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ABSTRACT

Neural fields, mapping low-dimensional input coordinates to corresponding sig-
nals, have shown promising results in representing various signals. Numerous
methodologies have been proposed, and techniques employing MLPs and grid
representations have achieved substantial success. MLPs allow compact and high
expressibility, yet often suffer from spectral bias and slow convergence speed. On
the other hand, methods using grids are free from spectral bias and achieve fast
training speed, however, at the expense of high spatial complexity. In this work,
we propose a novel way for exploiting both MLPs and grid representations in neu-
ral fields. Unlike the prevalent methods that combine them sequentially (extract
features from the grids first and feed them to the MLP), we inject spectral bias-free
grid representations into the intermediate features in the MLP. More specifically,
we suggest a Coordinate-Aware Modulation (CAM), which modulates the inter-
mediate features using scale and shift parameters extracted from the grid represen-
tations. This can maintain the strengths of MLPs while mitigating any remaining
potential biases, facilitating the rapid learning of high-frequency components. In
addition, we empirically found that the feature normalizations, which have not
been successful in neural filed literature, proved to be effective when applied in
conjunction with the proposed CAM. Experimental results demonstrate that CAM
enhances the performance of neural representation and improves learning stabil-
ity across a range of signals. Especially in the novel view synthesis task, we
achieved state-of-the-art performance with the least number of parameters and fast
training speed for dynamic scenes and the best performance under 1MB memory
for static scenes. CAM also outperforms the best-performing video compression
methods using neural fields by a large margin. Our project page is available at
https://maincold2.github.io/cam/.

1 INTRODUCTION

Neural fields (also known as coordinate-based or implicit neural representations) have attracted great
attention (Xie et al., 2022) in representing various types of signals, such as image (Chen et al., 2021b;
Mehta et al., 2021), video (Rho et al., 2022; Chen et al., 2022b), 3D shape (Tancik et al., 2020;
Chabra et al., 2020), and novel view synthesis (Mildenhall et al., 2020; Barron et al., 2021; 2022).
These methods typically use a multi-layer perceptron (MLP), mapping low-dimensional inputs (co-
ordinates) to output quantities, as shown in Fig. 1-(a). It has achieved a very compact representation
by representing signals with the dense connections of weights and biases in the MLP architec-
ture. However, a notable drawback of MLPs is their inherent spectral bias (Rahaman et al., 2019),
which leads them to learn towards lower-frequency or smoother patterns, often missing the finer
and high-frequency details. Despite the recent progress, such as frequency-based activation func-
tions (Sitzmann et al., 2020) and positional encoding (Tancik et al., 2020), deeper MLP structures
and extensive training duration are needed to achieve desirable performances for high-frequency
signals (Mildenhall et al., 2020).

With fast training and inference time, the conventional grid-based representations (Fig. 1-(b)) have
been recently repopularized in neural fields literature. They can represent high-frequency signals
effectively (w/o MLPs or w/ small MLPs, hence no architectural bias), achieving promising recon-
struction quality (Fridovich-Keil et al., 2022; Chan et al., 2022; Takikawa et al., 2022). However,
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Figure 1: Feature representations based on the (a) MLP, (b) Grid → MLP, (c) CAM. The dot in
CAM means a Hadamard product.

the grid structures (typically representing volume features with high resolution and large channels)
cause a dramatic increase in memory footprints. Although many recent works have explored reduc-
ing the memory usage through grid factorization (Chen et al., 2022a; Fridovich-Keil et al., 2023),
hash encoding (Müller et al., 2022), or vector quantization (Takikawa et al., 2022), constructing
compact yet powerful grid representation remains a challenge.

A typical approach of leveraging both grids and MLPs is to combine them sequentially (Müller et al.,
2022; Yu et al., 2021a; Takikawa et al., 2022), extracting the feature from the grid representations
first and feeding them to MLPs. MLPs in these approaches play a secondary role in representing
signals, and the small-size MLPs are generally used to finalize or refine the features from the grids.
Therefore, the grids represent most of the signals’ contents, and higher resolutions of the grids are
required to achieve better performance, resulting in significant memory requirements.

In this work, we propose a novel way of exploiting grid representations in neural fields. Based on
MLP architectures, we suggest a coordinate-aware modulation (CAM), which modulates interme-
diate features of the neural networks using the grids (Fig. 1-(c)). More specifically, CAM extracts
scale and shift parameters from the grid representations given the input coordinates, then multiplies
the extracted scale parameters to the intermediate features in MLPs and adds the shift parameters.
Since CAM utilizes an interpolation scheme commonly used in recent grid representations, it can
extract scale and shift parameters at any arbitrary location. The main idea behind the proposed CAM
is to inject spectral bias-free representations into the intermediate features in MLPs. It will assist
in mitigating any remaining potential biases in MLPs and help them quickly learn high-frequency
components.

In addition, we found that feature normalization techniques (Ioffe & Szegedy, 2015; Ulyanov et al.,
2016) proved to be effective when applied in conjunction with the proposed CAM. Normalizing
intermediate features in neural fields has yet to show meaningful gains in the representation perfor-
mance. However, without normalization techniques, training deep neural networks in general often
requires careful learning rate schedules and other hyperparameter searches (Bjorck et al., 2018), and
we observed similar phenomena in training neural fields. Given the same network architecture and
task (training Mip-NeRF), different learning rate schedules resulted in significant performance vari-
ations (further discussed in App. C.2). We have demonstrated that CAM benefits from the feature
normalizations, showing fast and stable convergence with superior performance.

We have extensively tested the proposed method on various tasks. The experimental results show
that CAM improves the performance and robustness in training neural fields. First, we demonstrate
the effectiveness of CAM in simple image fitting and generalization tasks, where CAM improved the
baseline neural fields by a safe margin. Second, we tested CAM on video representation, applying
CAM to one of the best-performing frame-wise video representation methods, and the resulting
method set a new state-of-the-art compression performance among the methods using neural fields
and frame-wise representations. We also tested CAM on novel view synthesis tasks. For static
scenes, CAM has achieved state-of-the-art performance on real scenes (360 dataset) and also showed
the best performance under a 1MB memory budget on synthetic scenes (NeRF synthetic dataset).
Finally, we also tested on dynamic scenes, and CAM outperformed the existing methods with the
least number of parameters and fast training speed (D-NeRF dataset).

2 RELATED WORKS

Neural fields, or implicit neural representations, use neural networks to represent signals based on
coordinates. Recent studies on neural fields have shown promising results in a variety of vision
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tasks such as image representation (Sitzmann et al., 2020; Dupont et al., 2021), video representa-
tion (Rho et al., 2022; Chen et al., 2021a), 3D shape representation (Tancik et al., 2020; Chabra
et al., 2020; Park et al., 2019; Mescheder et al., 2019; Martel et al., 2021), novel view synthe-
sis (Mildenhall et al., 2020; Barron et al., 2021; Müller et al., 2022; Fridovich-Keil et al., 2022;
Yu et al., 2021a; Chen et al., 2022a; Yu et al., 2021b), and novel view image generation (Schwarz
et al., 2020; Chan et al., 2021; Gu et al., 2022; Deng et al., 2022). Neural networks (typically
using MLPs in neural fields) tend to be learned towards low-frequency signals due to the spectral
bias (Rahaman et al., 2019). Several studies have been conducted to mitigate this issue by proposing
frequency encodings (Mildenhall et al., 2020; Tancik et al., 2020; Barron et al., 2021) or periodic
activations (Sitzmann et al., 2020; Mehta et al., 2021). Nevertheless, this challenge persists in the
literature, demanding the use of complex MLPs and extensive training time to effectively represent
high-frequency signals (Mildenhall et al., 2020).

An emerging alternative to this MLP-dependent paradigm is the use of an auxiliary data struc-
ture, typically grids, incorporated with interpolation techniques. Such approach has notably re-
duced training times without sacrificing the reconstruction quality (Fridovich-Keil et al., 2022;
Chan et al., 2022; Takikawa et al., 2022). However, these grid frameworks, usually designed with
high-resolution volumetric features, demand extensive memory consumption as shown in Fig. 1-(b).
While numerous studies have made efforts to minimize memory usage via grid factorization (Chen
et al., 2022a; Fridovich-Keil et al., 2023), pruning (Fridovich-Keil et al., 2022; Rho et al., 2023),
hashing (Müller et al., 2022), or vector quantization (Takikawa et al., 2022), the pursuit of memory-
efficient grid representation remains an ongoing focus in the field of neural fields research.

Combination of an MLP and grid representation. The aforementioned grid-based methods gen-
erally use a small MLP to obtain the final output from the grid feature. In other words, the grid
structure and an MLP are sequentially deployed. Most recently, NFFB (Wu et al., 2023) proposed
combining two architectures in a different way, by designing each of multiple sets of MLPs and
grids to represent different frequency signals, similar to the concept of wavelets. Nonetheless, it is
worth noting that NFFB demands task-specific designs for individual models. In contrast, CAM is
a plug-and-play solution that can be easily deployed without the need for any modifications to the
original model configurations.

Modulation in neural fields. Feature modulation in neural networks has been a well-established
concept, spanning across diverse domains including visual reasoning (Perez et al., 2018), image gen-
eration (Ghiasi et al., 2017; Chen et al., 2019), denoising (Mohan et al., 2021), and restoration (He
et al., 2019). They typically employ an additional network (or linear transform) to represent mod-
ulation parameters, learning a well-conditional impact on the intermediate features of the base net-
work. Neural fields literature follows the paradigm by representing modulation parameters with the
function of noise vector (Pi-GAN (Chan et al., 2021)), datapoints (COIN++ (Dupont et al., 2022)),
patch-wise latent feature (ModSiren (Mehta et al., 2021)), or input coordinate (MFN, FINN (Fathony
et al., 2021; Zhuang, 2024)). In contrast to other methods that integrate periodic functions into their
approach, both FINN and our proposed method utilize coordinate-dependent parameters to directly
influence the intermediate features. However, while FINN acts as a filter by using the same vector for
all layers, our model represents different scale and shift (scalar) values in each layer. Furthermore,
the utilization of grid representation for scale and shift parameters in our model avoids introducing
any network architectural bias. This is distinct from all the aforementioned methods, which can
induce architectural bias by incorporating a separate linear layer following positional encoding.

3 METHOD

Coordinate-aware modulation. Existing literature has delved into the representation of signals
presenting continuous yet diverse characteristics across arbitrary coordinates, mainly relying on ei-
ther neural networks (typically MLPs) or grid structures. We rethink this paradigm and propose
coordinate-aware modulation (CAM), which combines both architectures in parallel. CAM ex-
ploits the implicit representation of neural networks, which ensures compactness regardless of high-
dimensional coordinates, while representing high-frequency signals effectively using grids. More
specifically, CAM modulates the intermediate features of the neural networks based on input coor-
dinates, where the scalar factors for scale and shift modulation are parameterized by grids. CAM can
retain compactness since the grids represent single-channel modulation parameters, different from
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(b) CAM in NeRF
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Figure 2: Visualization of CAM on different domains.

the general use of grids that represent large-channel features with high resolution. Formally, taking
a 1D feature of an MLP as an example, the formulation is as follows,

F̃n,c = γn(X; Γ)Fn,c + βn(X;B), (1)

where F, F̃ ∈ RN×C are an intermediate feature tensor and the modulated output feature (N : batch
size, C: channel size), and n, c denote the batch and channel index of the feature, respectively.
γ(·; Γ), β(·;B) : RN×D → RN are the scale and shift function of input coordinates X ∈ RN×D

(D: input coordinate dimension), outputting scalar values from the single-channel grids Γ, B given
each coordinate. γn(·; Γ), βn(·;B) denote each scale and shift factor for batch n.

Coordinate priority for CAM. The grids are adopted to parameterize single-channel features (mod-
ulation parameters), but they can face challenges with the curse of dimensionality, especially with
high-dimensional input coordinates (e.g., 6-dimensional coordinates for dynamic NeRFs). To avoid
the complex dimension of grids, we strategically prioritize which coordinates to use for representing
modulation parameters into grids, among diverse coordinates of each task. Visual signals can have
several dimensions, including space, viewing direction, and time. At the core, spatial components
construct distinct scenes, where the viewing directions determine which aspect of the scene becomes
visible, and the temporal coordinates represent dynamic movements in the scene. Among the view
direction and time coordinates, we empirically found that considering temporal coordinates is more
beneficial for CAM. This can be interpreted that a visible scene determined by spatiality and view
direction, is the basis of effectively defining a time-varying scene. We establish this hierarchy of
coordinates, prioritizing the highest-level components among the coordinates (denoted as X(·)) to
be regarded for modulation (e.g., temporal coordinates X(t) for dynamic NeRFs and view direction
coordinates X(ϕ,θ) for NeRFs). Given that image and frame-wise video representations involve only
spatial and time coordinates, respectively, we use the complete input coordinate by denoting it as X ,
in the following sections.

Feature normalization. We standardize the intermediate feature F with its mean and variance
before applying the modulation. Although general neural representation methods cannot take ad-
vantage of feature normalization due to its regularizing property for fitting, we empirically found
that normalization integrated with CAM facilitates and stabilizes model convergence. We hypothe-
size that the enforcing diverse distribution of standardized features acts as de-regularization, which
stands for fitting signals. We compute the mean and variance along with as many dimensions as
possible, excluding the batch dimension.

Although CAM serves as a universal method that can be applied to any neural fields for a wide
variety of tasks, each task possesses its unique characteristics and intermediate feature shapes. In
the following sections, we will provide a more in-depth explanation of the CAM approach for each
specific task.

3.1 IMAGE

We can formulate a neural field as a function of a 2-dimensional coordinate that outputs the corre-
sponding color in order to represent images (Sitzmann et al., 2020; Tancik et al., 2020). When a
stack of 2-dimensional coordinates X ∈ RN×2 pass through a neural network, CAM normalizes
and modulates a latent feature F l ∈ RN×C of each layer l, where C is the channel (or feature)
size (we will omit superscript l for brevity). As images only have spatial coordinates, we obtain
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the modulation parameters corresponding to these coordinates. More precisely, Fig. 2-(a) illustrates
how CAM works in the task, and CAM can be formally written as follows:

F̃n,c = γn(X; Γ)
Fn,c − µn(F )√

σ2
n(F ) + ϵ

+ βn(X;B), (2)

µn(F ) =
1

C

∑
c

Fn,c, σ2
n(F ) =

1

C

∑
c

(Fn,c − µn(F ))2, (3)

where F, F̃ ∈ RN×C are latent and modulated latent feature tensors, respectively. The mean and
variance functions µ(·), σ2(·) : RN×C → RN normalize features over every dimension except
for the batch dimension. Similarly, the scale and shift functions γ(·; Γ), β(·;B) : RN×2 → RN

output scalar values for each coordinate, and γn(·; Γ), βn(·;B) denote each scale and shift factor for
batch n. We can extract values from the grid representations for scale and shift parameters (Γ, B ∈
Rdx×dy , dx and dy are the grid resolutions) by bilinearly interpolating values using neighboring
input coordinates X .

3.2 NOVEL VIEW SYNTHESIS

Neural radiance fields (NeRFs). A NeRF model uses an MLP architecture to model a function of
a volume coordinate (x, y, z) and a view direction (ϕ, θ) that outputs RGB color c and density d. To
calculate the color of each pixel (camera ray), a NeRF samples S points along the ray and aggregates
color and density values of the sampled points using the volume rendering equation (Mildenhall
et al., 2020). Since outputs of sampled points in a ray will be merged to get the color of a ray, we
view a pack of points per ray as a single unit. It constructs an input coordinate tensor X ∈ RN×S×5,
and latent features F ∈ RN×S×C . Based on the proposed priority, CAM is applied for NeRFs
according to the view directional coordinates of N ray units X(ϕ,θ) ∈ RN×2 (Fig. 2-(b)), formally
defined as follows:

F̃n,s,c = γn(X
(ϕ,θ); Γ)

Fn,s,c − µn(F )√
σ2
n(F ) + ϵ

+ βn(X
(ϕ,θ);B), (4)

µn(F ) =
1

SC

∑
s,c

Fn,s,c, σ2
n(F ) =

1

SC

∑
s,c

(Fn,s,c − µn(F ))2, (5)

where µ(·), σ2(·) : RN×S×C → RN denote mean and variance functions, and µn(F ) and σ2
n(F )

represent the mean and variance for ray n when F is given. As mentioned in Sec. 3, we normalize
over all dimensions except for the batch size. γ(·; Γ), β(·;B) : RN×2 → RN are scale and shift
functions, parameterized by two grid representations Γ, B ∈ Rdϕ×dθ ; dϕ and dθ are resolutions
of azimuth ϕ and elevation θ dimension, respectively. Similar to µn(F ) and σ2

n(F ), the scalars
γn(X; Γ) and Bn(X;B) denote the scale and shift value, respectively, for ray n.

Dynamic NeRFs build upon the static NeRFs concept by introducing the ability to model time-
varying or dynamic scenes, representing 4D scenes that change over time (Pumarola et al., 2021).
This is achieved by adding a time coordinate t to the input of the NeRFs. Therefore, the overall pro-
cess for CAM follows as in Eq. 4, except that the modulation parameters are obtained corresponding
to time coordinates X(t) ∈ RN×1, from two 1-dimensional grids Γ, B ∈ Rdt (dt is the resolution
of the temporal dimension).

3.3 VIDEO

Videos can be represented as a function of temporal and spatial coordinates. However, this pixel-
wise neural representation demands significant computational resources and time, limiting its prac-
tical use (Chen et al., 2021a). To tackle the challenges associated with high computational costs
and slow training/inference times, NeRV (Chen et al., 2021a) and its variations (Li et al., 2022; Lee
et al., 2023) adopted a frame-wise representation approach and use neural fields as a function of only
the temporal coordinate t. This not only accelerated training and inference time but also improved
compression and representation performance (Chen et al., 2021a). These frame-wise video repre-
sentation models leverage convolutional layers to generate a video frame per temporal coordinate t.
More precisely, an input coordinate tensor X ∈ RN×1 associated with N temporal coordinates is
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Table 1: Performance evaluation for image regression and
generalization measured in PSNR.

Method #Params
Regression Generalization

Natural Text Natural Text

I-NGP 237K 32.98 41.94 26.11 32.37

FFN 263K 30.30 34.44 27.48 30.04

+ CAM 266K 32.21
(+1.91)

50.17
(+15.73)

28.19
(+0.71)

33.09
(+3.05)

Table 2: Effectiveness in the NeRF
task. * denotes the reported value in
the original paper.

Method #Params Time PSNR

NerfAcc 0.6M 38 m 31.55
K-planes 37M 38* m 32.36

CAM 3.7M 51 m 32.18
13M 54 m 32.60

supplied to the neural network to generate intermediate feature tensors F ∈ RN×C×H×W , where
N,C,H and W denote the number of frames or batch size, the number of channels, the feature’s
height and width, respectively. Then, we can define CAM as follows:

F̃n,c,h,w = γn,c(X; Γ)
Fn,c,h,w − µn,c(F )√

σ2
n,c(F ) + ϵ

+ βn,c(X;B), (6)

µn,c(F ) =
1

HW

∑
h,w

Fn,c,h,w, σ2
n,c(F ) =

1

HW

∑
h,w

(Fn,c,h,w − µn,c(F ))2, (7)

where µ(·), σ2(·) : RN×C×H×W → RN×C denote mean and variance functions. The reason for
not normalizing over every dimension except the batch dimension is to keep the computational costs
affordable (see App. B). Motivated by Ulyanov et al. (2016), we exclude the channel dimension,
and represent channel-wise modulation parameters by scale and shift functions γ(·; Γ), β(·;B) :
RN×1 → RN×C . The grids for scales and shifts are denoted by Γ and B, where Γ and B are of size
Rdt×C , respectively. Here, dt represents the grid resolution in the time dimension, and C represents
the channel size which is the same as the channel size in the feature tensor F . Fig. 2-(c) illustrates
how CAM works in frame-wise video representation neural fields.

4 EXPERIMENTS

We initially assessed the effectiveness of CAM in terms of mitigating spectral bias. Then, we evalu-
ated our proposed method on various signal representation tasks, including image, video, 3D scene,
and 3D video representations. Finally, we delved into the reasons behind its superior performance,
conducting comprehensive analyses. All baseline models were implemented under their original
configurations, and CAM was applied in a plug-and-play manner. CAM includes feature normaliza-
tion throughout the experiments, except for efficient NeRFs (e.g., NerfAcc (Li et al., 2023)), where
we found that the normalization is ineffective for pre-sampled inputs. We provide implementation
details for each task in App. A.

(a) MLP (b) MLP+PE (c) MLP+CAM (d) MLP+PE+CAM

Param 12.7K / MSE 4.97 Param 14.7K / MSE 3.34 Param 13.2K / MSE 0.07 Param 15.2K / MSE 0.03

Figure 3: Performance on 1D signal regression. The yellow dotted line represents GT.

4.1 MOTIVATING EXAMPLE

We begin by demonstrating the spectral bias-free representation of CAM evaluated on 1D sinu-
soidal function regression (Fig. 3). The figure indicates that the MLP is not capable of representing
the high-frequency signal, even though positional encoding (PE) is applied. In contrast, when CAM
is applied to the MLP, the resulting model successfully represents the signal, even with less param-
eter overheads compared to PE. The model applying both PE and CAM shows the most accurate
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representation. These results demonstrate that CAM can be an effective solution for resolving the
spectral bias of the MLP while maintaining compactness.

Train     GT                          FFN                     + CAM          Grid Γ, 𝐵 GT               FFNeRV + CAM   

Train     GT                          FFN                     + CAM          Grid Γ, 𝐵 GT        Mip-NeRF (6bit)  + CAM (6bit)

(a) (b)
Figure 4: Qualitative results on (a) image generalization task with visualization of grids extracted
from the last hidden layer and (b) novel view synthesis and video representations.

4.2 RESULTS ON VARIOUS TASKS

Image. Tab. 1 shows the results of two subtasks, image regression and generalization. CAM
improves performance of FFN on both tasks across two image datasets, with negligible additional
parameters. While I-NGP demonstrated impressive results in Natural image regression, highlight-
ing its superiority in overfitting, it fell short in terms of image generalization. In contrast, CAM
consistently shows high performance in both tasks, demonstrating its overall effectiveness. Fig. 4-
(a) shows the quality results for image generalization. As the figure shows, both scale and shift
grids (Γ, B) reflect the shape of the entire image, indicating the grids effectively represent the sig-
nal. Especially for the text image, CAM allows distinguishing the text and background, resulting in
significantly increased performance.

Table 3: Qualitative results evaluated on NeRFs. The sizes are
measured in megabytes (MB).

Bit Method NeRF Synthetic NSVF Synthetic LLFF

Size PSNR Size PSNR Size PSNR

32

NeRF 5.00 31.01 5.00 30.81 5.00 26.50
TensoRF 71.9 33.14 ≈ 70 36.52 179.7 26.73

Mip-NeRF 2.34 33.09 2.34 35.83 2.34 26.86
+ CAM 2.34 33.42 2.34 36.56 2.34 27.17

8

Rho et al. 1.69 32.24 1.88 35.11 7.49 26.64
TensoRF 16.9 32.78 17.8 36.11 44.7 26.66

Mip-NeRF 0.58 32.86 0.58 35.52 0.58 26.64
+ CAM 0.58 33.27 0.58 36.30 0.58 26.88

Table 4: Performance evalua-
tion on the 360 dataset, which
comprises unbounded real scenes.
Among 9 scenes, we evaluate 7
publicly available scenes. CAM
is applied on Mip-NeRF 360.

Method #Params PSNR

Mip-NeRF 0.6M 25.12
I-NGP 84M 27.06
Zip-NeRF 84M 29.82

Mip-NeRF 360 9M 29.11
+ CAM 9M 29.98

Novel view synthesis on static scene. We first present the superiority of CAM over representations
based on an MLP or grid with a small MLP using the NeRF synthetic dataset. As the baseline
models, we adopted NerfAcc (Li et al., 2023) and K-planes (Fridovich-Keil et al., 2023) for MLP-
and grid-based representations (Fig.1-(a),(b)), respectively. We modulate the intermediate features
of NerfAcc, utilizing modulation parameters represented by tri-plane factorized grids with a singular
channel. For a fair comparison with K-planes, here we refrained from implementing our proposed
priority and used spatial coordinates to represent modulation parameters. As shown in Tab. 2, CAM
outperforms other baselines, resulting in the best visual quality with compactness and comparable
training duration, validating its efficiency.

We also evaluated with more powerful baseline models, Mip-NeRF and Mip-NeRF 360. Tab. 3, 4
show the qualitative results for the NeRF synthetic, NSVF, LLFF, and real 360 datasets. Through-
out all the datasets, CAM showcases significant improvement in PSNR, with a negligible increase

7



Published as a conference paper at ICLR 2024

in the number of parameters. Especially for the 360 dataset, CAM achieves state-of-the-art perfor-
mance. We also tested on lower bit precision; we quantized every weight parameter including Γ
and B. As Tab. 3 shows, CAM exhibits robustness to lower bit precision and remains effective.
Furthermore, the CAM-applied 8-bit model consistently outperforms the 32-bit original Mip-NeRF.
Consequently, CAM achieves state-of-the-art performance under a 1MB memory budget on NeRF
synthetic dataset, as shown in Fig. 5. As the qualitative results using Lego (Fig. 4-(b)) shows, the
baseline performs poor reconstruction containing an incorrectly illuminated area while the CAM-
applied model reconstructs accurately. This indicates that modulation according to view directions
results in robustness for representing view-dependent components.

31

31.5

32

32.5
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33.5

0.2 2 20

Mip-NeRF+CAM (8bit)

Mip-NeRF (8bit)

Rho et al. TensoRF (8bit)

Size (MB, logscale)
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R

Figure 5: The rate-distortion curve evalu-
ated on NeRF synthetic dataset.
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Figure 6: The rate-distortion curve on UVG
dataset (best viewed in color).

Dynamic scene. We used the D-NeRF dataset (Pumarola et al.,
2021) to evaluate CAM for novel view synthesis under dynamic
scenes, as shown in Tab. 5. CAM is applied on NerfAcc (Li et al.,
2023) for T-NeRF (a variant of D-NeRF). CAM sets a new bench-
mark, outperforming the previous state-of-the-art by more than 1
PSNR, even while using the least parameters. Furthermore, our
model is time-efficient, needing only an hour for training, thanks
to its foundation on Nerfacc that boasts rapid processing due to effi-
cient sampling.

Table 5: Performance evalua-
tion of dynamic NeRFs.

Method #Params PSNR

D-NeRF 1.1M 29.67
TiNeuVox 12M 32.67
K-planes 37M 31.61

NerfAcc 0.6M 32.22
+ CAM 0.6M 33.78

Video. In Fig. 4-(b), the qualitative results for video representation highlight the enhanced visual
quality achieved by CAM. We offer detailed results of video representation performance in App. C.1,
and here, we focus on showcasing video compression performance, a central and practical task for
videos. Fig. 6 visualize the rate-distortion for video compression. In the range from low to high
BPP, CAM improves compression performance compared to the baseline FFNeRV by a significant
margin. It achieves comparable performance with HM, the reference software of HEVC (Sullivan
et al., 2012). Distinct from HEVC, a commercial codec designed under the consideration of time
efficiency, HM shows significantly high performance under heavy computations. HM has a decoding
rate of around 10 fps using a CPU (Hu et al., 2023), while our model is built on FFNeRV (Lee et al.,
2023), a neural representation capable of fast decoding, allowing for real-time processing with a
GPU (around 45 fps at 0.1 BPP). To our knowledge, our compression performance is state-of-the-
art among methods that have the capability for real-time decoding.

4.3 ANALYSIS AND ABLATION STUDIES ON CAM

Motivation. We analyzed the intermediate feature distribution in the image generalization task,
where the features can be visualized straightforwardly, as depicted in Fig. 7-(a). CAM shows a high
variance of pixel-wise features while improving the visual quality. This observation underscores the
idea that the representation power can be boosted when the features of different coordinates become
more distinct from each other. CAM is a strategic approach to achieve this, while it maintains
compactness by representing only modulating scalar factors into grids.

Mitigating spectral bias. We visualized the error map in the frequency domain (Fig. 7-(b)) to
validate that CAM is actually capable of representing high-frequency components. CAM reduces
the errors in high frequency noticeably with only negligible grid parameters (263K for the MLP vs.
3K for the grid in Tab. 1), indicating its effective mitigation of the MLP’s spectral bias.
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Before CAM After CAM

FFNImage + CAM

Var 0.57 Var 0.32 Var 1.19PSNR 27.9 PSNR 29.0

Var 0.48 Var 0.15 Var 1.13PSNR 32.4 PSNR 33.2

Γ, 𝐵

>1
0.8
0.6
0.4
0.2
0.0

Image FFN               + CAM
Error(x1e-3)

(a)

(b)

Image FFN               + CAM

Figure 7: (a) Visualization of the pixel-wise distribution before and after applying CAM on the
final feature. The same color indicates the same distribution (mean and variance). We provide
variance between pixels of each feature (described in App. A) and output PSNR. (b) Error map in the
frequency domain: A more centralized pixel of the maps indicates an error in the lower frequency.
Coordinate priority. As shown in Tab. 6, CAM with
the highest-level coordinates based on the proposed
priority achieves the optimal performance. CAM with
spatial coordinates is effective for modalities with
only spatial coordinates (images), as we have shown
in Tab. 1. However, when the input modality be-
comes more complex in NeRFs and dynamic NeRFs,
spatiality-aware modulation can be meaningless in
spite of the requirement of large additional memory
(even with the factorized grids). Furthermore, al-
though using both time and view direction coordinates
increases performance compared to the baseline in D-
NeRF, a single prioritized component demonstrates
the most efficient result.

Table 6: Ablation study on the proposed pri-
ority. S, D, and T denote space, direction,
and time coordinates.

Baseline CAM coord. #Params PSNR
S D T

NerfAcc
(D-NeRF)

0.6M 32.22
✓ 13.1M 32.57

✓ 0.6M 32.44
✓ ✓ 0.6M 32.49

✓ 0.6M 33.78

Mip-NeRF
- 0.6M 33.09

✓ - 13.1M 32.70
✓ - 0.6M 33.42

Effect of feature normalization. As shown in Tab. 7,
normalization with CAM consistently enhances the
performance for diverse tasks, while naively applying
normalization typically degrades performance. In ad-
dition, CAM allows one of the known advantages of
normalization, decreasing the magnitude of gradients
and improving convergence speed (Ioffe & Szegedy,
2015), further discussed in App. C.2.

Table 7: Ablation study on the feature nor-
malization, evaluated on Natural images,
Ready video, and Lego scene. CAM-N in-
dicates CAM without normalization.

Task Base BN LN IN CAM-N CAM

Image 30.3 23.6 30.8 - 30.9 32.2
Video 31.6 22.1 - 31.5 31.9 32.3
NeRF 35.7 35.2 35.4 - 35.9 36.2

5 CONCLUSION

We have proposed a Coordinate-Aware Modulation (CAM), a novel combination of neural networks
and grid representations for neural fields. CAM modulates the intermediate features of neural net-
works with scale and shift parameters, which are represented in the grids. This can exploit the
strengths of the MLP while mitigating any architectural biases, resulting in the effective learning
of high-frequency components. In addition, we empirically found that the feature normalizations,
previously unsuccessful in neural field literature, are notably effective when integrated with CAM.
Extensive experiments have demonstrated that CAM improves the performance of neural repre-
sentations and enhances learning stability across a wide range of data modalities and tasks. We
renew state-of-the-art performance across various tasks while maintaining compactness. We believe
it opens up new opportunities for designing and developing neural fields in many other valuable
applications.
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APPENDIX

A IMPLEMENTATION DETAILS

In this section, we provide a brief explanation of the functional form of grids and specify our imple-
mentation details for diverse tasks.

A.1 FUNCTION OF Γ AND B

Γ and B are grid structures to represent the scale and shift factors, where each grid is trained as a
function of coordinates with infinite resolution, outputting coordinate-corresponding components.
The output in infinite resolution is aggregated by nearby features in the grid based on the distance
between the coordinates of the input and neighboring features.

A.2 1D SIGNAL

We conducted the experiment for regressing 1D periodic function, following the previous works (Ra-
haman et al., 2019; Cho et al., 2022). We constructed the target function f(x) =

∑10
i=1 sin(2πkix+

ϕi), where ki ∈ {5, 10, ..., 50}, ϕi ∼ U(0, 2π) and we uniformly sampled x in the range of [0, 1].
The learning rate was set to 10−3 and we trained for 1500 iterations using the Adam optimizer. We
used a 4-layer MLP with 64 channels as the baseline and also set the grid resolution of 64. When
applying PE, we enlarged the single-channel coordinate to 32 channels, and we concatenated the
original and enlarged inputs.

A.3 IMAGE

For the 2D image representation task, we used Natural and Text image datasets (Tancik et al., 2020),
which include 512 × 512 images, respectively. The resolution of the grids (dx and dy) was set
to 32 × 32. Using two subtasks, we assessed the ability to regress the training data points and to
generalize well on unseen data points. The first subtask is to accurately represent a target image at
a resolution of 512 × 512, using the same image for training, and it aims to measure the ability for
fitting signals. Another subtask trains neural fields using a smaller image with a resolution of 256 ×
256, but evaluates using the original image with a resolution of 512 × 512.

We used FFN (Tancik et al., 2020) as the baseline model, which was originally developed in Jax a
few years back. Due to its older environment, we opted for a Pytorch implementation to simplify
the experimental process. We constructed a baseline model following the original paper (MLP with
4 layers, 256 hidden channels, ReLU activation, and sigmoid output). Each model was trained for
2000 iterations using the Adam optimizer. The learning rate was initially set to 10−3 and 10−2 for
neural networks and grids, respectively, multiplied by 0.1 at 1000 and 1500 iterations. The manually
tuned parameters for each dataset in FFN were also used in this experiment, where the gaussian scale
factor was set to 10 and 14 for Natural and Text, respectively.

For I-NGP (Müller et al., 2022), we used hash grids with 2-channel features across 16 different
resolutions (16 to 256) and a following 2-layer 64-channel MLP. The maximum hash map size was
set to 215.

The variance in Fig. 7(a) denotes the mean of the variance of all pixels at the same channel. For-
mally, the variance v of H × W pixel-wise C-channel features X ∈ RC×H×W can be expressed
as, v = 1

C

∑C
ch=1 var

(H,W )(Xch), where var(H,W )(·) : RH×W → R computes the variance of
H ×W values and Xch ∈ RH×W is features at the channel ch.

A.4 NOVEL VIEW SYNTHESIS

Static scene. We used synthetic (NeRF (Mildenhall et al., 2020), NSVF (Liu et al., 2020)),
forward-facing (LLFF (Mildenhall et al., 2019)), and real-world unbounded (360 (Barron et al.,
2022)) datasets for evaluating novel view synthesis performance. As a baseline model, we used Mip-
NeRF (Barron et al., 2021) for single-scale scenes, except for 360 dataset, where we used Mip-NeRF
360 (Barron et al., 2022). We implemented CAM based on Mip-NeRF and Mip-NeRF 360 official
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Table 8: Compression performance evaluated on UVG videos at various levels. BPP denotes “bits
per pixel”.

Video
(#frames)

Beauty
(600)

Bospho
(600)

Honey
(600)

Ready
(600)

Jockey
(600)

Shake
(300)

Yacht
(600) Avg.

PSNR 33.65 34.59 38.89 33.89 27.1 33.43 28.76 32.86
BPP 0.0144 0.0149 0.0148 0.0142 0.0145 0.0115 0.0148 0.0144

PSNR 34.21 38.39 39.58 37.29 31.62 35.18 32.53 35.57
BPP 0.0454 0.0459 0.0442 0.0439 0.0448 0.0355 0.0455 0.0442

PSNR 34.51 39.87 39.71 38.32 33.64 36.65 34.35 36.73
BPP 0.0752 0.0751 0.0728 0.0721 0.0735 0.0743 0.0748 0.0739

PSNR 34.78 40.91 39.86 38.92 35.23 37.24 35.84 37.56
BPP 0.1122 0.1109 0.1087 0.1068 0.1089 0.0980 0.1108 0.1088

PSNR 35.06 41.71 40.01 39.3 36.5 37.71 37.13 38.24
BPP 0.1563 0.1530 0.15114 0.1480 0.1508 0.1249 0.1535 0.1500

codes in the Jax framework. While following all the original configurations, we incorporated CAM
into every MLP linear layer until the view direction coordinates were directly inputted. For the scale
and shift grids (Γ, B), the values of dθ and dϕ were set to 4 and 3 for forward-facing scenes, and 10
and 3 for other scenes, respectively. For quantization, we applied layer-wise min-max quantization-
aware training (QAT), as in Rho et al. (2023). We compared our method with NeRF (Mildenhall
et al., 2020), TensoRF (Chen et al., 2022a), Rho et al. (2023) for NeRF synthetic, NSVF, and LLFF
datasets in Tab. 3, and with I-NGP (Müller et al., 2022) and Zip-NeRF (Barron et al., 2023) for 360
dataset in Tab 4.

Dynamic scene. We used the D-NeRF dataset (Pumarola et al., 2021) to evaluate CAM for novel
view synthesis under dynamic scenes. CAM was implemented on NerfAcc (Li et al., 2023) with the
grid resolution dt of 10. NerfAcc for dynamic scene was originally based on T-NeRF (Pumarola
et al., 2021), which deploys deformation network and canonical network. We incorporated CAM
into every linear layer in the canonical network, until the view direction coordinates were directly
inputted. We compared our approach with the baseline NerfAcc and recent state-of-the-art algo-
rithms for dynamic NeRF (D-NeRF (Pumarola et al., 2021), TiNeuVox (Fang et al., 2022), and
K-planes. (Fridovich-Keil et al., 2023)).

A.5 VIDEO

Video representation. To measure the video representation performance of neural fields, we used
the UVG dataset (Mercat et al., 2020), which is one of the most popular datasets in neural field-based
video representation. The UVG dataset contains seven videos with a resolution of 1920 × 1080.
Among video representing neural fields (Chen et al., 2021a; Li et al., 2022; Lee et al., 2023), we
used FFNeRV (Lee et al., 2023) as our baseline model because of its compactness and representation
performance. We implemented CAM based on FFNeRV official codes in the Pytorch framework. To
ensure consistency, we maintained all the original configurations including QAT, with the exception
of applying CAM between the convolutional and activation layers of each FFNeRV convolution
block. In regards to the scale and shift grids (Γ, B), we set dT to 60 for both the 32-bit and 8-bit
models, and 30 for the 6-bit model.

Compression comparison. For video compression results, we followed the compression pipeline
used in FFNeRV, which includes QAT, optional weight pruning, and entropy coding. Although
FFNeRV quantized to 8-bit width for model compression, we further lowered the bit width to 6-
bit, except for the last head layer. This was done because CAM exhibits robust performance even
with 6-bit, where the baseline FFNeRV shows poor performance, as shown in Tab. 10. Fig. 6 of
the main paper depicts the rate-distortion performance of our approach compared with widely-used
video codecs (H.264(Wiegand et al., 2003), HM (HEVC (Sullivan et al., 2012) test model)), neural
video representations (FFNeRV (Lee et al., 2023), NeRV (Chen et al., 2021a), HNeRV (Chen et al.,
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2023)). Detailed compression performances of our model without pruning for each UVG video at
various levels are reported in Tab. 8.

Table 9: Performance evaluation under different settings for frame-wise video representation.

Norm Unit Γ, B shape PSNR Params (M) Time/Epoch (sec)

(H,W ) Rdt×C 32.25 11.4 69.1
(H,W ) Rdt 31.93 11.3 68.8

(C,H,W ) Rdt×C 32.37 11.4 102.8
(C,H,W ) Rdt 32.39 11.3 104.0

B ADAPTATION FOR 4D TENSOR

We generally proposed to compute the mean and variance along with as many dimensions as possible
excluding the batch dimension, and represent scalar features in grids Γ, B. However, we introduce
some adaptations for 4D intermediate tensors in frame-wise video representation: excluding also the
channel dimension and representing channel-wise modulation factors in the grids. This is because of
heavy computation from the large normalization unit, which causes a dramatic increase in training
time (about 50%), as shown in Tab. 9. When we exclude channel axis, representing channel-wise
modulation factors shows better than representing scalar factors. It is worth noting that our general
proposal achieves the best performance, highlighting the flexibility of CAM where we can trade
performance and complexity.

C ADDITIONAL EXPERIMENTAL RESULTS

Table 10: PSNR on video representation. The leftmost column denotes the bit precision of neural
networks. BPP denotes “bits per pixel”.

Bit Method Beauty Bospho Honey Jockey Ready Shake Yacht Avg. BPP

32 FFNeRV 34.28 38.67 39.70 37.48 31.55 35.45 32.65 35.70 0.2870

+ CAM 34.29
(+0.01)

38.86
(+0.19)

39.69
(-0.01)

37.82
(+0.34)

32.25
(+0.70)

35.47
(+0.02)

33.03
(+0.38)

35.95
(+0.25) 0.2894

8 FFNeRV 34.21 38.41 39.60 37.29 31.48 35.26 32.48 35.55 0.0718

+ CAM 34.27
(+0.06)

38.82
(+0.41)

39.67
(+0.07)

37.63
(+0.34)

32.12
(+0.64)

35.39
(+0.13)

32.90
(+0.42)

35.86
(+0.31) 0.0723

6 FFNeRV 34.09 37.26 39.13 36.63 30.47 34.54 31.65 34.85 0.0538

+ CAM 34.21
(+0.12)

38.25
(+0.99)

39.21
(+0.08)

37.16
(+0.53)

31.57
(+1.10)

35.02
(+0.48)

32.50
(+0.85)

35.45
(+0.60) 0.0540

C.1 VIDEO REPRESENTATION

Tab. 10 shows the video representation performance, measured in PSNR. The CAM-applied models
consistently beat the baselines, regardless of videos. The performance gap is much wider for fast-
moving videos (e.g., Ready and Jockey) than it is for static videos (e.g., Beauty and Honey). This
result demonstrates that extended representational capacity in the temporal dimension due to grids
surely improves performance in representing time-varying information. In addition, the performance
gap between video representations with and without CAM widened as the bit precision decreased
(from 0.25 to 0.60). These results imply that our method can be useful for neural fields designed for
storage-constrained situations.

C.2 EFFECT OF NORMALIZATION

In addition to the result in Tab. 7, we analyze the actual benefits of feature normalization in CAM.
One of the known advantages of normalization is that it decreases the magnitude of gradients and

16



Published as a conference paper at ICLR 2024

23

25

27

29

31

33

35

0 200 400 600 800 1000
Iterations (k)

Tr
ai

n 
PS

N
R

CAM (Mip-NeRF)

Mip-NeRF

200k (10x LR)

500k (10x LR)

1000k (1x LR)

(a)

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0 200 400 600 800 1000
Iterations (k)

G
ra

di
en

t N
or

m

(b)

CAM (Mip-NeRF)

Mip-NeRF

Figure 8: Analysis on convergence using Lego scene. (a) Train PSNRs with different learning
schedules, while quantization-aware trained to 8-bit. (b) Gradient norm of weights during training.

prevents them from diverging, which allows the use of a higher learning rate and improved conver-
gence speed (Ioffe & Szegedy, 2015). As shown by the decreased level of gradients in Fig. 8-(c),
CAM benefits from the stabilizing advantage of normalization, achieving comparable and even su-
perior performance to the baseline, with only 1/5 and half of the training duration, respectively
(Fig. 8-(a)). Without CAM, different learning rate schedules resulted in significant performance
variations (a learning rate schedule over 1,000K iterations vs. 500K iterations).

Table 11: Inference speed and GPU memory requirement of CAM compared to MLP-based and
grid-based methods, using Mic scene.

Method Test chunk PSNR Inf. FPS Inf. Mem.

K-Planes - 34.10 0.25 3.8 GB

Nerfacc 1024 33.77 0.51 4.4 GB
+CAM 36.03 0.26 4.7 GB

Nerfacc 4096 33.77 1.19 10.5 GB
+CAM 36.03 0.67 8.8 GB

Nerfacc 8192 33.77 1.45 19.5 GB
+CAM 36.03 1.01 16.4 GB

C.3 INFERENCE SPEED AND MEMORY

We report the inference speed and GPU memory requirements of the models in Tab. 2, evaluated
on the ‘Mic’ scene. As shown in Tab. 11, K-Planes requires small memory while showing slow
inference. CAM reduces the original NerfAcc’s speed when testing chunk size is small. How-
ever, increasing the testing chunk size reduces the speed gap between using CAM and not using
it. Intriguingly, CAM even lowers memory usage under these conditions. We interpret that CAM
facilitates a more effectively trained occupancy grid and helps bypass volume sampling, offsetting
the additional computational demands introduced by CAM itself.

C.4 PER-SCENE RESULTS.

We evaluated the performance on various datasets for novel view synthesis. We provide per-scene
results for NeRF synthetic (Tab. 12), NSVF synthetic(Tab. 13), and LLFF (Tab. 14), 360 (Tab. 15),
and D-NeRF (Tab. 16) datasets.
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Table 12: Per-scene performance on the NeRF synthetic dataset measured in PSNR.

Bit Method Chair Drums Ficus Hotdog Lego Materials Mic Ship Avg.

32 Mip-NeRF 35.14 25.48 33.29 37.48 35.70 30.71 36.51 30.41 33.09
+ CAM 35.24 25.74 34.07 37.89 36.24 31.48 36.04 30.64 33.42

8 Mip-NeRF 34.68 25.48 33.20 37.28 35.29 30.52 36.18 30.28 32.86
+ CAM 34.98 25.80 33.77 37.77 35.95 31.48 35.96 30.47 33.27

Table 13: Per-scene performance on the NSVF dataset measured in PSNR.

Bit Method Bike Lifestyle Palace Robot Spaceship Steamtrain Toad Wineholder Avg.

32 Mip-NeRF 38.51 34.77 37.00 36.65 38.09 36.94 33.58 31.12 35.83
+ CAM 39.06 35.21 37.41 37.70 41.24 37.49 33.59 30.77 36.56

8 Mip-NeRF 38.20 34.46 36.85 36.46 38.00 36.77 32.84 30.55 35.52
+ CAM 38.88 34.92 37.15 37.52 40.94 37.43 33.13 30.45 36.30

Table 14: Per-scene performance on the LLFF dataset measured in PSNR.

Bit Method Fern Flower Fortress Horns Leaves Orchids Room Trex Avg.

32 Mip-NeRF 24.97 27.83 31.73 28.01 21.00 20.07 33.22 28.02 26.86
+ CAM 25.06 28.39 31.73 28.76 21.40 20.40 33.40 28.22 27.17

8 Mip-NeRF 24.95 27.56 31.27 27.66 20.88 20.07 32.97 27.73 26.64
+ CAM 25.06 27.72 31.45 28.18 21.27 20.37 33.13 27.88 26.88

Table 15: Per-scene performance on the 360 dataset measured in PSNR.

Method Bicycle Bonsai Counter Garden Kitchen Room Stump Avg.

Mip-NeRF 360 24.37 33.46 29.55 26.98 32.23 31.63 26.40 29.23
+ CAM 24.30 35.44 30.62 26.99 33.60 32.91 26.03 29.98

Table 16: Per-scene performance on the D-NeRF dataset measured in PSNR.

Method Balls Hell Hook Jacks Lego Mutant Standup Trex Avg.

NerfAcc 39.49 25.58 31.86 32.73 24.32 35.55 35.90 32.33 32.22
+ CAM 41.52 27.86 33.20 33.89 25.09 36.29 37.57 34.81 33.78
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