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a b s t r a c t 

Classification of various types of tissue in cancer histology images based on the cellular compositions is 

an important step towards the development of computational pathology tools for systematic digital pro- 

filing of the spatial tumor microenvironment. Most existing methods for tissue phenotyping are limited 

to the classification of tumor and stroma and require large amount of annotated histology images which 

are often not available. In the current work, we pose the problem of identifying distinct tissue pheno- 

types as finding communities in cellular graphs or networks. First, we train a deep neural network for 

cell detection and classification into five distinct cellular components. Considering the detected nuclei as 

nodes, potential cell-cell connections are assigned using Delaunay triangulation resulting in a cell-level 

graph. Based on this cell graph, a feature vector capturing potential cell-cell connection of different types 

of cells is computed. These feature vectors are used to construct a patch-level graph based on chi-square 

distance. We map patch-level nodes to the geometric space by representing each node as a vector of 

geodesic distances from other nodes in the network and iteratively drifting the patch nodes in the direc- 

tion of positive density gradients towards maximum density regions. The proposed algorithm is evaluated 

on a publicly available dataset and another new large-scale dataset consisting of 280K patches of seven 

tissue phenotypes. The estimated communities have significant biological meanings as verified by the 

expert pathologists. A comparison with current state-of-the-art methods reveals significant performance 

improvement in tissue phenotyping. 

© 2020 Elsevier B.V. All rights reserved. 

1. Introduction 

Tumor microenvironment (TME) plays a crucial role in the 

development of intra-tumor heterogeneity (ITH) ( Marusyk et al., 

2012 ). It is, therefore, vital that we develop ways to systematically 

profile spatial characteristics of the TME in order to better under- 

stand tumor heterogeneity and consequently exploit it for thera- 

peutic gain ( Alizadeh et al., 2015 ). Computational pathology is a 

rapidly emerging discipline ( van der Laak et al., 2018 ), spurred by 

the recent revolution in digital pathology (DP) imaging which has 
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been shown to be non-inferior to glass slide based visual assess- 

ment by pathologists for routine diagnostic purposes ( Snead et al., 

2016 ), concerned with the development of computational algo- 

rithms for the processing and analysis of DP images. Automatic tis- 

sue phenotyping, identification, and localization of a diverse range 

of tissue types, in digitized whole-slide images (WSIs) of tissue 

slides stained with routine Hematoxylin & Eosin (H&E) dyes can 

serve as a building block towards the development of computa- 

tional pathology tools for systematic digital profiling of the spa- 

tial TME ( Kather et al., 2016; Madabhushi and Lee, 2016; Nalisnik 

et al., 2017; Sari and Gunduz-Demir, 2018; Sirinukunwattana et al., 

2018 and can be employed for cancer grading and prognostication 

Nalisnik et al., 2017; Sirinukunwattana et al., 2018; Huijbers et al., 

2012; Louis et al., 2015 ). 
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Because of the importance of this problem in computational 

pathology, a number of approaches have been proposed for the 

automatic identification of tissue phenotypes ( Kather et al., 2016; 

Kather et al., 2019; Nalisnik et al., 2017; Sirinukunwattana et al., 

2018; Bianconi et al., 2015; Huang et al., 2017b; Lazebnik et al., 

2006; Linder et al., 2012; Sarkar and Acton, 2018; Srinivas et al., 

2014; Tamura et al., 1978; Vu et al., 2016; Wright et al., 2009; 

Xu et al., 2016; Xu et al., 2017 ). Texture analysis is a commonly 

used approach for tissue phenotyping ( Kather et al., 2016; Bian- 

coni et al., 2015; Linder et al., 2012; Tamura et al., 1978 ),whereby 

texture features such as local binary patterns and Gabor features 

of different histology images are computed to train classifiers 

which are then used to predict distinct tissue types. For instance, 

Sarkar and Acton (2018) recently proposed a saliency guided dic- 

tionary approach where Gabor features were extracted for histol- 

ogy image classification. Bianconi et al. (2015) proposed five differ- 

ent kinds of perception-based texture features, while ( Linder et al., 

2012 ) reported a simple SVM classifier trained on a set of local 

binary patterns and contrast measure features. Although texture- 

based methods may be attractive due to their simplicity, texture 

features do not fully capture the biological significance of tissue 

types resulting in performance degradation ( Kather et al., 2016 ). 

In recent years, a growing number of deep learning methods 

have also been proposed to classify WSIs into distinct tissue types 

( Nalisnik et al., 2017; Huang et al., 2017b; Xu et al., 2016; Xu et al., 

2017; Janowczyk and Madabhushi, 2016 ). Xu et al. (2016) pro- 

posed a fully supervised deep CNN model for segmentation and 

classification of epithelial and stromal regions in histology images. 

Huang et al. (2017b) proposed an unsupervised domain adaptation 

deep network for segmenting histology images into meaningful re- 

gions. Most deep learning methods for tissue phenotyping share 

a common denominator which is their need for large amount of 

annotated histology data for training which may be tedious to ob- 

tain ( Huang et al., 2017b; Janowczyk and Madabhushi, 2016 ). An- 

other shortcoming of most existing literature is that although en- 

couraging results were reported in these studies,most of the cur- 

rent methods are limited to the discrimination of tumor epithe- 

lium and stroma only ( Bianconi et al., 2015; Huang et al., 2017b; 

Linder et al., 2012; Xu et al., 2016 ). Like most solid tumors, col- 

orectal cancer (CRC) tissue does not consist of only tumor and 

stroma components ( Kather et al., 2016 ). It also contains a com- 

plex rich mix of several other tissue phenotypes including smooth 

muscle, inflammatory, necrotic, complex stroma, and benign tissue, 

as shown in Fig. 1 . 

In this paper, we propose the concept of cellular communi- 

ties comprising of different types of cells and pose the problem 

of tissue phenotyping as a cellular community detection problem. 

The premise is that spatially adjacent cells are more likely to re- 

ceive intercellular signals from each other than from cells that are 

further away. It is also well established that the intercellular sig- 

nalling between various types of cells in the microenvironment can 

lead to the progression of cancer ( Alberts et al., 2015 ). In clinical 

practice, pathologists consider the spatial distributions of different 

cellular components while identifying complex tissue phenotypes, 

such as the complex stroma. 

Community detection methods have attracted a good deal of at- 

tention in the literature for understanding real-world complex net- 

works in recent years, see for instance ( Fortunato, 2010; Harenberg 

et al., 2014; Mahmood et al., 2017 ). The edges and nodes in a net- 

work are often inhomogeneous, resulting in groups of nodes with 

higher concentration of edges known as communities that share 

many common attributes and similar behaviour. Different tissue 

types such as stroma, tumor, and necrotic etc., also form local cel- 

lular communities which can play an important role in the inter- 

pretation of WSIs as shown in Fig. 1 . We propose a novel semi- 

supervised community detection algorithm for automatic recogni- 

Fig. 1. A sample whole slide image of colorectal cancer (CRC) from CRC-TP dataset. 

Different tissue com ponents including tumor, stroma, smooth muscle, necrotic, in- 

flammatory, complex stroma, and benign tissue images are shown in different col- 

ors. (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.) 

tion of distinct tissue phenotypes in a colon cancer WSI. We first 

construct local cell-cell networks using potential cell-cell connec- 

tion between cells as features and whereby adjacent cells are con- 

nected with each other while distant cells are not, taking into ac- 

count the various ranges of cell signalling. Dividing a WSI into sev- 

eral thousand patches, we then construct a patch-level graph for 

the WSI using the cell-cell connection frequencies as features. Fi- 

nally, we identify tissue phenotypes by mining in the patch-level 

graph for cellular communities that are biologically meaningful 

and clinically relevant. 

A major limitation of most community detection meth- 

ods is the presence of a relatively high number of inter- 

community edges which makes the detection of communities dif- 

ficult ( Fortunato, 2010 ). To address this problem, we propose to 

map the patch-level network nodes to the geometric space by rep- 

resenting each node as a vector of geodesic distances from other 

nodes in the network. The geodesic density gradient is then com- 

puted in the geodesic space and nodes are drifted towards max- 

imum density regions ( Mahmood et al., 2017 ). After the conver- 

gence of the network in the geometric space, simple K-means clus- 

tering algorithm is used to assign community labels to each patch 

(see Fig. 1 ). The nodes in each community represent biologically 

meaningful tissue components which are distinct from the other 

communities. An earlier version of this work was presented at the 

MICCAI Computational Pathology workshop ( Javed et al., 2018 ). The 

main contributions of this work are as follows: 

1. Instead of using texture features to represent a patch of WSI, 

we consider the potential cell-cell connections between vari- 

ous types of cells as representative features of a patch. These 

features are biologically more meaningful and better capture 

the distribution of different types of cells in the histology 

patch. 

2. We pose the problem of identifying tissue phenotypes as 

a community detection problem in histological landscape 

where each community represents a distinct tissue pheno- 

type, for example tumor, benign, stroma, inflammatory, com- 

plex stroma, and smooth muscle. To the best of our knowl- 

edge, the formulation of tissue phenotyping as community 

detection has not been done before. The use of geodesic 

density gradients for tissue phenotyping is also novel and 

has resulted in significant performance improvement. 
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3. We propose a new large-scale dataset for tissue phenotyp- 

ing which consists of 280K patches extracted from 20 WSIs 

of CRC slides stained with H&E. Each slide is taken from a 

different patient. Each WSI contains exhaustive region-level 

annotation of seven distinct tissue phenotypes labelled by 

experienced pathologists ( KB and KH ). The dataset has two 

different testing and training settings including patch-level 

separation and patient-level separation. This CRC Tissue Phe- 

notyping (CRC-TP) dataset will soon be publicly released. 

4. An existing dataset known as CRCHistoPhenotypes 1 

( Sirinukunwattana et al., 2016 ) for Cell Detection and 

Classification (CDC) has been extended to include five dis- 

tinct cell types: tumor epithelial, normal epithelial, necrotic, 

spindle-shaped, and inflammatory cells. This dataset also 

contains patch-level and patient-level separations between 

training and testing splits. The extended dataset named as 

CRC-CDC will soon be made publicly available. 

The proposed algorithm is evaluated on two independent 

datasets including colon cancer tissue dataset ( Kather et al., 2016 ) 

and our proposed CRC-TP dataset and compared with 27 recent 

state-of-the-art methods. The results demonstrate the superiority 

of the proposed algorithm over the existing methods by a signifi- 

cant margin. 

The rest of this paper is organized as follows. Recent literature 

on tissue phenotyping is given in Section 2 . Section 3 describes 

the proposed algorithm in detail. Experiments and results are dis- 

cussed in Section 4, and finally conclusions and future directions 

are given in Section 5. 

2. Related work 

In the past few years, many studies have investigated histology 

image classification problem ( Bianconi et al., 2015; Huang et al., 

2017b; Kather et al., 2016; Lazebnik et al., 2006; Linder et al., 

2012; Nalisnik et al., 2017; Sarkar and Acton, 2018; Sirinukunwat- 

tana et al., 2018; Srinivas et al., 2014; Tamura et al., 1978; Vu 

et al., 2016; Wright et al., 2009; Xu et al., 2016; Xu et al., 2017 ). 

Many excellent surveys have also been contributed in this direc- 

tion ( Irshad et al., 2014; Janowczyk and Madabhushi, 2016; Komura 

and Ishikawa, 2018; Madabhushi and Lee, 2016; Qaiser et al., 2018; 

Veta et al., 2014 ). Existing tissue phenotyping approaches can be 

broadly categorized into texture-based methods ( Bianconi et al., 

2015; Kather et al., 2016; Kothari et al., 2013; Linder et al., 2012; 

Tamura et al., 1978 ), sparse representation methods ( Sarkar and 

Acton, 2018; Srinivas et al., 2014; Vu et al., 2016 ), and deep learn- 

ing methods ( Bejnordi et al., 2018; Du et al., 2018; Huang et al., 

2017b; Nalisnik et al., 2017; Xu et al., 2016; Xu et al., 2017 ). 

Texture-based methods estimate the local texture around a 

pixel of the histology image to alleviate the effect of heterogene- 

ity ( Bianconi et al., 2015; Kather et al., 2016; Kothari et al., 2013; 

Linder et al., 2012; Tamura et al., 1978 ). These features consist 

of Local Binary Patterns (LPB), Gabor features,lower and higher 

order histogram features, gray level co-occurrence matrix at dif- 

ferent directions, and perception-based features. Texture features 

of different histology images are first estimated, and then they 

are used to train SVM classifiers for predicting tissue phenotypes. 

Tamura et al. (1978) proposed five different perception-based fea- 

tures including coarseness, contrast, directionality, line-likeness, 

and roughness. Bianconi et al. (2015) exploited these perception 

features for tissue phenotyping. Kothari et al. (2013) proposed 

Fourier shape-based descriptor for the identification of retinal tu- 

mor in images. Linder et al. (2012) proposed to use LBP with con- 

trast measure features. Encouraging results were reported in these 

1 https://warwick.ac.uk/TIAlab/data/crchistolabelednucleihe/ . 

studies. However, the studies presented in ( Bianconi et al., 2015 ) 

and ( Linder et al., 2012 ) were limited for the identification of tu- 

mor epithelium and stromal tissue phenotypes. To address this de- 

ficiency, Kather et al. (2016) recently proposed to use six differ- 

ent types of texture-based descriptors for the classification of eight 

different tissue phenotypes in colon cancer histology images. Al- 

though, the discrimination performance improved, the texture de- 

scriptors do not fully capture the biological significance of the tis- 

sue components, hence this method is not very accurate in iden- 

tifying tumors with complex stroma and mucosa ( Kather et al., 

2016 ). 

Sparse representation approaches encode a histology image as 

a sparse linear combination of basis functions or dictionary atoms 

( Lazebnik et al., 2006; Sarkar and Acton, 2018; Srinivas et al., 

2014; Vu et al., 2016; Wright et al., 2009 ). For each tissue phe- 

notype, a different dictionary is learned and based on the rep- 

resentation error, tissue phenotypes of test images are identified. 

Srinivas et al. (2014) proposed a multi-channel dictionary using the 

RGB tissue features. Vu et al. (2016) proposed a dictionary learning 

technique trained on increasing the inter-class and decreasing the 

intra-class variability. Sarkar and Acton (2018) recently proposed a 

saliency-guided sparse representation approach for multi-class tis- 

sue phenotypes. Results reported in these studies are promising 

however, the dictionaries are trained by using the color and tex- 

ture features resulting in the performance degradation similar to 

the texture-based approaches. 

Recently, Deep CNN (DCNN) based methods have also been 

proposed for tissue phenotyping ( Bejnordi et al., 2018; Du et al., 

2018; Huang et al., 2017b; Nalisnik et al., 2017; Xu et al., 2016; 

Xu et al., 2017 ). DCNN models learn the rich hierarchy of con- 

volutional features for each class and then predict the tissue 

type. Xu et al. (2016) proposed a DCNN model for classifying 

breast cancer histology images. Their network comprised of two 

convolutional layers, two max-pooling layers, and two fully con- 

nected layers followed by a soft-max layer. Du et al. (2018) and 

Huang et al. (2017b) proposed DCNN models incorporating the 

notion of domain adaptation in the AlexNet and GoogleNet. 

Xu et al. (2017) improved the AlexNet model for the segmentation 

and classification of histology images. Bejnordi et al. (2018) pro- 

posed three DCNN models for classifying breast cancer WSIs. The 

first network was trained to classify WSI into fat, stroma, and 

epithelium tissues. The second DCNN processed the stromal re- 

gions and predicted the complex stroma regions. The third DCNN 

was trained to classify invasive cancer in the WSIs. These stud- 

ies produced better results in many complex situations however, 

these methods are limited to binary classification including tu- 

mor epithelium and stroma. Moreover, these methods require large 

amounts of labelled training histology data, which may not always 

be available. In contrast, we propose a semi-supervised algorithm 

which does not require any labelled training data for the classifi- 

cation of tissue phenotypes. 

Most of the existing approaches consider binary classification 

only and rely on texture features. In contrast, we observe that 

if the potential cell-cell connections between cellular components 

can be exploited as a discriminator, the performance of tissue phe- 

notyping can be significantly improved in the presence of com- 

plex tissue structure. Moreover, we propose the tissue classifica- 

tion problem as identifying network communities. To the best of 

our knowledge, no similar method has previously been reported 

for tissue classification. 

3. Tissue phenotyping via community detection 

In the proposed tissue phenotyping algorithm, a given WSI is 

divided into non-overlapping patches, and in each patch, we clas- 

sify cells using a deep neural network. In this study, we have used 

https://warwick.ac.uk/TIAlab/data/crchistolabelednucleihe/
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Fig. 2. The framework of our proposed tissue phenotyping algorithm using community detection. (a) An example CRC WSI taken from CRC-TP dataset; (b) A patch of size 

150 × 150 pixels (extracted at 20 × magnification level in our CRC-TP dataset); (c) Results of the cell detection and classification method where red, green, blue, yellow, 

and black colors represent Tumor epithelial (T), Inflammatory (I), Debris or necrotic (D), Spindle-shaped (S), and Normal epithelial (N) cells; (d) Construction of cell graph 

using Delaunay triangulation where nodes represent the spatial locations of cellular components and edges represent potential cell-cell connections of cellular components; 

(e) Reduction in heterogeneity by removing cell-cell connections between distant cells; (f) Computation of 15 dimensional feature vector from each cell graph capturing 

potential cell-cell connections and distribution of cell nuclei; The bars of single color show cell-cell connection between similar types of cell, while the bars of two colors 

represent cell-cell connection between two different cellular components; For example, red bars show T to T cell-cell connection and red-black bars show T to N cell-cell 

connection; (g) Patch-based graph construction, where each node is a feature vector of the corresponding cell graph as shown in (d); (h) Proposed community detection 

algorithm where different colors represent local tissue communities; The nodes drift iteratively towards local maximum geodesic density regions resulting in a reduced 

intra-class distance and increased inter-class distance; (i) Results of the proposed algorithm where the local tissue communities are overlaid on WSI. (For interpretation of 

the references to colour in this figure legend, the reader is referred to the web version of this article.) 

a patch size of 150 × 150 pixels at 20 × resolution from each WSI. 

Based on the cell-cell connections and distribution of different cel- 

lular components in each patch, we compute patch-level feature 

vectors which are then used to compute a patch-level graph. In 

this graph, each node represents a locality contained by a patch. 

Based on the connections between different nodes, the patch-level 

graph is divided into seven histology communities. A schematic di- 

agram of the overall proposed algorithm is shown in Fig. 2 . The 

proposed approach consists of four main steps including cell de- 

tection and classification, cell graph construction and computation 

of cell-cell connections features, construction of patch-level graph, 

and computation of tissue phenotype communities using a com- 

munity detection algorithm. In the following subsections, each of 

these steps are explained in more detail. 
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3.1. Cell nuclei identification 

In this work, potential cell-cell connections between differ- 

ent cellular components has been used as features which are 

then used for identifying tissue communities. In order to com- 

pute potential cell-cell connections, we first identify different types 

of cells in each histology patch referred to as locality. For this 

purpose, we use Spatially Constrained Convolutional Neural Net- 

work (SC-CNN) proposed by Sirinukunwattana et al. (2016) and 

pre-trained Tunable Shape Priors CNN (TSP-CNN) proposed by 

Tofighi et al. (2019) for cell detection. For the training of SC-CNN 

for cell detection, nuclei centres were manually marked. A proba- 

bility map was generated such that maximum probability was as- 

signed to the centroid pixels. For the other pixels, the probability 

decreases as the distance from the centroid increases. Using this 

probability map, the detection network is trained to assign an ap- 

propriate probability to each pixel in the test patch for being a nu- 

clei centroid. 

The classification SC-CNN network proposed by 

Sirinukunwattana et al. (2016) was able to classify only four 

classes including Epithelial, Miscellaneous, Inflammatory, and 

Fibroblast. In the current work, we extended the classification 

network to predict five distinct classes including Tumor epithelial 

(T), Spindle-shaped (S), Debris or necrotic (D), Normal epithe- 

lial (N), and Inflammatory (I) cells. Multiple shifted patches are 

extracted around each detected nuclei location which are used 

for the training of the classification network. The classification 

network comprises of two convolution layers and two max-pooling 

layers with a stride of 2 × 2, two fully connected layers followed 

by the classification layer and the probability for each label is 

predicted using soft-max layer. For a test nuclei, multiple shifted 

patches are extracted and classified using the network and the 

class label of the test nuclei is computed from a weighted sum of 

all the probability maps of the shifted patches. A patch having a 

larger distance from the detected nuclei is assigned smaller weight 

compare to a patch closer to the nuclei. The output of the network 

is a set of five different types of cell nuclei shown in Fig. 2 (c). 

3.2. Cell graph construction 

For each patch X i ∈ R 

p×p (patch size is 150 × 150 at 

20 × magnification level), we construct a cellular graph such that 

the vertices correspond to the spatial locations of cells and the 

edges are assigned using Delaunay triangulation ( Fig. 2 (d)). The 

Delaunay triangulation estimates a triangle for each cell by finding 

two nearest cells and inserts edges among the three cells. We ob- 

serve that cells on the opposite sides of tissue constituent white 

space also known as lumen and endothelium known as micro- 

vessels do not communicate to each other. To avoid these edges, 

we use a distance threshold between the cells. The edges between 

cells which are at a distance larger than a threshold are discarded 

as shown in Fig. 2 (e). By removing these edges, the problem of 

heterogeneity within the edges is also reduced. 

For each patch, we compute a feature vector by computing 

15 potential cell-cell connections between cellular components in- 

cluding T to T (red), T to I (red and green), T to S (red and yellow), 

T to D (red and blue), T to N (red and black), I to I (green), I to 

S (green and yellow), I to D (green and blue), I to N (green and 

black), S to S (yellow), S to D (yellow and blue), S to N (yellow and 

black), D to D (blue), D to N (blue and black), and N to N (black) as 

shown in Fig. 2 (f). The cell-cell connection features are computed 

as the frequency of each cell-cell connection in a given cell graph: 

h i = Cell-CellConnectionFeat ( A 

cg 
i 

, l cg 
i 

) , (1) 

where A 

cg 
i 

is the adjacency matrix of cell graph of i th patch and 

l 
cg 
i 

is the cell labels for each node in the same cell graph, and 

h i ∈ R 

m represents distribution of cellular components in the cell- 

graph, where m = 15 . We create an input data matrix for each WSI 

as 

H = [ h 1 , h 2 , . . . , h n ] ∈ R 

n ×m , (2) 

where n denotes the number of patches in the WSI. 

3.3. Patch-level graph construction 

Using the cell graph feature vectors, we construct an undirected 

graph G p = ( V , A ) such that each vertex v i corresponds to h i in the 

feature matrix H . The adjacency matrix A ∈ R 

n ×n is computed by 

employing chi-squared distance as: 

A (i, j) = exp 

(
− 1 

σ

m ∑ 

k =1 

( h i,k − h j,k ) 
2 

h i,k + h j,k 

)
, (3) 

where h i ∈ R 

m and h j ∈ R 

m are two feature vectors, and σ is a 

weight decay control parameter. The adjacency matrix A represents 

a weighted graph whereby the weight between two vertices quan- 

tifies the closeness or the similarity between the corresponding 

cell graphs. Using the adjacency matrix A , we compute a geodesic 

distance matrix G . 

G = All-Pairs-Shortest-Paths ( A ) . (4) 

The geodesic distance is more meaningful in case the data is 

distributed on a nonlinear manifold. In such cases, the chi-squared 

distance between two features may be small but corresponding 

geodesic distance may be large. We assume that the network rep- 

resented by the adjacency matrix A in Eq. (3) is fully connected. 

We represent each network node h i ∈ R 

m using its shortest dis- 

tances from all other nodes in the network g i ∈ R 

n also known 

as geodesic distances using Eq. (4) . Note that the geodesic dis- 

tance computation acts as a kernel projecting the feature vec- 

tor to a higher dimensional space. This projection results in bet- 

ter separation between different clusters in the tissue phenotype 

network. The distance between two geodesic vectors g i and g j in 

G = [ g 1 , · · · , g n ] is defined as 

d i, j = 

√ 

( g i − g j ) 
� W ( g i − g j ) , (5) 

where W ∈ R n × n is a diagonal matrix containing weights for each 

dimension of the geodesic distance vector. These weights are ad- 

justed such that the local and global structure of the network be- 

comes equally important ( Mahmood et al., 2017 ). 

W (p, q ) = 

{ 1 
2 
, if p = q = { i, j} , 
1 

n −2 
, if p = q � = { i, j} , 

0 , if p � = q. 

(6) 

Thus, the weight of the shortest distances corresponding to p = q = 

{ i, j} becomes 1.00 and the weight of the remaining shortest dis- 

tances, which are n − 2 , also collectively becomes 1.00. So, we en- 

sure a balance between direct distances and indirect distances. Us- 

ing this definition of distances in the geodesic space, we compute 

cellular communities in the patch-level graph as described below. 

3.4. Computing cellular communities 

In the patch level graph, instead of considering each network 

node as a discrete point in the geodesic space, we consider it yield- 

ing a continuous density function. As an example, a density at a 

point s induced by a node g i is given by 

K( s | g i , σg ) = 

1 

(2 π) 
n 
2 σ n 

g 

exp 

(
−( g i − s ) � W ( g i − s ) 

2 σ 2 
g 

)
, (7) 



6 S. Javed, A. Mahmood and M.M. Fraz et al. / Medical Image Analysis 63 (2020) 101696 

The parameter σ g is the bandwidth of the kernel function in 

geodesic space. By varying σ g , we can vary the probability den- 

sity induced by a node at a particular distance from that node. 

Each network node is assumed to induce its density in the whole 

geodesic space. The probability density at point s induced by all 

network nodes gets superimposed. The resulting density is given 

by 

f ( s ) = 

1 

(2 π) 
n 
2 σ n 

g 

n ∑ 

i =1 

K 

(√ 

W ( s − g i ) 

σg 

)
. (8) 

The cumulative density function as defined by Eq. (8) varies across 

the space. We intend to drift the network nodes towards the 

higher density regions. Each density region corresponds to a par- 

ticular tissue phenotype in the WSI. For this purpose, we compute 

the gradient of the cumulative density function as follows 

∇ f ( s ) = 

√ 

W 

(2 π) 
n 
2 σ n 

g 

n ∑ 

i =1 

∇K 

(√ 

W ( s − g i ) 

σg 

)
, (9) 

where ∇ is a gradient operator with respect to each of the dimen- 

sions of the space. Using the values of K from Eq. (7) and differen- 

tiating it with respect to g as: 

∇ f ( s ) = 

√ 

W 

(2 π) 
n 
2 σ n 

g 

n ∑ 

i =1 

(√ 

W ( s − g i ) 

σ 2 
g 

K( s | g i , σg ) 

)
, (10) 

where ∇ f ( s ) is the estimate of the average density gradient 

pointing in the direction of the maximum increase in density. If 

each network node is drifted towards positive density gradient, 

then nodes will converge towards maximum density regions. In 

these regions, the density gradient will approach to zero. It is be- 

cause density will be the same in all directions. Assuming s to be 

the current estimate of a node, setting ∇ f ( s ) = 0 , we get the new 

estimate as follow: 

�s = 

∑ n 
i =1 s exp (( g i − s ) � W ( g i − s ) / 2 σ 2 

g ) ∑ n 
i =1 exp (( g i − s ) � W ( g i − s ) / 2 σ 2 

g ) 
. (11) 

Eq. (11) is repeatedly applied to each node of the network to get 

updated node position g k +1 
i 

= g k 
i 

+ �s , where g k 
i 
is the current po- 

sition of the node in k th iteration and g k +1 
i 

is the updated position 

k + 1 iteration. It results in each node iteratively drifting towards 

local density maximum. The nodes are assumed to converge to the 

final positions when the cumulative drift r k +1 becomes less than a 

threshold. 

r k +1 = 

n ∑ 

i =1 

|| g k +1 
i 

− g k i || 2 . (12) 

In maximum density regions, gradients become very small 

therefore most of the nodes may not converge to a single point 

in space, instead, most of the nodes stop at different close-by po- 

sitions. Therefore, in order to obtain a discrete community labels, 

we apply K-means algorithm on the final positions g k +1 
i 

of nodes. 

� = K-means ({ g k +1 
i 

} n i =1 , c l ) , (13) 

where c l is the number of tissue communities, and � ∈ R n is the 

community label vector. Each cluster indicates a discrete com- 

munity corresponding to a particular tissue phenotype. Using the 

community labels found by Eq. (13) , we compute the geometric 

centres for each tissue community for the cell connectivity features 

given by Eq. (2) . These geometric centres c j are considered as rep- 

resentative samples of each tissue phenotype. Fig. 3 (a)–(h) show 

these representative samples obtained from each cluster centre. 

The tissue patches belonging to each cluster are presented to the 

experienced pathologists. The computed clusters are biologically 

meaningful and the pathologists assigned a distinct tissue phe- 

notype to each cluster including tumor, stroma, complex stroma, 

Algorithm 1: Proposed tissue phenotyping algorithm. 

Input : n image patches X = [ X 1 , X 2 , . . . , X n ] , where 

each X i ∈ R 

p×p . 

Ouput: Representative tissue communities such as 

Tumor ( c t ∈ R 

m ), Stroma ( c s ∈ R 

m ), Debris 

( c d ∈ R 

m ), Inflammatory ( c in ∈ R 

m ), Smooth muscle 

( c sm 

∈ R 

m ), Benign ( c b ∈ R 

m ), and Complex stroma 

( c cs ∈ R 

m ) 

Step 1: Cell detection and classification on each 

X i ∈ R 

p×p . 

Step 2: Construct cell-level graph. 

Step 2: Compute h i using Eq. (1). 

Step 3: Compute H using Eq. (2). 

Step 4: Compute A ∈ R 

n ×n using Eq. (3). 

Step 5: Compute G ∈ R 

n ×n using Eq. (4). 

while not converged do 
1. Compute drift for each node using Eq. (11). 

2. Check convergence according to Eq. (12) 

end 

Step 6: Compute community labels using Eq. (13). 

smooth muscle, debris, benign, and inflammatory. Algorithm 1 de- 

scribes each step of the proposed method. The predicted com- 

munity labels are compared with the ground truth labels of each 

patch using three different clustering quality measures including 

normalized mutual information, adjusted rank index, and purity as 

discussed in Section 4.4 below. 

4. Experiments and evaluations 

The proposed Tissue Phenotyping using Community Detection 

(TPCD) algorithm is evaluated both quantitatively and qualita- 

tively on two different CRC datasets including Colon Cancer Tissue 

(CCT) dataset ( Kather et al., 2016 ) and our newly proposed CRC- 

TP dataset which has two versions. The first version has patch- 

level separation between testing and training data while the sec- 

ond version has patient-level separation as specified below. The re- 

sults of tissue phenotyping algorithm are compared with 27 state- 

of-the-art methods including 12 published methods, 4 deep neu- 

ral networks-based methods, 5 Graph CNN-based (GCN) methods, 

and 7 variants of the proposed algorithm. Since, the cell detection 

and classification are pre-processing steps for our proposed tis- 

sue phenotyping algorithm, therefore, we also discuss the perfor- 

mance of different existing methods on our newly proposed CRC- 

CDC dataset. 

4.1. State-of-the-art compared methods 

4.1.1. Comparison with existing tissue phenotyping methods 

We compared our proposed algorithm with the following 

methods: K-Medoids clustering with Chi-square Distance (KM-CD) 

( Sirinukunwattana et al., 2018 ), Subspace Clustering ( Elhamifar and 

Vidal, 2013 ), Dictionary Learning with KL Divergence (DL + kldiv) 

( Mairal et al., 2012 ), Sparse representation-based Compression Dis- 

tance (SCD) ( Guha and Ward, 2014 ), Sparse Representation-based 

Classification (SRC) ( Wright et al., 2009 ), Best Five Features with 

SVM classification (B5F-SVM) ( Kather et al., 2016 ), Best Six Features 

with SVM classification (B6F-SVM) ( Kather et al., 2016 ), Discrim- 

inative Features Oriented Dictionary learning (DFOD) ( Vu et al., 

2016 ), Simultaneous Sparsity model for Histopathological Image 

Representation and Classification (SHIRC) ( Srinivas et al., 2014 ), 

Spatial Pyramid Matching (SPM) ( Lazebnik et al., 2006 ), Saliency- 

based Dictionary Learning with Smoothness constraints (SDLs) 

( Sarkar and Acton, 2018 ), and SVM-CNN ( Xu et al., 2017 ). All im- 
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Fig. 3. Representative cluster centres of seven distinct tissye phenotypes using our proposed algorithm. The representative tissue images are also shown in each tissue 

phonotype. 

plementations are obtained from the original authors and we used 

the default parameters as proposed by the original authors. We 

implemented SVM-CNN method for multi-class tissue classification 

( Xu et al., 2017 ). We extracted deep features from the fully con- 

nected layer 2 (fc-2) of AlexNet ( Krizhevsky et al., 2012 ) and then 

we trained linear SVM classifier for tissue phenotyping. 

4.1.2. Tissue phenotyping using deep neural networks 

We compared our methods with the four deep neural networks 

including Mobile DCNN (MobileNet) ( Howard et al., 2017 ), deep 

Residual CNN-50 (ResNet50) ( He et al., 2016 ), ResNet101 ( He et al., 

2016 ), and DenseNet ( Huang et al., 2017a ). These networks were 

pertained on the ImageNet database ( Deng et al., 2009 ). We re- 

placed the classification layer and fine-tuned these networks with 

stochastic gradient descent with a momentum of 0.8. To gauge the 

performance of these network architectures, we randomly divided 

the tissue phenotyping datasets into 70% training set and 30% test- 

ing set. We trained all networks on a desktop workstation with 

two NVidia Titan Xp GPUs with a mini-batch size of 256 and a 

learning rate of 3 × 10 −4 for 130 epochs. In all cases, rotational 

invariance was achieved through data augmentation with random 

horizontal and vertical flips of the training images. Images were 

re-sized to the neural network input size if necessary. 

4.1.3. Tissue phenotyping using GCN methods 

The Graph CNN (GCN) methods compute the node embedding 

of the graph which are then used for node classification in trans- 

ductive as well as inductive learning manners. The labels of the 

training nodes, feature vectors, and input graph are fed to GCN 

methods. We compared our proposed algorithm with five GCN 

methods including GCN with fast localized Spectral Filtering (GCN- 

SF) ( Defferrard et al., 2016 ), Semi-Supervised classification with 

GCN (SSC-GCN) ( Kipf and Welling, 2017 ), GCN for web-scale Rec- 

ommender Systems (GCN-RS) ( Ying et al., 2018 ), Deep Graph In- 

fomax (DGI) ( Veli ̌ckovi ́c et al., 2019 ), and GCN with Arma fil- 

ters (GCN-AF) ( Bianchi et al., 2019 ). These methods are compared 

with Euclidean distance-based graph as well as our proposed cell 

features-based patch-level graph given by Eq. (3) . For Euclidean 

distance-based graph construction, the deep features are extracted 

using the VGG-16 model. The features are compressed using PCA 

and the resulting feature vector of dimension 128 is obtained for 

each patch, which is then used for the distance computation as 

suggested by Li et al. (2018) . The implementations of compared 

GCN methods are taken from the original authors 2 and training is 

performed by using the recommended parameters in the relevant 

publications. 

4.1.4. Proposed algorithm variants and settings 

Different steps of the proposed algorithm are evaluated by 

designing six variants including TPCD-1, our previous study re- 

ferred as TPCD-2 ( Javed et al., 2018 ), TPCD-3, TPCD-Hist, SVM- 

Cellfeatures, TPCD-4, and TPCD-CG. In TPCD-1 algorithm, geodesic 

distance computation is skipped and the network as given by 

Eq. (3) is directly used for further processing. TPCD-2 and TPCD- 

3 algorithms are similar with the only difference that cells at a 

relatively larger distance also communicate in TPCD-2 which re- 

sults in increased heterogeneity. In TPCD-3 algorithm, these cell- 

cell connections are removed using a threshold on the physical 

distance between different cellular components as previously de- 

scribed in Section 3.2 . In TPCD-Hist, the histogram of cell types is 

used as a feature vector while the remaining processing is sim- 

ilar to TPCD-3. TPCD-4 is similar to TPCD-3 except for the cell 

detection component instead of using SC-CNN method proposed 

by ( Sirinukunwattana et al., 2016 ), we have employed a recently 

proposed cell detection method known as TSP-CNN proposed by 

Tofighi et al. (2019) . SVM-Cellfeatures consists of SVM classifier us- 

ing cell-cell connections features. In SVM-CellFeatures, SVM-CNN, 

B5F-SVM, and B6F-SVM methods, we train the SVM classifier and 

we used 10-fold cross validation. Both datasets were randomly di- 

vided in 10 parts, and 10 rounds of training and testing were per- 

formed. For each subdivision a different 10% subset of the dataset 

was used for testing while the other 90% was used for training. 

2 https://github.com/rusty1s/pytorch _ -geometric . 

https://github.com/rusty1s/pytorch_-geometric
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Fig. 4. Varying values of threshold to remove distant edges in cellular graph. 

In addition, we also implemented TPCD algorithm on each Cell- 

level Graph (TPCD-CG) without exploiting cell classification infor- 

mation. From each patch, we constructed cell-level graph using De- 

launay triangulation and then the feature vector corresponding to 

three structural properties including average degree, average clus- 

tering coefficient, and diameter ( Dorogovtsev and Mendes, 2002 ) 

of the cell-level graph is computed. TPCD algorithm is then used 

to compute the distinct tissue phenotypes. 

In our experiments, we used a threshold of 45-pixel distance to 

remove the distant edges in TPCD-3 algorithm. Performance varia- 

tion is investigated by varying this threshold from 10 to 60 in steps 

of 5 as shown in Fig. 4 . The best performance is observed for a 

threshold of 45. In Eq. (12) , the cumulative drift r k +1 is bounded 

to be more than 0.003. For r k +1 < 0 . 003 , further iterations are 

stopped. 

4.2. Datasets 

4.2.1. Proposed cell detection and classification dataset (CRC-CDC) 

An earlier study of cell detection and classification was 

performed on CRCHistoPhenotypes dataset 3 consisting of 100 

H & E stained histology images obtained from 9 patients 

( Sirinukunwattana et al., 2016 ). This dataset had four cell classes 

including epithelial, inflammatory, miscellaneous, and fibroblast. 

The epithelial class contained both normal epithelial and tumor- 

epithelial cells. Therefore, tissue phenotyping based on these 

classes resulted in the same community label for the tumor and 

the benign phenotypes which is an undesired result. In order 

to differentiate tumor from benign tissue phenotype, we have to 

re-label normal epithelial cells and tumor epithelial cells sepa- 

rately. In the current study, we extend the CRCHistoPhenotypes 

dataset to 256 H & E stained images of CRC obtained from 20 

different patients and containing five distinct cell classes includ- 

ing tumor epithelial, normal epithelial, spindle-shaped, inflamma- 

tory cells, and necrotic. The extended version is named as CRC-CDC 

dataset in which each visual field contains 500 × 500 pixels ex- 

tracted at 20 × magnification level. For the annotations purpose, 

the same protocol was used as reported by the previous study 

( Sirinukunwattana et al., 2016 ). Manual annotations of cell nuclei 

3 https://warwick.ac.uk/TIAlab/data/crchistolabelednucleihe/ . 

are made by experienced pathologists ( YT and KH ) and partly by 

a research fellow under the supervision of the same pathologists. 

After full annotations, each annotated nuclei was reviewed by both 

of the pathologists; therefore refining their own and each others 

annotations. Annotating the data in this way ensured that minimal 

nuclei were missed in the annotation process. However, we cannot 

avoid inevitable few pixel difference between the annotation and 

the true nuclei centre. A total of 38,984 nuclei are marked at the 

centre for detection purposes. Out of these, 30,531 nuclei have as- 

sociated class labels. In total, there are 7231 tumor epithelial cells, 

6545 normal epithelial cells, 5712 spindle-shaped cells, 6971 in- 

flammatory cells, and 4072 necrotic cells. 

To test the generalization of the cell detection and classifica- 

tion network SC-CNN ( Sirinukunwattana et al., 2016 ), two exper- 

imental settings are used. In the first experiment, 70% nuclei are 

randomly selected for training and the remaining 30% nuclei are 

used for testing. In the second experiment, patient-level separa- 

tion is maintained by keeping the images from 14 patients as train- 

ing data while the images of the remaining 6 patients are used for 

testing data. 

4.2.2. Colon cancer tissue (CCT) dataset 

The CCT dataset contains eight different types in human 

CRC histology obtained from H & E stained slides of CRC samples 

( Kather et al., 2016 ). The tissue categories are manually annotated 

and overlapping patches of size 150 × 150 extracted from these 

samples. The 8 categories are: tumor, stroma, complex structured 

stroma, lymphocytes, debris, mucosa, adipose, and background. 

Due to a lack of cellular structure, the background and adipose 

classes are not considered in our experiments. Sample images from 

the remaining 6 tissue classes are shown in Fig. 5 . There are a total 

of 3750 images in these 6 classes, with 625 images per class. 

4.2.3. Proposed CRC tissue phenotyping (CRC-TP) dataset 

This dataset consists of 280K patches extracted from 20 WSIs of 

CRC stained with H & E taken from our local University Hospitals 

Coventry and Warwickshire (UHCW) for tissue phenotyping. The 

20 WSIs are obtained from 20 different patients. Each WSI is man- 

ually region-level annotated by expert pathologists ( KB and KH ) 

for seven distinct tissue phenotypes. Out of 20 WSIs, the tumor re- 

gions were marked from five WSIs, stroma from three WSIs, com- 

plex stroma from four WSIs, smooth muscle from two WSIs, In- 

flammatory from three WSIs, Benign from four WSIs, while the De- 

bris regions were marked from four WSIs. Using these boundaries, 

patches were extracted and each patch was assigned a unique la- 

bel based on majority of its content. Each patch and its label were 

then inspected by the same pathologists and verified correctness of 

the patch and its label. Patches containing significant pixels from 

more than one phenotype were discarded. Therefore, in the result- 

ing dataset, patch of a particular phenotype mostly contains one 

tissue phenotype however, we cannot avoid the presence of small 

percentage of other phenotypes in addition to the identified label. 

Overal, the dataset consists of 50K patches each for Tumor (Tu), 

Stroma (St), Complex Stroma (CS), and Smooth Muscle (SM) phe- 

notypes. Each of the Benign (Be) and Inflammatory (In) phenotypes 

consist of 30K patches while the Debris (De) class consists of 20K 

patches. Following the ( Kather et al., 2016 ), the patch size is fixed 

to 150 × 150 pixels extracted at 20 × magnification level and the 

patches are non-overlapping. Fig. 5 shows some sample tissue im- 

ages from the proposed dataset. 

To test the generalization of the proposed tissue phenotyping 

algorithm and compared methods, two experimental settings are 

used. In the first experiment, 70% patches of each tissue phenotype 

are randomly selected for training and remaining 30% are used for 

testing. In the second experiment, patient-level separation is main- 

tained by keeping 14 patients data for training and remaining 6 

https://warwick.ac.uk/fac/sci/dcs/research/tia/data/crchistolabelednucleihe/
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Fig. 5. Sample images of six and seven tissue phenotypes from CCT dataset ( Kather et al., 2016 ) and our newly proposed CRC-TP dataset. From left to right; (a) Tumor, (b) 

Stroma, (c) Complex Stroma, (d) Debris, (e) Inflammatory or Lymphoytes, (f) Benign or Mucosa, and (g) Smooth muscle. The blue boundary line shows the sample images 

of CRC-TP dataset while green boundary line shows the samples images of CCT dataset. (For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 

patients data for testing. The number of patches are kept same in 

both experiments. 

4.3. Cell detection and classification performance on CRC-CDC dataset 

For cell detection and classification, we compare the perfor- 

mance of the SC-CNN and TSP-CNN methods on CRCHistoPheno- 

types dataset and on our proposed CRC-CDC dataset with nuclei- 

level separation and with patient-level separation. The SC-CNN has 

two different networks one for nuclei detection and one for nu- 

clei classification as discussed in Section 3.1 while, TSP-CNN has 

only detection network therefore, we also combined SC-CNN classi- 

fication network with TSP-CNN to get the combined detection and 

classification performance. In addition to SC-CNN cell classifica- 

tion network, we also evaluated the performance of ResNet50 and 

DenseNet for cell classification. The SC-CNN detection network is 

re-trained on CRC-CDC dataset while TSP-CNN 

4 was pre-trained on 

CRCHistoPhenotypes dataset. The classification networks including 

SC-CNN, ResNet50, and DenseNet are trained on CRC-CDC dataset 

for five distinct nuclei classes. 

For SC-CNN networks, we use input patch size of 27 × 27 pix- 

els containing a single cell, cropped by keeping the nuclei at the 

centre position. We also use data augmentations in which we ro- 

tate patches (0 0 , 90 0 , 180 0 , and 270 0 ) and flip along vertical and 

horizontal axis to make the networks orientation independent. We 

also extracted multiple patches for the same nuclei at shifted lo- 

cations to make the networks shift invariant and to improve the 

cell localization. For network training, we used cross entropy loss 

function with stochastic gradient descent with momentum of 0.9, 

120 epochs, and learning rate was set as 10 −3 . For ResNet50 and 

DenseNet, the input patch size is enlarged as required by the re- 

spective network. 

We followed the same two-fold cross validation pro- 

cedure for performance evaluation as suggested by 

4 http://php.scripts.psu.edu/mqt5352/SP-CNN/SP-CNN.php . 

Sirinukunwattana et al. (2016) . The nuclei detected within 6- 

pixel distance from the ground truth locations are considered as 

True Positives (TP). The nuclei detection performance is evaluated 

using F 1 measure score as: 

F 1 = 2 × P recision × Recal 

P recision + Recall 
, where 

P recision = 

T P 

T P + F P 
, Recall = 

T P 

T P + F N 

, (14) 

and False Positives ( FP ) are incorrectly detected nuclei, while False 

Negatives ( FN ) are miss-detected nuclei. The aim is to maximize F 1 
measure so that its value is close to one. 

Table 1 shows the performance of nuclei detection in terms 

of F 1 score averaged over all test images. For CRCHistoPheno- 

types dataset, TSP-CNN has obtained the highest F 1 score of 0.85 

while SC-SNN has obtained 0.80 F 1 score. On CRC-CDC dataset 

with nuclei-level separation experiment, TSP-CNN has obtained 

0.87 while SC-CNN has obtained 0.83 average F 1 score. For the 

CRC-CDC dataset with patient-level separation, TSP-CNN has ob- 

tained 0.86 while SC-CNN has obtained 0.82 average F 1 score. As 

compared to nuclei-level separation CRC-CDC, the performance is 

1% less for both methods which demonstrates that the patient- 

level separation has posed an equal challenge for both methods. 

To evaluate the cell classification performance, the weighted av- 

erage ̂ F score is used as follows: 

̂ F = 

∑ c l 
i 
n i F 1(i ) 

n 
, (15) 

where c l is the number of cell classes, n i is the number of test 

samples in i th class, and n is the total number of test samples. 

Table 1 shows the comparison of cell classification performance us- 

ing ground truth cell detection as well as combined detection and 

classification performed by compared methods. 

On CRCHistoPhenotypes dataset for 4 nuclei classes, SC-CNN 

has obtained 0.78 while ResNet50 has obtained 0.74 weighted av- 

erage ̂  F score using ground truth nuclei annotations. The combined 

http://php.scripts.psu.edu/mqt5352/SP-CNN/SP-CNN.php
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Table 1 

Comparative performance of nuclei detection and classification in terms of average F 1 score for detection and weighted average ̂  F score for classification on CRCHistoPhe- 

notypes and CRC-CDC datasets. The combined performance represents the performance of both nuclei detection and classification. The two best results are shown in bold 

and italic text, respectively. 

Datasets Methods Detection performance 

( F 1 score) 

Classification performance 

(4 Nuclei classes) 

Combined performance (Nuclei 

detection + 4 Nuclei classes) 

(Weighted average ̂  F score) (Weighted average ̂  F score) 

CRCHisto Dataset SC-CNN ( Sirinukunwattana et al., 

2016 ) 

0.80 0.78 0.69 

TSP-CNN( Tofighi et al., 2019 ) 0.85 - - 

TSP-CNN + SC-CNN - - 0.73 

ResNet50 ( He et al., 2016 ) - 0.74 - 

DenseNet ( Huang et al., 2017a ) - 0.70 - 

( Sirinukunwattana et al., 2016 ) SC-CNN + ResNet50 - - 0.66 

(4 Nuclei Classes) SC-CNN + DenseNet - - 0.61 

(29,756 Annotated Nuclei) TSP-CNN + ResNet50 - - 0.69 

TSP-CNN + DenseNet - - 0.67 

Detection Performance Classification Performance Combined Performance 

( F 1 score) (5 Nuclei Classes) (Nuclei Detection + 5 Nuclei 

Classes) 

(Weighted Average ̂  F score) (Weighted Average ̂  F score) 

CRC-CDC Dataset SC-CNN ( Sirinukunwattana et al., 

2016 ) 

0.83 0.86 0.78 

TSP-CNN( Tofighi et al., 2019 ) 0.87 - - 

TSP-CNN + SC-CNN - - 0.80 

ResNet50 ( He et al., 2016 ) - 0.77 - 

DenseNet ( Huang et al., 2017a ) - 0.76 - 

(Proposed) SC-CNN + ResNet50 - - 0.71 

(5 Nuclei Classes) SC-CNN + DenseNet - - 0.68 

(38,984 Annotated Nuclei) TSP-CNN + ResNet50 - - 0.74 

TSP-CNN + DenseNet - - 0.72 

Detection Performance Classification Performance Combined Performance 

( F 1 score) (5 Nuclei Classes) (Nuclei Detection + 5 Nuclei 

Classes) 

(Weighted Average ̂  F score) (Weighted Average ̂  F score) 

CRC-CDC Dataset SC-CNN ( Sirinukunwattana et al., 

2016 ) 

0.82 0.83 0.75 

TSP-CNN( Tofighi et al., 2019 ) 0.86 - - 

TSP-CNN + SC-CNN - - 0.79 

ResNet50 ( He et al., 2016 ) - 0.71 - 

DenseNet ( Huang et al., 2017a ) - 0.69 - 

(Proposed) SC-CNN + ResNet50 - - 0.67 

(5 Nuclei Classes) SC-CNN + DenseNet - - 0.65 

(38,984 Annotated Nuclei) TSP-CNN + ResNet50 - - 0.70 

(Patient-Level Separation) TSP-CNN + DenseNet - - 0.69 

performance of TSP-CNN + SC-CNN is 0.73 while SC-CNN has ob- 

tained 0.69 weighted average ̂ F score. The combined performance 

is reduced because the nuclei detection by respective networks is 

performed instead of using ground truth annotations. 

On CRC-CDC dataset with nuclei-level separation for five nu- 

clei classes including Tumor epithelial (T), Normal epithelial (N), 

Inflammatory (I), Spindle-shaped (S), and Debris (D), the SC-CNN 

has obtained 0.86 and ResNet50 has obtained 0.77 weighted aver- 

age ̂ F score using ground truth nuclei annotations. However, the 

combined performance of TSP-CNN + SC-CNN has remained 0.80 

while the second best performing method is SC-CNN by obtaining 

weighted average ̂ F score of 0.78. 

For the CRC-CDC dataset with patient-level separation, SC-CNN 

has obtained 0.83 and ResNet50 has obtained 0.71 weighted aver- 

age ̂ F score using ground truth nuclei annotations. In case of com- 

bined performance, TSP-CNN + SC-CNN has obtained 0.79 while 

SC-CNN has obtained 0.75 weighted average ̂ F score. For patient- 

level separation, the performance of SC-CNN has reduced by 3% 

while TSP-CNN + SC-CNN is reduced by 1% compared to nuclei- 

level separation combined performance results. 

The combined performance of cell detection and classification 

has remained best for TSP-CNN + SC-CNN while SC-CNN has re- 

mained the second best performing method. Both of these meth- 

ods are used as a pre-processing steps for the proposed tissue phe- 

notyping algorithm. 

4.4. Clustering performance 

The clustering performance of the proposed algorithm is eval- 

uated using three different clustering measures including Nor- 

malized Mutual Information (NMI) ( Schütze et al., 2008 ), Adjust 

Rand Index (ARI) ( Zhao and Karypis, 2004 ), and Purity ( Zhao and 

Karypis, 2004 ) on CCT and CRC-TP with patch-level separation 

datasets. The NMI is computed as follows: 

NMI = 

∑ c l 
i =1 

∑ c f 
j=1 

m i, j log (nm i, j /m i m j ) ∑ c l 
i =1 

m i log (m i /n ) 
∑ c f 

j=1 
m j log (m j /n ) 

, (16) 

where c l are the number of classes in the ground truth, c f are the 

number of found classes, m i,j is the two dimensional joint prob- 

ability of ground truth and the found classes, m i is the marginal 

probability of ground truth, and m j is the marginal probability of 

found classes. A higher value of NMI shows better clustering per- 

formance of an algorithm. The ARI represents the percentage of TP 

and True Negative (TN) decisions over testing samples as defined 

below: 

ARI(c l , c f ) = 

1 

c l 

c l ∑ 

i =1 

T P i + T N i 

n 
, (17) 

The ARI value is in the range of [0,1] and higher values represent 

better clustering performance. Similarly, the Purity measure repre- 

sents the percentage of the total number of nodes clustered cor- 
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Table 2 

Clustering performance of the proposed algorithm in terms of NMI, ARI, and Purity measures on CCT dataset ( Kather et al., 2016 ) and its 

comparison with state-of-the-art methods. The best performer is shown in bold and the best second best performer is shown in italic text, 

respectively. 

Methods Clustering measures Tumor Stroma Complex stroma Mucosa Debris Lymphocytes Average 

ResNet NMI 0.67 0.79 0.69 0.68 0.74 0.70 0.71 

ARI 0.91 0.93 0.96 0.95 0.90 0.94 0.93 

Purity 0.88 0.95 0.79 0.80 0.88 0.92 0.87 

DL-KLdiv NMI 0.70 0.68 0.74 0.66 0.68 0.62 0.68 

ARI 0.85 0.82 0.84 0.82 0.87 0.86 0.84 

Purity 0.77 0.80 0.61 0.58 0.77 0.78 0.71 

MobileNet NMI 0.71 0.65 0.59 0.61 0.78 0.67 0.66 

ARI 0.88 0.90 0.93 0.90 0.89 0.92 0.90 

Purity 0.77 0.65 0.63 0.67 0.69 0.63 0.67 

SCD NMI 0.66 0.56 0.57 0.65 0.69 0.68 0.63 

ARI 0.85 0.86 0.87 0.90 0.88 0.86 0.87 

Purity 0.48 0.77 0.50 0.62 0.60 0.64 0.60 

B5F-SVM NMI 0.70 0.74 0.67 0.69 0.75 0.77 0.72 

ARI 0.90 0.93 0.92 0.95 0.94 0.93 0.92 

Purity 0.88 0.82 0.80 0.88 0.82 0.91 0.85 

B6F-SVM NMI 0.71 0.70 0.79 0.82 0.74 0.87 0.77 

ARI 0.93 0.96 0.95 0.97 0.96 0.95 0.95 

Purity 0.88 0.82 0.80 0.89 0.81 0.91 0.85 

SDLs NMI 0.68 0.75 0.72 0.64 0.71 0.76 0.71 

ARI 0.85 0.87 0.89 0.90 0.92 0.91 0.89 

Purity 0.72 0.80 0.70 0.74 0.91 0.87 0.79 

DFOD NMI 0.73 0.67 0.64 0.71 0.78 0.80 0.72 

ARI 0.89 0.91 0.94 0.90 0.92 0.94 0.91 

Purity 0.81 0.90 0.81 0.87 0.97 0.73 0.84 

SPM NMI 0.69 0.70 0.62 0.66 0.68 0.65 0.66 

ARI 0.79 0.82 0.77 0.83 0.81 0.80 0.80 

Purity 0.89 0.94 0.90 0.76 0.82 0.83 0.85 

SRC NMI 0.54 0.59 0.69 0.54 0.52 0.60 0.58 

ARI 0.82 0.80 0.78 0.83 0.80 0.86 0.81 

Purity 0.76 0.88 0.57 0.65 0.70 0.83 0.73 

KM-CD NMI 0.77 0.72 0.75 0.72 0.78 0.82 0.76 

ARI 0.87 0.90 0.92 0.95 0.94 0.97 0.92 

Purity 0.90 0.93 0.67 0.82 0.87 0.97 0.86 

Subspace Clustering NMI 0.62 0.51 0.69 0.51 0.49 0.52 0.55 

ARI 0.80 0.83 0.81 0.85 0.80 0.87 0.82 

Purity 0.70 0.45 0.61 0.71 0.60 0.67 0.62 

SHIRC NMI 0.69 0.71 0.77 0.80 0.79 0.78 0.75 

ARI 0.84 0.87 0.85 0.82 0.88 0.90 0.86 

Purity 0.83 0.76 0.75 0.88 0.78 0.84 0.80 

TPCD-2 NMI 0.71 0.73 0.81 0.76 0.84 0.80 0.77 

ARI 0.92 0.91 0.95 0.94 0.96 0.97 0.94 

Purity 0.95 0.96 0.78 0.91 0.96 0.98 0.92 

Proposed TPCD-3 NMI 0.76 0.78 0.85 0.80 0.87 0.84 0.81 

ARI 0.98 0.98 0.96 0.97 0.99 0.99 0.97 

Purity 0.98 0.97 0.83 0.94 0.98 0.99 0.94 

Proposed TPCD-4 NMI 0.78 0.80 0.86 0.81 0.89 0.85 0.83 

ARI 0.98 0.99 0.97 0.99 0.99 0.99 0.98 

Purity 0.98 0.98 0.85 0.94 0.98 0.99 0.95 

rectly. Let � = { w 1 , . . . , w k } be the computed clustered labels and 

C = { c 1 , . . . , c k } be ground truth class labels, the purity is defined 
as below: 

P urity (�, C) = 

1 

n 

∑ 

k 

max 
j 

| w k ∩ c j | , (18) 

where | w k ∩ c j | represents the number of nodes in the intersec- 

tion of w k and c j . 

Table 2 shows the performance comparison of our proposed 

tissue phenotyping algorithms with other state-of-the-art meth- 

ods on CCT dataset having six tissue phenotypes. On the average, 

TPCD-4 has remained the best performer for all the three cluster- 

ing measures NMI, ARI, and Purity, while TPCD-3 has remained the 

second best performer. It is because of the better performance of 

TSP-CNN for cell detection in TPCD-4 algorithm compared to SC- 

CNN in TPCD-3. By considering the tissue phenotype-wise perfor- 

mance, TPCD-4 has remained the best performer for the Tumor, 

Stroma, and Debris tissue components on all three measures. For 

the complex stroma tissue phenotype, TPCD-4 obtained the best 

performance for NMI and ARI while for Purity measure SPM has 

remained the best performer. For Mucosa, TPCD-4 performed best 

for ARI and Purity measures while for NMI, B6F-SVM has remained 

the best performer. For the Lymphocytes tissue phenotype, TPCD-3 

and TPCD-4 both remained the best performers for ARI and Purity 

while for NMI, B6F-SVM performed best. 

Table 3 shows the performance comparison of different cluster- 

ing methods on CRC-TP dataset having seven distinct tissue phe- 

notypes. On the average, TPCD-4 obtained the best performance 

while TPCD-3 remained the second best performer on all three 

measures. In terms of tissue phenotype-wise performance, TPCD- 

4 has remained best performer for Tumor and Complex Stroma 

phenotypes for all three measures. For Stroma tissue phenotype, 

TPCD-4 has remained best for NMI and ARI measures while for 

Purity, ResNet achieved the best performance. For the Benign class, 

TPCD-4 performed best for NMI and ARI, while TPCD-2 performed 

best in terms of Purity. For Debris class, TPCD-4 remained best 

for NMI and ARI while for Purity the TPCD-2 remained the best 

performer. For inflammatory class, the TPCD-4 performed best in 



12 S. Javed, A. Mahmood and M.M. Fraz et al. / Medical Image Analysis 63 (2020) 101696 

Table 3 

Clustering performance of the proposed algorithm in terms of NMI, ARI, and Purity measures on CRC-TP dataset and its comparison with state-of-the-art 

methods. The best performer is shown in bold and the best second best performer is shown in italic text, respectively. 

Methods Clustering measures Tumor Stroma Complex stroma Benign Debris Inflammatory Smooth muscle Average 

ResNet NMI 0.71 0.82 0.73 0.82 0.78 0.72 0.73 0.75 

ARI 0.93 0.94 0.97 0.96 0.92 0.96 0.94 0.94 

Purity 0.90 0.96 0.82 0.81 0.90 0.93 0.95 0.89 

DL-KLdiv NMI 0.72 0.69 0.76 0.69 0.71 0.64 0.67 0.69 

ARI 0.88 0.84 0.85 0.84 0.89 0.89 0.93 0.87 

Purity 0.79 0.82 0.63 0.61 0.79 0.81 0.83 0.75 

MobileNet NMI 0.75 0.68 0.62 0.65 0.81 0.71 0.75 0.71 

ARI 0.90 0.92 0.95 0.91 0.92 0.93 0.95 0.81 

Purity 0.79 0.68 0.66 0.72 0.75 0.67 0.67 0.70 

SCD NMI 0.68 0.59 0.59 0.68 0.72 0.72 0.74 0.67 

ARI 0.88 0.89 0.91 0.93 0.92 0.90 0.90 0.90 

Purity 0.51 0.79 0.53 0.64 0.62 0.67 0.69 0.63 

B5F-SVM NMI 0.72 0.75 0.69 0.72 0.77 0.79 0.82 0.74 

ARI 0.92 0.94 0.95 0.95 0.96 0.94 0.94 0.94 

Purity 0.90 0.84 0.82 0.90 0.86 0.93 0.95 0.88 

B6F-SVM NMI 0.73 0.69 0.76 0.80 0.71 0.84 0.85 0.76 

ARI 0.90 0.91 0.94 0.94 0.91 0.89 0.91 0.91 

Purity 0.89 0.84 0.82 0.85 0.78 0.87 0.89 0.84 

SDLs NMI 0.67 0.70 0.68 0.61 0.68 0.71 0.73 0.68 

ARI 0.81 0.85 0.87 0.86 0.84 0.89 0.90 0.86 

Purity 0.74 0.82 0.69 0.72 0.86 0.83 0.85 0.78 

DFOD NMI 0.74 0.65 0.66 0.69 0.74 0.78 0.80 0.72 

ARI 0.85 0.87 0.91 0.86 0.87 0.91 0.93 0.88 

Purity 0.80 0.89 0.79 0.84 0.92 0.71 0.73 0.81 

SPM NMI 0.64 0.67 0.59 0.62 0.66 0.62 0.63 0.63 

ARI 0.77 0.80 0.74 0.79 0.78 0.78 0.80 0.78 

Purity 0.86 0.90 0.87 0.74 0.79 0.80 0.82 0.82 

SRC NMI 0.56 0.57 0.71 0.52 0.50 0.57 0.61 0.57 

ARI 0.80 0.79 0.80 0.85 0.82 0.83 0.84 0.81 

Purity 0.78 0.85 0.59 0.68 0.73 0.85 0.87 0.76 

KM-CD NMI 0.81 0.74 0.77 0.74 0.80 0.84 0.85 0.79 

ARI 0.90 0.92 0.94 0.94 0.96 0.95 0.96 0.93 

Purity 0.89 0.88 0.69 0.84 0.86 0.93 0.95 0.86 

Subspace Clustering NMI 0.59 0.48 0.64 0.49 0.50 0.50 0.53 0.53 

ARI 0.77 0.79 0.75 0.74 0.77 0.78 0.80 0.77 

Purity 0.68 0.48 0.59 0.68 0.56 0.64 0.63 0.60 

SHIRC NMI 0.71 0.72 0.76 0.78 0.75 0.74 0.74 0.74 

ARI 0.81 0.84 0.80 0.80 0.86 0.87 0.90 0.84 

Purity 0.85 0.79 0.77 0.90 0.82 0.86 0.90 0.84 

TPCD-2 NMI 0.75 0.74 0.85 0.79 0.85 0.82 0.84 0.80 

ARI 0.94 0.92 0.96 0.95 0.97 0.97 0.98 0.95 

Purity 0.96 0.95 0.81 0.93 0.97 0.95 0.96 0.93 

Proposed TPCD-3 NMI 0.78 0.80 0.86 0.84 0.89 0.85 0.87 0.84 

ARI 0.98 0.97 0.95 0.97 0.98 0.96 0.94 0.96 

Purity 0.95 0.93 0.91 0.91 0.89 0.91 0.95 0.92 

Proposed TPCD-4 NMI 0.83 0.84 0.89 0.85 0.91 0.88 0.89 0.87 

ARI 0.99 0.99 0.98 0.99 0.98 0.96 0.95 0.97 

Purity 0.98 0.94 0.92 0.91 0.90 0.92 0.96 0.93 

terms of NMI while TPCD-2 remained best in terms of ARI and Pu- 

rity. For the Smooth Muscle tissue phenotype, TPCD-4 performed 

best in terms of NMI and Purity while TPCD-2 performed best in 

terms of ARI and Purity. 

4.5. Performance comparison on CCT dataset 

We compare the performance of the proposed algorithms with 

the current state-of-the-art methods in terms of F 1 score for tissue 

phenotyping. In CCT dataset, all tissue classes have an equal num- 

ber of instances therefore, the average F 1 and weighted average ̂ F 

scores remain the same. Since, this dataset has only tissue pheno- 

type labels at patch-level therefore, the cell detection and classifi- 

cation is performed by using SC-CNN network trained on CRC-CDC 

dataset. In order to remove the stain differences between CRC-CDC 

and CCT datasets, we have used the Macenko method for stain nor- 

malization as a pre-processing step ( Macenko et al., 2009 ). 

Table 4 shows the comparative performance in terms of average 

F 1 score of six tissue phenotypes on CCT dataset. The proposed al- 

gorithms TPCD-4 and TPCD-3 have remained the best performers 

by achieving 94.5% and 94.0% average F 1 score. The TPCD-2 has 

obtained average F 1 score of 92.5% while the nearest competitors 

are DenseNet and B6F-SVM which obtained 89.5% and 89.7%. For 

tumor phenotype, the GCN method, GCN-AF, has obtained 0.86 F 1 
score using deep features-based Euclidean distance graph and us- 

ing our proposed cell features-based graph ( Eq. (3) ), the GCN-AF 

has obtained 0.88 F 1 score. All the compared methods have ob- 

tained less than 0.90 F 1 score except for DenseNet and ResNet101 

both obtaining 0.91 F 1 score. The proposed variants TPCD-2, TPCD- 

3, and TPCD-4 have obtained 0.92, 0.95, and 0.95 F 1 score, respec- 

tively. 

For Stroma phenotype, majority of the compared methods have 

obtained less than 0.90 F 1 score except KM-CD (0.92). The pro- 

posed algorithms TPCD-1, TPCD-2, TPCD-3, and TPCD-4 have ob- 

tained 0.92, 0.94, 0.95, and 0.96 F 1 score, respectively. The Com- 

plex Stroma is one of the difficult tissue phenotypes for dis- 

criminating it from the tumor class. The DenseNet has produced 

the best F 1 score of 0.89 while our proposed algorithm variants 
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Table 4 

Comparative performance of multi-class tissue classification on Colon Cancer Tissue (CCT) dataset ( Kather et al., 2016 ). Performance 

is presented in terms of F 1 score for each tissue phenotype and average F 1 score in (%) for all tissue components. The two best 

results are shown in bold and italic text respectively. 

Classical methods Tumor Stroma Complex Mucosa Debris Lympho F 1 

KM-CD ( Sirinukunwattana et al., 2018 ) 0.85 0.92 0.71 0.81 0.91 0.95 85.1 

Subspace Clustering ( Elhamifar and Vidal, 2013 ) 0.62 0.68 0.50 0.56 0.68 0.70 62.5 

DL-KLdiv ( Mairal et al., 2012 ) 0.80 0.83 0.64 0.76 0.86 0.70 76.4 

SCD ( Guha and Ward, 2014 ) 0.59 0.63 0.71 0.69 0.65 0.78 67.4 

SRC ( Wright et al., 2009 ) 0.63 0.70 0.73 0.76 0.80 0.79 73.5 

B5F-SVM ( Kather et al., 2016 ) 0.86 0.85 0.84 0.86 0.84 0.86 85.2 

B6F-SVM ( Kather et al., 2016 ) 0.87 0.88 0.85 0.94 0.90 0.90 89.7 

DFOD ( Vu et al., 2016 ) 0.81 0.88 0.79 0.80 0.84 0.78 81.3 

SHIRC ( Srinivas et al., 2014 ) 0.79 0.81 0.80 0.82 0.80 0.81 80.3 

SPM ( Lazebnik et al., 2006 ) 0.85 0.83 0.87 0.80 0.85 0.79 83.6 

SDLs ( Sarkar and Acton, 2018 ) 0.76 0.80 0.67 0.71 0.91 0.91 79.3 

Deep Learning Methods Tumor Stroma Complex Mucosa Debris Lympho F 1 
DenseNet ( Huang et al., 2017a ) 0.91 0.88 0.89 0.87 0.91 0.92 89.5 

SVM-CNN ( Xu et al., 2017 ) 0.81 0.78 0.80 0.79 0.82 0.80 80.0 

ResNet50 ( He et al., 2016 ) 0.83 0.82 0.84 0.82 0.85 0.84 83.7 

ResNet101 ( He et al., 2016 ) 0.91 0.88 0.88 0.86 0.92 0.91 89.2 

MobileNet ( Howard et al., 2017 ) 0.73 0.72 0.71 0.71 0.80 0.75 73.2 

Euclidean distance-based Deep GCN Methods Tumor Stroma Complex Mucosa Debris Lympho F 1 
GCN-RS ( Ying et al., 2018 ) 0.82 0.80 0.78 0.73 0.82 0.84 79.8 

DGI ( Veli ̌ckovi ́c et al., 2019 ) 0.84 0.82 0.80 0.78 0.84 0.83 81.8 

GCN-SF ( Defferrard et al., 2016 ) 0.72 0.70 0.68 0.75 0.78 0.80 73.8 

SSC-GCN ( Kipf and Welling, 2017 ) 0.62 0.59 0.64 0.65 0.72 0.70 65.3 

GCN-AF ( Bianchi et al., 2019 ) 0.86 0.85 0.83 0.80 0.85 0.84 83.8 

Cell features-based Deep GCN Methods Tumor Stroma Complex Mucosa Debris Lympho F 1 
GCN-RS( Ying et al., 2018 ) 0.85 0.83 0.82 0.78 0.85 0.86 83.1 

DGI ( Veli ̌ckovi ́c et al., 2019 ) 0.86 0.84 0.84 0.80 0.86 0.85 84.1 

GCN-SF ( Defferrard et al., 2016 ) 0.75 0.72 0.71 0.77 0.81 0.83 76.5 

SSC-GCN ( Kipf and Welling, 2017 ) 0.66 0.61 0.66 0.68 0.74 0.73 68.0 

GCN-AF ( Bianchi et al., 2019 ) 0.88 0.87 0.86 0.82 0.87 0.85 85.8 

Proposed Algorithms Tumor Stroma Complex Mucosa Debris Lympho F 1 
TPCD-CG 0.69 0.66 0.64 0.68 0.72 0.74 68.8 

SVM-CellFeatures 0.85 0.83 0.87 0.80 0.85 0.79 83.1 

TPCD-1 0.85 0.92 0.71 0.81 0.91 0.95 85.2 

TPCD-2 ( Javed et al., 2018 ) 0.92 0.94 0.83 0.90 0.96 0.97 92.5 

TPCD-Hist 0.86 0.82 0.85 0.82 0.90 0.92 86.1 

TPCD-3 0.95 0.95 0.87 0.92 0.97 0.98 94.0 

TPCD-4 0.95 0.96 0.88 0.93 0.97 0.98 94.5 

SVM-CellFeatures, TPCD-3, and TPCD-4 have obtained 0.87, 0.87, 

and 0.88 F 1 score, respectively. The proposed algorithms TPCD-3 

and TPCD-4 are successful in obtaining comparative performance 

by leveraging the potential cell-cell connections between cellular 

components while most existing methods are suffered from per- 

formance degradation due to texture features which are not able 

to handle rich tissue heterogeneity. 

In the case of Mucosa tissue, B6F-SVM has obtained the best 

performance of 0.94 while our proposed algorithms TPCD-2, TPCD- 

3, and TPCD-4 have obtained 0.90, 0.92, and 0.93 F 1 sore, respec- 

tively. Most of the existing methods have achieved less than 0.90 

F 1 score for Mucosa tissue which shows that Mucosa tissue pose a 

significant challenge to all the compared methods. The Debris and 

Lymphocytes are well differentiated phenotypes therefore; these 

classes do not pose a significant challenge for the majority of the 

compared methods. The TPCD-2, TPCD-3, and TPCD-4 algorithms 

have obtained the best F 1 scores of 0.96, 0.97, and 0.97, respec- 

tively, for Debris and 0.97, 0.98, and 0.98, respectively, for Lym- 

phocytes. In Debris, the nearest competitor is ResNet101 obtaining 

0.92 while in case of Lymphocytes KM-CD obtained 0.95 compared 

to 0.98 obtained by TPCD-3 and TPCD-4. 

The proposed variant TPCD-Hist which uses number of cell- 

types as a feature vector is also not able to obtain the comparative 

performance. The better performance achieved by our proposed al- 

gorithm variants is mainly leveraged by proposed cell-cell connec- 

tions features. 

4.6. Performance comparison on CRC-TP dataset 

The evaluations on this dataset are performed in two different 

settings including patch-level separation and patient-level separa- 

tion as discussed in Section 4.2.3 . 

4.6.1. Evaluation with patch-level separation 

Table 5 shows the performance comparison in terms of F 1 -score 

( F 1 ) for seven distinct tissue phenotypes and weighted average ̂ F - 

score ( ̂  F ) over all classes with other state-of-the-art methods. The 

proposed algorithms TPCD-3 and TPCD-4 have performed best on 

CRC-TP dataset with ̂  F of 0.91 and 0.89. The removal of distant cell- 

cell connections in TPCD-3 has reduced heterogeneity and there- 

fore improved the accuracy by 1.0% as compared to TPCD-2. TPCD- 

1 has obtained 0.84 ̂ F which is still competitive with compared 

methods. The inclusion of Geodesic distance in TPCD-4 algorithm 

has caused upto 7.0% increase in accuracy as compared to TPCD- 

1, therefore Geodesic distance is an important step in our pro- 

posed algorithm. Among the compared methods, ResNet101 and 

DenseNet have achieved an ̂ F of 0.87 and 0.86 ̂ F close to TPCD-2. 

In tumor phenotype, our proposed algorithm TPCD-4 has ob- 

tained 0.96 and TPCD-3 has obtained 0.95 which are significantly 

larger than the compared methods. The nearest competitors are 

TPCD-2 and ResNet101 both obtaining 0.93 ̂  F . In stroma phenotype, 

TPCD-4 and TPCD-3 are the best performing algorithms obtaining a ̂ F of 0.94 and 0.93 while our proposed TPCD-2 has obtained 0.90 ̂  F . 

The nearest competitor is TPCD-1 which has obtained 0.89 ̂ F while 
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Table 5 

Comparative performance of multi-class tissue phenotyping on CRC-TP dataset using patch-level separation between train- 

ing and testing splits. Performance is presented in terms of F 1 score for each tissue phenotype and weighted average ̂ F 

score for all tissue components. The two best results are shown in bold and italic text respectively. 

Methods Tu St CS Be De In SM 

̂ F score 

KM-CD ( Sirinukunwattana et al., 2018 ) 0.72 0.79 0.62 0.73 0.80 0.78 0.79 0.73 

Subspace Clustering ( Elhamifar and Vidal, 2013 ) 0.48 0.62 0.45 0.46 0.64 0.65 0.63 0.55 

DL-KLdiv ( Mairal et al., 2012 ) 0.62 0.65 0.60 0.79 0.73 0.76 0.70 0.68 

SCD ( Guha and Ward, 2014 ) 0.60 0.61 0.55 0.69 0.81 0.79 0.69 0.65 

B5F-SVM ( Kather et al., 2016 ) 0.86 0.77 0.73 0.75 0.91 0.92 0.78 0.80 

SRC ( Wright et al., 2009 ) 0.73 0.75 0.65 0.60 0.85 0.66 0.64 0.69 

DFOD ( Vu et al., 2016 ) 0.84 0.81 0.73 0.71 0.78 0.74 0.74 0.77 

SHIRC ( Srinivas et al., 2014 ) 0.78 0.75 0.61 0.65 0.68 0.78 0.69 0.71 

SPM ( Lazebnik et al., 2006 ) 0.82 0.80 0.70 0.85 0.83 0.84 0.74 0.79 

SDLs ( Sarkar and Acton, 2018 ) 0.86 0.83 0.70 0.72 0.81 0.80 0.70 0.77 

Deep Learning Methods Tu St CS Be De In SM 

̂ F score 

ResNet50 ( He et al., 2016 ) 0.81 0.81 0.78 0.81 0.88 0.87 0.85 0.82 

ResNet101 ( He et al., 2016 ) 0.93 0.87 0.84 0.86 0.86 0.95 0.80 0.87 

DenseNet ( Huang et al., 2017a ) 0.84 0.86 0.84 0.82 0.91 0.92 0.85 0.86 

SVM-CNN ( Xu et al., 2017 ) 0.80 0.78 0.80 0.73 0.84 0.86 0.79 0.80 

MobileNet ( Howard et al., 2017 0.79 0.79 0.68 0.81 0.76 0.82 0.76 0.77 

Euclidean distance-based Deep GCN Methods Tu St CS Be De In SM 

̂ F score 

GCN-RS ( Ying et al., 2018 ) 0.71 0.69 0.65 0.68 0.73 0.76 0.75 0.71 

DGI ( Veli ̌ckovi ́c et al., 2019 ) 0.74 0.70 0.64 0.70 0.72 0.78 0.77 0.72 

GCN-SF( Defferrard et al., 2016 ) 0.59 0.60 0.54 0.64 0.68 0.66 0.61 0.60 

SSC-GCN ( Kipf and Welling, 2017 ) 0.60 0.63 0.58 0.60 0.65 0.63 0.60 0.61 

GCN-AF ( Bianchi et al., 2019 ) 0.78 0.80 0.76 0.75 0.81 0.80 0.77 0.78 

Cell features-based Deep GCN Methods Tu St CS Be De In SM 

̂ F score 

GCN-RS ( Ying et al., 2018 ) 0.74 0.72 0.69 0.73 0.77 0.75 0.79 0.74 

DGI ( Veli ̌ckovi ́c et al., 2019 ) 0.77 0.72 0.69 0.74 0.75 0.81 0.82 0.75 

GCN-SF ( Defferrard et al., 2016 ) 0.66 0.63 0.60 0.66 0.71 0.69 0.64 0.65 

SSC-GCN ( Kipf and Welling, 2017 ) 0.63 0.64 0.62 0.65 0.69 0.68 0.63 0.64 

GCN-AF ( Bianchi et al., 2019 ) 0.79 0.83 0.78 0.78 0.83 0.84 0.80 0.80 

Deep Learning Methods Tu St CS Be De In SM 

̂ F score 

SVM-CellFeatures 0.80 0.74 0.82 0.72 0.81 0.80 0.78 0.78 

TPCD-1 0.90 0.89 0.80 0.80 0.85 0.82 0.80 0.84 

TPCD-2 ( Javed et al., 2018 ) 0.93 0.90 0.84 0.86 0.88 0.84 0.87 0.88 

TPCD-Hist 0.85 0.83 0.82 0.78 0.81 0.82 0.79 0.82 

TPCD-3 0.95 0.93 0.87 0.89 0.87 0.85 0.86 0.89 

TPCD-4 0.96 0.94 0.87 0.90 0.90 0.88 0.88 0.91 

among the compared methods ResNet101 obtained 0.87 ̂ F . In com- 

plex stroma phenotype, both TPCD-4 and TPCD-3 algorithms have 

obtained 0.87 ̂ F . It is because of the cell detection performance 

of SC-CNN in TPCD-3 algorithm approached to the performance of 

TSP-CNN in TPCD-4 algorithm for complex stroma phenotype. The 

nearest competitors are TPCD-2, ResNet101, and DenseNet each ob- 

taining 0.84 ̂ F . 

In Benign tissue phenotype, TPCD-4 and TPCD-3 algorithms 

have obtained 0.90 and 0.89 ̂ F while TPCD-2 has obtained 0.86 ̂ F . 

In this case, normal epithelial to normal epithelial cell-cell connec- 

tions are observed quite higher on the micro-vessels, therefore the 

removal of distant edges was not helpful in this case. The nearest 

competitor is ResNet101 which obtained 0.86 ̂ F . In Debris tissue, 

the DenseNet and B5F-SVM have achieved the best performance of 

0.91 ̂ F , while TPCD-4 has obtained 0.90 ̂ F . The nearest competitors 

are TPCD-2 and ResNet50 both obtaining 0.88 ̂ F . In Inflammatory 

tissue type, ResNet101 obtained the best performance of 0.95 ̂ F , 

while DenseNet and B5F-SVM methods obtained 0.92 ̂ F . Our pro- 

posed algorithm TPCD-4 obtained ̂ F of 0.88 for inflammatory tis- 

sue. In the case of Smooth Muscle phenotype, TPCD-4 and TPCD-2 

obtained 0.88 and 0.87 ̂ F while TPCD-3 obtained 0.86 ̂ F . The re- 

moval of distant cellular edges has shown performance degrada- 

tion in this tissue component. An improved cell detection perfor- 

mance with TPCD-2 would have resulted in further performance 

improvement like TPCD-4. 

4.6.2. Evaluation with patient-level separation 

Table 6 shows the tissue phenotyping performance comparison 

on CRC-TP dataset with patient-level separation. Overall, TPCD-4 

and TPCD-3 obtained 0.84 and 0.83 ̂ F . Compared to patch-level 

separation results on Table 5 , the performance of all the compared 

methods is significantly reduced. It is because the testing dataset 

is completely unseen by the cell detection and classification net- 

works in the proposed TPCD algorithms which caused accuracy 

degradation of 6.0% for TPCD-2, TPCD-3, and TPCD-4. Compared to 

ResNet101, DenseNet, and GCN-AF with cell features-based graph 

construction, the accuracies are reduced by 6.0%, 7.0%, and 4.0%, 

respectively which are also in the same range as compared to pro- 

posed algorithms. Moreover, the TPCD-3 and TPCD-4 algorithms 

have performed better than the other compared methods on Tu, St, 

CS, Be, and De tissue phenotypes, respectively. Overall, the patient- 

level separation is more challenging compared to the patch-level 

separation across training and testing data. 

4.7. Visual evaluation 

The qualitative classification results are thoroughly examined 

by experienced pathologist ( KB ) and found to match with man- 

ual assessment. The results of the proposed algorithm are overlaid 

on the WSI taken from CRC-TP dataset as shown in Figs. 6 and 7 . 

Non-overlapping patches of 150 × 150 pixels from the test WSI 

with patient-level separation are extracted and phenotyped by the 

TPCD-4 algorithm. The predicted labels are shown by a distinct col- 

ors which are overlaid on the original WSI ( Figs. 6 (b) and 7 (b)). 

The resulting color-coded classification maps are smoothed by a 

median filter to remove the blocky effects from patch-level classi- 

fication. 
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Table 6 

Comparative performance of multi-class tissue phenotyping on CRC-TP dataset using patient-level separation between 

training and testing splits. Performance is presented in terms of F 1 score for each tissue phenotype and weighted average ̂ F score for all tissue components. The two best results are shown in bold and italic text respectively. 

Methods Tu St CS Be De In SM 

̂ F score 

KM-CD ( Sirinukunwattana et al., 2018 ) 0.66 0.75 0.58 0.68 0.76 0.82 0.82 0.72 

B5F-SVM ( Kather et al., 2016 ) 0.78 0.71 0.69 0.75 0.81 0.80 0.73 0.74 

DFOD ( Vu et al., 2016 ) 0.78 0.77 0.68 0.65 0.71 0.69 0.64 0.71 

SHIRC ( Srinivas et al., 2014 ) 0.70 0.71 0.57 0.59 0.62 0.72 0.62 0.66 

SDLs ( Sarkar and Acton, 2018 ) 0.80 0.75 0.64 0.67 0.77 0.73 0.62 0.71 

Deep Learning Methods Tu St CS Be De In SM 

̂ F score 

ResNet101 ( He et al., 2016 ) 0.86 0.82 0.79 0.78 0.81 0.84 0.77 0.81 

DenseNet ( Huang et al., 2017a ) 0.80 0.79 0.77 0.76 0.82 0.82 0.79 0.79 

Euclidean distance-based Deep GCN Methods Tu St CS Be De In SM 

̂ F score 

GCN-RS ( Ying et al., 2018 ) 0.63 0.59 0.58 0.62 0.66 0.70 0.70 0.63 

DGI ( Veli ̌ckovi ́c et al., 2019 ) 0.65 0.63 0.59 0.66 0.67 0.72 0.70 0.64 

GCN-SF ( Defferrard et al., 2016 ) 0.52 0.54 0.49 0.58 0.60 0.59 0.55 0.54 

SSC-GCN ( Kipf and Welling, 2017 ) 0.52 0.57 0.51 0.54 0.55 0.56 0.53 0.54 

GCN-AF ( Bianchi et al., 2019 ) 0.72 0.73 0.68 0.64 0.76 0.75 0.72 0.71 

Cell features-based Deep GCN Methods Tu St CS Be De In SM 

̂ F score 

GCN-RS ( Ying et al., 2018 ) 0.66 0.64 0.60 0.65 0.70 0.67 0.71 0.66 

DGI ( Veli ̌ckovi ́c et al., 2019 ) 0.72 0.66 0.64 0.66 0.68 0.75 0.76 0.70 

GCN-SF Defferrard et al. (2016) ) 0.60 0.54 0.55 0.59 0.64 0.60 0.57 0.58 

SSC-GCN ( Kipf and Welling, 2017 ) 0.55 0.56 0.54 0.58 0.60 0.60 0.57 0.56 

GCN-AF ( Bianchi et al., 2019 ) 0.72 0.75 0.74 0.71 0.79 0.78 0.72 0.74 

Deep Learning Methods Tu St CS Be De In SM 

̂ F score 

SVM-CellFeatures 0.76 0.69 0.77 0.66 0.75 0.77 0.72 0.73 

TPCD-1 0.85 0.83 0.76 0.77 0.80 0.78 0.76 0.80 

TPCD-2 ( Javed et al., 2018 ) 0.85 0.84 0.79 0.81 0.80 0.79 0.82 0.82 

TPCD-Hist 0.81 0.77 0.77 0.73 0.76 0.75 0.72 0.76 

TPCD-3 0.88 0.85 0.82 0.85 0.82 0.80 0.79 0.83 

TPCD-4 0.87 0.87 0.85 0.83 0.83 0.82 0.83 0.84 

Fig. 6. Qualitative Evaluation: The results of the proposed tissue phenotyping algorithm TPCD-4 on an unseen test WSI taken from our proposed CRC-TP dataset (patient- 

level separation) overlaid on the original WSI. The color map is manually examined by experienced pathologist and found to be matching with manual assessment. (For 

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 7. Qualitative Evaluation: The results of the proposed tissue phenotyping algorithm TPCD-4 on an unseen test WSI taken from our proposed CRC-TP dataset (patient-level 

separation) overlaid on the original WSI. The color map is manually examined by experienced pathologist and found to be matching with manual assessment. 

4.8. Computational complexity 

Execution times are compared on a machine with Intel core i9 

processor and 128GB RAM. The average cell detection time is 0.21 s 

for 150 × 150 patch and classification time is 0.08 s. On a same 

patch size, the Delaunay triangulation takes 0.2 s while the feature 

vector extraction takes 0.04 s. Complexity of 2-D Delaunay trian- 

gulation is O ( clog ( c )), where c is the number of cells detected in a 

patch. Complexity of graph construction is O ( mn 2 ), where n is the 

number of patches and m is the size of feature vector. Since the 

chi-square distance is symmetric, each patch pair distance compu- 

tation is required only once reducing the overall computation to 

half. An all pair shortest distance algorithm proposed by Pettie and 

Ramachandran (2005) has time complexity of O ( mnlog ( α( n, s ))), 

where s is the number of edges in the patch graph and α( n, s ) is 

a slowly growing function. Jiang et al. (2011) have proposed a rel- 

atively faster algorithm which takes O (μ(n ) log log (n )) time on a 

random scale free network with n vertices. Our implementation of 

the algorithm used in this step takes O ( mtn 2 ) where t is the num- 

ber of iterations. We observe that the algorithm converges in less 

than 5 iterations. 

5. Conclusions 

In this work, a novel semi-supervised cellular community de- 

tection algorithm is proposed for tissue phenotyping based on cell 

detection and classification, and clustering of image patches into 

biologically meaningful communities. First deep neural networks 

are used for cell detection and classification and then based on 

potential cell-cell connections between these cells, feature vectors 

are computed at the patch level. These feature vectors are then 

used to construct a patch level network using chi-square distance 

such that each node is a patch in WSI and edges have weights in- 

versely proportional to the distance between the feature vectors. 

In this network, geodesic distances are computed which are then 

used to compute node clusters such that each cluster corresponds 

to a particular tissue phenotype. The proposed algorithm has ex- 

hibited better performance than end-to-end deep learning meth- 

ods as well as several existing algorithms based on handcrafted 

features. 

We showed that the proposed approach was able to achieve 

better performance mainly because it uses both deep learning and 

handcrafted features which complement each other. Also the pro- 

posed potential cell-cell connections features are biologically more 

meaningful than the texture-based features used in most exist- 

ing methods. The concept of constructing a graph and then using 

geodesic distance for community detection has also significantly 

contributed to the performance. It is because the graph based ap- 

proaches work well even if the underlying classes are not linearly 

separable. The geodesic distance has also performed similar to ker- 

nels projecting data to higher dimensional spaces such that the 

classes become linearly separable. Owing to all these novel steps, 

the proposed algorithm was able to achieve superior classification 

accuracy on an existing as well as newly proposed large scale tis- 

sue phenotyping dataset. 

This new dataset will soon be made publicly available with two 

experimental settings including patch-level separation and patient- 

level separation between training and testing splits. Currently, we 

have used five distinct cell classes including tumor epithelial, nor- 

mal epithelial, spindle-shaped, necrotic, and inflammatory. Addi- 
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tion of further cellular components such as blood cells may re- 

sult in performance improvements and also reveal more micro- 

level tissue communities. The proposed algorithm can potentially 

be used on large number of WSIs of different cohorts for sepa- 

rating tissue communities. Tissue phenotyping in a WSI can aid 

with understanding the contents of the WSI and form the basis 

of comprehensive digital profiling of spatial patterns in the tumor 

microenvironment associated with cancer subtypes in terms of sur- 

vival and clinical outcomes. 
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