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Abstract

Vertical Federated Learning (VFL) has emerged as a critical privacy-preserving
learning paradigm, enabling collaborative model training by leveraging distributed
features across clients. However, due to privacy concerns, there are few publicly
available real-world datasets for evaluating VFL methods, which poses significant
challenges to related research. To bridge this gap, we propose MARS-VFL, a
unified benchmark for realistic VFL evaluation. It integrates data from practical
applications involving collaboration across different features, maintaining compati-
bility with the VFL setting. Based on this, we standardize the evaluation of VFL
methods from the mainstream aspects of efficiency, robustness, and security. We
conduct comprehensive experiments to assess different VFL approaches, providing
references for unified evaluation. Furthermore, we are the first to unify the evalua-
tion of robustness challenges in VFL and introduce a new method for addressing
robustness challenges, establishing standard baselines for future research.

1 Introduction

Vertical Federated Learning (VFL) [18, 64, 37, 69] is a privacy-preserving learning paradigm that
involves training models collaboratively with shared samples but distributed features. Typically,
it involves an active client that holds the task labels and multiple passive clients that possess the
remaining features of each sample. It finds potential in various real-world applications, such as
predicting user credit scores using attributes distributed across different platforms (e.g., banks and
shopping centers), or making recommendations between different social media. However, due to data
privacy concerns, constructing datasets that share private information across platforms is challenging,
resulting in a lack of publicly available datasets for evaluating VFL methods. It poses significant
challenges for effective evaluation and presents critical obstacles to the development of VFL research.

Existing works have made extensive efforts to address this issue. The most common approach is to use
artificial segmentation, such as splitting images or tabular data into several parts [77]. Other studies
[62] propose synthesizing data by considering client correlations and feature importance to better
approximate practical data distributions in VFL settings. Some works [60, 61] explore scenarios
where multiple links exist between related datasets. They collect several datasets with common
identifiers to align several records into a single training sample—for example, predicting a house’s
price by linking it to prices of nearby houses recorded in another related dataset. Other methods
[77] leverage multi-modal data (e.g., NUS-WIDE [10], which includes image and text features) to
construct evaluations. FedAds [59] utilizes real-world data from Alibaba to build a two-client dataset
and releases anonymized features for research purposes. Despite its recent progress, there remain
several challenges in establishing effective benchmarks for VFL algorithms: (1) Realistic evaluations
in VFL settings. To effectively evaluate VFL methods, it is critical to construct evaluations that align
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with VFL settings, where different feature blocks of the same sample are distributed across multiple
clients. (2) A unified evaluation benchmark. To enable fair comparisons between different methods, it
is important to define standardized evaluation protocols. (3) A comprehensive benchmark for different
VFL methods. For a broad analysis, it should cover a wide range of the most recent methods and
common challenges in VFL.

Beyond these limitations, we introduce MARS-VFL, a benchmark designed for realistic evaluations
tailored to VFL. Our motivation stems from the observation that VFL collaborates with different
features of the same sample from multiple clients, which naturally aligns with a wide range of
real-world applications involving feature-level collaboration. For example, IoT applications often
involve cooperation among different devices (e.g., human-body monitoring devices, robotic sensors).
In multimodal applications, different modalities may originate from different different clients—for
instance, cross-platform collaborations for user analysis, such as recommendations or emotion
analysis, may involve platforms that collect rich visual data (e.g., social media or video-sharing
platforms) and others that primarily gather textual or tabular data (e.g., financial platforms). In
healthcare, hospitals may hold different types of diagnostic information due to disparities in medical
resources and technology. These applications involve collaboration between different feature parts of
the same sample, closely aligning with the VFL setting and providing references to evaluate different
VFL methods. Building on this insight, we incorporate 12 datasets from five application domains:
human activity recognition, robotics, healthcare, emotion analysis, and multimedia analysis. We
conduct evaluations with realistic data distributions, where features from different devices, domains,
or modalities are distributed across different VFL clients, aligning with real-world VFL deployments
and enabling effective evaluation of VFL methods.

Based on the aforementioned construction, we provide unified evaluation protocols covering three
fundamental aspects of VFL: Efficiency, Robustness, and Security. (1) Efficiency: We provide
standardized metrics to compare the efficiency of different methods, including main task performance,
communication costs, and convergence speed, summarizing the trade-offs inherent in current methods
and moving toward more efficient real-world deployments. (2) Robustness: We are the first to
unify robustness challenges in VFL, including missing features, corrupted features, and misaligned
features. We propose a new method to address corrupted and misaligned features and provide
baseline implementations to facilitate future research, fostering the development of more resilient
VEL systems. (3) Security: We evaluate security vulnerabilities in VFL systems under different types
of attacks, including inference attacks and backdoor attacks, and assess the effectiveness of various
gradient-based defense strategies, offering insights for the secure deployment of VFL systems. The
main contributions of MARS-VFL can be summarized as follows:

* MARS-VFL includes 12 representative datasets across five real-world applications: human activity
recognition, robotics, healthcare, emotion analysis, and multimedia analysis. It builds evaluations
based on realistic data distributions, where client features originate from different devices, domains,
or modalities that are closely aligned with VFL settings, enabling effective VFL evaluations.

* MARS-VFL provides a comprehensive evaluation framework, benchmarking recent VFL methods
across three critical aspects: efficiency of different methods, robustness under data perturbations,
and security against malicious attacks, providing references for unified evaluations.

* MARS-VFL categorizes robustness challenges in VFL, focusing on missing, corrupted, and
misaligned features. We also introduce a new baseline method to address corrupted and misaligned
features, expanding the current research landscape for building more stable and robust VFL systems.

2 Overview of MARS-VFL

2.1 Real-World Applications

Vertical Federated Learning (VFL) collaborates on different features of the same sample from multiple
clients. Numerous real-world applications involve feature-level collaboration and naturally align
with the VFL setting. Motivated by this insight, we integrate several real-world applications that are
closely related to VFL settings, constructing realistic evaluations based on these datasets. Table 1
summarizes the statistics of 12 datasets included in MARS-VFL (illustrated in Figure 1), spanning
five application domains: human activity recognition, robotics, healthcare, emotion analysis, and
multimedia analysis. All of these applications involve collaboration across different features from the
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Figure 1: Framework of MARS-VFL. (a) MARS-VFL provides a diverse collection of 12 datasets
from five real-world applications that align with VFL settings: human activity, robotics, healthcare,
emotion, and multimedia. (b) MARS-VFL follows realistic data distributions across clients in VFL,
where data from different devices, data domains, and modalities are distributed among different clients.
(c) MARS-VFL offers comprehensive and unified evaluation protocols across three foundational
directions: efficiency, robustness, and security, promoting future research in VFL.

Table 1: Overview of Datasets. MARS-VFL includes 12 datasets across five different applications.

Application Dataset Number of Clients | Samples | Prediction Task Target
HAR UCI-HAR [2] 2-client 10,299 Activity 6-class
KU-HAR [50] 2-client 20, 750 Activity 18-class
Robotics MuJoCo [27] 4-client 37,990 Position 2D Position
VISION&TOUCH [28] 5-client 147,000 Contact State 2-class
Healthcare MIMIC-III [24] 2—c1@ent 36,212 ICD-9 Code 2—class.
PTB-XL [55] 3-client 21,700 ECG Type 5-class, Multilabel
UR-FUNNY [20] 3-client 16,514 Humor 2-class
Emotion MUSTARD [7] 3-client 690 Sarcasm 2-class
CMU-MOSI [70] 3-client 2,199 Emotion 2-class
CMU-MOSEI [71] 3-client 22,777 Emotion 2-class
Multimedia NUS-WIDE [10] 2-client 116, 659 Content Class 6-class
MM-IMDB [3] 2-client 25,959 Movie Genre 23-class, Multilabel

same sample, which aligns with the VFL setting and provides a basis for evaluating different VFL
methods. More details about the datasets can be found in Section B.

Human Activity Recognition (HAR). It is a fundamental task in ubiquitous computing and wearable
technologies, aiming to predict human actions based on sensor data collected from wearable devices,
such as accelerometers and gyroscopes. These sensors capture fine-grained information about
body movements and dynamics, enabling a wide range of applications including health monitoring,
rehabilitation, and human-computer interaction. MARS-VFL provides realistic evaluations using
two public datasets: UCI-HAR [2] and KU-HAR [50]. The accelerometer and gyroscope data are
distributed to two separate clients.

Robotics. MARS-VFL includes two large-scale robotics datasets: MuJoCo [27] and VI-
SION&TOUCH dataset [28], which capture complex robotic arm operations in real-world envi-
ronments. These datasets feature robotic systems equipped with diverse sensors—such as cameras
and force sensors, each providing different types of data. These sensors can naturally be treated as
separate clients in VFL evaluations. In the MuJoCo dataset, the task is to predict the position of the
object being manipulated by the robot, while in the VISION&TOUCH dataset, the goal is to predict
the robot’s contact states. Data from different sensors are distributed to different clients.

Healthcare. The application of deep learning in healthcare has shown immense progress across a
wide range of fields, enabling breakthroughs in disease diagnosis, patient monitoring, and treatment
planning. Medical diagnosis often involves multiple heterogeneous data domains, such as static



patient information (e.g., age and gender), medical imaging data, and time-series physiological
signals, each providing complementary information. MARS-VFL integrates two representative
datasets: MIMIC-III [24] and PTB-XL [55], where data from different data domains are distributed
to different clients to simulate real-world VFL scenarios.

Emotion Analysis. Also known as sentiment analysis or affective computing, emotion analysis
involves identifying and interpreting emotions from text, speech, or physiological signals. It plays
a vital role in various fields, such as mental health monitoring and customer feedback analysis.
MARS-VFL includes four datasets—CMU-MOSI [70], CMU-MOSEI [71], UR-FUNNY [20], and
MUSTARD [7]—which contain text, video, and audio time-series data for emotion prediction. Data
from different modalities are distributed across different clients.

Multimedia Analysis. A significant body of research in multimodal learning has been driven by
the widespread availability of multimedia data on the internet, such as language, images, video,
and audio, leading to substantial progress in content analysis tasks like social media analysis and
recommendation systems. MARS-VFL provides evaluations on two datasets: NUS-WIDE [10] and
MM-IMDB [3], distributing data from different modalities across different clients.

2.2 Unified Evaluations

MARS-VFL offers unified evaluation protocols focusing on three key aspects of VFL: the efficiency
of various methods, their robustness under data perturbations, and their security against malicious
attacks. It provides a standardized benchmark for comparing different VFL methods.

Efficiency. The efficiency of VFL methods stands as one of the primary requirements, particularly
in large-scale collaborations where computational resources are often limited. Enhancing the col-
laboration efficiency of VFL methods is crucial for the practical deployment of VFL systems across
various applications. MARS-VFL provides unified evaluations of the efficiency of different methods
by standardizing assessments across three key factors: main task performance (MP), communication
costs, and convergence speed, while also exploring the trade-offs between them. For detailed settings,
please refer to Section C.1.

Robustness. Real-world VFL applications are often impacted by different types of data perturbations,
which may occur in different stages, such as data collection, processing, or malicious participants.
Investigating the challenges of robustness promotes the development of more stable and robust VFL
systems. MARS-VFL firstly unify and provide benchmarks for the robustness of different methods.
As shown in Figure 2, there are three key challenges about robustness in VFL: (1) missing features,
where the clients lack parts of sample features, (2) corrupted features, where some samples are
affected by data corruptions, and (3) misaligned features, where samples are incorrectly aligned. To
standardize the evaluation of robustness, we perform evaluations with different perturbation rates of
training and test scenarios, examining the main task performance (MP) under different perturbations.
Please refer to the detailed settings in Section C.2.

Security. Despite adhering to the basic privacy protocol, the VFL systems are vulnerable to different
security challenges, including the leaking of private data and the destruction of the model behavior,
especially with malicious clients whose trustworthiness has not been verified. Investigating security
concerns is critical to enhancing reliability and controllability, promoting the safe application of
VFL systems. MARS-VFL gives comprehensive evaluations about security issues in VFL, including
different attack methods, as well as the defense strategies. There are three main challenges about
security in VFL: (1) label inference attacks, where usually the passive client, as the attacker, tries to
infer the label information of the active client. (2) feature inference attacks, where usually the active
client acts as the attacker to infer the features of other clients. (3) backdoor attacks, where usually
the passive client acts as the attacker to induce the target output. MARS-VFL evaluates the attack
performance (AP) and the main task performance (MP) against different gradient-based defense
strategies. Please refer to the detailed settings in Section C.3.

2.3 A New Baseline for Robustness

MARS-VFL first unifies the robustness challenges across different methods. While several works
focus on the challenges of missing features [47, 53], methods against corrupted and misaligned fea-
tures are lacking. To bridge this gap, we propose a new baseline for robustness in VFL, RVFL, which
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Figure 2: Illustration of Robustness. (a) Missing Features: It refers to situations where parts of
sample features are missing. (b) Corrupted Features: It refers to cases where parts of sample features
may be corrupted. (c) Misaligned Features: It refers to situations where features across clients are
incorrectly aligned with the wrong samples.
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Figure 3: Illustration of RVFL. (a) RVFL-Aug employs different augmentations to learn consistency
information and improve robustness against corrupted features. (b) RVFL-Align realigns samples by
maximizing embedding consistency.

includes two variants, RVFL-Aug and RVFL-Align, designed to handle corrupted and misaligned
features, expanding the current research landscape and providing references for future studies.

Preliminaries. In VFL, let K denote the number of clients, and N represent the shared samples
identified through alignment protocols [18]. Each client P* maintains a local model fy(-; 0%) to
extract embeddings HF = fi.(zF; %) from the local data D* = {z¥}X_,. Only one client, known
as the the active client P® a € {1, ..., K}, holds the task labels y; with a global model G(-; 69),
while the remaining passive clients contribute by sending embeddings of shared samples to the active
client for model training. Gradients are then distributed back to each client for local updates. The
parameters of the overall VFL model are defined as © = {6!,...,6% 609}. Define £ as the loss
function, where a cross-entropy loss can be employed for classification tasks. The objective of VFL
is to collaboratively update the model parameters © = {6', ..., 6% 69} while preserving data privacy.
The basic VFL objective can then be formulated as:

N
o1 Z K.
»Ctask - mén N — ‘C(G( . H 9 ) yl) (1)

This objective function minimizes the average loss £ over all N shared samples, where the global
model G(-; #9) makes predictions based on the aggregated embeddings HF = fy(x¥; 6%) from each
client P*. Since only the active client holds the labels y;, the learning process requires secure
collaboration between clients while ensuring no raw data is directly exchanged. The gradients
computed from loss functions are backpropagated to update both the local models and the global
model iteratively. This formulation enables VFL to leverage distributed features for collaborative
model training while preserving data privacy across clients.

RVFL-Aug. For corrupted features, we propose utilizing data augmentations to improve the gener-
alization to corrupted data. As shown in Figure 3a, two augmentations of D¥ = {xf}szl for each
client P* are generated, denoted as Dsl and D(’jz. We select a set of general data augmentation
operations .4 that can be applied to various data types, including random mask, random scale-up,
and random scale-down. These augmentations are applied with a random magnitude. Then, an
augmentation a is randomly selected from A and stacked to construct the augmentation sequences
Segq. The processed data can be formulated as Seq(z¥). To preserve the information from the orlglnal
data, we perform a weighted sum of several sequences where the number of sequences is .S, and mix
it with the original data. The final augmented data Z¥ can be formulated as follows:

il :u'xf+(1—u)'Zf:1wi'56‘1(%)’ @



where a set of weights (wy, ..., wg) is randomly sampled from the Dirichlet(«, o) distribution.
u refers to the weight randomly sampled from the Beta(a, «) distribution. The corresponding
embeddings of three datasets, { H*} |, {HF Y|, {HE }I | are sent to the active client. The
final logit outputs of the embeddings after global model G(69) are denoted as Z, Z,,, and Z,,
respectively. An additional Jensen-Shannon (JS) divergence consistency loss [34] is utilized to
ensure the consistency of the model with different augmentations, promoting the robustness to data
corruptions. The final objective can be formulated as follows:

‘Caug = Etask +A- EJS(Za Za1 ) Za2)7 (3)

where A controls the strength of the JS consistency constraint. The JS divergence is a symmetric
version based on Kullback-Leibler (KL) divergence, which ensures the consistency of the outputs
with the same samples. We provide extended analysis of RVFL-Aug in Section D.1.

RVFL-Align. For misaligned features, we propose to realign the samples based on the embedding
consistency. We introduce RVFL-Align, which maximizes embedding consistency between samples
from different clients, thereby aligning them optimally. Suppose active client P holds the features
with the correct corresponding ground truths. This is a reasonable assumption, as the active client
coordinates the VFL process and has the label information to verify the correct correspondence. The
active client can serve as the anchor to realign the samples. For the embeddings of each passive client

Pk ke {1,..., K — 1}, compute consistency matrices in active client P%:
N He . HF
Cli=——"2— Vije(l,N). “4)
S HEHES

For embeddings from each passive client P*, solve the linear assignment problem:

N N
k k k _
Mkér{%,ai)}(KXN Z Z Mij ' Cij’ s.L. ; Mij =N. ®)

i=1j=1

The process in Equation (5) rematches the embeddings to maximize consistency, which is more likely
to correspond to the same samples. In this way, the sample embeddings are realigned for collaborative
learning. After obtaining the matching matrices M, ..., M~ we re-index the samples across all
clients to align with the indices of the active client. Specifically, for data of each sample 7 in the
active client 2%, define the realigned indices jj () of passive client k as:

Jr(i) = j where M}, = 1. (6)

The re-aligned dataset for each client P* is constructed by re-indexing its samples to match the
indices of the active client. The corresponding realigned data can be defined as {x;“k( i)} N Itis

conducted during each forward process, and an extensive analysis is provided in Section D.2.

3 Experiments

MARS-VFL provides unified and standardized evaluation protocols for comprehensively assessing
the efficiency, robustness, and security of different methods. It serves as a reliable and consistent
reference for reproducing experiments and fairly comparing VFL methods. Due to the space limits,
we present representative results in the main text, while the complete results are provided in Section E.

3.1 Efficiency

We evaluate the efficiency of recent methods including FedBCD [36], C-VFL [6], and EFVFL [54].
FedBCD achieves faster convergence by introducing local updates, while C-VFL and EFVFL reduce
communication costs through compression techniques. We assess these methods in terms of main task
performance (MP), communication costs, and convergence speed, analyzing the trade-offs among
these factors. The detailed experiment settings are provided in Section C.1. A subset of the results is
presented here, with additional results provided in Section E.1.

Best Main Task Performance (Best MP). In Table 2, we run each method five times and report
the mean and standard deviation of the performance. We present the maximum test MP achieved by



Table 2: Results of Best Main Task Performance (MP (%)). The main results on eight datasets are
reported. ‘Best MP’ refers to the highest test MP achieved, with the corresponding communication
costs and training epochs. The definitions of evaluation metrics are detailed in Section C.1.

Method UCI-HAR KU-HAR MIMIC-IIT PTB-XL
Best MP  Costs (MB) Epochs | Best MP  Costs (MB) Epochs| Best MP Costs (GB)  Epochs | Best MP Costs (GB)  Epochs
Base 95.03+0.69 114.52+16.75 128+19|82.55+0.58 535.724+24.86 141+7 |61.35+£0.49 41.93+0.07 299+1 |57.41+0.52 270.97+33.00 7048
FedBCD [36]]95.03+0.27 78.98+27.75 88+31 |86.07+0.56 488.614+59.57 129+16|61.34+0.36 38.32+4.84 274+35|54.92+0.26 100.44+47.20 26+12
C-VFL[6] |95.01+£0.34 25.58+9.79 95+36 |84.75+0.60 145.90+14.14 128+12|61.49+0.64 11.96+0.47 285+11|53.41+£1.02 27.33+8.82 2348
EFVFL [54] |95.21+£0.22 26.49+10.69 98+40 | 85.00+0.45 150.69+12.52 132+11|61.76+0.49 12.13+0.48 289+11|54.53+1.11 35.27+4.87 30+4
Method NUS-WIDE MUSTARD UR-FUNNY MM-IMDB
Best MP Costs (MB) Epochs | Best MP Costs (MB) Epochs | Best MP Costs (GB) Epochs | Best MP Costs (GB)  Epochs
Base 81.53+0.94 230.60+31.38 7+1 |57.83+£2.26 187.294+27.76 78+12 |63.63+0.39 2.71+£0.90 59420 |56.63+0.33 3.56+0.38  60+6
FedBCD [36]]81.02+0.71 128.11£53.59 442 |54.4942.44 152.89+47.75 64420 |63.61+0.17 1.00+0.65 22+14 |56.83+0.36 0.78+0.11  13+2
C-VFL[6] |80.63+0.82 38.43+10.53 4+1 |54.34+2.26 36.55+17.20 51+24 |62.95+1.43 0.44+0.04 3243 |56.31+£0.22 0.23+£0.03 13+2
EFVFL [54] |81.21+£0.48 49.96+15.37 5+2 |56.5244.05 38.99+14.61 54420 |63.26+0.64 0.44+0.21 32+15|56.42+0.18 0.27+£0.02  15+1
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Figure 4: MP in Training Stages. The training curves w.r.t communication cost and epochs.

each method, along with the corresponding communication costs and training epochs. Compared to
Base (standard VFL without additional operations), FedBCD, C-VFL, and EFVFL achieve lower
communication costs and require fewer training epochs to converge, demonstrating improved effi-
ciency. However, in datasets such as NUS-WIDE, MUSTARD, and UR-FUNNY, these efficiency
gains come at the expense of MP, raising a trade-off between MP and communication costs, as well as
the trade-off between MP and convergence speed (epochs). Additionally, while C-VFL and EFVFL
reduce communication costs through embedding compression, they generally require more training
epochs than FedBCD and show decreased performance, due to information loss from compression.
This reveals the trade-off between communication costs and convergence speed.

Performance by Communication Costs. As shown in Figure 4a, we evaluate the efficiency of
each method by comparing their MP under the same communication costs, highlighting the relative
efficiency of different approaches. For the UCI-HAR and KU-HAR datasets, which are split into
training and test sets, we report the test MP over epochs. For the MIMIC-III and PTB-XL datasets,
which are split into training, validation, and test sets, we report the validation MP over epochs.
Compared to Base method, FedBCD, C-VFL, and EFVFL achieve higher performance under the same
communication costs, indicating better efficiency and faster convergence. Furthermore, C-VFL and
EFVFL outperform FedBCD in MP per unit of communication, demonstrating lower communication
costs for achieving the same performance, owing to the use of embedding compression.

Performance by Epochs. As illustrated in Figure 4b, we evaluate the efficiency of different methods
by comparing their test/validation MP across training epochs. Compared to Base, FedBCD, C-VFL,
and EFVFL reach stable performance in fewer epochs, indicating faster convergence. Moreover, the
MP of FedBCD is generally higher than that of C-VFL and EFVFL across epochs, suggesting that
embedding compression introduces additional optimization challenges and slower convergence.



Table 3: Results with Missing Features. MP is reported with r,,r;, = 0,0.2,0.5.

UCI-HAR (MP: A (%)) KU-HAR (MP: A (%))
Method Tq =0 Ta =02 7o =05 Ta =0 7, =0.2 =105,
r,=0r,=02r,=057r,=0r,=02r,=051r,=01r,=027r,=05r, =07, =027, =0.5|r; =07, =027, =0.5(r, =07, =027, =05
Base 94.67 90.77 90.50 [94.47 9023 89.55 [93.93 89.65 89.48 [8224 6641 38.12 [81.49 6593 3848 [79.98 61.78 37.61
LEEF-VFL[47] |94.60 90.80 9192 |95.05 91.25 91.04 |9576 90.70 90.22 |82.22 75.54 4381 |81.59 74.00 43.18 |80.41 7239 42.12

LASER-VFL[53]/95.88 94.33 95.37 |95.64 9501 9532 |9576 9491 94.79 [82.69 7542 65.03 |81.83 74.82 63.38 |80.55 7457 64.06
MM-IMDB (MP: Fy (%)) MuJoCo (MP: MSE)

Method it = re = 0.2 e = 0.5 i =0 ey = L2 T¢ = 0.5
=01, =021r,=057r,=07r,=027,=057r,=07r,=027r,=05[r, =07, =027, =05[r, =07, =027, =0.5[r, =07, =021, =0.5
Base 56.35 31.79 19.99 |5526 3043 19.88 [54.95 3042 19.89 |0.016 4.998 7.779 [0.021 4.984 7.783 |0.063 4.997 7.785
LEEF-VFL[47] |56.53 3577 2122 |5529 3622 21.82 |55.04 3533 21.35 |0.013 4322 7.741 [0.016 4713 7.743 |0.015 4.731 7.754

LASER-VFL[53]| 56.62 50.44  50.30 |5547 50.50 50.37 |55.15 49.17 49.04 |0.012 0.103 0.103 | 0.014 0.109  0.109 |0.014 0.107  0.108

Table 4: Results with Corrupted Features. MP is reported with r,,r, = 0,0.5,0.8.

UCI-HAR (MP: A (%)) KU-HAR (MP: A (%))

Method Tq =0 rq =0.5 rq = 0.8 Tq =0 Tq = 0.5 rqe =08
=07 =057, =081, =07, =057,=0.8{r, =07, =051, =0.8|r, =01, =057, =08|r, =01, =057, =08 r, =01, =057, = 0.8
94.67 88.60 86.16 [94.27 87.61 84.12 [93.86 87.95 84.15 [8224 69.98 63.76 [79.37 7137 66.72 [76.58 69.73  66.12
93.99 90.23 88.19 |94.13 88.63 85.99 | 9491 88.29 8537 |82.31 70.77 64.60 |80.12 72.46 67.52 ‘ 77.04 7053  66.67

MM-IMDB (MP- I, (%)) MuJoCo (MP: MSE)

Method Ta =10 7q = 0.5 Tq = 0.8 Tq =0 rq = 0.5 rq = 0.8
=07, =057r, =081, =01, =057, =08|r, =071, =057, =08[r, =01, =057,=08|r, =01, =057,=08r,=0r,=057r, =0.8
56.35 3486 3348 |39.46 3131 2795 [3747 2549 1526 [0.016 0.126 0.212 [0.014 0.032 0.033 ‘ 0.018 0.040 0.043

Base
RVFL-Aug

Base

RVFL-Aug|55.68 42.59 42.21 [44.22 4126 39.63 |43.27 3446 2472 |0.013 0.110 0.196 |0.015 0.028 0.040 |0.017 0.031 0.041

Table 5: Results with Misaligned Features. MP is reported with r,, 7, = 0,0.8, 1.

UCI-HAR (MP: A (%)) KU-HAR (MP: A (%))
Method Tq =0 re = 0.8 iy = 1l T =0 e = 0.8 g = 1l
=01, =081, =1[rp, =01, =081, =1[ry =01, =087, =1|ry =01y, =081, =171, =0r, =08r, =1|r; =0r, =08 r, =1
94.67 90.87 89.01[90.87 87.75 86.56|90.60 8523 84.86|82.24 70.48 70.17 ‘ 70.39  68.12 68.31|70.29 4740 40.24

Base

RVFL-Align| 9447 9091 91.01]91.08 91.08 91.04|90.80 91.11 91.08 |81.20 70.77 70.65|71.16 70.75 70.77|70.72 68.17 62.31

MM-IMDB (MP: Fy (%)) MuJoCo (MP: MSE)
Method rq =0 rq =0.8 i = 11 iy =0 7, = 0.8 T =1

r, =01, =081, =1r, =07, =087, =1|r; =0r, =087, =1|r, =0r, =081, =171, =0r, =08r, =1r;, =0r, =08r, =1
56.35 52.11 51435325 51.76 50.08[51.33 5143 49.93[0.016 0217 0.218[0.183 0.264 0.304|0.183 0.335 0.410
55.84 5217 51.93|54.94 51.89 51.78|52.55 51.67 51.72|0.017 0.165 0.173|0.142 0.181 0.182|0.182 0.183 0.183

Base
RVFL-Align

3.2 Robustness

We evaluate the robustness of several methods, including LEEF-VFL [47], LASER-VFL [53], and
the proposed RVFL (RVFL-Aug and RVFL-Align). We report the main task performance under
different perturbation rates applied to the training, validation, and test sets. In each experiment, the
training and validation sets share the same perturbation rates, while the test set is evaluated under
different perturbation rates. Detailed settings and additional results are provided in Section C.2 and
Section E.2, respectively.

Missing Features. Following the settings in prior work [53], we evaluate the performance of LEEF-
VFL [47] and LASER-VFL [53] under different missing rates in the training, validation, and test sets.
Denote 7, as the missing rate in the training/validation datasets, and 7} as the missing rate in the
test dataset, representing the probability that each feature part is missing. As shown in Table 3, both
LEEF-VFL and LASER-VFL outperform Base across different missing rates, with LASER-VFL
achieving superior performance due to its adaptation to missing features in the test set.

Corrupted Features. We evaluate the performance of RVFL-Aug under different corruption rates,
where 7, denotes the corruption rate for the training and validation datasets, and 7}, for the test
dataset. These rates represent the proportion of corrupted feature parts, with Gaussian noise added
to randomly selected features to simulate corruption (detailed in Section C.2). This setup can be
easily extended to support various types of corruption. As shown in Table 4, RVFL-Aug consistently
outperforms Base under different corruption settings, demonstrating improved robustness through
consistency learning across augmentations.

Misaligned Features. We evaluate RVFL-Align under different misalignment rates, where r, and r
denote the proportions of misaligned samples in the training/validation and test datasets, respectively.
As shown in Table 5, RVFL-Align consistently outperforms the Base method across different levels of
misalignment, demonstrating its effectiveness in realigning samples through maximum consistency.

3.3 Security

We examine the performance of different attack methods, including (1) PMC [15] and AMC [15]
for label inference attacks. (2) GRNA [38] and MIA [30] for feature inference attack. (3) TECB [&]
and LFBA [46] for backdoor attacks. We evaluate four gradient-based defense strategies and report



Table 6: Performance of Attacks. The MP and AP are reported.

UCIHAR NUSWIDE

Metric | Label Inference | Feature Inference Backdoor Label Inference Feature Inference Backdoor
PMC[15] AMC[!5]|GRNA [38] MIA[30]|TECB [%] LFBA [46]|PMC[15] AMC[15]|GRNA [38] MIA[30]|TECB [8] LFBA [46]
MP (%) 94.67 9291 93.28 92.50 | 89.11 92.16 81.42 80.46 81.64 81.33 | 74.99 81.07
AP (%)| 60.50  64.27 38.55 74.45 100 99.39 57.43 60.23 36.25 99.75 100 99.93

PMC
——AMC —
40 GRNA

MP (%)

MIA
——TECB
——LFBA

20 0 2
None 0.0001 0.001 0.01 0.1 None 0.0001 0.001 0.01 01 None 0.9 0.75 0.5 0.25 None 0.9 0.75 0.5 0.25
Noise Scale Noise Scale Compression Rate Compression Rate

(a) Noisy Gradients (NG). (b) Gradient Compression (GC).

MP (%)

20 20 >
None 09 075 05 025 None 09 075 05 025 None 24 18 12 6 None 24 18 12 6
Retention Rate Retention Rate Intervals Intervals
(c) Privacy-preserving Deep Learning (PPDL). (d) DiscreteSGD (DSGD.).

Figure 5: Performance of Defenses. The MP and AP are reported on the NUS-WIDE dataset.

the performance of each attack under these defenses. Detailed experimental settings and additional
results are provided in Section C.3 and Section E.3, respectively.

Performance of Attacks. We evaluate the attack performance (AP) of various attacks, as well as the
main task performance (MP) of models under different attacks. The evaluation metrics are detailed
in Section C.3. The attack performance on the UCI-HAR and NUS-WIDE datasets is presented in
Table 6. As shown in Table 6, different attacks pose significant threats to VFL systems, with label
inference attacks achieving over 60% accuracy, feature inference attacks reaching over 90% AP, and
backdoor attacks exhibiting strong control with attack success rates exceeding 90%.

Performance of Defenses. To investigate potential defenses, we evaluate the AP and MP of attacks
under various gradient-based defense strategies, following the setting in [15]. These include Noisy
Gradients (NG) [76], Gradient Compression (GC) [35], Privacy-preserving Deep Learning (PPDL)
[49], and DiscreteSGD (DSGD) [4, 15]. Details of each method are provided in Section C.3. As
shown in Figure 5, we report the AP and MP under different defense parameter settings. These
defenses reduce attack performance but at the cost of degrading main task performance, indicating
that the evaluated defenses are insufficient to effectively mitigate various attacks, highlighting a
potential direction for future research.

4 Conclusion

In summary, we introduce MARS-VFL, a comprehensive and systematically designed benchmark that
provides realistic and unified evaluation protocols for an in-depth assessment of the key dimensions
of efficiency, robustness, and security in VFL systems. To achieve this goal, MARS-VFL integrates
a diverse suite of 12 datasets covering five representative real-world applications, thereby enabling
evaluations under practical and heterogeneous data distributions. Beyond dataset integration, MARS-
VFL makes a notable contribution by establishing the first unified perspective on the broad spectrum
of robustness challenges in VFL, and by proposing a new baseline method that effectively mitigates
these issues, substantially enriching the current research landscape. Through extensive evaluations
across a range of recent and representative methods, MARS-VFL aims to deliver valuable empirical



evidence, guidance, and insights for the community, ultimately supporting the development of more
generalizable, robust, and inherently secure VFL systems suitable for real-world deployment.

Ethic Impacts

Privacy of Human-derived Data. This study involves datasets that contain human-derived data,
which may raise potential privacy concerns. Specifically, datasets such as MIMIC-III and PTB-XL
are derived from real patients and may pose privacy risks even after anonymization. All data used in
this work are publicly available, and the participants had provided consent for research use. These
datasets were used solely for scientific purposes, and all personally identifiable information was
removed by the dataset providers. Ensuring user consent and proper anonymization remains essential
for ethical data usage. For real-world deployment of the evaluated VFL methods, privacy-preserving
techniques can be readily integrated into the framework to further protect user data [18].

Attack Methods. The evaluated attack methods reveal that vertical federated learning systems can be
vulnerable to security and privacy risks, such as label inference attacks. These vulnerabilities highlight
potential negative societal impacts if exploited, especially in sensitive domains like healthcare, where
private information could be inferred from model updates. Recognizing such risks is crucial for
developing more robust and privacy-preserving federated learning systems.

Potential Defenses. Current defense methods also exhibit limitations. While gradient-based de-
fenses [15] can mitigate certain attacks, they remain ineffective against others, such as embedding
reconstruction and membership inference attacks. Advancing defense mechanisms to comprehen-
sively safeguard user data is an important direction for future research.

Environmental Impact. The environmental footprint of our benchmarking process is low. Most
experiments were performed for research purposes only and are computationally efficient. The
runtime and energy consumption remain within a sustainable range for an individual researcher, and
we encourage the community to continue exploring energy-efficient federated learning evaluations.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We extensively discuss our contributions in the abstract and introduction, and
we believe they accurately reflect the scope of the paper.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
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Justification: We included it in the paper.
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* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: We do not include new theoretical results in this paper.
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* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

» Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: We provide all the necessary details to reproduce the results.

Guidelines:
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The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: The codes are available at https://github.com/shentt67/MARS-VFL.

Guidelines:

The answer NA means that paper does not include experiments requiring code.

Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: The experiment details are available in the paper.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: The experiment results are available in the paper.
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* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: The information of computer resources is provided.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.
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* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The research conforms to the NeurIPS Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discuss the ethic impacts in the paper.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: No data or models with a high risk of misuse are released.
Guidelines:

* The answer NA means that the paper poses no such risks.
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* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: All the datasets used are publicly available, discussed, and properly cited.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

¢ For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The codes and documents are available at https://github.com/shentt67/
MARS-VFL.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.
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Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [Yes]
Justification: The datasets involved with human subjects are discussed in the paper.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: The core method development in this research does not involve LLMs.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

A Related Work

Federated Learning (FL) was first proposed by Google [39], enabling collaborative model training
across different participants without sharing the original data. Based on the distribution of data, FL
can be categorized into Horizontal Federated Learning (HFL) [65, 31, 66, 22] and Vertical Federated
Learning (VFL) [18, 58, 64, 37, 69]. In HFL, different participants share the same feature space but
typically possess their private samples. Each client trains a local model, and the model parameters
are then aggregated on the server, thereby avoiding the sharing of raw data while leveraging the
resources of all clients. In contrast, in VFL, participants share the same samples but have different
parts of the feature space. Only one client possesses the labels for the collaborative tasks, referred to
as the active client, while the remaining clients are passive. During training, only the embeddings
and gradients are transmitted, ensuring the privacy of the original data. The concept of VFL was
introduced by [ 18] and has since shown promising results and potential in various applications, such as

healthcare [2 1, 63], where different hospitals have different medical data for the same patient, internet
recommendation systems [59], and finance [75], where different platforms hold different user data
for privacy-preserving collaborations [44, 45, 67, 68], among others [13, 43, 56, 12, 16, 57]. In this

work, we propose MARS-VFL, which offers realistic evaluations based on real-world applications
that align with VFL settings, as well as a unified benchmark for VFL evaluations. Our benchmark
focuses on three key aspects of VFL algorithms: Efficiency, which assesses the training efficiency of
different VFL methods; Robustness, which evaluates the stability and generalization of VFL methods
under various perturbations; and Security, which addresses privacy concerns arising from malicious
attacks and explores potential defenses against these threats. With these directions, MARS-VFL
covers a wide range of recent works, providing valuable protocols for evaluating VFL methods and
promoting future research.

B Datasets and Models

MARS-VFL provides pipelines that span from data processing to model training, as well as unified
evaluation protocols and metrics, along with public code to promote future research in VFL. We
include different real-world applications and their associated datasets, which align with VFL settings.
We provide detailed information about the data distribution of each client, as well as the processing
procedures to facilitate the use of the benchmark. Additionally, we provide the specifics of the
backbones used for each dataset (the setting is for reproducing the results of the ‘Base’ method, which
represents standard VFL training without additional modifications; the results for other methods are
typically the same, unless specified otherwise). For datasets with a validation set, the models with the
best validation performance are saved, and the corresponding test performance is reported; for other
datasets, the best test performance is reported.

B.1 Human Activity Recognition

UCI-HAR [2]: It is a human activity recognition dataset collected from a group of 30 volunteers,
aged 19-48 years. Each participant performed six activities: walking, walking upstairs, walking
downstairs, sitting, standing, and laying. Each volunteer wore a smartphone on their waist to record
the activities. Using the smartphone’s embedded accelerometer and gyroscope, the 3-axial linear
acceleration and 3-axial angular velocity were captured at a constant rate of 50 Hz. The sensor signals
(accelerometer and gyroscope) were pre-processed with noise filters and then sampled in fixed-width
sliding windows of 2.56 seconds with 50% overlap, resulting in a total of 10, 299 samples. The task
is to predict the class of human activities, with the classification accuracy reported.

Dataset Processing: The data from the accelerometer and gyroscope are distributed across two
different clients (K = 2). We use the predefined split for the training and test sets, where 70% of the
volunteers were randomly selected to generate the training data and 30% were used for the test data.

Models: The models and corresponding hyperparameters used for the UCI-HAR dataset are shown
in Table 7. For the local models on each client, we use a three-layer MLP to extract the original
features into 16-dimensional embeddings. A two-layer MLP is then used in the active client to make
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Table 7: Models and Hyperparemeters for UCI-HAR Dataset.

Module Description Hyperparameter Settings
Component Architecture | Hyperparameter Value
Layers 3
Local Model Input Size 348
for Accelerometer Data MLP Hidden Size 140, 70
(Client Ph) Output Size 16
Activation ReLU
Layers 3
Local Model Input Size 213
for Gyroscope Data MLP Hidden Size 140, 70
(Client P?) Output Size 16
Activation ReLU
Layers 2
Input Size 32
Global Model MLP Hidden Size 16
Output Size 6
Activation ReLU
Loss Cross-Entropy
Epochs 150
Training Params Batch Size 256
Optimizer SGD
Learning Rate 0.01

predictions based on the concatenation of the embeddings (the final layer produces the logits, without
any activation function, and the same setting is applied to other datasets unless specified otherwise).

KU-HAR [50]: The KU-HAR dataset is a recent human activity recognition dataset, collected from
90 participants aged 18-34 years. It contains 1,945 raw activity samples belonging to 18 different
classes. The data is collected using smartphone sensors (accelerometer and gyroscope). In addition
to the original time-domain samples, the dataset includes 20, 750 subsamples (extracted from the raw
data), each containing 3 seconds of data corresponding to a specific activity. The task is to classify
the type of activities, and the classification accuracy is reported for the main task performance.

Dataset Processing: The data is distributed across two different clients, each with different devices
(K = 2). The dataset is partitioned into training and test sets with an 8:2 ratio.

Models: The details of the models and corresponding parameters are provided in Table 8. For the local
models, we use a three-layer MLP to extract the original features into 30-dimensional embeddings.
The concatenated embeddings are then sent to the active client, which uses a two-layer MLP as the
global model for the final prediction.

B.2 Robotics

MuJoCo [27]: The MuJoCo dataset is used for planar pushing tasks and is collected using MuJoCo
[52]. It includes 1, 000 trajectories, each with 250 steps at 10 Hz, simulating the Franka Panda robot
arm pushing a circular puck. The pushing actions are generated by a heuristic controller that aims
to move the end-effector to the center of the object. The dataset includes data from three different
devices: grayscale images of size 32 x 32 x 1 from an RGB camera, forces and binary contact
information from sensors, and the 3D position of the end-effector. Additionally, the control inputs
are also recorded. The task is to estimate the 2D position of the unknown object on the table surface
while the robot interacts with the object. The mean square error of predictions are reported.

Dataset Processing: The data from the four devices is distributed across four different clients, i.e.,
K = 4. The dataset contains 1, 000 training records, 10 validation records, and 300 test records. Each
data record is split into 29 time-series sequences, each of length 16. The total number of training,
validation, and test samples is 29, 000, 290, and 8, 700, respectively, for a total of 37,990 samples.
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Table 8: Models and Hyperparemeters for KU-HAR Dataset.

Module Description Hyperparameter Settings
Component Architecture | Hyperparameter Value
Layers 3
Local Model Input Size 900
for Accelerometer Data MLP Hidden Size 300, 100
(Client Ph) Output Size 30
Activation ReLU
Layers 3
Local Model Input Size 900
for Gyroscope Data MLP Hidden Size 300, 100
(Client P?) Output Size 30
Activation ReLU
Layers 2
Input Size 60
Global Model MLP Hidden Size 30
Output Size 18
Activation ReLU
Loss Cross-Entropy
Epochs 150
Training Params Batch Size 256
Optimizer SGD
Learning Rate 0.01

Models: The details of the models and their parameters for the MuJoCo dataset are provided in
Table 9. We follow the settings in [27] for the different devices. For the client with image data, a CNN
model combined with an LSTM model is used to extract embeddings. For the clients with sensor
data, position data, or control inputs, an MLP and an LSTM model are used to extract embeddings.
For the global model in the active client, a single linear model is utilized to make the final prediction.

VISION&TOUCH [28]: It is collected from real-world robot simulations, where a 7-DoF torque-
controlled Franka Panda robot is used. The simulation involves controlling the robot to perform a
peg insertion task. Data is collected using three different sensor devices: proprioception, an RGB-D
camera, and a force-torque sensor. The proprioceptive input includes the end-effector pose, as well as
linear and angular velocity. The RGB-D camera, positioned to observe the robot, records RGB and
depth images, which are then downsampled to a resolution of 128 x 128. The force-torque sensor
provides 6-axis feedback on forces and moments. In addition, robot action data is recorded at every
timestep. The task is to predict the contact state (binary classification, contact or non-contact), and
the classification accuracy is reported.

Dataset Processing: The four types of sensor data, along with the action data, are distributed across
five different clients, i.e., K = 5. The dataset contains 147,000 samples in total, split into training
and test sets with an 8 : 2 ratio.

Models: Model details and hyperparameters are provided in Table 10, following the settings in [28]
for each type of data. For clients with RGB, depth images, and force-sensor data, a CNN model is
used to extract embeddings. For clients with proprioception and action data, an MLP model is applied.
Before the global prediction, a sensor fusion strategy as described in [28] is employed, followed by
an MLP model in the active client for the final prediction.

B.3 Healthcare

MIMIC-III [24]: This is a large, publicly available database containing de-identified health-related
data from over 40, 000 patients admitted to the critical care units of the Beth Israel Deaconess Medical
Center between 2001 and 2012. As described in [4 1], the data for each patient consists of two types:
(1) Static information: a set of demographic and personal details such as age, gender, and ethnicity,
represented as a 5-dimensional vector; and (2) Time-series information: medical measurements
taken hourly over a 24-hour period, with each measurement represented as a 12-dimensional vector
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Table 9: Models and Hyperparemeters for MuJoCo Dataset.

Module Description Hyperparameter Settings
Component Architecture | Hyperparameter Value
Layers 3
Input Size 3
Local Model MLP Hidden S.12e 64, 64
o Output Size 64
for Position Data L
. 1 Activation ReLU
(Client P") I
ayers 1
LSTM Input Size 64
Output Size 256
Layers )
Kernel Size 5,3,3,3,3
Local Model CNN Num Fllters 32, 32, 32, 16, 8
for Image Data Strides 1
(Client P?) Padding 2,1,1,1,1
fen Layers 1
LSTM Input Size 64
Output Size 256
Layers 3
Input Size 7
Local Model MLP Hidden S.1ze 64, 64
Output Size 64
for Sensor Data .
. 3 Activation ReLU
(Client P°) I
ayers 1
LSTM Input Size 64
Output Size 256
Layers 3
Input Size 7
Local Model MLP Hidden S.12e 64, 64
Output Size 64
for Control Data L
. 1 Activation ReLU
(Client P*) I
ayers 1
LSTM Input Size 64
Output Size 256
. Input Size 1024
Global Model | Linear Layer Output Size 6
Loss MSE
Epochs 20
Training Params Batch Size 32
Optimizer SGD
Learning Rate 0.01

(corresponding to 12 different clinical variables). The task is to perform binary classification to
determine whether a patient has any ICD-9 code from group 7. The classification accuracy is recorded.

Data Processing: The two types of data are assigned to two different clients. The dataset is split into
training, validation, and test sets in a ratio of 8 : 1 : 1, which we follow the settings in [33], resulting
in 28,970 training samples, 3, 621 validation samples, and 3, 621 test samples, for a total of 36,212
samples.

Models: Following the setup in [4 1], we use a two-layer MLP to extract embeddings from the static
information and a GRU model to process the time-series data. The hidden states at each time step are
recorded and flattened for downstream computation. A two-layer MLP is used as the global model
for the final prediction. Details are provided in Table 11.

PTB-XL [55]: It is a large-scale electrocardiography (ECG) dataset, comprising 21, 700 clinical
12-lead ECG recordings from 18, 885 patients, designed for a multi-label classification task. There
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Table 10: Models and Hyperparemeters for VISION& TOUCH Dataset.

Module Description Hyperparameter Settings
Component Architecture | Hyperparameter Value
Layers 6
Local Model Kernel Size 7,9,5,3,3,3
for RGB Images CNN Num Filters 16, 32, 64, 64, 128, 128
(Client P1) Strides 2
Padding 3,2,2,1,1,1
Layers 6
Local Model Kernel Size 3,3,4,3,3,3
for Depth Images CNN Num Filters 32, 64, 64, 64, 128, 128
(Client P?) Strides 2
Padding 1
Layers 5
Local Model Kernel Size 2
for Sensor Data CNN Num Filters 16, 32, 64, 128, 256
(Client P3) Strides 2
Padding 1
Layers 4
Local Model Input Size 8
for Proprioception Data MLP Hidden Size 32, 64, 128
(Client P*%) Output Size 256
Activation LeakyReLU
Layers 2
Local Model Input Size 4
for Action Data MLP Hidden Size 32
(Client P?) Output Size 32
Activation LeakyReLU
Layers 2
Input Size 200
Global Model MLP Hidden Size 128
Output Size 4
Activation LeakyReLU
Loss Cross-Entropy
Epochs 15
Training Params Batch Size 32
Optimizer SGD
Learning Rate 0.001

are five diagnostic classes: normal ECG, myocardial infarction, ST/T change, conduction disturbance,
and hypertrophy. Following [51], we use the ECG data sampled at 100 Hz. The task is to predict
the ECG signal class, where each sample may be associated with multiple labels. For the main task
performance, the F1-score is reported.

Data Processing: Based on the setup in [1], the time-series readings from different electrodes
are divided as follows: (1) limb leads—channels I, I1, I11, aV L, aV R, aV F, and (2) chest
leads—channels V'1 to V6. These are treated as two separate data types. In addition, static patient
information such as age and gender (represented as a 4-dimensional vector) is also included as a third
data type. These three data types are distributed across three different clients. The dataset is divided
into training, validation, and test sets in aratioof 8 : 1 : 1.

Models: We adopt a similar setup to the MIMIC-III dataset, where GRU models are used to extract
local embeddings and an MLP model is used for the final prediction. Details are provided in Table 12.
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Table 11: Models and Hyperparemeters for MIMIC-III Datasets.

Module Description Hyperparameter Settings
Component Architecture | Hyperparameter Value
Layers 2
Local Model Input Size )
for Static Information Data MLP Hidden Size 10
(Client Ph) Output Size 10
Activation LeakyReLU
Local Model Layers 1
for Time-Series Data GRU Input Size 12
(Client P?) Output Size 30
Layers 2
Input Size 730
Global Model MLP Hidden Size 40
Output Size 2
Activation LeakyReLU
Loss Cross-Entropy
Epochs 300
Training Params Batch Size 256
Optimizer SGD
Learning Rate 0.01

Table 12: Models and Hyperparemeters for PTB-XL Datasets.

Module Description Hyperparameter Settings
Component Architecture | Hyperparameter Value
Layers 2
Local Model Input Size 4
for Static Information Data MLP Hidden Size 10
(Client Ph) Output Size 10
Activation LeakyReLU
Local Model Layers 1
for Limb Lead Data GRU Input Size 6
(Client P?) Output Size 15
Local Model Layers 1
for Chest Lead Data GRU Input Size 6
(Client P3) Output Size 15
Layers 2
Input Size 30010
Global Model MLP Hidden Size 100
Output Size 5
Activation LeakyReLU
Loss BCEWithLogits
Epochs 100
Training Params Batch Size 256
Optimizer SGD
Learning Rate 0.01

B.4 Emotion Analysis

UR-FUNNY [20]: It is the first large-scale humor detection collection that incorporates image, text,
and audio data. It contains a total of 16,514 video segments sourced from 1,866 videos, along
with their transcripts obtained from the TED portal. Each video is labeled as either humorous or
non-humorous, and the task involves predicting whether a given video segment contains humor. For
the main task performance, the classification accuracy is recorded.
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Table 13: Models and Hyperparemeters for UR-FUNNY and MUSTARD Datasets.

Module Description Hyperparameter Settings
Component Architecture | Hyperparameter Value
Local Model Layers 1
for Video Features GRU Input Size 371
(Client P) Output Size 700
Local Model Layers 1
for Audio Features GRU Input Size 81
(Client P?) Output Size 160
Local Model Layers 1
for Text Features GRU Input Size 300
(Client P?) Output Size 600
Layers 2
Input Size 1460
Global Model MLP Hidden Size 1460
Output Size 2
Activation LeakyReLU
Loss Cross-Entropy
Epochs 100
Training Params Batch Size 256
Optimizer SGD
Learning Rate 0.01

Table 14: Models and Hyperparemeters for CMU-MOSI and CMU-MOSEI Datasets.

Module Description Hyperparameter Settings
Component Architecture | Hyperparameter Value
Local Model Layers 1
for Video Features GRU Input Size 35
(Client P1) Output Size 70
Local Model Layers 1
for Audio Features GRU Input Size 74
(Client P?) Output Size 200
Local Model Layers 1
for Text Features GRU Input Size 300
(Client P3) Output Size 600
Layers 2
Input Size 870
Global Model MLP Hidden Size 870
Output Size 1
Activation LeakyReLU
Loss MSE
Epochs 100
Training Params Batch Size 256
Optimizer SGD
Learning Rate 0.05

Dataset Processing: Following the

settings in [

28

], we extract sequential features from the original
data for video, text, and audio. The extracted feature dimensions are 1" x 371 for video, T" x 300
for text, and T' x 81 for audio, where 7" represents the sequence length ranging from 5-20 seconds.
These three data types are then distributed across three different clients. The dataset is partitioned
into training (10, 598 segments), validation (2, 626 segments), and test sets (3, 290 segments).

Models: For local models, we employ the widely-used models in time-series data, GRU models [
to extract embeddings from video, audio, and text features. The hidden state from the final time step



is utilized for subsequent computations. In the global model, we implement a two-layer MLP for the
final prediction. Detailed model parameters are provided in Table 13.

MUSTARD [7]: It is designed for sarcasm detection and consists of video segments collected
from web searches, primarily from YouTube. The videos are sourced from four popular TV shows:
‘Friends’, ‘The Golden Girls’, ‘Sarcasmaholics Anonymous’, and ‘The Big Bang Theory’. The dataset
includes 690 audio-video segment pairs, along with contextual information to aid classification. Each
sample is labeled for binary classification as either sarcastic or non-sarcastic. The classification
accuracy is reported for the main task performance.

Dataset Processing: Following the same methodology as [20], we extract features from the original
video, text, and audio data, with dimensions of 7" x 371, T x 300, and T" x 81, respectively, where T’
denotes the sequence length. These three data types are distributed across three distinct clients. The
dataset is partitioned into training, validation, and test setsina 6 : 2 : 2 ratio.

Models: We employ the same model architecture as used for the UR-FUNNY dataset. For detailed
parameters, refer to Table 13.

CMU-MOSI [70]: It is the first opinion-level annotated corpus of sentiment analysis in online videos.
It consists of 2, 199 opinionated video clips, each labeled with sentiment intensity on a [—3, 3] scale:
[—3: highly negative, —2: negative, —1: weakly negative, 0: neutral, +1: weakly positive, +2:
positive, +3: highly positive]. The dataset is collected from YouTube, focusing on video blogs (vlogs)
that reflect real-world speaker behaviors in monologue videos. For our experiments, we adopt a
binary classification task, dividing sentiment into positive (> 0) or negative (< 0), a common setting
in emotion analysis. The classification accuracy is reported for the main task performance.

Dataset Processing: Following existing work in emotion analysis [70], we extract feature sequences
for image, text, and audio data from the original dataset, with the sizes of T"x 35, T"x 300, and T * 74,
where T is the length of each sequence. The data is distributed across three different clients by data
type. The dataset is split into training, validation, and test sets with 1,284, 229, and 686 clips.

Models: We use GRU models to extract embeddings, and a two-layer MLP for final prediction. The
models are trained using the MSE loss. During testing, the final predictions are converted into two
classes as described above. Detailed model parameters are presented in Table 14.

CMU-MOSEI [71]: It is a large-scale sentiment and emotion analysis dataset from real-world online
videos. It contains 22,777 data samples with labels for sentiment intensity on the scale of [—3, 3]. We
use the binary classification task that divides the sentiment as positive (> 0) or negative (< 0). The
classification accuracy is recorded.

Data Processing: We utilize the settings of existing works [70, 71] to extract features from the
original data, with sizes of T' x 35, T' x 300, and T' x 74 for image, text, and audio features, where
T is the length of each sequence. The data is distributed into three different clients by different
data types. The dataset is split into training, validation, and test sets with 16, 265, 1, 869, and 4, 643
segments, respectively.

Models: We use the same settings as the CMU-MOSEI dataset, detailed in Table 14.

B.5 Multimedia

NUS-WIDE [10]: It is a dataset collected from the Flickr website with associated tags. The dataset is
preprocessed into 634 dimensions of image features and 1, 000 dimensions of text features. The task
is to classify 81 concept types using the input image and text features. The classification accuracy is
utilized for comparing the main task performance.

Dataset Processing: We use a five-class subset [37] including ‘buildings’, ‘grass’, ‘animal’, ‘water’,
and ‘person’, with 69, 966 samples in the training set and 46, 693 samples in the test set. The image
features and the text features are then distributed to two clients, respectively.

Models: For both the image and text data, we utilize a three-layer MLP to extract embeddings from
the features, and a two-layer MLP is utilized to make the final prediction. Detailed in Table 15.

MM-IMDB [3]: It is a large-scale dataset for movie genre prediction, developed based on the
Movielens dataset [19]. It expands the dataset by collecting movie genres, posters (images), and plot
information (text) for each movie. It is built using the IMDb ids provided by the Movielens dataset,
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Table 15: Models and Hyperparemeters for NUS-WIDE Dataset.

Module Description Hyperparameter Settings
Component Architecture | Hyperparameter Value
Layers 3
Local Model Input Size 634
for Image Features MLP Hidden Size 320, 80
(Client Ph) Output Size 40
Activation ReLU
Layers 3
Local Model Input Size 1000
for Text Features MLP Hidden Size 500, 125
(Client P?) Output Size 60
Activation ReLU
Layers 2
Input Size 100
Global Model MLP Hidden Size 50
Output Size 5
Activation ReLU
Loss Cross-Entropy
Epochs 30
Training Params Batch Size 256
Optimizer SGD
Learning Rate 0.02

Table 16: Models and hyper-params for MM-IMDB dataset.

Module Description Hyperparameter Settings
Component Architecture | Hyperparameter Value
Layers 2
Local Model Input Size 300
for Image Features | MaxoutMLP . .
(Client P1) Hidden S.12e 512
Output Size 512
Layers 3
Local Model Input Size 4096
for Text Features | MaxoutMLP . .
(Client P?) Hidden S}ze 1024, 512
Output Size 512
. Input Size 1024
Global Model Linear Layer Output Size 23
Loss Cross-Entropy
Epochs 100
Training Params Batch Size 256
Optimizer SGD
Learning Rate 0.005

which contains ratings for 27, 000 movies. Movies without poster images were filtered out, resulting
in a final dataset with ratings for 25,959 movies. The task is to predict the class of movie genres,
which may involve multiple labels. The F1-score is used for comparing the main task performance.

Dataset Processing: We follow the settings of [3] to extract features from images and texts. The
final image and text features have dimensions of 300 and 4, 096, respectively. The image and text
features are distributed to two clients. The samples are split into training, validation, and test sets
with 15,552, 2,608, and 7, 799 samples, respectively.

Models: Following the settings in [3], we use the MaxoutMLP architecture [17] with the same
hyper-parameters. For the global model, we use a two-layer MLP to make the final prediction, as
detailed in Table 16.
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C Evaluation Setting

This section provides a comprehensive overview of the evaluation settings employed in our exper-
iments. All experiments were conducted on a server with 8 NVIDIA GeForce RTX 4090 GPUs,
equipped with Intel(R) Xeon(R) Gold 6240 CPUs operating at 2.60 GHz.

C.1 Efficiency

Evaluation Metrics. MARS-VFL provides three different evaluation metrics to evaluate the main
task performance (MP), ranging from classification accuracy, F1-score, and mean squared error
(MSE) for different prediction tasks:

(1) Classification Accuracy (A): Given the VFL model f(©) and the test dataset {(;,y;) }1\*;, for
classification tasks, the classification accuracy A is reported:

1 X
A= ﬁt;w(mi,@) =), )

where I(-) is the indicator function that returns 1 if the condition is true and 0 otherwise.

(2) F1-score (Fy): For the multi-label classification tasks, we utilize the F1-score to evaluate the
performance:
P-R TP TP
L p=_- R 8
P+ R’ TP+ FP’ i TP+ FN’ ®)
where TP, F'P, and F'N represent the number of true positives, false positives, and false negatives
in predictions, respectively.

=2

(3) Mean Squared Error (MSE): For the regression tasks, we use the MSE as the evaluation metric.
We report the MP of the test set on each dataset:

Ny
1 2
MSE = M;wlf(xw) — uill3. ©
where | - ||2 denotes the Euclidean norm. Besides, the communication costs as well as the training

epochs are also reported:

(4) Communication Costs: We report the communication costs of exchanged information during the
training stage. Communication costs account for both the transmission of embeddings between active
and passive clients and the transmission of gradients from the active client to the passive clients. The
units frequently used are MB and GB, based on the scales of different datasets.

(5) Epochs: We report the training epochs required to reach the maximum test accuracy, and we also
represent the valid/test MP and communication costs with respect to epochs, which also reflects the
convergence speed of different methods.

Evaluation Protocols. MARS-VFL evaluates the efficiency of different methods by running each
experiment five times and reporting the mean values and standard deviations from three aspects:
(1) Report the maximum MP, the corresponding communication costs, and epochs. This not only
compares the performance of different methods but also their efficiency and convergence epochs.
(2) Compare the MP under equal communication cost to assess the communication efficiency of
each method. It provides more qualitative results for comparing the efficiency of different methods.
(3) Compare the MP under the same number of epochs. It shows the performance and convergence
behavior across epochs.

Evaluated Methods. We evaluate three recent methods: (1) FedBCD [36] aims to reduce communi-
cation costs and accelerate convergence speed through local updates. It uses historical gradients to
update local models in multiple rounds before global updates, achieving lower costs and fewer global
epochs. (2) Based on local updates, C-VFL [6] proposes compressing the intermediate embedding
to achieve low costs. The communication costs are reduced based on the compression rates. How-
ever, compression can lead to information loss during training. (3) EFVFL [54] introduces an error
feedback mechanism to mitigate information loss caused by compression during training, especially
at small compression rates. It enables the maintenance of model performance while significantly

31



reducing communication overhead. We employ local updates with EFVFL to align the experiment
settings, and the local update rounds are set to 5 for all three methods. For C-VFL and EFVFL, the
compression rates are set to 0.3 for all experiments.

C.2 Robustness

Evaluation Metrics. To evaluate the robustness of different methods, MARS-VFL assesses the main
task performance (the same as efficiency) under different perturbation rates. We report the MP under
different training/validation set perturbation rates 7, and test set perturbation rates 7.

Evaluation Protocols. We evaluate the robustness of different methods with different perturbation
rates. (1) For missing features, following existing settings [53], the perturbation rates refer to the
probability of different feature parts of samples being missing, and the MP is reported for different
missing probabilities. We test missing probabilities in {0, 0.2, 0.5, 0.8}. (2) For corrupted features,
the perturbation rates refer to the proportion of corrupted feature parts, which is practical in scenarios
where parts of features might be corrupted in each sample. The MP is reported for different corruption
rates. We use Gaussian noise to simulate data corruption, which can be extended to other corruption
types. Gaussian noise with standard deviations in {0.1, 0.2, 0.4, 0.6, 0.8} is randomly sampled and
applied to randomly selected feature parts according to the corruption rates. We test corruption rates
in {0,0.2,0.5,0.8}. (3) For misaligned features, the perturbation rates refer to the proportion of
shuffled samples. We randomly shuffle the samples with ratios in {0,0.5,0.8,1}, and the MP is
reported for different shuffling ratios.

Evaluated Methods. We evaluate several methods for different perturbations:

(1) Missing Features: We evaluate LEEF-VFL [47] and LASER-VFL [53]. (1) LEEF-VFL proposes
performing local updates before each collaboration round by leveraging private labels. It fully utilizes
all training samples and information from private labels, enhancing robustness against missing
features. (2) LASER-VFL proposes leveraging different subsets of features and training predictors
with mean embedding aggregation, achieving good performance across different combinations of
feature blocks. Following the settings in [53], since the standard VFL model can only be trained on
and used for inference with fully observed samples, for Base methods, samples with missing features
are ignored in both training and testing, and a random test prediction is made. For LEEF-VFL,
samples with missing features can be utilized for training, but are ignored, and a random prediction is
made during testing. For LASER-VFL, the use of mean aggregation for embeddings and parameter
sharing across multiple predictors enables both training and testing to be conducted with missing
features. However, it can only be generalized to settings with the same embedding sizes for each
client; in other settings, only the evaluations of Base and LEEF-VFL are conducted.

(2) Corrupted Features: We propose RVFL-Aug, which utilizes feature augmentations to learn
inherent and consistent information from the samples, thereby enhancing robustness against data
corruption. We utilize three different augmentations: (a) random mask, which randomly sets parts of
the features to zero; (b) random scale up, which randomly multiplies parts of the features by 1.2; (¢)
random scale down, which randomly multiplies parts of the features by 0.8. For the strength of the JS
consistency constraint, we adjust A in {1, 3,6, 12} and report the best performances.

(3) Misaligned Features: We propose RVFL-Align, which maximizes embedding consistency between
sample features from different parties, thereby aligning them optimally. It is a training-free process,
and we utilize it in each forward process, achieving promising results in resisting misaligned features.

C.3 Security

Evaluation Metrics. In MARS-VFL, the evaluation of attack performance (AP) is conducted using
three well-established metrics, each designed to capture a specific dimension of attack effectiveness.
These metrics provide a rigorous and comprehensive assessment of the vulnerabilities in VFL systems
under various threat models.

(1) Label Inference Performance (LIP): In label inference attacks, the inference accuracy on the test
set is reported. Given the inferred label set {¢;}2\*, and the true label set {y;})\*,, the LIP can be
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defined as:
1 &
LIP = — (g =vi), (10)
N, ;1 (U = vi)

where I(-) is the indicator function that returns 1 if the condition is true and 0 otherwise.

(2) Feature Inference Performance (FIP): In feature inference attacks, following the setting in [38],
the mean squared error per feature between the inferred features and the original features is reported.
To be consistent with other attack metrics, we use a negative correlation-based metric to evaluate the
inference performance. Given the inferred feature set {#;}.*; and the original feature set {z;}\*,,
we normalize the features to [a, b], where b — a = C, before performing attacks. The FIP can be
defined as:

Ny
C — MSE, 1 ) )
FIP= —/>—, MSE, = N, d ;:1 |2 — @ill2, (11)
where || - ||2 denotes the Euclidean norm, d denotes the feature dimensions, and [a, b] denotes the

normalized feature range. For instance, to perform attacks on the UCI-HAR and NUS-WIDE datasets,
the features of the attack target are normalized to [—1, 1], with C' = 2.

(3) Attack Success Rate (ASR): In backdoor attacks, the attack success rate on poisoned samples is
widely used to evaluate the attack performance. Given the target class 7, the poisoned feature set

{:%Z}ivzpl and the poisoned model f(©), the ASR is defined as follows:

N.
1 .
ASR:EZH(]’(%,G):T). (12)
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We report the attack performance with different defenses, and we also report the main task perfor-
mance (AP) to evaluate the influence of different attacks and defenses on the collaboration tasks.

Evaluation Protocols. We evaluate the security issues from three aspects: (1) For different attack
methods, we evaluate the attack performance (AP) as well as the to show the effectiveness of each
method. (2) We evaluate the attack performance under different defense methods to explore potential
solutions for malicious attacks. (3) We also provide the main task performance (MP) to assess the
influence of different defense methods on the prediction tasks, as well as the influence of attack
methods on the prediction tasks.

Evaluated Methods. We evaluate different attack methods as well as defense methods:

Label Inference Attacks: We evaluate two attack methods, including PMC [15] and AMC [15]. PMC
and AMC propose to construct an inference classifier using the trained local model of the attacker.
This requires a small set of labeled samples as prior information. Compared with PMC, AMC
integrates an additional learning rate adjustment to scale up the influence of the attack model. The
learning rates of the PMC and AMC are set to 0.01 for all experiments. For the UCI-HAR dataset,
the number of labeled samples per class is set to 20, while for the NUS-WIDE dataset, it is set to 100.

Feature Inference Attacks: We evaluate two attack methods, including GRNA [38] and MIA [30]. (1)
GRNA infers target features based on the final outputs of the active client, the model parameters, and
auxiliary features from the same sample. (2) In contrast, MIA assumes access to part of the original
feature values and model parameters during training and learns a model to recover the original
features from the active client’s embedding. As GRNA lacks access to ground-truth feature values, its
reconstruction performance is expected to be inferior to that of MIA; however, GRNA can generalize
to more common settings since the original features are usually not available. For all experiments, we
set P! as the attacker client and P as the client of the victim. For the UCI-HAR dataset, the learning
rates are set to 0.012 for GRNA and 0.008 for MIA. For the NUS-WIDE dataset, the learning rates
are set to 0.02 for GRNA and 0.015 for MIA.

Backdoor Attacks: We evaluate two attack methods, including TECB [8] and LFBA [46]. (1) TECB
injects backdoors by leveraging a small fraction of labeled target class samples and model parameters.
It optimizes a backdoor trigger based on the labeled samples and poisons the model during VFL
training. It achieves high attack success rates even with minimal target label knowledge. (2) LFBA,
on the other hand, operates without access to label information. Instead of a preset poison set, it
exploits the information of the embedding gradients during the training stage and constructs the target
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sample set for poisoning. For TECB, the learning rates are set to 0.02 and 0.001 for the UCI-HAR
and NUS-WIDE datasets, respectively, while keeping other settings the same as in [8]. For LFBA,
we follow the settings in [46].

Defenses: We evaluate four gradient-based defenses following the settings in [15], including Noisy
Gradients (NG) [76], Gradient Compression (GC) [35, 25], Privacy-preserving Deep Learning (PPDL)
[49], and DiscreteSGD (DSGD) [4, 15]. (1) Noisy Gradients (NG): As described in [76], adding
noise to gradients is a common defense strategy in FL. In VFL setting, we apply Laplacian noise of
different scales to gradients before transmitting them to clients, as in [15]. (2) Gradient Compression
(GO): It mitigates attacks by sharing only a subset of gradients with the highest absolute values.
Originally proposed to improve communication efficiency [35], it also offers privacy benefits [25].
We evaluate its effectiveness by applying different compression ratios. (3) Privacy-preserving deep
learning (PPDL): Introduced in [49], it combines differential privacy, gradient compression, and
random selection. At each iteration, the server (i) randomly selects a gradient value and adds noise;
(i1) retains it only if the noisy value exceeds a threshold; and (iii) repeats until a certain fraction of the
gradients is preserved. We assess its performance in VFL using different retention rates, following
[15]. (4) DiscreteSGD (DSGD): Adapted for VFL from SignSGD [4], this defense observes the
gradient distribution during the first epoch to compute the mean p and standard deviation o. Using
the three-sigma rule [40], an interval [ — 20, 1 + 207] is defined, and values outside it are treated as
outliers. The interval is then divided into several sub-intervals, and gradient values are rounded to the
nearest endpoint before being shared. We change the number of sub-intervals to control the level of
information retained, where a larger interval implies finer granularity and weaker defense.

D Extended Analysis
We provide analysis of time complexity and communication costs of RVFL-Aug and RVFL-Align.

D.1 RVFL-Aug

Time Complexity. Let NV denote the number of aligned training samples, K as the number of clients,
and S as the number of augmentation sequences. The time complexity for processing all samples at
client P* in one epoch is:

Time;, = O(NS) +O(BN)+O(3N). (13)
—— —— ——
Augmentation Forward Backward

This includes the cost of data augmentation, and the forward and backward passes for three views.
The total per-round time complexity across all K clients is:

K
Timeper = Z O(TNS). (14)
k=1

Over T training epochs, the overall time complexity becomes:
K
Timey = »_ O(T(TNS)). (15)
k=1

Communication Costs. In each training round, client P* generates and transmits three embeddings
corresponding to the original input and two augmented views, denoted as H*, H, l’fl, and H (’1“2.
Assuming the embedding dimensions of d* and N samples per client, the communication cost per
client per round is 3N d* for both forward and backward transmissions. Thus, the total communication

costs per round across all clients is:

K K
Commpe = » (3Nd* +3Nd*) = " 6Nd". (16)
k=1 k=1
Over T training rounds, the total communication costs become:
K
Commygy = Y 6T Nd"*. (17)
k=1
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In summary, RVFL-Aug introduces additional linear time and communication overheads with respect
to the sample size and embedding dimension, which remain acceptable in practical scenarios.

D.2 RVFL-Align

Time Complexity. Denote N as the number of aligned training samples, and K as the total number
of clients. The main computational costs in RVFL-Align come from two parts:

* Consistency Matrix Calculation. For each passive client P*, the active client computes a pairwise
cosine similarity matrix C¥ € RV* between its own embeddings H“ and the embeddings H*
from P*. This step requires O(N?) time complexity per passive client.

* Solving the Linear Assignment Problem. For each similarity matrix C¥, the optimal matching
matrix M* is obtained by solving a linear assignment problem, which takes O(N?) time using the
Hungarian algorithm [26].

Thus, the total time complexity across all K — 1 passive clients over 7" training epochs is:

K-—1
Timea = » | O(T(N? + N?)), (18)
k=1

which is dominated by the O(N?) term when N is large. RVFL-Align introduces additional compu-
tational overhead with O(NN3) complexity, which may be resource-intensive in large-scale scenarios.

Communication Costs. RVFL-Align does not introduce additional communication overhead beyond
standard VFL. Each passive client P* sends its embeddings H* € RV*4" (o the active client P* for
consistency evaluation, and receives the corresponding embedding gradients in return. Hence, the
communication cost per round from all passive clients is:

K-1
Commpe = > (Nd* + Nd* ). (19)

k=1 Forward Backward

Over T training rounds, the total communication cost is:

K-—1
Commygy = » _ 2T'Nd". (20)
k=1

In summary, RVFL-Align may face scalability challenges due to its additional time complexity, but it
provides an effective approach for handling feature misalignment. Future work can explore more
efficient algorithms to improve its scalability.

E Additional Results

Due to space limitations in the main text, the remaining results are reported in the appendix, following
the same experiment settings.

E.1 Efficiency

We present additional efficiency evaluation results on the VISION&TOUCH and MuJoCo datasets in
Table 17, where MP refers to classification accuracy .A(%) or mean squared error (MSE), respectively.
As shown in Table 17, compared to the Base method, FedBCD, C-VFL, and EFVFL achieve lower
communication costs and faster convergence, but at the expense of main task performance, raising the
trade-off between main task performance and communication efficiency, as well as between main task
performance and convergence speed. Furthermore, although C-VFL and EFVFL achieve reduced
communication costs through embedding compression compared to FedBCD, they require more
training epochs to converge, indicating the trade-off between communication cost and convergence
speed. Investigating such trade-offs is valuable for developing more efficient VFL systems.
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Table 17: Results of Efficiency. The results on the VISION&TOUCH and MuJoCo are reported.

VISION& TOUCH MuoCo
Method
M4 | BestMP (%)  Costs (GB)  Epochs B(;flgﬁl;’)’) Costs (GB)  Epochs
Base 92.1810.64 3415128 843 | 152+0.13 2921+1327 11+5
FedBCD [36] | 91764042 0854042 241 | 1734024 10624531 442
C-VEL[6] | 9149+0.57  038+0.13 342 | 1.76+£0.12  3.98+239 543

EFVFL [54] | 91.83£0.61 0.5140.25 4+2 1.7440.25 5.58+1.59 7£2

E.2 Robustness

We provide full results of robustness evaluations in Table 18, Table 19 and Table 20.

Missing Features. We provide the complete evaluation results under missing feature scenarios in
Table 18. As shown in Table 18, both LEEF-VFL and LASER-VFL demonstrate strong performance
under different missing rates. However, LASER-VFL outperforms LEEF-VFL as the missing rate
increases in the test sets, owing to the utilization of mean aggregation for embeddings and parameter
sharing across multiple predictors tailored to different feature combinations. Despite its advantage in
handling missing testing features, LASER-VFL is limited to cases where the embedding dimensions
across clients are equal, due to its reliance on mean aggregation. For settings with unequal embedding
dimensions, the results of LEEF-VFL are reported.

Corrupted Features. We report the results under corrupted feature settings in Table 19. As shown in
the results, the proposed RVFL-Aug demonstrates strong robustness against various corruption rates,
particularly under high corruption rates, highlighting the effectiveness of consistency learning through
augmentations. However, performance degradation is observed in some settings where features are
not corrupted. For example, on the UCI-HAR dataset with r, = 0 and r, = 0, RVFL-Aug leads to a
drop in performance. This may be attributed to additional noise introduced by the augmentations. It
is valuable to explore methods that are resilient to both clean and corrupted data in future work.

Misaligned Features. We present the complete results under misaligned feature settings in Table 20.
The proposed RVFL-Align demonstrates strong robustness against different rates of misaligned
samples, highlighting the effectiveness of realigning embeddings through maximum consistency.
However, its performance can degrade compared to Base when the original features are well aligned.
For example, on the UCI-HAR dataset with r, = 0 and 7, = 0, where some aligned samples may
be unnecessarily shuffled by RVFL-Align. In addition, RVFL-Align introduces extra computational
complexity (as detailed in Section D.2). For future work, it would be valuable to explore more
efficient methods that maintain strong performance both under well-aligned and misaligned settings.

E.3 Security

We present comprehensive security evaluation results on the UCI-HAR and NUS-WIDE datasets in
Table 21 and Table 22. The results demonstrate that VFL systems are highly vulnerable to various
types of attacks. Specifically, label inference attacks achieve over 60% inference accuracy, feature
inference attacks exceed 90% average precision (AP), and backdoor attacks attain success rates
surpassing 99%. These findings highlight the critical security risks associated with deploying VFL in
real-world scenarios. While some defense mechanisms have been proposed, they remain insufficient
to fully mitigate these threats. In particular, although certain defenses can reduce the effectiveness of
attacks, they often do so at the expense of significantly degrading the performance of the learning
task. This trade-off underscores the urgent need for more robust and adaptive defense strategies.
Moreover, as demonstrated by the results, gradient-based defenses are insufficient against attacks that
do not rely on gradient information, such as MIA (an embedding-based attack), thereby presenting
challenges in developing effective methods to mitigate such threats. Future research should focus on
designing security mechanisms that not only counteract a wide spectrum of attacks but also preserve
the utility and accuracy of VFL systems in practical deployments.
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Table 18: Results with Missing Features.

UCI-HAR (MP: A (%))

Method e =0 rq = 0.2 rq = 0.5 re = 0.8
7, =0r,=02r,=057r,=08]r,=07,=027,=057r,=08]ry, =0r, =021, =05r,=087,=0r, =027, =0.57,=038
Base 94.67 90.77 90.50 56.67 [94.47 90.23 89.55 5599 [93.93 89.65 89.48 5626 [74.65 69.56 64.00 45.74
LEEF-VFL [47] |94.60 90.80 91.92 5728 |95.05 9125 91.04 5748 |9576 90.70 90.22 57.99 [91.38 87.34 81.13 5517
LASER-VFL[53]195.88 9433 9537 76.05 |95.64 95.01 9532 76.13 |95.76 9491 9479 76.44 |91.48 88.92 90.79 71.38
KU-HAR (MP: A (%))
Method T =) re = 0.2 7o = 0.5 re = 0.8
=071, =021, =057,=08{r, =01, =027, =057,=08/r, =01, =027, =057r,=087r,=0r,=027r,=0.57r,=0.8
Base 8224 66.41 3812 2398 |81.49 6593 3848 23.71 [79.98 61.78 37.61 23.16 7347 5846 3320 21.57
LEEF-VFL[47]|8222 75.54 4381 3458 |81.59 74.00 43.18 34.14 [80.41 7239 42.12 33.37 |73.46 66.00 3342 26.96
LASER-VFL[53]]82.69 7542 65.03 79.20 |81.83 74.82 63.38 80.76 |80.55 74.57 64.06 7598 |7542 68.86 5821 71.09
MM-IMDB (MP: F (%))
Method o =) e = 0.2 re = 0.5 re = 0.8
=07, =027, =057=08r, =01, =027, =057,=0.87,=07,=027,=057=087r=0r,=02r,=057r=08
Base 5635 3179 1999 1880 [5526 30.43 1988 1850 [54.95 3042 1989 1833 [2321 2185 18.63 1821
LEEF-VFL[47]|56.53 3577 2122 1824 |5529 3622 21.82 18.19 [55.04 3533 2135 18.08 |20.61 19.99 1873 17.72
LASER-VFL [53]|56.62 50.44 5030 50.43 |5547 50.50 50.37 50.37 |55.15 49.17 49.04 49.15 |47.46 47.46 4738 47.79
MuJoCo (MP: MSE)
Method T = ) Tq = 0.2 Tq = 0.5 re = 0.8
=01, =027,=057=08r, =07, =027, =057r,=08|ry =0r, =027, =057, =087, =07, =027, =0.57, =0.8
Base 0.016 4998 7.779 8517 [0.021 4.984 7783 8536 |0.063 4997 7.785 8536 [0.221 5.056 7.786  8.543
LEEF-VFL[47]]0.013 4322 7.741 8322 |0.016 4.713 7.743 8337 |0.015 4731 7.754 8349 |0.114 4841 7.756 8423
LASER-VFL[53]/0.012 0.103 0.103 0.104 |0.014 0.108 0.109 0.110 |0.014 0.108 0.108 0.109 |0.108 0.129 0.130 0.131
NUS-WIDE (MP: A (%))
Method re =0 e = 0.2 e = 0.5 7, = 0.8
r,=0r, =027, =057,=08{7, =07, =027, =057r,=087r,=0r,=027r,=057r,=08|r,=0r, =027, =057, =0.8
Base 81.64 5276 3223 2295 |72.12 53.09 3273 2298 [73.19 5429 3341 23.17 |72.54 51.05 31.08 23.02
LEEF-VFL[47]| 81.31 5328 33.62 2394 |7541 5339 33.62 23.74 |76.18 5545 34.22 23.56 |75.76 54.65 33.23 23.80
CMU-MOSI (MP: A (%))
Method i =) re = 0.2 Ta=105! rqe = 0.8
rp=07=027,=057=08{7,=07,=027r,=05r,=087r,=0r,=02r,=057=08/r,=07r, =027, =0.5r,=0.8
Base 56.85 5276 5194 5194 |62.58 5849 5297 5297 [62.58 5849 5297 5297 |62.58 5849 5297 5297
LEEF-VFL[47]]52.56 52.56 55.83 53.58 |58.22 5548 5479 48.88 |62.58 59.30 58.08 48.88 |62.58 59.30 58.08 48.88
CMU-MOSEI (MP: A (%))
Method T, =0 Tq = 0.2 re = 0.5 T4 = 0.8
7, =0r, =027, =05r,=08[ry, =07, =02r, =057,=087r,=0r,=027,=057r,=08[r, =07,=027r, =057, =08
Base 60.80 5431 49.19 4934 [57.93 49.83 4747 4792 |5253 4792 46.66 47.16 [47.779 46.44 4630 4478
LEEF-VFL [47]] 6095 5520 49.59 49.80 |58.19 51.22 47.62 4820 ‘ 53.02 48.16 46.78 47.97 |48.14 47.86 47.72 47.32
UR-FUNNY (MP: A (%))
Method 7o =0 re =02 rq = 0.5 rq = 0.8
r,=0r, =027, =057,=08{r, =07, =027, =057r,=087r,=07r,=027r,=057r,=08|r, =07, =027, =057, =0.8
Base 6333 62.19 56.19 5321 [62.19 60.11 54.16 52.08 |55.51 5493 53.12 5132 [52.74 5331 5170 4943
LEEF-VFL[47] 63.52 6229 56.24 56.24 | 62.85 60.40 5547 54.16 |62.67 5571 54.06 52.17 |54.16 54.16 52.08 51.32
MUSTARD (MP: A (%))
Method Tq =0 re = 0.2 =105 rqe = 0.8
rp=07,=027,=057=08{7,=07,=027r=05r,=087r,=0r,=02r,=057=08/r,=07r, =027 =0.5r=0.8
Base 5797 5434 47.83 4855 [56.52 50.72 4420 4348 [55.07 47.83 4275 4275 [50.00 4637 4275 39.86
LEEF-VFL[47]/58.70 55.80 5145 49.28 |57.25 5217 4493 44.93 ‘ 5579 49.28 4348 4348 |52.17 4855 4493 4348
PTB-XL (MP: Fy (%))
Method T, =0 Tq = 0.2 re = 0.5 T4 = 0.8
rp,=0r, =027, =05r,=08[ry, =07, =02r, =057,=087r,=0r,=027,=057r,=08[r, =07,=027r, =057, =08
Base 57.25 3325 3383 3373 [53.50 33,55 3347 33.17 |4840 3250 33.05 3336 [30.03 2854 3236 3222
LEEF-VFL [47]|57.60 37.62 36.39 34.08 |55.00 3590 35.67 34.08 ‘ 49.31 34.02 3442 3333 |36.53 34.02 3442 32.88
MIMIC-III (MP: A (%))
Method To =0 re =02 rq =0.5 rq =08
r,=0r, =027, =057,=08{r, =07, =027, =057r,=087r,=07r,=027r,=057r,=08|r, =07, =027, =057, =0.8
Base 61.10 5480 52.66 50.51 [60.70 58.09 5331 49.36 [59.40 57.16 53.77 50.57 [56.32 5545 51776 50.36
LEEF-VFL[47] 61.54 58.68 5548 4995 |61.17 5825 57.53 50.57 |59.06 58.59 56.91 49.64 |57.66 56.57 52.13 4943
VISION&TOUCH (MP: A (%))
Method Tq =0 re = 0.2 =105 e = 0.8
rp=07,=027,=057=08{7,=07,=027,=05r,=087r,=0r,=02r,=057,=08r, =07, =027 =0.5r,=0.8
Base 9239 90.15 89.57 8696 [91.15 88.09 86.05 83.14 [90.25 85.03 82.81 7829 [88.79 8327 80.84 75.38
LEEF-VFL[47]/92.51 90.59 90.08 88.38 | 91.88 8849 86.68 84.49 |90.52 86.73 83.32 79.22 |89.06 84.98 81.52 78.21
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Table 19: Results with Corrupted Features.

UCI-HAR (MP: A (%))
Method 7 = 0 rq = 0.2 re = 0.5 re = 0.8
=01, =027, =057, =08|r, =07, =027, =057r,=08|r,=0r, =027, =057,=08|r, =0r,=027r,=057r,=0.8
Base |94.67 91.82 88.60 86.16 [93.89 91.82 88.84 8585 [94.27 9192 87.61 84.12 |93.86 91.25 8795 84.15
RVFL-Aug|93.99 9321 90.23 88.19 |94.13 9220 90.53 87.89 |94.13 9223 88.63 85.99 /9491 9148 8829 85.37
KU-HAR(MP: A (%))
Method Ta =0 rq = 0.2 T =015 re = 0.8
T, =01, =027, =057, =081, =0r, =027, =0571,=08|ry, =0r, =027, =057r,=08{r, =07, =0.27r, =0.57, =0.8
Base 8224 7658 6998 63.76 |80.58 77.04 7140 6540 [79.37 7583 7137 66.72 [76.58 74.10 69.73 66.12
RVFL-Aug| 8231 7771 70.77 64.60 |81.08 77.49 71.64 6573 [80.12 76.75 7246 67.52 |77.04 74.63 70.53 66.67
MuJoCo (MP: MSE)
Method T = 0 Ty = 02 rq = 0.5 re = 0.8
e =0r,=027r,=057r,=08|r,=0r, =027, =057, =08, =01, =027, =057, =081, =01, =027, =0.571, =0.8
Base [0.016 0.058 0.126 0.212 [0.013 0.021 0.031 0.041 [0.014 0.022 0.032 0.040 |0.019 0.025 0.033 0.043
RVFL-Aug|0.013 0.051 0.110 0.196 |0.013 0.019 0.030 0.039 |0.015 0.022 0.028 0.040 | 0.017 0.021 0.031 0.041
VISION&TOUCH (MP: A (%))
Method e = 0 re = 0.2 re = 0.5 re = 0.8
T, =01, =027, =057, =081, =0r,=027r,=057r,=08|r, =0r, =027, =057r,=08{r, =07, =0.27r, =0.57, =0.8
Base [9239 91.56 90.76 88.64 |91.63 90.74 89.83 84.72 |90.83 89.42 87.44 81.36 [89.96 87.74 8428 78.84
RVFL-Aug|92.58 9223 91.58 89.73 |92.06 91.59 90.26 87.36 |91.78 91.03 88.76 84.06 |91.24 90.22 8725 81.42
MIMIC-1II (MP: A (%))
Method T = 0 e = 0.2 rq = 0.5 re = 0.8
e =0r,=027r,=057r,=08|r, =0r, =027, =057, =08y, =071, =027, =057, =081, =01, =027, =0.57, =0.8
Base [61.10 60.33 58.19 57.04 [60.02 59.12 57.13 5523 [59.27 56.19 5421 5182 [57.66 5517 5216 5036
RVFL-Aug| 61.85 61.51 59.12 58.09 | 6145 60.73 5744 5579 |59.83 57.01 5579 53.59 |58.06 56.32 5424 52.24
PTB-XL (MP: F (%))
Method 7q =0 rq = 0.2 re = 0.5 re = 0.8
T, =07, =027, =057, =081, =01, =027, =057, =08|r, =0r, =027, =057r,=08[r, =071, =0.27r, =0.57r, =0.8
Base |57.25 5538 5444 50.81 [55.92 5470 5426 50.64 [55.71 53.67 5325 4931 [52.08 5240 50.56 48.40
RVFL-Aug| 5845 5592 5573 51.20 |56.61 55.05 5527 50.77 |56.13 54.75 53.60 50.09 |54.43 5326 50.61 49.24
UR-FUNNY (MP- A (%))
Method o =0 7o = 0.2 rq = 0.5 re = 0.8
=01, =021, =057r, =081, =0r, =027r,=057r,=08|r, =0r,=027r,=057r,=0.8|r, =0r, =027, =0.57, =0.8
Base 6333 63.04 6285 6229 [62.76 6295 6238 62.19 [62.38 6267 6248 6153 [61.63 6285 6229 61.44
RVFL-Aug| 63.52 63.23 63.71 63.04 |63.23 63.14 63.04 63.52 |63.42 6342 63.23 62.10 |62.95 63.52 62.38 61.72
MUSTARD (MP: A (%))
Method re =0 re = 0.2 re = 0.5 re = 0.8
T, =07, =027, =057, =081, =0r,=027r, =057, =08|r, =0r, =027, =057r,=08{r, =07, =027, =0.57r, =0.8
Base [5797 5580 56.52 51.45 |5580 5435 5507 5145 |57.25 53.62 5289 4855 [56.52 53.62 5289 47.83
RVFL-Aug|58.70 56.52 5580 5290 |56.52 55.07 55.80 5217 5797 56.52 5435 50.72 |58.70 55.07 53.62 49.27
CMU-MOSI (MP- A (%))
Method 0 =0 7o = 0.2 7q = 0.5 re = 0.8
=01, =021, =057r, =081, =0r, =027r,=057r,=08|r,=0r,=027r,=057r,=0.8|r, =0r, =027, =057, =0.8
Base [56.85 5597 5422 4737 |5437 5408 5247 46.64 |52.76 5349 4985 4397 [53.06 5153 46.06 37.63
RVFL-Aug| 5724 56.70 5524 49.27 |5510 54.51 5291 48.97 |54.19 5393 5043 4591 |53.64 5291 46.50 41.92
CMU-MOSEI (MP: A (%))
Method re =0 re =0.2 re = 0.5 re = 0.8
=01, =027r,=057,=08{ry =01, =027r, =051, =081, =07, =027, =057r, =081, =01, =027, =0.57, =0.8
Base [60.89 56.76 57.72 56.71 |60.54 5229 56.84 55.83 |60.68 50.89 50.76 51.26 |55.59 4834 4742 4843
RVFL-Aug| 63.68 60.78 60.31 57.89 |62.39 5694 5820 57.94 |60.64 53.24 5792 56.64 |55.78 5229 5529 53.80
NUS-WIDE (MP: A (%))
Method i =0 7o = 0.2 rq = 0.5 re = 0.8
T, =01, =027, =057, =081, =0r, =027, =057, =08|ry, =0r, =027, =057r,=08{r, =07, =0.27r, =0.57r, =0.8
Base [81.64 7442 6921 6431 [81.26 7640 69.47 63.15 [80.48 76.14 69.44 62.69 [79.03 7494 66.61 5849
RVFL-Aug| 8217 7571 7044 64.54 |81.92 7732 7037 64.04 |81.13 7681 7043 63.55 | 8047 7629 67.34 59.24
MM-IMDB (MP: F (%))
Method re =0 re =0.2 re = 0.5 re = 0.8
=01, =027r, =057, =081, =07, =027, =057r,=08|r,=0r, =027, =057,=08|r,=0r,=027r,=057r,=0.8
Base 5635 4585 3486 3348 [39.51 3590 34.67 32.16 [3946 3724 3131 2795 [3747 3613 2549 1526
RVFL-Aug|55.68 46.32 4259 4221 |44.55 4299 4256 41.45 |44.22 4325 41.26 39.63 |43.27 4290 3446 24.72
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Table 20:

Results with Misaligned Features.

UCI-HAR (MP: A (%))

Method 7 = 0 7o = 05 re = 0.8 re =1
=01, =051, =087, =11y, =01, =057, =081, =1|ry =01, =057, =081, =171, =01, =057, =087, =1
Base 94.67 90.63  90.87 89.01|90.97 9091 90.77 88.53|90.87 90.29 86.5690.60 90.80 85.23 84.86
RVFL-Align| 9447 91.11 9091 91.01|91.04 90.94 91.01 90.97 |91.08 90.84 91.04 ‘ 90.80 91.01 91.11 91.08
KU-HAR (MP: A (%))
Method 7 = 0 75 = 05 re = 0.8 re =1
=01, =051, =087, =1|ry, =01, =057, =081, =1|ry =01, =057, =081, =171, =01, =057, =087, =1
Base 82.24 70.99 7048 70.17|73.11 69.18 68.05 68.2970.39 69.20 68.31(70.29 5933 47.40 40.24
RVFL-Align| 8120 7147 70.77 70.65|7296 71.18 71.16 71.23|71.16 70.80 70.77 ‘ 70.72 68.58 68.17 62.31
MuJoCo (MP: MSE)
Method i = 7 — ) 7o = 0.8 re =1
=01, =051, =087, =1|ry, =01, =057, =081, =1|ry =01, =057, =081, =171, =0r, =057, =087, =1
Base 0.016 0.210 0.217 0.218]0.068 0.182 0.232 0.289[0.183 0.194 0.304 10.183 0.215 0.335 0410
RVFL-Align| 0.017 0.138 0.165 0.173|0.053 0.150 0.183 0.183 | 0.142 0.167 0.182(0.182 0.183 0.183 0.182
VISION&TOUCH (MP: A (%))
Method re =0 re = 0.5 re = 0.8 re =1
=01, =051, =087, =1|ry, =01, =057, =081, =1|ry =01, =051, =081, =171, =0r, =057, =08r, =1
Base 92.39 85.36 81.68 79.48|84.62 79.64 7846 77.64|7638 73.28 722417042 70.86 69.83 66.38
RVFL-Align|91.83 86.73 82.39 79.32|86.56 80.13 79.23 77.86|77.49 74.64 73.58 |71.08 71.13 70.05 67.12
MIMIC-III (MP: A (%))
Method 7 =0 re =0.5 ro =0.8 re =1
=01, =051r, =087, =1|ry, =01, =057, =081, =1|ry =01, =051, =081, =171, =0r, =057, =0.8r, =1
Base 61.10 57.72 5449 4995|5632 56.14 56.07 55.20[56.20 56.04 54.02156.66 56.54 5523 53.09
RVFL-Align| 60.27 5797 57.56 57.56|57.28 57.19 57.69 56.91|57.22 57.63 56.94 | 57.38 5825 57.72 53.46
PTB-XL (MP: F, (%))
Method 7 =0 rq = 0.5 ro =0.8 re =1
=01, =051r, =087, =1|ry, =01, =057, =081, =1|rp =01, =051, =087r, =171, =0r, =057, =08r, =1
Base 5725 31.79 3126 31.09]30.82 30.65 30.97 30.87|31.38 31.20 31.35[31.34 30.69 31.10 30.65
RVFL-Align| 53.50 36.71 31.45 31.46|43.59 39.78 36.28 34.11|3341 33.24 33.66 | 32.37 32.03 31.37 31.35
UR-FUNNY (MP: A (%))
Method e =0 rq = 0.5 re =08 i = 1l
7‘17:07‘1,:0.51”5:0.87'1,:17“[,:Orb:0.57“b:0487'b:1I‘b:07‘b:0.5rb:0.87“b:1TbZOTb:0.5T‘b:0.87‘b:1
Base 63.33 5577 5406 5321|58.60 57.18 5690 5539|5879 5841 56.4358.79 5870 57.37 58.13
RVFL-Align| 6277 5879 58.41 56.62|60.49 58.13 57.84 58.13|60.68 58.51 57.94 |58.88 59.74 57.94 58.51
MUSTARD (MP: A (%))
Method i =0 7 = 05 rqe = 0.8 re =1
7‘b:07‘b:0.57‘b:0.87‘b:1Tb:(]f‘b:(].57‘b:0487‘b:1rb:OTb:0.57‘b:0.8’r'b:1Tb:UTb:U.E)Tb:O,STb:l
Base 5797 5507 5507 53.62|56.52 5435 53.62 5290|5435 5435 52.90(52.17 52.17 5145 50.72
RVFL-Align| 56.52 56.52 55.80 55.80|55.80 55.80 54.35 54.35|57.25 55.07 53.62 | 55.80 53.62 5290 52.90
CMU-MOSI (MP: A (%))
Method i =0 i = 05 re = 0.8 re =1
Tb:()rb:().E)Tb:O.S V‘b:17’[,:07’[,:0.57‘1,:0487‘1):1 rb:()rb:0457'b:0.87'b:17‘5:07‘5:0.5%:0.8%:1
Base 56.85 49.08 49.08 48.67(49.49 4744 4724 46.63|46.42 4622 45.60 (4622 4581 4356 4274
RVFL-Align| 56.24 53.37 53.37 53.58|52.76 51.46 48.47 48.88|50.44 50.44 46.65 | 50.10 48.06 4548 44.61
CMU-MOSEI (MP: A (%))
Method T = 0 7w = 05 re = 0.8 T =1
rb:Orb:O.Srb:O.Srb:17’,,:07’,,:0.571,:04877]:1rb:OW-b:045r,,:0.87’b:17’b:07’b:0.57>b:0.8rb:1
Base 60.89 44.12 43.11 4230|5471 4407 43.06 4225|4944 4397 4220 [47.11 4392 42,60 4220
RVFL-Align| 58.35 4493 45.09 43.16 |55.12 44.73 4498 43.16 |50.16 44.58 43.11 ‘ 49.17 44.38 4483 4281
NUS-WIDE (MP: A (%))
Method 7 =0 rq = 0.5 re = 0.8 re =1
r,=0r, =051, =081, =11y, =01, =057, =08r, =11, =01, =057r,=087r,=17r,=0r, =057, =08r,=1
Base 81.64 5349 5393 53.77|54.02 5401 5349 53.36|53.53 53.54 52.46(53.77 53777 50.02 4995
RVFL-Align| 81.05 58.89 53.49 5391|5432 57.87 54.01 53.53|55.34 53.67 54.01 ‘ 5392 5391 53.58 53.50
MM-IMDB (MP: Fy (%))
Method 7 = 0 Te = 0.5 re = 0.8 T =1
=07, =057,=08r,=1r, =01, =051, =081, =1r, =07, =057,=087r, =17, =0r, =057, =08r, =1
Base 56.35 51.83 52.11 5143|5518 51.69 50.72 51.12|53.25 51.96 50.08(51.33 51.26 51.43 4993
RVFL-Align| 55.84 52.40 5217 51.93|55.67 5196 51.54 51.88|54.94 52.10 51.78 ‘ 52,55 51.55 51.67 51.72
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Table 21: Results of Defenses on the UCI-HAR Dataset. ‘None’ indicates attacks without defenses.

Noisy Gradients (NG)
Main Task Performance (A %) Attack Performance ( %)

Noisy Scale| Label Inference Feature Inference Backdoor Label Inference Feature Inference Backdoor

PMC AMC GRNA MIA | TECB LFBA | PMC AMC GRNA MIA | TECB LFBA
[15]  [15] [38]  [30] [81 [46] | [15] [15] [38]  [30] [8]  [46]
None 94.67 9291 | 93.28 92.50 | 89.11 92.16 | 60.50 64.27 | 38.55 74.45 100 99.39
0.0001 91.55 91.89 | 9148 9145 | 89.82 91.24 | 5534 60.50 | 38.05 74.45 100 89.05
0.001 90.02 88.02 | 8945 8832 | 77.60 79.26 | 5538 56.02 | 37.00 74.40 | 97.70 81.30
0.01 73.09 7251 | 73.60 72.04 | 74.69 73.26 | 51.75 52.73 | 33.40 74.15 | 16.26 28.14
0.1 3431 46.01 | 38.21 37.19 | 4496 17.88 | 5459 55.78 | 2845 73.75 | 17.24  20.52

Gradient Compression (GC)
Main Task Performance (A %) Attack Performance (%)

Compression Rate| Label Inference |Feature Inference Backdoor Label Inference |Feature Inference Backdoor

PMC AMC | GRNA MIA | TECB LFBA | PMC AMC | GRNA MIA | TECB LFBA
[15] 0151 | [38] [30] | (8] [46] | [15] [15] | [38] [30] | [8]  [46]

None 94.67 9291 | 93.28 9250 | 89.11 92.16 | 60.50 64.27 | 38.55 74.45 100 99.39
0.9 91.82 9138 | 9145 9131 | 75.19 7835 | 59.99 64.10 | 38.35 7445 100 86.15
0.75 89.45 89.28 | 88.63 89.21 | 7540 72.14 | 65.05 63.08 | 3640 74.40 100  67.12
0.5 81.03 87.11 | 82.15 81.68 | 6531 62.27 | 58.81 60.06 | 40.60 74.25 100 62.50
0.25 64.61 66.44 | 66.54 67.39 | 37.66 48.39 | 63.52 62.13 | 39.25 73.70 | 23.18 50.42

Privacy-perserving Deep Learning (PPDL)

Main Task Performance (A %) Attack Performance (%)

Retention Rate| Label Inference |Feature Inference Backdoor Label Inference Feature Inference Backdoor

PMC AMC | GRNA MIA | TECB LFBA | PMC AMC GRNA MIA | TECB LFBA
[I51 (151 | (8] [30] | [81 [46] | [15] [15] [38] [30] | [81  [46]

None 94.67 9291 | 93.28 9250 | 89.11 9216 | 60.50 64.27 | 3855 7445 100 99.39
0.9 83.14 88.67 | 84.63 8331 | 83.81 91.65 | 58.67 56.43 | 38.05 7445 | 89.16 71.12
0.75 82.22 88.67 | 8347 82.02 | 7852 8341 | 58.67 56.40 | 3755 7430 | 71.11 65.32
0.5 87.28 88.50 | 84.32 83.07 | 81.51 75.09 | 5823 58.67 | 38.60 7435 | 82.62 58.33
0.25 36.27 36,51 | 37.50 3553 | 18.22 18.15 | 56.50 59.48 | 37.40 74.15 | 16.83 20.81
DiscreteSGD (DSGD)
Main Task Performance (A %) Attack Performance (%)
Intervals| Label Inference |Feature Inference Backdoor Label Inference |Feature Inference Backdoor

PMC AMC | GRNA MIA | TECB LFBA | PMC AMC | GRNA MIA | TECB LFBA
[15]  [15] | [38] [30] [8]  [46] | [151 [15] | [38]  [30] [8]  [46]

None | 94.67 9291 | 93.28 9250 | 89.11 9216 | 60.50 64.27 | 3855 74.45 100 99.39
24 37.84 53.61 | 38.65 3756 | 32.16 37.26 | 59.99 63.18 | 38.65 74.40 | 30.64 65.80
18 50.25 4571 | 4635 47.13 | 29.18 56.60 | 59.31 61.15 | 42.05 7445 | 2825 63.52
12 3512 3502 | 36,51 38.04 | 28.63 38.21 | 58.30 58.09 | 3540 74.20 | 21.37 55.07
6 18.46 19.58 | 21.24 22,57 | 1822 25.08 | 57.72 5626 | 3490 73.65 | 16.83 46.35
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Table 22: Results of Defenses on the NUS-WIDE Dataset. ‘None’ indicates attacks without
defenses.

Noisy Gradients (NG)
Main Task Performance (A %) Attack Performance (%)

Label Inference Feature Inference Backdoor Label Inference Feature Inference Backdoor
PMC AMC GRNA MIA | TECB LFBA | PMC AMC GRNA MIA | TECB LFBA
[15]  [15]  [38]  [30] [81 [46] | [15] [15] [38]  [30] [8]  [46]
None 8142 80.46 | 81.64 81.33 | 7499 81.07 | 5743 60.23 | 36.25 99.75 100 99.93
0.0001 80.59 79.05 | 81.16 80.62 | 62.18 78.35 | 52.81 54.45 | 2890 95.80 | 31.20 86.23
0.01 77.64 7756 | 79.56 7891 | 4555 76.45 | 56.43 52.14 | 39.60 9595 | 2640 73.08
0.01 66.81 62.88 | 65.52 6328 | 42.83 64.17 | 4529 45.00 | 37.20 95.10 | 23.64 55.69
0.1 5422 5816 | 58.71 5823 | 37.66 54.16 | 41.78 43.26 | 34.40 9470 | 21.58 18.13

Noisy Scale

Gradient Compression (GC)
Main Task Performance (A %) Attack Performance (%)
Label Inference |Feature Inference Backdoor Label Inference |Feature Inference Backdoor
PMC AMC | GRNA MIA | TECB LFBA | PMC AMC | GRNA MIA | TECB LFBA
[15]  [15] | [38]  [30] [8] [46] | [15]  [15] | [38]  [30] 8]  [46]

Compression Rate

None 81.42 80.46 | 81.64 8133 | 7499 81.07 | 5743 60.23 | 36.25 99.75 100 99.93
0.9 79.36 7820 | 80.72 79.43 | 65.88 78.26 | 57.11 59.26 | 3550 95.90 | 98.73 93.24
0.75 7748 76.03 | 79.37 7837 | 4296 76.63 | 5643 58.47 | 34.65 9595 | 97.62 82.37
0.5 7424 7553 | 77.16 7353 | 40.95 67.41 | 55.81 5331 | 3590 96.00 | 88.76 57.51
0.25 7128 7239 | 73.17 69.54 | 37.66 55.32 | 54.72 55.28 | 3550 92.90 | 21.58 48.24

Privacy-perserving Deep Learning (PPDL)
Main Task Performance (A %) Attack Performance (%)
Label Inference |Feature Inference Backdoor Label Inference Feature Inference Backdoor
PMC AMC | GRNA MIA | TECB LFBA | PMC AMC GRNA MIA | TECB LFBA
[15]  [15] [38]  [30] (8] [46] [15]  [15] [38]  [30] (8] [46]

Retention Rate

None 8142 80.46 | 81.64 81.33 | 7499 81.07 | 5743 60.23 | 36.25 99.75 100 99.93
0.9 76.44 7853 | 7625 7719 | 72.16 7518 | 57.47 5234 | 3570 96.00 | 86.21 90.64
0.75 7538 73.16 | 7421 73.12 | 71.82 73.62 | 56.46 52.41 | 3535 9590 | 73.54 68.79
0.5 72.63 6873 | 71.35 72.16 | 70.03 7231 | 56.10 55.16 | 38.20 95.70 | 81.36 57.43
0.25 4286 43.13 | 3892 39.81 | 37.66 39.12 | 32.48 33.60 | 35.55 9540 | 21.58 49.52
DiscreteSGD (DSGD)
Main Task Performance (A %) Attack Performance (%)
Intervals Label Inference |Feature Inference Backdoor Label Inference |Feature Inference Backdoor

PMC AMC | GRNA MIA | TECB LFBA | PMC AMC | GRNA MIA | TECB LFBA
[15]  [15] | [38] [30] [8] [46] | [15] [15] | [38] [30] [8] [46]
None | 81.42 80.46 | 81.64 81.33 | 7499 81.07 | 57.43 60.23 | 36.25 99.75 100 99.93
24 62.73  66.29 | 63.16 6231 | 5824 61.23 | 5432 5526 | 3545 95.05 | 56.26 83.47
18 6436 64.58 | 64.21 63.14 | 59.12 60.17 | 49.83 51.18 | 34.80 94.85 | 48.73 61.06
12 52.19 50.16 | 51.01 49.88 | 43.19 44.01 | 4642 4831 | 3635 9440 | 3501 54.11
6 4284 47.62 | 46.54 4431 | 37.66 38.94 | 43.13 48.64 | 29.15 93.70 | 21.58 32.24
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F Discussion

Contribution. While vertical federated learning (VFL) has emerged as a critical privacy-preserving
paradigm and achieved significant progress [18, 37, 69, 42, 23, 56], MARS-VFL offers a unified
and comprehensive benchmark for systematically evaluating VFL methods. It includes a variety
of datasets and implements realistic evaluation protocols that align with VFL settings. Although
many VFL methods have publicly released their code, comparing them remains challenging due to
inconsistencies in experimental settings, datasets, and implementation details. MARS-VFL addresses
these issues by providing standardized implementations and evaluation settings across different
methods, thereby improving reproducibility and fair comparison. With its modular design and broad
coverage, MARS-VFL also facilitates the easy extension and integration of new methods, making it a
valuable resource for both researchers and practitioners.

Limitation and Future Work. Despite the strengths of MARS-VFL, several limitations remain,
which also open up promising directions for future works:

(1) More datasets, models, and evaluation metrics. Although MARS-VFL includes diverse datasets
and representative models, it may not cover the full spectrum of real-world VFL applications.
Some important datasets, model architectures, or task-specific metrics may be missing. However,
MARS-VFL is designed to be extensible, and we plan to continuously update it by integrating more
components in future releases.

(2) Coverage of baseline methods. Given the rapid development of VFL research, it is difficult to
include every recent method. Some newly proposed approaches may not yet be incorporated into the
benchmark. In this release, we focus on representative and publicly available methods. We welcome
community contributions and will continue to expand the benchmark with newly published and
open-source baselines.

(3) Other research problems in VFL. While MARS-VFL incorporates evaluation aspects related to
efficiency, robustness, and security, covering a broad range of existing VFL methods, several signifi-
cant research problems remain outside the scope of the current version: (i) Fairness in collaborative
learning: Fairness concerns arise when clients contribute unequally to the collaboration due to data
imbalance or heterogeneous feature distributions [23, 5, 29, 14]. Although fairness-aware learning
has gained attention with unified evaluations in horizontal FL [32, 9, 22], it lacks standardized
evaluation protocols in VFL settings. (ii) Asynchronous training: Most existing benchmarks assume
synchronous collaboration, whereas real-world VFL systems often require asynchronous training
to accommodate communication delays, stragglers, and different computational capabilities across
clients [74, 73, 48, 72]. While MARS-VFL provides a robust and extensible pipeline for benchmark-
ing VFL methods, incorporating these additional aspects would offer a more comprehensive and
realistic foundation for advancing VFL research.
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