {V;, ..., V,} denotes the
set of observables (vertices), F = {f1,..., fn}
denotes the set of functions (edges), and U =
{U1,...,U,} is the set of exogenous variables
(e.g., noise), n is the number of nodes in G. Further-
more, we format the causal effects of each variable
H in G on Y as linear transformations, then the
prediction can be obtained by summation:

Yo=) WiH, (M
1€N
where, N = {5, P, G} denotes the parents of Y,
W is learnable weight.

In CSC task, the path S — Y represents the
model directly classifies the characters based on
the semantic representation, and gets the predicted
character. The causal path S +— C — Y denotes
confounders, such as training samples distribution
bias, mislead the calculation of character seman-
tic representation, resulting in the spurious cor-
rection between character semantic representation
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Figure 3: Overview of our CG-CSC framework. The soft-sampler is used to generate counterfactual training in-
stances, which uses a Chinese confusion set as an external resource. The symbol « represents sampling probabilities.

and predicted correction. This spurious correc-
tion leads to over-correction, i.e., the model shows
stubborn memory, such as the correction mapping
YE—1. So, we expect to block the backdoor path
S <+ C' — Y, thus, we intervene on S.

3.3 Casual Intervention for CSC

In this paper, we propose the use of counterfactual
generation for CSC.

Counterfactuals The concept of counterfactual
reflects an imaginary secario for “what would the
outcome be had the variable(s) been different”.
Let Y € V denote the outcome variable, and let
S € V\{Y} denote the variable of study. The
counterfactual is obtained by setting S = s* and
formally estimated as:

Yie (u) = Yg,. (u) 2)

where, G4« denotes all functions of SCM G assign
S = s*. The counterfactual Y« of the original
instance-level prediction Y is computed as:

Y« = fy(do(S =s*),G =g, P = p)

= Z Wiy H; + Wey H - 3)
1eN\{S}

where, the function fy is used to computes Y.
Thus, we only replace the character semantic rep-
resentation Hg with H .

Counterfactual generation with soft-sampler
To update CSC models, we design a soft-sampler
to synthesize counterfactual pairs and then train
the model on the synthesized dataset. Specifically,
we choose a high-quality confusion set to replace
the semantic representation of the character and
change the model’s stubborn mapping memory.
This set includes characters that are highly sim-
ilar to the target character in both pronunciation
and glyph. Additionally, the similarity in pronunci-
ation and glyph has been proven effective on CSC

tasks (Cheng et al., 2020; Zhu et al., 2022; Liang
et al., 2023; Huang et al., 2023). Inspired by coun-
terfactuals, we seek to determine the decisive fac-
tors influencing character corrections in the CSC
task. As illustrated in Fig. 3, we replace misspelled
characters in the training set sentences using a char-
acter from the selected confusion set, i.e., we feed
C* to the function of the edge C — S to get S*.
This approach aims to eliminate key clues in the
semantic representation S* of the counterfactual,
thereby enhancing the model’s focus on the main
effect while reducing spurious correlations.

The core of the soft-sampler is to build a sam-
pling dictionary. Specifically, it includes three cal-
culation operations: (1) counting the frequency c;;
of each correction mapping in the training data set,
where ¢ and j denote the character id from the pre-
defined vocabulary V" and c¢;; means correct charac-
ter ¢ as j. (2) Count the mappings in the confusion
set, with an update frequency of ¢;; o< ¢;; + 1 % A,
where taking into account the difference in the im-
pact of similar pronunciation and similar glyphs, A
is set to 0.6 for same and similar pinyin mapping
and 0.4 for same stroke mappings. (3) Calculate
soft sampling probability by normalization:

pij = ¢ij/ Z Cij “)
=1

Then, the sampling dictionary is used to syn-
thesize counterfactual instances. For each training
instance, we employed two parameter generators
to generate two control parameters ¢; € [0, 1] and
g2 € (0, 1], which are used to determine the synthe-
sis ratio and extract the characters to be corrected,
respectively.

4 Experiments

4.1 Datasets and Evaluation Metrics

Datasets To assess the effectiveness of CG-CSC
for the CSC task, we perform extensive empir-



ical evaluations on three widely used datasets:
SIGHANI13 (Wu et al., 2013), SIGHAN14 (Yu
et al.,, 2014) and SIGHANI15 (Tseng et al.,
2015). Specifically, we evaluate model with
three test datasets from SIGHAN13, SIGHAN14
and SIGHANI1S5 and train CG-CSC by four
datasets, which include three training data sets from
SIGHAN and an additional set of training data gen-
erated by an automatic method (Wang et al., 2018).
For consistency, we apply the same preprocessing
procedure as (Zhu et al., 2022), which includes con-
verting the characters in these datasets to simplified
Chinese using OpenCC !.

Evaluation Metrics In this paper, we use
sentence-level metrics to evaluate the performance
of the trained model on CSC. Unlike character-
level metrics, sentence-level metrics impose a
stricter standard: a prediction is considered correct
only if all misspelled characters in the sentence
have been detected or corrected. Following the
previous work (Hong et al., 2019; Cheng et al.,
2020), we take the commonly used sentence-level
precision, recall, and F1 score measures.

4.2 Implementation details

In the implementation of CG-CSC, we use Py-
Torch (Paszke et al., 2019) as the underlying frame-
work and build the model with Transformers library
(Wolf et al., 2020). For model training, AdamW
(Loshchilov and Hutter, 2019) is used as an opti-
mizer with max epochs 20, the learning rate is set
as 5e-5, the batch size is set to 32. The param-
eter ¢ is set to 0.8, indicating that the model is
trained on a combination of the original dataset
and an additional counterfactual dataset that is 80%
the size of the original. Set g2 to 0.6, meaning
that when sampling from the confusion set, there
is a 60% probability of selecting characters with
similar pronunciation and a 40% probability of se-
lecting characters with similar glyphs. To ensure
a fair comparison with existing methods, we fol-
low ARM (Liu et al., 2024) and integrate CG-CSC
with three supervised-learning-based CSC models:
SoftMasked-BERT (Zhang et al., 2020), MDCSpell
(Zhu et al., 2022) and SCOPE (Li et al., 2022),
where we use the official code % and parameters to
implement SCOPE. All experiments are conducted
on a GPU server equipped with two RTX A6000
GPUs (48 GB each).

'https://github.com/BY Void/OpenCC
Zhttps://github.com/jiahaozhenbang/SCOPE

4.3 Baselines

Considering that CG-CSC is essentially a fine-
tuning model, we select a wide range of CSC meth-
ods based on fine-tuning as comparison models:

* SoftMasked-BERT (Zhang et al., 2020), inte-
grates a detection network with a BERT-based
correction network via a soft-masking mecha-
nism.

* MDCSpell (Zhu et al., 2022) is a detector-
corrector multi-task framework for CSC that
leverages BERT to retain visual and phono-
logical features from raw input and applies a
late fusion strategy to mitigate the influence
of misspellings.

e SCOPE (Li et al.,, 2022) introduces a
dual-decoder architecture with adaptive task
weighting and an iterative correction strategy,
leveraging a fine-grained auxiliary CPP task.

* DR-CSC (Huang et al., 2023) includes a mod-
ular detection-and-reasoning component that
decomposes CSC into detection, reasoning,
and searching subtasks, enabling the integra-
tion of external knowledge and improving
both performance and interpretability across
various non-autoregressive models.

* SpellGCN (Cheng et al., 2020) incorporates
phonological and visual similarity knowledge
representation into BERT by employing a spe-
cialized graph convolutional network.

* DCN (Wang et al., 2021) aims to optimize the
incoherent problem, they use a dynamically
connected network to measure the degree of
dependence between any two adjacent Chi-
nese characters.

* DORM (Liang et al., 2023) allows the direct
feature interaction between textual and pho-
netic information.

* ARM (Liu et al.,, 2024) denotes a plug-
and-play Alignment-and-Replacement Mod-
ule that leverages LLMs to enhance semantic
understanding in CSC while mitigating over-
correction issues, improving existing models.
It has the same motivation as CG-CSC.



Detection Correction
Dataset Models Prec. Rec. Fl1 Prec. Rec. Fl1

SpellGCN(Cheng et al., 2020) 80.1 744 772 783 7277 154
DCN(Wang et al., 2021) 86.8 79.6 83.0 847 777 81.0
DORM(Liang et al., 2023) 87.9 83.7 858 868 827 84.7
DR-CSC(Huang et al., 2023) 885 837 860 87.7 83.0 853

- SoftMasked-BERT(Zhang et al., 2020) 852 78.0 814 838 768 80.1
+ARM(Liu et al., 2024) 859 795 826 84.6 782 81.3
SIGHAN13 +CG-CSC 85.6 795 824 845 788 81.6

- MDCSpell(Zhu et al., 2022) 8577 785 819 846 775 809
+ARM(Liu et al., 2024) 864 79.5 828 855 786 81.9
+CG-CSC 86.1 79.3 826 851 788 81.8

“SCOPE(Lietal., 2022) 874 834 854 863 824 843
+ARM(Liu et al., 2024) 88.7 84.1 863 876 831 853
+CG-CSC 88.0 851 86.5 868 84.1 85.9
SpellGCN(Cheng et al., 2020) 65.1 695 672 631 672 653
DCN(Wang et al., 2021) 674 704 689 658 687 672
DORM(Liang et al., 2023) 69.5 731 712 684 719 70.1
DR-CSC(Huang et al., 2023) 702 732 717 693 723 170.7

~ SoftMasked-BERT(Zhang et al., 2020) 69.6 69.6 69.6 685 685 685
+ARM(Liu et al., 2024) 704 713 709 693 702 69.7
SIGHAN14 +CG-CSC 70.0 728 714 687 7177 70.2

- MDCSpell(Zhu et al., 2022) 66.2 665 663 642 646 644
+ARM(Liu et al., 2024) 673 688 681 654 669 662
+CG-CSC 67.1 69.1 68.1 648 70.1 673

~SCOPE(Lietal., 2022y 701 731 716 686 715 0.1
+ARM(Liu et al., 2024) 71.2 750 731 692 73.0 71.1
+CG-CSC 70.9 747 728 69.6 729 71.2
SpellGCN(Cheng et al., 2020) 74.8 80.7 77.7 721 777 759
DCN(Wang et al., 2021) 77.1 809 79.0 745 782 763
DORM(Liang et al., 2023) 779 843 81.0 76.6 828 79.6
DR-CSC(Huang et al., 2023) 829 848 83.8 803 823 813

~ SoftMasked-BERT(Zhang et al., 2020) 755 79.2 773 741 778 759
+ARM(Liu et al., 2024) 764 809 78.6 747 790 768
SIGHAN15 +CG-CSC 75.8 814 785 744 795 769

- MDCSpell(Zhu et al., 2022) 763 79.6 779 752 7185 16.8
+ARM(Liu et al., 2024) 764 813 788 752 800 775
+CG-CSC 76.0 822 790 751 803 77.6

“SCOPE(Lietal., 2022) 81.1 843 827 792 823 807
+ARM(Liu et al., 2024) 823 86.1 84.1 79.5 83.1 81.3
+CG-CSC 81.6 875 844 790 848 81.8

Table 1: Experimental results on SIGHAN13, SIGHAN14 and SIGHANI1S5 test sets, and each model includes
sentence-level precision, recall, and F1 score for both detection and correction. For a fair comparison, we select
SoftMasked-BERT(Zhang et al., 2020), MDCSpell(Zhu et al., 2022) and SCOPE(Li et al., 2022) as backbone
models and integrate them with CG-CSC. The highest score for each evaluation metric is highlighted in bold.

4.4 Main Results

Table 1 shows the experimental results. Across all
three SIGHAN datasets and backbones, our pro-
posed CG-CSC consistently achieves the best or
highly competitive F1 scores for both detection and
correction. These results highlight the robustness
and effectiveness of counterfactual generation in
enhancing CSC performance.

In the same setting (e.g., SoftMasked-BERT,

MDCSpell and SCOPE as baselines and back-
bones), compared with “+ARM” that uses LLM
to adjust the corrector prediction probability, all
backbones bring more improvements in correc-
tion F1 after integrating CG-CSC. Addition, CG-
CSC significantly improves detection and correc-
tion F1 compared to the three base models. Specif-
ically, correction F1 +1.5%, +1.7%, +1.0% on
SIGHANT13/14/15 with SoftMasked-BERT, +0.9%,
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Figure 4: Correction mapping frequency comparison.

+2.9%, +0.8% with MDCSpell, and +1.6%, +1.1%,
+1.1% with SCOPE, respectively. These gains val-
idate the value of augmenting training with coun-
terfactual samples, particularly for rare or unseen
eITorS.

Furthermore, CG-CSC outperforms or matches
these models that include the pre-trained stage,
such as DORM and DR-CSC. Despite adjusts the
distribution of training data and does not explic-
itly model CSC, CG-CSC achieves superior re-
sults, demonstrating that counterfactual generation
contributes substantially to performance improve-
ments.

Notably, while methods like DCN and ARM ex-
plicitly model the output sequence, our CG-CSC
does not alter the output mechanism, yet it consis-
tently surpasses both in F1 scores across all three
datasets. This indicates that CG-CSC enhances gen-
eralization and robustness by exposing the model to
a more diverse and balanced set of training signals.

Taken together, these findings confirm that CG-
CSC is a highly effective and versatile training
strategy that enhances various supervised-learning-
based backbone models and consistently boosts
CSC performance across diverse benchmarks.

4.5 Ablation Study

4.5.1 The efficiency of counterfactual
generation

We use SIGHANIS test sets to examine the ef-
fectiveness of our model in eliminating spurious
correlations.

Fig. 4 shows the comparison of correction map-
ping frequency between the expected target, PLM-
FT (ChineseBERT), and the proposed CG-CSC.
In region (a) of Fig. 4, which represents high-
frequency mappings, PLM-FT tends to over-correct
significantly beyond the true frequency, while CG-
CSC remains relatively stable. In region (b), which
denotes low-frequency mappings, both models ex-
hibit under-correction, and PLM-FT is less robust
than CG-CSC, especially with two strange high-

frequency mappings. In region (c), which includes
characters that do not require correction but the
model over-corrects. It is noteworthy that PLM-FT
corrects more in this region than CG-CSC. The
result shows that CG-CSC have a better ability to
tackle both over-correction and under-correction
problems.

4.5.2 Counterfactual generation vs. data
augmentation

To distinguish the difference between the proposed
CG-CSC and the data augmentation method, we
adopt a random sampling strategy from predefined
vocabulary V' and set the same probability of 0.8 to
decide whether a misspelled character is replaced
by another random character. The comparison re-
sults are shown in Table 2:

Overall, Both Data Augmentation (SCOPE+DA)
and the proposed Counterfactual Generation strat-
egy (SCOPE+CG-CSC) consistently improve the
baseline SCOPE model across all three SIGHAN
benchmarks (SIGHAN13/14/15), in terms of both
detection and correction performance. Specifi-
cally, SCOPE+CG-CSC achieves the best perfor-
mance in all metrics across all datasets. For in-
stance, on SIGHAN13, it achieves a detection F1
of 86.5% and a correction F1 of 85.9%, signifi-
cantly outperforming both the original SCOPE and
SCOPE+DA. On SIGHAN14, although all meth-
ods perform relatively poorly compared to other
datasets, SCOPE+CG-CSC still leads with a de-
tection F1 of 72.8% and a correction F1 of 71.2%,
demonstrating its robustness even in more challeng-
ing scenarios. On SIGHAN1S5, SCOPE+CG-CSC
again surpasses other variants, reaching a detection
F1 of 84.4% and a correction F1 of 81.8%.

These results indicate that the proposed counter-
factual data generation method is more effective
than traditional data augmentation in improving the
generalization and robustness of the CSC model.

5 Case study

To further demonstrate the effectiveness of CG-
CSC over existing models, we analyze two repre-
sentative cases in Table 3.

In the first case, the sentence contains a rare er-
ror where “ffi(jifio)” (meaning “role”) should be
corrected to “¥%(jido)” (meaning “compare”). The
backbone model SCOPE failed to detect or cor-
rect the misspelled character, resulting in under-
correction. This is an example of under-correction
caused by distributional bias (the mapping “f — ”



Dataset Baseline Detection Correction
Prec. Rec. F1 Prec. Rec. F1
SCOPE(Li et al., 2022) 874 83.4 854  86.3 82.4 84.3
SIGHAN13 SCOPE+DA 87.1 84.0 85.5 85.9 82.7 84.3
SCOPE+CG-CSC 88.0 85.1 86.5 86.8 84.1 85.9
SCOPE(Li et al., 2022)  70.1 73.1 71.6  68.6 71.5 70.1
SIGHAN14  SCOPE+DA 70.3 73.1 71.7  68.2 72.0  70.0
SCOPE+CG-CSC 70.9 747 72.8 69.6 729 712
SCOPE(Li et al., 2022)  81.1 84.3 827 792 82.3 80.7
SIGHAN15 SCOPE+DA 81.2 84.7 829  78.7 82.8 80.7
SCOPE+CG-CSC 81.6 875 844 790 848 81.8

Table 2: Performance of SCOPE with Data Augmentation (SCOPE+DA) and Counterfactual Generation

(SCOPE+CG-CSC) on SIGHAN13/14/15.

id #Model/Function

Sentence

Input
SCPOE

SRR B (Gido) TR
TR IR ESE L A (jizo) i

1 +ARM(Liu et al., 2024) WHIZRIR B2 2 (jiao) HITE

+CG-CSC TS IR B 32 HL B o) T
Translation Comparing Hunan cuisine with Cantonese cuisine
Input P HRF £ Fe A7 (bu zhi) FESBRS S, LEAAT] 22 (an)Fe A -
SCPOE P - A (bt zhi) 2T, AR % (an) e ANE) -

2 +ARM(Liu et al., 2024) ¥ EFAE (b zh) FEWSN, LEABA 1% (n) RS -

+CG-CSC
Translation

P KR S0 8 (b shi) 7ES, AEABATT#% an) =5 -
The captain deployed the soldiers outside the city and ordered them to stand still.

Table 3: Examples of CSC results from SCOPE+CG-CSC, in comparison with results from SCOPE and
SCOPE+ARM baselines. Red and blue are used to mark misspelled and correct characters, respectively.

only appears once in training data). In contrast,
both ARM and CG-CSC successfully detected
and corrected the error, demonstrating their ability
to handle low-frequency or out-of-training (OOT)
mappings effectively.

In the second case, the input contains two
spelling errors: “7fi & (bu zhi)” should be “¥}%& (bu
shii)” (meaning “deploy”), and *““Z*(an)” should be
“¥%(an)” (meaning “according to”). Both SCOPE
and ARM failed to correct all two misspelled char-
acters, most likely because the input had multi-
ple misspelled characters, causing the model to
be distracted in understanding the meaning of the
input sentence. Specifically, SCOPE failed to cor-
rect “/fi & (b1 zhi)” due to its low frequency in the
training set, leading to under-correction. While
ARM managed to detect and correct ““Z(an)” to
“¥%(an)”, only CG-CSC accurately corrected both
errors. These results highlight the ability of CG-
CSC to mitigate both over-correction and under-
correction, benefiting from a more balanced train-
ing distribution achieved via counterfactual genera-
tion.

Together, these cases illustrate that CG-CSC im-

proves robustness and generalization by exposing
the model to diverse, informative correction in-
stances beyond what is seen in naturally skewed
training data.

6 Conclusion

In this paper, we examine the issue of erroneous
corrections in the context of the causal perspective
on the CSC task. We identify that an unbalanced
distribution of training datasets can lead to spurious
correlations between character semantic represen-
tations and predicted corrections. To address this,
we propose CG-CSC, a method based on causal
interventions for CSC. We then develop CG-CSC
with counterfactual generation and conduct com-
prehensive experiments to validate its effectiveness.
The experimental results demonstrate that CG-CSC
exhibits competitive performance and robustness.
Furthermore, the method based on counterfactual
generation holds significant potential for similar
tasks, such as grammatical error correction, and
warrants further exploration in future research.



Limitations

6.1 Language Limitation

This study focuses exclusively on Chinese char-
acter spelling correction, as CSC presents unique
challenges distinct from alphabetic languages like
English. Specifically, (1) Chinese text lacks ex-
plicit word boundaries, and (2) the language com-
prises over 100,000 characters, with around 3,500
commonly used ones—many of which share sim-
ilar pronunciations or visual forms. Nevertheless,
we argue that long-tailed distributions are a com-
mon challenge across many NLP tasks. Investigat-
ing this issue in other language settings or NLP
applications—and exploring the use of resources
analogous to the Chinese confusion set—offers a
promising direction for future research.

6.2 Running Efficiency

We have not specifically optimized the running
efficiency of CG-CSC in our current implemen-
tation. On a single NVIDIA RTX A6000 GPU
(48GB), each training process takes approximately
10 hours to complete. We believe that the training
efficiency could be substantially improved by lever-
aging multi-GPU environments with data-parallel
training, which would allow for larger batch sizes
and reduced training time. Future work can explore
such optimizations to make CG-CSC more scalable
and training-friendly for larger datasets.
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A Example Appendix

This is an appendix.
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