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Abstract001

Chinese Spelling Correction (CSC) aims to de-002
tect and correct misspelled characters in Chi-003
nese text, a prerequisite for reliable down-004
stream Natural Language Processing (NLP) ap-005
plications. Although existing methods have006
achieved promising performance, they still007
suffer from spurious correlations caused by008
long-tailed data distributions, leading to over-009
correction of head-frequency mappings and010
under-correction of rare or unseen mappings.011
To address this, we propose Counterfactual012
Generation for Chinese Spelling Correction013
(CG-CSC), a causally grounded framework014
that synthesises counterfactual pairs to balance015
the training data distribution. Experimental016
results on three widely used SIGHAN bench-017
marks show that our method significantly im-018
proves correction performance, particularly on019
rare and out-of-training cases, demonstrating020
enhanced robustness and generalization.021

1 Introduction022

Chinese Spelling Correction (CSC) is a fundamen-023

tal Natural Language Processing (NLP) task (Gao024

et al., 2010), it aims at automatically detecting025

and correcting misspelled characters in Chinese026

text, with critical applications in Optical Character027

Recognition (OCR) (Afli et al., 2016), Automatic028

Speech Recognition (ASR) (ERRATTAHI et al.),029

and AI-based language processing systems (Dong030

and Zhang, 2016). Despite recent progress driven031

by pre-trained language models (PLMs) and large032

language models (LLMs), a persistent challenge033

arises from spurious correlations that degrade cor-034

rection robustness, which are statistical associa-035

tions learned from unbalanced training data.036

Current CSC models trained by supervised learn-037

ing on labeled parallel datasets are fundamen-038

tally constrained by the training datasets that have039

an unbalanced distribution (Hong et al., 2019;040

Zhang et al., 2020; Huang et al., 2021; Zhu et al.,041
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Input1: 湘菜跟粤菜比作的话，虽然两省很近，但口味差很多

作(zuò)

Target: 湘菜跟粤菜比较的话，虽然两省很近，但口味差很多

做(zuò)

Model predict

Input2: 湘菜跟粤菜比角的话，虽然两省很近，但口味差很多 角(jiǎo)

教(jiào)

Out-of-training mappings

(a)
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60% training 
instances

40% training instances

Translation: If Hunan cuisine is compared with Cantonese cuisine, 
although the two provinces are close, the taste is very different.

Figure 1: (a) The distribution of “misspelled-to-
correction” mappings in the SIGHAN15 training/test
dataset. The red box highlights the out-of-training
(OOT) mappings that only appear in the test set. (b) An
example of spurious correlation from the CSC model.
The misspelled/ground-truth characters are highlighted
in red/blue.

2022; Huang et al., 2023; Xu et al., 2021; Wu 042

et al., 2024a). These datasets exhibit long-tailed 043

distributions, where a small fraction of frequent 044

“misspelled-to-correction” mappings dominate the 045

training instances while many rare mappings are 046

underrepresented. For instance, Figure 1(a) shows 047

that 21% of head mappings in SIGHAN15 capture 048

60% of the training data, leaving the remaining 049

79% of mappings (including low-frequency and 050

out-of-training (OOT) mappings highlighted in red 051

in Figure 1(a)) undersampled. This leads to two 052

critical issues: 053

1. Over-correction fueled by spurious correla- 054

tions: Models prioritize high-frequency mappings, 055

even when semantically invalid. For example, Fig- 056

ure 1(b) shows a trained model correct the “作” 057

(zuò, meaning abstract behavior or result) to “做” 058

(zuò, meaning “concrete thing or action”) or change 059

“角” (jiǎo, meaning “role”) to “教” (jiào, meaning 060

“teach”), where “作→做” and “角→教” are high- 061

frequency mappings. 062
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(2) Under-correction due to distributional063

bias: Low-frequency or OOT mappings (e.g., in064

Figure 1(b), “作” (zuò) or “角” (jiǎo) need to065

be corrected as “较” (jiào, meaning “compare”),066

where “作→较” and “角→较” are low-frequency067

or OOT mappings.) are ignored because the model068

never observed their mappings during training.069

Such mappings represent unseen semantic relation-070

ships in training data, hindering generalization.071

Recent LLM-based approaches, such as072

ARM (Liu et al., 2024), enhance the performance073

of supervised-learning-based CSC model (Zhang074

et al., 2020; Zhu et al., 2022; Li et al., 2022) by075

adjusting the probability distributions of character076

predictions using LLMs. While these methods are077

effective to some extent—leveraging additional078

contextual information to guide the corrector079

toward accurate predictions—they fail to address080

the root cause: the inherent tendency of supervised081

CSC models to favor high-frequency mappings082

statistically, rather than to infer corrections based083

on the causal relationship between context and084

character semantics.085

To address these challenges, we propose a novel086

Counterfactual Generation method for CSC (CG-087

CSC). We first explain the relationship between088

the correction result and various dependent fea-089

tures from a causal perspective, and then intro-090

duce a counterfactual mechanism to mitigate these091

spurious correlations from unbalanced distribu-092

tion training data. Specifically, we design a soft-093

sampler to synthesize counterfactual pairs (e.g.,094

“作→较”) by exploiting character-level features095

such as pronunciation similarity and glyph struc-096

ture. These generated instances allow the model to097

awake additional mappings and thereby enhance098

its robustness. We evaluate our method on three099

widely used CSC benchmark datasets (SIGHAN13,100

SIGHAN14, SIGHAN15), where CG-CSC outper-101

forms the PLM fine-tuned baseline on all metrics102

on all three benchmarks. Additionally, an ablation103

study highlights the significance of counterfactual104

texts on CSC performance.105

2 Related Work106

2.1 Causal Inference107

Causal inference aims to eliminate confounders be-108

tween variables to determine causal effects (Pearl,109

2009). As a result, it has become an effective110

method for debiasing in various fields, including111

computer vision (Niu et al., 2021), recommenda-112

tion systems (Zhang et al., 2021c), and natural lan- 113

guage processing (Tian et al., 2022). These works 114

are mainly inspired by counterfactual reasoning 115

and causal intervention. For example, (Niu et al., 116

2021) proposed addressing language bias in visual 117

question answering by subtracting the outcomes of 118

a counterfactual language-only model from those 119

of a standard language-vision model. Addition- 120

ally, counterfactual reasoning is widely employed 121

to address spurious correlations between inputs 122

and labels in various tasks, including natural lan- 123

guage understanding (Tian et al., 2022; Wu et al., 124

2024c), Named Entity Recognition (Yang et al.; 125

Zhang et al., 2021b), Sentiment Analysis (Wu et al., 126

2024b). (Liu et al., 2022) proposed a method to 127

de-confound objects from their context in object de- 128

tection using backdoor adjustment. This approach 129

involves approximating inverse probability weights 130

to estimate the do-operator. 131

In this paper, we adopt a causal perspective to 132

analyze and identify that spurious correlations in 133

existing CSC models are a key bottleneck imped- 134

ing further improvements in model performance. 135

These spurious correlations primarily stem from 136

unbalanced training datasets. To address this issue 137

and enable the model to uncover the main causal 138

effects, we propose using counterfactual generation 139

for CSC. 140

2.2 Chinese Spelling Correction 141

Chinese spelling correction (CSC) has received 142

extensive attention over the last two decades due 143

to its uniqueness and challenges, and many works 144

have significantly improved the performance (Hong 145

et al., 2019; Zhang et al., 2021a; Huang et al., 2021; 146

Zhu et al., 2022; Zhang et al., 2020; Huang et al., 147

2023). Especially, inspired by masked language 148

model (MLM) (Devlin et al., 2019), which predicts 149

each character to be corrected using the fusion fea- 150

tures from contextual, phonological, and visual 151

information. For example, (Cheng et al., 2020) 152

reported SpellGCN, which integrates phonologi- 153

cal and visual similarity information into charac- 154

ter classifiers using a graph network, which then 155

feeds the graph representation into MLM. To make 156

full use of information from all dimensions, Re- 157

aLise is proposed by (Xu et al., 2021), they employ 158

three distinct feature networks to capture phonetic, 159

graphemic, and semantic features, ultimately pass- 160

ing the fused representation through MLM. These 161

methods focus on constructing CSC features and 162

feeding them into an MLM-based corrector. In 163
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contrast, FASPell (Hong et al., 2019) leverages164

phonological and visual similarity features to con-165

struct a filtering model, selects the most suitable166

candidate Chinese characters from a pre-trained167

Language Model (PLM). In addition, some meth-168

ods (Zhang et al., 2020, 2021a; Huang et al., 2023;169

Zhu et al., 2022) follow the detection-correction170

framework, which first uses an error detection mod-171

ule to detect the position information of misspelled172

characters and then feeds the detection results to the173

correction module to get predictions. Specifically,174

SoftMasked-BERT (Zhang et al., 2020) uses a two-175

stage detection and correction pipeline method,176

which linearly combines each token embedding177

with the embedding of [MASK], and predicts the178

error character based on a fine-tuned masked lan-179

guage model. MDCSpell (Zhu et al., 2022) uses180

parallel detection and correction feature represen-181

tation modules, and the corrector receives the de-182

tector’s hidden states, thus, the inference in cor-183

rection incorporates the feature from both detec-184

tion and correction. Different from those works,185

MLM-phonetics (Zhang et al., 2021a) and DR-CSC186

(Huang et al., 2023) further introduce phonological187

and visual information into the detection-correction188

framework.189

Despite their notable success, these methods of-190

ten struggle to achieve further performance gains191

when faced with unbalanced training data. When192

confronted with unbalanced training datasets, these193

models tend to focus disproportionately on high-194

frequency mappings, persistently memorizing these195

common patterns. As a result, they create spurious196

correlations between character semantic represen-197

tations and predicted corrections, often neglecting198

corrections for low-frequency mappings. To ad-199

dress this issue, recent work such as ARM (Liu200

et al., 2024) leverages LLM to refine the correction201

probabilities of existing CSC models. While ARM202

has demonstrated some improvements, it does not203

fundamentally resolve the underlying challenge. In204

contrast, our work takes a causal perspective to ana-205

lyze the limitations of current models and proposes206

a counterfactual generation-based soft-sampler that207

synthesizes balanced training data, leading to more208

robust and effective CSC performance.209

3 Methodology210

3.1 Problem Formulation211

The Chinese spelling correction (CSC) task aims212

to detect and correct the misspelled characters in213
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Figure 2: (a) a unified structured causal model for Chi-
nese spelling correction. (b) causal interventions on
semantic representation S.

a Chinese sentence. Formally, given an input tex- 214

tual sequence x = (w1, w2, · · · , wn), where each 215

wi is a character from a predefined vocabulary V , 216

the CSC model’s goal is to produce a corrected 217

sequence y = (y1, y2, · · · , yn), with each yi ∈ V 218

representing the suggested correction for the corre- 219

sponding character. 220

3.2 A Causal View 221

In the task of CSC, the unbalanced training data in- 222

troduces serious data bias, leading to spurious cor- 223

relation, and then misleads the error correction of 224

models. To understand the causal relationships, we 225

introduce a Structural Causal Model (SCM) (Pearl, 226

2009) to reformulate existing methods based on 227

sequence labeling. As Fig. 2 (a) shows, S repre- 228

sents the semantic representation of a character, P 229

and G represent phonetic and glyph, Y is the pre- 230

dicted character, and C is the confounders, such as 231

training data distribution bias. 232

To formalize, we use G = {V,F, U} to ex- 233

press SCM, where V = {V1, . . . , Vn} denotes the 234

set of observables (vertices), F = {f1, . . . , fn} 235

denotes the set of functions (edges), and U = 236

{U1, . . . , Un} is the set of exogenous variables 237

(e.g., noise), n is the number of nodes in G. Further- 238

more, we format the causal effects of each variable 239

H in G on Y as linear transformations, then the 240

prediction can be obtained by summation: 241

Ys =
∑
i∈N

WiY Hi (1) 242

where, N = {S, P,G} denotes the parents of Y , 243

W is learnable weight. 244

In CSC task, the path S → Y represents the 245

model directly classifies the characters based on 246

the semantic representation, and gets the predicted 247

character. The causal path S ← C → Y denotes 248

confounders, such as training samples distribution 249

bias, mislead the calculation of character seman- 250

tic representation, resulting in the spurious cor- 251

rection between character semantic representation 252
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Figure 3: Overview of our CG-CSC framework. The soft-sampler is used to generate counterfactual training in-
stances, which uses a Chinese confusion set as an external resource. The symbol α represents sampling probabilities.

and predicted correction. This spurious correc-253

tion leads to over-correction, i.e., the model shows254

stubborn memory, such as the correction mapping255

作→做. So, we expect to block the backdoor path256

S ← C → Y , thus, we intervene on S.257

3.3 Casual Intervention for CSC258

In this paper, we propose the use of counterfactual259

generation for CSC.260

Counterfactuals The concept of counterfactual261

reflects an imaginary secario for “what would the262

outcome be had the variable(s) been different”.263

Let Y ∈ V denote the outcome variable, and let264

S ∈ V \{Y } denote the variable of study. The265

counterfactual is obtained by setting S = s∗ and266

formally estimated as:267

Ys∗(u) = YGs∗ (u) (2)268

where, Gs∗ denotes all functions of SCM G assign269

S = s∗. The counterfactual Ys∗ of the original270

instance-level prediction Ys is computed as:271

Ys∗ = fY (do(S = s∗), G = g, P = p)

=
∑

i∈N\{S}

WiY Hi +WSY Hs∗
(3)272

where, the function fY is used to computes Y .273

Thus, we only replace the character semantic rep-274

resentation HS with Hs∗ .275

Counterfactual generation with soft-sampler276

To update CSC models, we design a soft-sampler277

to synthesize counterfactual pairs and then train278

the model on the synthesized dataset. Specifically,279

we choose a high-quality confusion set to replace280

the semantic representation of the character and281

change the model’s stubborn mapping memory.282

This set includes characters that are highly sim-283

ilar to the target character in both pronunciation284

and glyph. Additionally, the similarity in pronunci-285

ation and glyph has been proven effective on CSC286

tasks (Cheng et al., 2020; Zhu et al., 2022; Liang 287

et al., 2023; Huang et al., 2023). Inspired by coun- 288

terfactuals, we seek to determine the decisive fac- 289

tors influencing character corrections in the CSC 290

task. As illustrated in Fig. 3, we replace misspelled 291

characters in the training set sentences using a char- 292

acter from the selected confusion set, i.e., we feed 293

C∗ to the function of the edge C → S to get S∗. 294

This approach aims to eliminate key clues in the 295

semantic representation S∗ of the counterfactual, 296

thereby enhancing the model’s focus on the main 297

effect while reducing spurious correlations. 298

The core of the soft-sampler is to build a sam- 299

pling dictionary. Specifically, it includes three cal- 300

culation operations: (1) counting the frequency cij 301

of each correction mapping in the training data set, 302

where i and j denote the character id from the pre- 303

defined vocabulary V and cij means correct charac- 304

ter i as j. (2) Count the mappings in the confusion 305

set, with an update frequency of cij ∝ cij + 1 ∗ λ, 306

where taking into account the difference in the im- 307

pact of similar pronunciation and similar glyphs, λ 308

is set to 0.6 for same and similar pinyin mapping 309

and 0.4 for same stroke mappings. (3) Calculate 310

soft sampling probability by normalization: 311

pij = cij/
∑
j=1

cij (4) 312

Then, the sampling dictionary is used to syn- 313

thesize counterfactual instances. For each training 314

instance, we employed two parameter generators 315

to generate two control parameters q1 ∈ [0, 1] and 316

q2 ∈ (0, 1], which are used to determine the synthe- 317

sis ratio and extract the characters to be corrected, 318

respectively. 319

4 Experiments 320

4.1 Datasets and Evaluation Metrics 321

Datasets To assess the effectiveness of CG-CSC 322

for the CSC task, we perform extensive empir- 323
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ical evaluations on three widely used datasets:324

SIGHAN13 (Wu et al., 2013), SIGHAN14 (Yu325

et al., 2014) and SIGHAN15 (Tseng et al.,326

2015). Specifically, we evaluate model with327

three test datasets from SIGHAN13, SIGHAN14328

and SIGHAN15 and train CG-CSC by four329

datasets, which include three training data sets from330

SIGHAN and an additional set of training data gen-331

erated by an automatic method (Wang et al., 2018).332

For consistency, we apply the same preprocessing333

procedure as (Zhu et al., 2022), which includes con-334

verting the characters in these datasets to simplified335

Chinese using OpenCC 1.336

Evaluation Metrics In this paper, we use337

sentence-level metrics to evaluate the performance338

of the trained model on CSC. Unlike character-339

level metrics, sentence-level metrics impose a340

stricter standard: a prediction is considered correct341

only if all misspelled characters in the sentence342

have been detected or corrected. Following the343

previous work (Hong et al., 2019; Cheng et al.,344

2020), we take the commonly used sentence-level345

precision, recall, and F1 score measures.346

4.2 Implementation details347

In the implementation of CG-CSC, we use Py-348

Torch (Paszke et al., 2019) as the underlying frame-349

work and build the model with Transformers library350

(Wolf et al., 2020). For model training, AdamW351

(Loshchilov and Hutter, 2019) is used as an opti-352

mizer with max epochs 20, the learning rate is set353

as 5e-5, the batch size is set to 32. The param-354

eter q1 is set to 0.8, indicating that the model is355

trained on a combination of the original dataset356

and an additional counterfactual dataset that is 80%357

the size of the original. Set q2 to 0.6, meaning358

that when sampling from the confusion set, there359

is a 60% probability of selecting characters with360

similar pronunciation and a 40% probability of se-361

lecting characters with similar glyphs. To ensure362

a fair comparison with existing methods, we fol-363

low ARM (Liu et al., 2024) and integrate CG-CSC364

with three supervised-learning-based CSC models:365

SoftMasked-BERT (Zhang et al., 2020), MDCSpell366

(Zhu et al., 2022) and SCOPE (Li et al., 2022),367

where we use the official code 2 and parameters to368

implement SCOPE. All experiments are conducted369

on a GPU server equipped with two RTX A6000370

GPUs (48 GB each).371

1https://github.com/BYVoid/OpenCC
2https://github.com/jiahaozhenbang/SCOPE

4.3 Baselines 372

Considering that CG-CSC is essentially a fine- 373

tuning model, we select a wide range of CSC meth- 374

ods based on fine-tuning as comparison models: 375

• SoftMasked-BERT (Zhang et al., 2020), inte- 376

grates a detection network with a BERT-based 377

correction network via a soft-masking mecha- 378

nism. 379

• MDCSpell (Zhu et al., 2022) is a detector- 380

corrector multi-task framework for CSC that 381

leverages BERT to retain visual and phono- 382

logical features from raw input and applies a 383

late fusion strategy to mitigate the influence 384

of misspellings. 385

• SCOPE (Li et al., 2022) introduces a 386

dual-decoder architecture with adaptive task 387

weighting and an iterative correction strategy, 388

leveraging a fine-grained auxiliary CPP task. 389

• DR-CSC (Huang et al., 2023) includes a mod- 390

ular detection-and-reasoning component that 391

decomposes CSC into detection, reasoning, 392

and searching subtasks, enabling the integra- 393

tion of external knowledge and improving 394

both performance and interpretability across 395

various non-autoregressive models. 396

• SpellGCN (Cheng et al., 2020) incorporates 397

phonological and visual similarity knowledge 398

representation into BERT by employing a spe- 399

cialized graph convolutional network. 400

• DCN (Wang et al., 2021) aims to optimize the 401

incoherent problem, they use a dynamically 402

connected network to measure the degree of 403

dependence between any two adjacent Chi- 404

nese characters. 405

• DORM (Liang et al., 2023) allows the direct 406

feature interaction between textual and pho- 407

netic information. 408

• ARM (Liu et al., 2024) denotes a plug- 409

and-play Alignment-and-Replacement Mod- 410

ule that leverages LLMs to enhance semantic 411

understanding in CSC while mitigating over- 412

correction issues, improving existing models. 413

It has the same motivation as CG-CSC. 414
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Dataset Models Detection Correction
Prec. Rec. F1 Prec. Rec. F1

SIGHAN13

SpellGCN(Cheng et al., 2020) 80.1 74.4 77.2 78.3 72.7 75.4
DCN(Wang et al., 2021) 86.8 79.6 83.0 84.7 77.7 81.0
DORM(Liang et al., 2023) 87.9 83.7 85.8 86.8 82.7 84.7
DR-CSC(Huang et al., 2023) 88.5 83.7 86.0 87.7 83.0 85.3
SoftMasked-BERT(Zhang et al., 2020) 85.2 78.0 81.4 83.8 76.8 80.1

+ARM(Liu et al., 2024) 85.9 79.5 82.6 84.6 78.2 81.3
+CG-CSC 85.6 79.5 82.4 84.5 78.8 81.6

MDCSpell(Zhu et al., 2022) 85.7 78.5 81.9 84.6 77.5 80.9
+ARM(Liu et al., 2024) 86.4 79.5 82.8 85.5 78.6 81.9
+CG-CSC 86.1 79.3 82.6 85.1 78.8 81.8

SCOPE(Li et al., 2022) 87.4 83.4 85.4 86.3 82.4 84.3
+ARM(Liu et al., 2024) 88.7 84.1 86.3 87.6 83.1 85.3
+CG-CSC 88.0 85.1 86.5 86.8 84.1 85.9

SIGHAN14

SpellGCN(Cheng et al., 2020) 65.1 69.5 67.2 63.1 67.2 65.3
DCN(Wang et al., 2021) 67.4 70.4 68.9 65.8 68.7 67.2
DORM(Liang et al., 2023) 69.5 73.1 71.2 68.4 71.9 70.1
DR-CSC(Huang et al., 2023) 70.2 73.2 71.7 69.3 72.3 70.7
SoftMasked-BERT(Zhang et al., 2020) 69.6 69.6 69.6 68.5 68.5 68.5

+ARM(Liu et al., 2024) 70.4 71.3 70.9 69.3 70.2 69.7
+CG-CSC 70.0 72.8 71.4 68.7 71.7 70.2

MDCSpell(Zhu et al., 2022) 66.2 66.5 66.3 64.2 64.6 64.4
+ARM(Liu et al., 2024) 67.3 68.8 68.1 65.4 66.9 66.2
+CG-CSC 67.1 69.1 68.1 64.8 70.1 67.3

SCOPE(Li et al., 2022) 70.1 73.1 71.6 68.6 71.5 70.1
+ARM(Liu et al., 2024) 71.2 75.0 73.1 69.2 73.0 71.1
+CG-CSC 70.9 74.7 72.8 69.6 72.9 71.2

SIGHAN15

SpellGCN(Cheng et al., 2020) 74.8 80.7 77.7 72.1 77.7 75.9
DCN(Wang et al., 2021) 77.1 80.9 79.0 74.5 78.2 76.3
DORM(Liang et al., 2023) 77.9 84.3 81.0 76.6 82.8 79.6
DR-CSC(Huang et al., 2023) 82.9 84.8 83.8 80.3 82.3 81.3
SoftMasked-BERT(Zhang et al., 2020) 75.5 79.2 77.3 74.1 77.8 75.9

+ARM(Liu et al., 2024) 76.4 80.9 78.6 74.7 79.0 76.8
+CG-CSC 75.8 81.4 78.5 74.4 79.5 76.9

MDCSpell(Zhu et al., 2022) 76.3 79.6 77.9 75.2 78.5 76.8
+ARM(Liu et al., 2024) 76.4 81.3 78.8 75.2 80.0 77.5
+CG-CSC 76.0 82.2 79.0 75.1 80.3 77.6

SCOPE(Li et al., 2022) 81.1 84.3 82.7 79.2 82.3 80.7
+ARM(Liu et al., 2024) 82.3 86.1 84.1 79.5 83.1 81.3
+CG-CSC 81.6 87.5 84.4 79.0 84.8 81.8

Table 1: Experimental results on SIGHAN13, SIGHAN14 and SIGHAN15 test sets, and each model includes
sentence-level precision, recall, and F1 score for both detection and correction. For a fair comparison, we select
SoftMasked-BERT(Zhang et al., 2020), MDCSpell(Zhu et al., 2022) and SCOPE(Li et al., 2022) as backbone
models and integrate them with CG-CSC. The highest score for each evaluation metric is highlighted in bold.

4.4 Main Results415

Table 1 shows the experimental results. Across all416

three SIGHAN datasets and backbones, our pro-417

posed CG-CSC consistently achieves the best or418

highly competitive F1 scores for both detection and419

correction. These results highlight the robustness420

and effectiveness of counterfactual generation in421

enhancing CSC performance.422

In the same setting (e.g., SoftMasked-BERT,423

MDCSpell and SCOPE as baselines and back- 424

bones), compared with “+ARM” that uses LLM 425

to adjust the corrector prediction probability, all 426

backbones bring more improvements in correc- 427

tion F1 after integrating CG-CSC. Addition, CG- 428

CSC significantly improves detection and correc- 429

tion F1 compared to the three base models. Specif- 430

ically, correction F1 +1.5%, +1.7%, +1.0% on 431

SIGHAN13/14/15 with SoftMasked-BERT, +0.9%, 432

6



fig4

(a)

(b) (c)

(a)

(b) (c)

Figure 4: Correction mapping frequency comparison.

+2.9%, +0.8% with MDCSpell, and +1.6%, +1.1%,433

+1.1% with SCOPE, respectively. These gains val-434

idate the value of augmenting training with coun-435

terfactual samples, particularly for rare or unseen436

errors.437

Furthermore, CG-CSC outperforms or matches438

these models that include the pre-trained stage,439

such as DORM and DR-CSC. Despite adjusts the440

distribution of training data and does not explic-441

itly model CSC, CG-CSC achieves superior re-442

sults, demonstrating that counterfactual generation443

contributes substantially to performance improve-444

ments.445

Notably, while methods like DCN and ARM ex-446

plicitly model the output sequence, our CG-CSC447

does not alter the output mechanism, yet it consis-448

tently surpasses both in F1 scores across all three449

datasets. This indicates that CG-CSC enhances gen-450

eralization and robustness by exposing the model to451

a more diverse and balanced set of training signals.452

Taken together, these findings confirm that CG-453

CSC is a highly effective and versatile training454

strategy that enhances various supervised-learning-455

based backbone models and consistently boosts456

CSC performance across diverse benchmarks.457

4.5 Ablation Study458

4.5.1 The efficiency of counterfactual459

generation460

We use SIGHAN15 test sets to examine the ef-461

fectiveness of our model in eliminating spurious462

correlations.463

Fig. 4 shows the comparison of correction map-464

ping frequency between the expected target, PLM-465

FT (ChineseBERT), and the proposed CG-CSC.466

In region (a) of Fig. 4, which represents high-467

frequency mappings, PLM-FT tends to over-correct468

significantly beyond the true frequency, while CG-469

CSC remains relatively stable. In region (b), which470

denotes low-frequency mappings, both models ex-471

hibit under-correction, and PLM-FT is less robust472

than CG-CSC, especially with two strange high-473

frequency mappings. In region (c), which includes 474

characters that do not require correction but the 475

model over-corrects. It is noteworthy that PLM-FT 476

corrects more in this region than CG-CSC. The 477

result shows that CG-CSC have a better ability to 478

tackle both over-correction and under-correction 479

problems. 480

4.5.2 Counterfactual generation vs. data 481

augmentation 482

To distinguish the difference between the proposed 483

CG-CSC and the data augmentation method, we 484

adopt a random sampling strategy from predefined 485

vocabulary V and set the same probability of 0.8 to 486

decide whether a misspelled character is replaced 487

by another random character. The comparison re- 488

sults are shown in Table 2: 489

Overall, Both Data Augmentation (SCOPE+DA) 490

and the proposed Counterfactual Generation strat- 491

egy (SCOPE+CG-CSC) consistently improve the 492

baseline SCOPE model across all three SIGHAN 493

benchmarks (SIGHAN13/14/15), in terms of both 494

detection and correction performance. Specifi- 495

cally, SCOPE+CG-CSC achieves the best perfor- 496

mance in all metrics across all datasets. For in- 497

stance, on SIGHAN13, it achieves a detection F1 498

of 86.5% and a correction F1 of 85.9%, signifi- 499

cantly outperforming both the original SCOPE and 500

SCOPE+DA. On SIGHAN14, although all meth- 501

ods perform relatively poorly compared to other 502

datasets, SCOPE+CG-CSC still leads with a de- 503

tection F1 of 72.8% and a correction F1 of 71.2%, 504

demonstrating its robustness even in more challeng- 505

ing scenarios. On SIGHAN15, SCOPE+CG-CSC 506

again surpasses other variants, reaching a detection 507

F1 of 84.4% and a correction F1 of 81.8%. 508

These results indicate that the proposed counter- 509

factual data generation method is more effective 510

than traditional data augmentation in improving the 511

generalization and robustness of the CSC model. 512

5 Case study 513

To further demonstrate the effectiveness of CG- 514

CSC over existing models, we analyze two repre- 515

sentative cases in Table 3. 516

In the first case, the sentence contains a rare er- 517

ror where “角(jiǎo)” (meaning “role”) should be 518

corrected to “较(jiào)” (meaning “compare”). The 519

backbone model SCOPE failed to detect or cor- 520

rect the misspelled character, resulting in under- 521

correction. This is an example of under-correction 522

caused by distributional bias (the mapping “角→ ” 523
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Dataset Baseline Detection Correction
Prec. Rec. F1 Prec. Rec. F1

SIGHAN13
SCOPE(Li et al., 2022) 87.4 83.4 85.4 86.3 82.4 84.3
SCOPE+DA 87.1 84.0 85.5 85.9 82.7 84.3
SCOPE+CG-CSC 88.0 85.1 86.5 86.8 84.1 85.9

SIGHAN14
SCOPE(Li et al., 2022) 70.1 73.1 71.6 68.6 71.5 70.1
SCOPE+DA 70.3 73.1 71.7 68.2 72.0 70.0
SCOPE+CG-CSC 70.9 74.7 72.8 69.6 72.9 71.2

SIGHAN15
SCOPE(Li et al., 2022) 81.1 84.3 82.7 79.2 82.3 80.7
SCOPE+DA 81.2 84.7 82.9 78.7 82.8 80.7
SCOPE+CG-CSC 81.6 87.5 84.4 79.0 84.8 81.8

Table 2: Performance of SCOPE with Data Augmentation (SCOPE+DA) and Counterfactual Generation
(SCOPE+CG-CSC) on SIGHAN13/14/15.

id #Model/Function Sentence

1

Input 湘菜跟粤菜比角(jiǎo)的话
SCPOE 湘菜跟粤菜比角(jiǎo)的话

+ARM(Liu et al., 2024) 湘菜跟粤菜比较(jiào)的话
+CG-CSC 湘菜跟粤菜比较(jiào)的话

Translation Comparing Hunan cuisine with Cantonese cuisine

2

Input 团长将士兵布置(bù zhì)在城外，让他们安(ān)兵不动。
SCPOE 团长将士兵布置(bù zhì)在城外，让他们安(ān)兵不动。

+ARM(Liu et al., 2024) 团长将士兵布置(bù zhì)在城外，让他们按(àn)兵不动。
+CG-CSC 团长将士兵部署(bù shǔ)在城外，让他们按(àn)兵不动。

Translation The captain deployed the soldiers outside the city and ordered them to stand still.

Table 3: Examples of CSC results from SCOPE+CG-CSC, in comparison with results from SCOPE and
SCOPE+ARM baselines. Red and blue are used to mark misspelled and correct characters, respectively.

only appears once in training data). In contrast,524

both ARM and CG-CSC successfully detected525

and corrected the error, demonstrating their ability526

to handle low-frequency or out-of-training (OOT)527

mappings effectively.528

In the second case, the input contains two529

spelling errors: “布置(bù zhì)” should be “部署(bù530

shǔ)” (meaning “deploy”), and “安(ān)” should be531

“按(àn)” (meaning “according to”). Both SCOPE532

and ARM failed to correct all two misspelled char-533

acters, most likely because the input had multi-534

ple misspelled characters, causing the model to535

be distracted in understanding the meaning of the536

input sentence. Specifically, SCOPE failed to cor-537

rect “布置(bù zhì)” due to its low frequency in the538

training set, leading to under-correction. While539

ARM managed to detect and correct “安(ān)” to540

“按(àn)”, only CG-CSC accurately corrected both541

errors. These results highlight the ability of CG-542

CSC to mitigate both over-correction and under-543

correction, benefiting from a more balanced train-544

ing distribution achieved via counterfactual genera-545

tion.546

Together, these cases illustrate that CG-CSC im-547

proves robustness and generalization by exposing 548

the model to diverse, informative correction in- 549

stances beyond what is seen in naturally skewed 550

training data. 551

6 Conclusion 552

In this paper, we examine the issue of erroneous 553

corrections in the context of the causal perspective 554

on the CSC task. We identify that an unbalanced 555

distribution of training datasets can lead to spurious 556

correlations between character semantic represen- 557

tations and predicted corrections. To address this, 558

we propose CG-CSC, a method based on causal 559

interventions for CSC. We then develop CG-CSC 560

with counterfactual generation and conduct com- 561

prehensive experiments to validate its effectiveness. 562

The experimental results demonstrate that CG-CSC 563

exhibits competitive performance and robustness. 564

Furthermore, the method based on counterfactual 565

generation holds significant potential for similar 566

tasks, such as grammatical error correction, and 567

warrants further exploration in future research. 568
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Limitations569

6.1 Language Limitation570

This study focuses exclusively on Chinese char-571

acter spelling correction, as CSC presents unique572

challenges distinct from alphabetic languages like573

English. Specifically, (1) Chinese text lacks ex-574

plicit word boundaries, and (2) the language com-575

prises over 100,000 characters, with around 3,500576

commonly used ones—many of which share sim-577

ilar pronunciations or visual forms. Nevertheless,578

we argue that long-tailed distributions are a com-579

mon challenge across many NLP tasks. Investigat-580

ing this issue in other language settings or NLP581

applications—and exploring the use of resources582

analogous to the Chinese confusion set—offers a583

promising direction for future research.584

6.2 Running Efficiency585

We have not specifically optimized the running586

efficiency of CG-CSC in our current implemen-587

tation. On a single NVIDIA RTX A6000 GPU588

(48GB), each training process takes approximately589

10 hours to complete. We believe that the training590

efficiency could be substantially improved by lever-591

aging multi-GPU environments with data-parallel592

training, which would allow for larger batch sizes593

and reduced training time. Future work can explore594

such optimizations to make CG-CSC more scalable595

and training-friendly for larger datasets.596
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