
Under review as a conference paper at ICLR 2023

SPARSE MISINFORMATION DETECTOR

Anonymous authors
Paper under double-blind review

ABSTRACT

We present Sparse Misinformation Detector (SMD), a new efficient misinforma-
tion detection network with regular fine-grained sparsity. We propose two tech-
nical components to enable SMD. First, CircuSparsity, a new hardware-friendly
sparsity pattern, is introduced for improved training and testing efficiency. Sec-
ond, through dedicated empirical analyses, we discover that document-level mis-
information detection is pretty insensitive to a compact model size, which in-
spires us to make early exit for the document-level misinformation classifier. With
these two techniques, we successfully achieve efficient misinformation detection
on both document and event levels with one single model. Empirically, our ap-
proach significantly outperforms the original dense misinformation detection net-
work while enjoying 50% to 75% sparsity. Extensive experiments and analyses
demonstrate the merits of our method compared to other top-performing coun-
terpart approaches. To our best knowledge, this is the first attempt for efficient
misinformation detection from the network sparse training perspective.

1 INTRODUCTION

Recent years have seen rampant flooding of misinformation on the Internet. The need of detecting
such misinformation is more and more imperative (Wang, 2017; Karimi et al., 2018; Zellers et al.,
2019; Yang et al., 2022; Jin et al., 2022; Aneja et al., 2021; Wu et al., 2022). Fake news detection
methods have seen considerable progress by employing the deep neural network based models.
Their performance is remarkable, yet still, they have many shortcomings.

First, most of these methods can only detect fake news on document level (Wang, 2017; Karimi et al.,
2018; Zellers et al., 2019; Tan et al., 2020; Hu et al., 2021; Fung et al., 2021; Huang et al., 2022; Jin
et al., 2022); it is desired to know what renders the news fake, i.e., detecting the misinformation on a
more fine-grained level – the event level. Second, a few works make advances in the event-level mis-
information detection (e.g., Wu et al. (2022)). However, their models are typically very redundant
and consume sizable storage (e.g., one of the top-performing misinformation detection model in Wu
et al. (2022) consumes more than 300MB on disk), memory footprint, and inference time, making
them rather hard to be deployed on resource-limited devices, such as smartphones (since people
are used to receiving news on their smartphones everyday). Third, these misinformation detection
models are usually trained separately (see Fig. 1(a)) for document-level and event-level detection,
which is a significant waste of resource since these two tasks are inherently related. Intuitively, we
may significantly slim the model size by sharing the representations.

In this paper, we present a new and novel Sparse Misinformation Detector (SMD) based on the re-
cent advances in sparse training to resolve these shortcomings. Specifically, our SMD has two major
components. First, we propose CircuSparsity, a kind of new regular fine-grained sparsity pattern,
which has a circulant structure (see Fig. 2). Such regular sparsity pattern can save considerable
storage and improve the inference speed significantly. Second, through extensive empirical studies,
we find that the document misinformation classifier is much more insensitive to the event misinfor-
mation classifier, which inspires us to reduce the network depth of the document-level detector by
making early exit for the document classifier.

Empirically, we conduct extensive benchmarking and analyses to show the effectiveness of our
method in the comparison to the original dense model and other counterpart sparse training ap-
proaches: At sparsity 50% to 75%, our model still outperforms the original dense models and coun-
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Figure 1: Illustration of the proposed sparse misinformation detector (SMD) model (b) compared
to the existing method CDMD (Wu et al., 2022) (a). The key technical novelties are highlighted
in bold red in the figure: (1) Our method can achieve misinformation detection at both document
and event levels with one single GNN; (2) the GNN in our model is sparse (with a proposed special
sparsity pattern); (3) we make early exit for the document branch, which can reduce the conflict
between document-level and event-level losses when they are used within the same model.

terpart sparse training approaches by an obvious margin. If only the document-level detection is
considered, our method can achieve 90% sparsity with performance still improved.

Our contributions in this work can be summarized as follows:

• We integrate sparse training for efficient misinformation detection. A new and novel
hardware-friendly sparsity pattern, CircuSparsity, is introduced. As far as we know, this
is the first attempt that marries sparse training to the task of misinformation detection for
improved efficiency in both training and testing.

• By dedicated analyses, we propose to make early exit for the document classifier so as
to resolve its conflict with the event-level misinformation detection. This simple scheme
effectively coordinates the two loss objectives (document-level and event-level detection
losses) within one single model.

• Empirically, our method achieves comparable or even better performance that the dense
network and other sparse training approaches, while having sparsity at 50%-75%. For the
document level (i.e., if only fake news detection is considered), our method can sparsify
the model at even 90% sparsity while still outperforming the original dense model.

2 RELATED WORK

Misinformation detection. With misinformation becoming an important social issue, increasing
effort has been invested in automatic misinformation detection in language-only, cross-modality or
cross-lingual documents either on document level (Wang, 2017; Karimi et al., 2018; Zellers et al.,
2019; Tan et al., 2020; Hu et al., 2021; Fung et al., 2021; Huang et al., 2022; Jin et al., 2022) or event
level (Yang et al., 2022; Jin et al., 2022; Aneja et al., 2021). For instance, Yang et al. (2022) proposes
a subgraph reasoning paradigm. The latest and first work on cross-document misinformation detec-
tion uses GNNs (Graph Neural Networks) to leverage cross-document information and significantly
outperforms previous models (Wu et al., 2022). Despite the encouraging progress, these methods
either cannot detect misinformation on fine-grained level (i.e., event level), or suffer from overpa-
rameterization that hinders efficient training and deployment in real-world edge devices. Therefore,
we aim resolve these issues by detecting misinformation on both document and event level with one
single sparse model. In this work, we present a novel sparse training method that can train the sparse
model more efficiently while outperforming the original dense model.

Sparse training. Sparse training is a branch of neural network pruning at initialization (Wang et al.,
2022), which prunes a randomly initialized network (conventional pruning methods typically prunes
a pretrained network) and then keep it sparse over the training process. The major merit of sparse
training is that it can enjoy the efficiency at the training stage, not only the inference stage. It is
pioneered by two works LTH (Frankle & Carbin, 2019) and SNIP Lee et al. (2019). Many sparse
training works focus on proposing new pruning criteria (i.e., how to decide which weights should be
zeroed), such as GraSP (Wang et al., 2020a), SynFlow (Tanaka et al., 2020). These works derive their
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sparsity pattern based on the random network, so when the network is re-initialized, the associated
mask will change accordingly. This makes the sparsity pattern unpredictable in advance, rendering
it very challenging to exploit such sparsity for actual acceleration without customized hardware and
software support (Wen et al., 2016). Different from these works, our method employs a carefully
designed sparsity pattern (see Fig. 2), which is predefined, not derived from the base model. We will
show the advantage of such sparsity pattern in terms of both performance and efficiency.

Sparse transformers. The misinformation detection model used in this work is based on the atten-
tion mechanism in transformers (Vaswani et al., 2017). Transformers have seen rapid progress in
lager languages models like BERT (Devlin et al., 2018) while being pretty costly. Many works have
attempted to reduce the complexity of transformers via sparsity, e.g., Beltagy et al. (2020); Child
et al. (2019); Guo et al. (2019); Kitaev et al. (2020); Zaheer et al. (2020). These said, of note, these
works exploit sparsity in a completely different manner as we do – they introduce sparsity patterns
(e.g., sliding windows (Beltagy et al., 2020) and BigBird (Zaheer et al., 2020)) for the dense fully-
connected structure of self-attention, in the hopes of avoiding unnecessary attention computation.
The network per se in their methods is not sparse. In stark contrast, we study sparsity at the network
level. As far as we know, our work is the first attempt to improve the misinformation detection
efficiency from the network sparsity perspective.

Other efficient deep learning approaches. In addition to network pruning, there are usually an-
other four categories of efficient deep learning methods: quantization (Courbariaux & Bengio, 2016;
Courbariaux et al., 2016; Rastegari et al., 2016), knowledge distillation (Buciluǎ et al., 2006; Hinton
et al., 2014; Chen et al., 2017; Wang et al., 2020b; Jiao et al., 2019; Wang & Yoon, 2021), neural
architecture design or search (Howard et al., 2017; Sandler et al., 2018; Howard et al., 2019; Zhang
et al., 2018; Ma et al., 2018; Tan & Le, 2019), low-rank decomposition (Denton et al., 2014; Jader-
berg et al., 2014; Lebedev et al., 2014; Zhang et al., 2015). In general, these methods are orthogonal
to the sparsity techniques we employ in this work. Possible integration with them to further enhance
the efficiency is left for future work.

3 METHODOLOGY

In this section, we first introduce the problem formulation of misinformation detection via knowl-
edge graph reasoning with GNNs. Then, we elaborate the details of the proposed SMD method.
Finally, we explain several key implementation details of SMD.

3.1 KNOWLEDGE GRAPH REASONING FOR MISINFORMATION DETECTION

The input raw news texts are processed by information extraction methods (such as OneIE (Lin et al.,
2020)) to get structured information (such as entities, relations, events). Cross-document knowledge
graph (KG) is then built upon the structured information. Typically, some language pretrained model
(such as BERT (Devlin et al., 2018)) is employed to obtain powerful abstract representation for these
structured information. Thus, the input of the misinformation detection system is a KG, of which
some nodes and edges are BERT-encoded representations. Such a KG is then fed into a GNN to
obtain more abstract representations. Finally, these representations go through a 2-class classifier to
predict the input news (or equivalently, its KG) is fake or true.

In total, a KG includes 4 types of nodes (entity, event, event cluster, document) and 10 types of
edges (entity-to-entity or relation, entity-to-event or event argument, entity-to-document, event-to-
event cluster, event-to-document; and the inverse edges of these 5 kinds of edges). Let r denote an
edge type and R denote the set of all edge types (10 types in total). Consider a node v ∈ V in the
l-th layer, its feature is obtained by aggregating the output of all edge types (Wu et al., 2022),

h
(l)
i =

∑
r∈R

h
(l)
i,r/|R|. (1)

Each edge is associated with a separate small network, more concretely, a GAT (Graph Attention
Network) (Veličković et al., 2018). The type of the GAT is decided by the edge genre: For relation
and event argument edges, since they have concrete physical representations in the input KG, edge-
aware GAT is employed to model these edges; for the other three edges, they do not have physical
representations in the input KG, so the standard GAT is adopted.
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GAT and edge-aware GAT. GAT aggregates the representation from its neighbor nodes via the
attention mechanism (Vaswani et al., 2017). Edge-aware GAT is an extension of GAT by considering
the edge features (apart from the node features) in the graph forward computation (Huang et al.,
2020; Yasunaga et al., 2021). Our method builds upon these GNN infrastructure adopted by Wu
et al. (2022). We focus on improving the training and inference efficiency of these networks, not
proposing new GNN architectures. Interested readers may refer to Wu et al. (2022) for more details.

The GNN processes an input KG to obtain rather abstract representations. The document node
representation is then utilized for the document-level misinformation detection, and event node rep-
resentation for event-level misinformation detection, by training two separate classifiers fd and fe.

3.2 SPARSE MISINFORMATION DETECTOR (SMD)

The goal of this work is to achieve misinformation detection at both the document and event levels
with one single model. Previous approach CDMD (Wu et al., 2022) provides a strong baseline but
their classifiers are trained separately, that is, they requires two models for document and event
detection (see Fig. 1(a)). This is clearly against our efficient misinformation detection goal.

A naive way to achieve the one-model goal is to share the GNN part (see Fig. 1(b)) and combine the
two classification losses together (with a certain weight to properly balance the two objectives),

L = α · CE(fd(hd), yd) + (1− α) · CE(fe(he), ye), (2)

where CE is short for cross-entropy loss; fd/fe refers to the document/event classifier; hd/he is
the final document/event node feature, and yd/ye represents the ground-truth label (0 or 1) for the
document/event node; The α ∈ [0, 1] is a coefficient to balance the two loss objectives.

However, this naive way does not work well. As we will show in the experiments, the two losses are
actually against each other. Combining them together often degrades the performance of document
and event misinformation detection (compared to using a separate GNN for each task exclusively).
Meanwhile, the GNN itself is pretty redundant. The proposed SMD method is meant to resolve these
two problems. Next, we will first introduce a new network sparsity pattern (called CircuSparsity)
to reduce the GNN redundancy. Then, we explain how to coordinate the two losses well within one
network by a simple early exit scheme.

(1) CircuSparsity. As shown in Fig. 2, CircuSparsity is essentially a circulant matrix (Gray et al.,
2006), namely, each row of it is a cyclic shift of the row above it. The circulant matrix can be fully
decided by its first row, so the key is how to design the first row in CircuSparsity.

Consider there are K elements in the first row. We design the sparsity pattern by a maximal regularity
principle. That is, we seek the most irreducible pattern (which we term base sparsity pattern in this
paper). For a concrete example, for K = 8, given a sparsity ratio 75% (i.e., 6 elements are zero),
ideally, we have

(
8
2

)
= 28 sparsity pattern candidates (they all meet the condition of 75% sparsity).

While we prefer the patterns illustrated in Fig. 2 (b) and (c), where their base sparsity pattern is
[1, 0, 0, 0] and [0, 1, 0, 0], respectively. Since the sparsity is 75%, i.e., 3 out of 4 elements are zero.
Such patterns in Fig. 2 (b) and (c) are irreducible. We repeat these base sparsity patterns to fill up the
first row of K elements. Then, all the other rows can be decided by the circulant matrix definition.

(2) One model to solve them all: Early exit. Here we explain how to mitigate the conflict between
the two loss objectives of document- and event-level detection when merging them into one model.

By careful sensitivity analyses (see Sec. 4.1), we observe that document-level misinformation de-
tection is much easier than the event-level detection. This is also straightforward to understand,
since even-level misinformation detection is more fine-grained and thus harder than document-
level. Taking advantage of this discovery, we propose to make early exit for the document-level
misinformation detection task. The original GNN for the document misinformation detection has
four layers (Wu et al., 2022) and we propose to make the exit at the second layer for the document
misinformation detection classifier, as shown in Fig. 1(b).

This design has two advantages. First, for document misinformation detection, it only need to pass
two GNN layers, so the computation would be less and speed is faster. Second, the higher layers (the
third and fourth layers) are not interfered by the document misinformation detection loss gradient,
so these layers are purely serving the event-level misinformation detection. This can well preserve
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Figure 2: Illustration of the proposed CircuSparsity (b and c) compared to the random sparsity (a)
derived from other sparse training methods. The example sparsity here is 75%. The difference
between (b) and (c) is the base sparsity pattern (the minimal irreducible sparsity pattern at the most
upper-left of the mask matrix): [1, 0, 0, 0] versus [0, 1, 0, 0]. CircuSparsity is essentially a kind of
circulant matrix with special designs (see Sec. 3.2 for more details), which enjoys the benefits of
smaller memory footprint and faster computation with easy implementation.

the event-level misinformation detection performance according to our empirical study. Meanwhile,
due to the fact that the GNN is very redundant for document-level misinformation detection, early
exit at the second layer does not deteriorate much the document-level performance. In short, this
simple design brings considerable gains at only marginal cost.

To further reduce the impact of the document misinformation detection loss to the event-level mis-
information detection, we propose to use a lower coefficient for the document misinformation de-
tection (specifically, the document coefficient is 0.2 based on our ablation study; see Tab. 2).

3.3 IMPLEMENTATION DETAILS

We employ uniform layerwise sparsity ratios (i.e., each GNN layer is pruned by the same percent-
age). The mask is predefined before the training starts and then fixed during training, in contrast to
many pruning works (Han et al., 2015; 2016; Li et al., 2017; Wang et al., 2020a; 2021) whose masks
are inferred from a pretrained model or learned during training. The fixed sparsity reduces the cost
of storing the non-zero weight positions and benefits hardware locality for practical speedup.

Building upon the CDMD model (Wu et al., 2022), we apply the proposed CircuSparsity to all
the fully-connected (FC) layers in the GNN of the CDMD model, leaving the classifier unpruned.
Our primary considerations are, (1) the FC layers in the classifier only account for very few (0.4%)
parameters; (2) those layers are pretty close to the final classification; it is better to retain them so as
not to affect the classification performance, as many prior pruning works (Li et al., 2017; Gale et al.,
2019; Wang et al., 2021) do.

4 EXPERIMENTAL RESULTS

Datasets and networks. There were few open datasets that enable event-level misinformation de-
tection. Wu et al. (2022) recently released three new datasets with baseline benchmarks well estab-
lished: IED, TL17, and Crisis. Therefore, we conduct our empirical analyses on these three datasets.
The IED dataset is a complex event corpus. A complex event (Li et al., 2021) refers to a real-world
incident that is described by multiple documents. TL17 and Crisis are two datasets of news time-
line summarization. One timeline is made up with multiple documents covering a long-term event.
All the three datasets can be regarded as multiple clusters. Each cluster consists of multiple news
documents. IED has 422 clusters for training, 140 clusters for validation, and another 140 clusters
for testing. TL17 has 276 clusters for training, 92 clusters for validation, and 92 clusters for testing.
Crisis has 1,413 clusters for training, 177 clusters for validation, and 177 clusters for testing. Inter-
ested readers may refer to Wu et al. (2022) for more details. Our network, a variant of the CDMD
model (Wu et al., 2022), has four major GNN layers, with around 134 FC layers in total. Our model
has 95.4M parameters and 0.109G FLOPs (per inference).
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Table 1: Analysis of different early exits in our method for the document misinformation detection
on the IED dataset at sparsity 75%. The original CDMD model (Wu et al., 2022) has four layers in
default, so there are four exits ablated here (“Exit = #4” is the original setting). The best results are
in red and second best in blue. Based on this table, we choose early exit at #2 for the document-level
misinformation detection in our model (Fig. 1).

Doc. classifier exit F-1 (doc.) AUC (doc.) F-1 (eve.) AUC (eve.)

#4 89.72±0.83 95.90±0.17 45.24±1.22 89.03±0.47

#3 89.75±0.20 95.76±0.13 46.16±0.34 89.40±0.22

#2 90.04±0.02 96.10±0.14 46.98±0.74 89.75±0.30

#1 90.35±0.31 96.70±0.00 45.32±0.61 88.95±0.19

Table 2: Hyper-parameter analysis of α in our method (with document early exit #2) on the IED
dataset at sparsity 75%. The best results are in red and second best in blue.

Metric
α 0.1 0.2 0.3 0.4 0.5 0.6 0.7

F-1 (doc.) 88.77±0.85 89.59±0.09 89.01±0.24 89.18±0.59 90.04±0.02 88.75±0.85 88.74±0.54

AUC (doc.) 95.31±0.58 95.78±0.19 95.62±0.33 95.66±0.22 96.10±0.14 95.61±0.20 95.60±0.13

F-1 (eve.) 47.97±0.58 48.32±0.53 48.06±0.87 48.44±0.44 46.98±0.74 45.75±1.01 46.77±0.83

AUC (eve.) 90.08±0.24 90.26±0.25 90.28±0.27 90.39±0.24 89.75±0.30 89.16±0.45 89.61±0.40

Metrics. Following Wu et al. (2022), we employ F-1 score and AUC (area under ROC curve) to
evaluate the results. When calculating F-1 score, there is a threshold to balance the precision and
recall. Following Wu et al. (2022), the best threshold is selected on the validation set and used on
the test set. We report the benchmark results on the test set.

Training settings. Adam optimizer (Kingma & Ba, 2015) is used. Batch size is set to 16 follow-
ing Wu et al. (2022). The number of total training epochs is set to 120 (for IED and TL17) and
10 (for Crisis). Initial learning rate (LR) is set to 5 × 10−5 after a warm-up period; the LR is then
linearly decayed during training. Gradient clipping (threshold set to 1.0) is adopted for improving
training stability. We use PyTorch (Paszke et al., 2019) for all of our experiments. We conduct the
experiments on NVIDIA RTX 2080Ti and 3090 GPUs. The code and trained models of this paper
will be make publicly available to promote reproducibility.

Benchmark methods. We compare our approach to CDMD (Wu et al., 2022), HDSF (Karimi &
Tang, 2019), GROVER (Zellers et al., 2019), MP (magnitude pruning; without using pretrained
model) (Han et al., 2015; 2016) and LTH (Lottery Ticket Hypothesis) (Frankle & Carbin, 2019).
The last two are the most representative sparse training schemes to date. For CDMD (Wu et al.,
2022), we reproduce their results referring to their official code1. In general, we obtain comparable
or even better results than those reported in the CDMD paper (Wu et al., 2022). For other methods,
due to lack of official public implementations, we cite the results from CDMD (Wu et al., 2022).

4.1 ABLATION STUDY

We first present the ablation study results to show how the proposed algorithm works.

Ablation of the early exit of document classifier. There are four layers in the default CDMD
model (Wu et al., 2022). We propose to make early exit for the document classifier, so there are
three choices available – exit after the {first, second, third} GNN layer. In Tab. 1, we show the
results of these different exits on the IED dataset.

(1) Of note, when the exit is earlier (e.g., compare #1 to #4), the document-level F-1 and AUC pose
a rising trend, i.e., using fewer layers surprisingly improves the document-level performance. This
suggests that the CDMD model is actually very redundant for the document-level misinformation
detection. (2) Presumably, we expect document classifier exiting earlier would be better to the event-
level performance since it means less interference to the event-level loss. However, this presumption

1https://github.com/shirley-wu/cross-doc-misinfo-detection
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Table 3: Comparison of different base sparsity patterns in our proposed CircuSparsity (see Fig. 2)
at sparsity 75% on the IED dataset (Wu et al., 2022). Row 1 is the default setting. The best of each
column is highlighted in red and worst in orange.

Base sparsity pattern F-1 (doc.) AUC (doc.) F-1 (eve.) AUC (eve.)

[1, 0, 0, 0] 89.59±0.09 95.78±0.19 48.32±0.53 90.26±0.25

[0, 1, 0, 0] 89.03±0.46 95.44±0.42 47.77±0.11 90.21±0.06

[0, 0, 1, 0] 89.50±0.31 95.90±0.04 48.54±0.24 90.50±0.14

[0, 0, 0, 1] 89.64±0.68 95.72±0.20 48.39±0.67 90.31±0.19

Table 4: Evaluation on the IED test set. HDSF (Karimi & Tang, 2019), GROVER (Zellers et al.,
2019), CDMD (Wu et al., 2022), MP (Han et al., 2015; 2016), LTH (Frankle & Carbin, 2019).
MP and LTH are the most prevailing sparse training methods now. The mark † in LTH† indicates
that LTH requires a pretrained model (others do not). We thereby include a case (SMD†) that uses
a pretrained model too for a fair comparison to LTH. The best results are highlighted in red and
second best in blue. The results with a gray background are at the most fair comparison setting
of our interest (i.e., no pretrained model used for efficiency; one model achieves misinformation
detection at both document (doc.) and event (eve.) levels). The mark ∗ indicates the results are
directly cited from Wu et al. (2022) (others are obtained through our experiments); NA means not
available; the mark / means no result for this entry.

Method Level Sparsity F-1 (doc.) AUC (doc.) F-1 (eve.) AUC (eve.)

HDSF 0 78.42∗ NA / /
GROVER-mega 0 82.90∗ NA / /
CDMD 0 89.09±0.71 96.07±0.40 / /
MP Doc. 90% 88.23±1.17 95.29±0.21 / /
SMD (ours) 90% 90.91±0.00 96.98±0.04 / /
LTH† 90% 90.27±0.10 96.53±0.01 / /
SMD† (ours) 90% 91.01±0.04 97.12±0.02

CDMD 0 / / 47.23±1.62 89.66±0.59

MP 75% / / 45.62±0.38 89.17±0.14

SMD (ours) Eve. 75% / / 47.72±0.38 90.04±0.18

LTH† 75% / / 48.84±0.63 90.47±0.28

SMD† (ours) 75% / / 49.02±0.33 90.96±0.20

CDMD 0 87.47±1.02 94.62±0.21 46.85±0.98 89.70±0.30

MP 75% 87.13±0.76 94.15±0.29 46.51±0.46 89.50±0.09

SMD (ours) Both 75% 89.59±0.09 95.78±0.19 48.32±0.53 90.26±0.25

LTH† 75% 88.30±0.67 94.84±0.10 47.69±0.36 89.97±0.14

SMD† (ours) 75% 90.02±0.10 96.03±0.13 48.56±0.31 90.64±0.19

only holds to exit #2 – when it goes to exit #1, the event-level performance turns downward. This
implies the event task still benefits from the representation learned by the document loss, to a certain
degree. Balancing the results in Tab. 1, we finally select exit #2 as the default setting in our method.

Ablation of the document-event weight. In order to achieve the document-and event-level misin-
formation detection with one model, the document coefficient α (event coefficient is 1 − α) should
be set in range (0, 1). Tab. 2 shows the results on the IED dataset with different α’s. A larger
alpha implies the loss considers the document-level performance more, so we expect the document-
level/event-level metrics would be higher/lower. This is generally confirmed in Tab. 2 for the event-
level performance; for the document level, the results are pretty robust to the change of α – this
again shows that the document-level task is pretty insensitive (due to the severely over-parameterized
model). As seen from the table, the best α does not coincide for document and event levels, while
the second best α = 0.2 does, so we choose it as the default setting in our method.

Ablation of 1’s position in base sparsity pattern. In our CircuSparsity (see Fig. 2), we set the
mask 1 at the first entry of the base sparsity pattern. It is of interest if changing the location of the
1 affects the performance seriously. Tab. 3 shows the test results on the IED dataset with different
locations of the 1 in the base sparsity pattern. As expected, the impact is insignificant. Since every
weight in the network is randomly initialized, every weight can be discarded with equal probability.
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Table 5: Evaluation on the TL17 test set. HDSF (Karimi & Tang, 2019), GROVER (Zellers et al.,
2019), CDMD (Wu et al., 2022), MP (Han et al., 2015; 2016), LTH (Frankle & Carbin, 2019). MP
and LTH are the most prevailing sparse training methods now. The mark † in LTH† indicates that
LTH requires a pretrained model (others do not). We thereby include a case (SMD†) that uses a
pretrained model too for a fair comparison to LTH. The mark ∗ indicates the results are directly
cited from Wu et al. (2022) (others are obtained through our experiments); NA means not available;
the mark / means no result for this entry.

Method Level Sparsity F-1 (doc.) AUC (doc.) F-1 (eve.) AUC (eve.)

HDSF 0 80.62∗ NA / /
GROVER-mega 0 90.00∗ NA / /
CDMD 0 90.32±0.54 96.69±0.24 / /
MP Doc. 90% 90.48±0.24 96.87±0.07 / /
SMD (ours) 90% 92.95±0.47 98.04±0.11 / /
LTH† 90% 93.33±0.23 98.04±0.04 / /
SMD† (ours) 90% 93.67±0.18 98.43±0.10 / /
CDMD 0 / / 45.09±1.09 84.91±0.27

MP 75% / / 44.36±0.44 84.70±0.30

SMD (ours) Eve. 75% / / 44.85±0.47 85.24±0.33

LTH† 75% / / 44.79±0.55 85.64±0.21

SMD† (ours) 75% / / 45.11±0.42 86.07±0.30

CDMD 0 88.46±0.57 95.34±0.22 45.90±0.71 85.23±0.61

MP 75% 89.83±0.10 95.86±0.34 43.46±0.81 84.37±0.20

SMD (ours) Both 75% 91.33±0.31 97.04±0.15 46.26±0.80 86.04±0.21

LTH† 75% 89.51±0.78 96.66±0.07 47.23±0.30 86.82±0.09

SMD† (ours) 75% 91.89±0.21 97.42±0.30 47.69±0.15 87.36±0.38

Table 6: Evaluation on the Crisis test set. HDSF (Karimi & Tang, 2019), GROVER (Zellers et al.,
2019), CDMD (Wu et al., 2022), MP (Han et al., 2015; 2016), LTH (Frankle & Carbin, 2019). MP
and LTH are the most prevailing sparse training methods now. The mark † in LTH† indicates that
LTH requires a pretrained model (others do not). We thereby include a case (SMD†) that uses a
pretrained model too for a fair comparison to LTH. The mark ∗ indicates the results are directly
cited from Wu et al. (2022) (others are obtained through our experiments); NA means not available;
the mark / means no result for this entry.

Method Level Sparsity F-1 (doc.) AUC (doc.) F-1 (eve.) AUC (eve.)

HDSF 0 82.14∗ NA / /
GROVER-mega 0 87.13∗ NA / /
CDMD 0 95.47±0.29 99.37±0.03 / /
MP Doc. 90% 95.74±0.09 99.35±0.04 / /
SMD (ours) 90% 96.47±0.12 99.47±0.04 / /
LTH† 90% 96.76±0.09 99.60±0.02 / /
SMD† (ours) 90% 96.47±0.34 99.59±0.04 / /
CDMD 0 / / 54.08±0.42 88.84±0.11

MP 50% / / 53.93±0.39 88.98±0.23

SMD (ours) Eve. 50% / / 53.82±0.11 88.94±0.07

LTH† 50% / / 55.72±0.37 89.90±0.15

SMD† (ours) 50% / / 56.52±0.60 90.23±0.22

CDMD 0 94.74±0.77 99.15±0.17 53.73±0.51 88.83±0.17

MP 50% 95.69±0.28 99.26±0.05 52.82±0.24 88.47±0.16

SMD (ours) Both 50% 95.82±0.13 99.33±0.10 54.44±0.11 89.26±0.03

LTH† 50% 96.19±0.16 99.53±0.04 55.69±0.21 89.93±0.07

SMD† (ours) 50% 96.46±0.24 99.51±0.03 56.56±0.23 90.30±0.09

4.2 BENCHMARK ON IED/TL17/CRISIS DATASETS

The benchmark results are show in Tab. 4 (IED), Tab. 5 (TL17), and Tab. 6 (Crisis). We consider
three tracks here: document (i.e., the model can only conduct document-level detection), event, and
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Table 7: Model complexity (representation bits, FLOPs, and wall-clock speedup) of different meth-
ods to achieve misinformation detection at both the document and event levels. CDMD-fuse is a
scheme of Wu et al. (2022) that they feed the results of event-level results to document-level detec-
tor for improved performance. †We consider the training and testing FLOPs of one CDMD model as
one unit. The FLOPs and wall-clock speedup (relative to the baseline cost of CDMD) are estimated
based on the sparse-dense matrix multiplication in fully-connected layers. ∗Environment: Ubuntu
2004, GPU NVIDIA RTX 3090, CMake 3.18.4.

Method Sparsity Repre. bits (M)↓ FLOPs (G, train)↓ FLOPs (G, test)↓ Wall-clock speedup∗ ↓
CDMD 0 6105.6 2 units† 2 units† 1
CDMD-fuse 0 6105.6 (1×) 2.5 units (1.25×) 2 units (1×) 1.0×
MP 75% 763.2 (0.125×) 1 unit (0.5×) 1 unit (0.5×) 1.1×
LTH 75% 763.2 (0.125×) 2 units (1×) 1 unit (0.5×) 1.1×
SMD (ours) 75% 763.2 (0.125×) 0.25 unit (0.125×) 0.25 unit (0.125×) 7.4×

both (i.e., the model can only conduct misinformation detection at both levels). The last track is of
our most interest since we target one model to solve the two-level misinformation detection

As seen, our method consistently outperforms the other methods (HDSF, GROVER, CDMD, and
MP) by an obvious margin in most cases, especially at the “Level=Both” rows. One minor exception
is on the Crisis dataset, at event level, our SMD is slightly worse (e.g., F-1 53.82 of ours vs. 54.08
of CDMD), yet the gap is not significant as the stddev implies. Meanwhile, note that our approach
can achieve comparable or even better performance than all the dense CDMD models (no matter it
is trained for document/event level alone or for both levels), while with 50% to 75% sparsity.

The LTH method sometimes surpasses our SMD because it uses a pretrained model to obtain masks
(which can be considered as a kind of extra training (Zhou et al., 2019)). For a fair comparison,
we also include the case of using pretrained model for our SMD method (SMD†). As seen, with a
pretrained model, our SMD† also outperforms LTH consistently.

4.3 MODEL COMPLEXITY COMPARISON

In addition to the performance comparison in Sec. 4.2, here we also report the model complexity
comparison, in two axes: presentation bits (i.e., space complexity) and FLOPs (i.e., time complex-
ity). FLOPs of training considers all the computation needed to get the final model (if a pretrained
model is needed, such as in LTH (Frankle & Carbin, 2019), then the pretraining cost is also consid-
ered for a fair comparison). As shown in Tab. 7, our method achieves the best performance while
enjoying the smallest model size and least computation.

Wall-clock speedup comparison. To show the proposed CircuSparsity is useful in practical ap-
plications, we further conduct wall-clock comparison with a large matrix-multiplication operation2,
which is the element operation in the GNN model (the GNN model is made up with GAT layer,
which essentially consists of multiple fully-connected layers). The results are also included in Tab. 7.
The actual speedup of the sparsity by MP and LTH is very marginal because their unstructured spar-
sity is irregular and hard to be used for acceleration on the general-purpose GPUs. In contrast, since
the sparsity pattern in our method is carefully pre-defined, with a regular structure, it can harvest
considerable acceleration very easily by using the off-the-shelf libraries.

5 CONCLUSION

A new Sparse Misinformation Detector (SMD) is presented in this paper for efficient misinformation
detection. SMD has two critical designs: CircuSparsity and early exit. CircuSparsity is a newly pro-
posed predefined fine-grained sparsity pattern that can save model footprint and also gain practical
acceleration. Early exit of the document-level classifier is proposed based on dedicated sensitiv-
ity analyses of the document-and-event misinformation detection – the document-level detection
is much more insensitive to compact model size than the event-level detection. Empirically, our
SMD can achieve 50% to 75% sparsity while still significantly outperforming the dense counterpart
network and other counterpart sparse training approaches.
2We exploit the NVIDIA cuSPARSELt library using Sparse Tensor Cores, referring to the library samples
at https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuSPARSELt/spmma
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• Detailed experimental settings are clearly documented in the paper (Sec. 3.3 and Sec. 4).
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Cristian Buciluǎ, Rich Caruana, and Alexandru Niculescu-Mizil. Model compression. In SIGKDD,
2006. 3

Guobin Chen, Wongun Choi, Xiang Yu, Tony Han, and Manmohan Chandraker. Learning efficient
object detection models with knowledge distillation. In NeurIPS, 2017. 3

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
transformers. arXiv preprint arXiv:1904.10509, 2019. 3

M. Courbariaux and Y. Bengio. BinaryNet: Training deep neural networks with weights and activa-
tions constrained to +1 or −1. arXiv preprint arXiv:1602.02830, 2016. 3

Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized
neural networks: Training deep neural networks with weights and activations constrained to +1
or -1. arXiv preprint arXiv:1602.02830, 2016. 3

Emily L Denton, Wojciech Zaremba, Joan Bruna, Yann LeCun, and Rob Fergus. Exploiting linear
structure within convolutional networks for efficient evaluation. In NeurIPS, 2014. 3

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018. 3

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. In ICLR, 2019. 2, 6, 7, 8, 9

Yi Fung, Christopher Thomas, Revanth Gangi Reddy, Sandeep Polisetty, Heng Ji, Shih-Fu Chang,
Kathleen McKeown, Mohit Bansal, and Avirup Sil. Infosurgeon: Cross-media fine-grained infor-
mation consistency checking for fake news detection. In ACL-IJCNLP, 2021. 1, 2

Trevor Gale, Erich Elsen, and Sara Hooker. The state of sparsity in deep neural networks. arXiv
preprint arXiv:1902.09574, 2019. 5

10



Under review as a conference paper at ICLR 2023

Robert M Gray et al. Toeplitz and circulant matrices: A review. Foundations and Trends® in
Communications and Information Theory, 2(3):155–239, 2006. 4

Qipeng Guo, Xipeng Qiu, Pengfei Liu, Yunfan Shao, Xiangyang Xue, and Zheng Zhang. Star-
transformer. In NAACL, 2019. 3

Song Han, Jeff Pool, John Tran, and William J Dally. Learning both weights and connections for
efficient neural network. In NeurIPS, 2015. 5, 6, 7, 8

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. In ICLR, 2016. 5, 6, 7, 8

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. In
NeurIPS Workshop, 2014. 3

Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun
Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al. Searching for mobilenetv3. arXiv
preprint arXiv:1905.02244, 2019. 3

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861, 2017. 3

Linmei Hu, Tianchi Yang, Luhao Zhang, Wanjun Zhong, Duyu Tang, Chuan Shi, Nan Duan, and
Ming Zhou. Compare to the knowledge: Graph neural fake news detection with external knowl-
edge. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long
Papers), pp. 754–763, 2021. 1, 2

Kung-Hsiang Huang, Mu Yang, and Nanyun Peng. Biomedical event extraction with hierarchical
knowledge graphs. In EMNLP, 2020. 4

Kung-Hsiang Huang, ChengXiang Zhai, and Heng Ji. Concrete: Improving cross-lingual fact-
checking with cross-lingual retrieval. arXiv preprint arXiv:2209.02071, 2022. 1, 2

Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman. Speeding up convolutional neural networks
with low rank expansions. In BMVC, 2014. 3

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, Fang Wang, and Qun Liu.
Tinybert: Distilling bert for natural language understanding. arXiv preprint arXiv:1909.10351,
2019. 3

Yiqiao Jin, Xiting Wang, Ruichao Yang, Yizhou Sun, Wei Wang, Hao Liao, and Xing Xie. To-
wards fine-grained reasoning for fake news detection. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 36, pp. 5746–5754, 2022. 1, 2

Hamid Karimi and Jiliang Tang. Learning hierarchical discourse-level structure for fake news de-
tection. In NAACL, 2019. 6, 7, 8

Hamid Karimi, Proteek Roy, Sari Saba-Sadiya, and Jiliang Tang. Multi-source multi-class fake news
detection. In Proceedings of the 27th international conference on computational linguistics, pp.
1546–1557, 2018. 1, 2

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015. 6

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. In ICLR,
2020. 3

Vadim Lebedev, Yaroslav Ganin, Maksim Rakhuba, Ivan Oseledets, and Victor Lempitsky.
Speeding-up convolutional neural networks using fine-tuned cp-decomposition. arXiv preprint
arXiv:1412.6553, 2014. 3

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip Torr. Snip: Single-shot network pruning based
on connection sensitivity. In ICLR, 2019. 2

11



Under review as a conference paper at ICLR 2023

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. In ICLR, 2017. 5

Manling Li, Sha Li, Zhenhailong Wang, Lifu Huang, Kyunghyun Cho, Heng Ji, Jiawei Han, and
Clare Voss. The future is not one-dimensional: Complex event schema induction by graph mod-
eling for event prediction. In EMNLP, 2021. 5

Ying Lin, Heng Ji, Fei Huang, and Lingfei Wu. A joint neural model for information extraction with
global features. In ACL, 2020. 3

Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. Shufflenet v2: Practical guidelines for
efficient cnn architecture design. In ECCV, 2018. 3

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. In NeurIPS, 2019. 6

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Imagenet
classification using binary convolutional neural networks. In ECCV, 2016. 3

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In CVPR, 2018. 3

Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural net-
works. In ICML, 2019. 3

Reuben Tan, Bryan Plummer, and Kate Saenko. Detecting cross-modal inconsistency to defend
against neural fake news. In Proceedings of the 2020 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pp. 2081–2106, Online, November 2020. Association for
Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.163. 1, 2

Hidenori Tanaka, Daniel Kunin, Daniel L Yamins, and Surya Ganguli. Pruning neural networks
without any data by iteratively conserving synaptic flow. In NeurIPS, 2020. 2

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NeurIPS, 2017. 3, 4
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