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Abstract

We revisit the randomized seeding techniques for k-means clustering and k-GMM (Gaussian
Mixture model fitting with Expectation-Maximization), formalizing their three key ingredi-
ents: the metric used for seed sampling, the number of candidate seeds, and the metric used
for seed selection. This analysis yields novel families of initialization methods exploiting a
lookahead principle-conditioning the seed selection to an enhanced coherence with the final
metric used to assess the algorithm, and a multipass strategy to tame down the effect of
randomization.

Experiments show a significant improvement over classical contenders. In particular, for
k-means, our methods improve on the recently designed multi-swap strategy (similar results
in terms of SSE, seeding ~ x6 faster), which was the first one to outperform the greedy
k-means++ seeding.

Our experimental analysis also shed light on subtle properties of k-means often overlooked,
including the (lack of) correlations between the SSE upon seeding and the final SSE, the
variance reduction phenomena observed in iterative seeding methods, and the sensitivity of
the final SSE to the pool size for greedy methods.

Practically, our most effective seeding methods are strong candidates to become one of the—if
not the-standard techniques. From a theoretical perspective, our formalization of seeding
opens the door to a new line of analytical approaches.

1 Introduction

The k-means and k-GMM problems. Clustering with k-means and designing Gaussian mixture models
(GMM) with k-GMM algorithms play a pivotal role in unsupervised analysis. Consider a point set X =
{z1,...,2,} C R?, to be partitioned into a predefined number K of clusters, or to be modeled as a mixture
of K multivariate Gaussian distributions.

A k-means clustering is a hard partition of the n points into K clusters, each consisting of the data points
located in a Voronoi region of the Voronoi diagram of K centers — which in general are not data points. The
quality of the partition/clusters is assessed by the Sum of Squared Errors (SSE) functional, namely the sum of
squared distances between a point and its nearest center. The search space of k-means is therefore the space
of partitions of the point set. For fixed K and d, the number of partitions induced by Voronoi/power diagrams
is polynomial (Inaba et al.l [1994]). Alas, the corresponding algorithm is not practical, which motivated the
development of so-called Lloyd iterations that iteratively update a set of initial centers (Lloyd, 1982)). A
related problem consists of designing a mixture of K multivariate Gaussian distributions, so as to maximize
the likelihood of the points. The search space is now the parameter space of these Gaussian distributions,
yielding a more challenging endeavor. One pivotal technique to design such mixtures is the Expectation-
Maximization algorithm (Dempster et al., [1977; [Wu, [1983), an iterative process refining an initial guess. It
may be observed that k-means performs a hard clustering, while k-GMM provides a responsibility of each
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component for each point, which may be seen as a soft assignment. Interestingly, k-means can be derived
as a limit case of EM (Bishop & Nasrabadi, |2006).

Seeding strategies for k-means and k-GMM. Both Lloyd iterations and EM are iterative methods heavily
relying on the starting point, namely the initial centers in k-means, and the initial Gaussian components in

k-GMM . In order to reduce the number of (Lloyd, EM) iterations, the init step seeks seeds as representative
as possible of the final result. This is practically done in an iterative fashion, for k = 1,..., K. To define
the k-th seed/component, one uses point(s) not well described by the previously chosen/defined k — 1
seeds/components, and ideally provides a good representative in a k-components model. A vast array of
techniques have been explored, both for k-means (Celebi et all) 2013) and k-GMM (Kwedlo| 2013; Blomer|
|& Bujnaj, [2016; [You et all [2023). These seeding strategies recently underwent important developments
consisting of improving the initial K seeds via a re-selection mechanisms, local searches and swaps
[& Sohler}, [2019)), (Choo et all [2020), (Fan et al) [2023)), (Grunau et all, [2023)).

Contributions. We design novel seeding methods for k-means and k-GMM yielding (i) a lesser number
of (Lloyd, EM) iterations, and (ii) a lesser variability in the output. To achieve these goals, we revisit the
previous seeding methods and formalize their three key ingredients: the metric used to sample candidate
seeds, the number of seed candidates, and the metric used to rank candidate seeds. This analysis brings
out two general design principles for seeding methods. The first is a lookahead principle, which consists of
conditioning the seed selection to an enhanced coherence with the final metric used to assess the algorithm.
The second is a multipass strategy, which consists of performing the seed selection in at least two passes, to
tame down the effect of randomization.

Our methods bear two major differences with the recently developed reselection schemes (Lattanzi & Sohler]
[2019; |Choo et al., [2020; [Fan et al.,2023; |Grunau et al.,2023; [Huang et al.,|2024)). The first is the metric used
to perform selection, which is the distance to the centroids of the clusters induced by the centers—instead of
the distances to the centers themselves. In spirit, this strategy is consistent with early work on k-means, also
using centroids to obtain complexity (Inaba et al. [1994) and approximation bounds 2000). The
second one is the reselection strategy, based on the addition rather than the removal of seeds—we never work
with a pool of seeds of size > K. Overall, our design choices yield reselection schemes which outperform
the recently developed multi-swap strategy from (Grunau et al., |2023)), (Fig. [I)), especially when it comes to
running times.
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Figure 1: Gains yielded by our seeding methods. (A, k-means) Mean and median (over 18 datasets) of
min-maxed SSE ®x (m3(®g), see Sec. [6.2) and CPU time (m3(7), see Sec. , the smaller the better—see
also Sec. [} (B, k-GMM ) Mean and median of min-maxed Log likelihood (over 1800 datasets), the larger
the better—see also Sec. m Seeding methods have negligible impact on CPU time for k-GMM .
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2 Previous work on k-means

2.1 k-means

k-means and its complexity. In k-means, let ¢; be the center of mass (COM) of the i-th cluster C;. The
Sum of Squared Errors (SSE) functional reads as

D= > el (1)

i=1,....K z;€C;

From the geometric standpoint, if one assumes that d and K are fixed, k-means is solvable in O(n©(*))
polynomial time (Inaba et all|1994). However, if k or d are functions on n, k-means is NP-hard (Dasgupta
[2008} Mahajan et al., [2012).

From a practical standpoint, so-called Lloyd iterations are used to improve an initial set of seeds
, by iterating two steps: (i) ascribe each data point to its nearest center, (ii) recompute the center of
mass of each cluster. The process halts when the clusters are stable. The outcome naturally depends on the
initial choice of seeds—it is a random variable-and no information is provided with respect to the optimal
value of @, denoted ®x opr.

Randomized seeding with k-means++. A landmark has been the design of the k-means++ smart seed-
ing strategy, which consists of ensuring that the initial centers are correctly placed in the unknown clus-
ters (Arthur & Vassilvitskii, [2007)). Assume a set of seeds Sy has been selected, and for each sample in
x € X\Sk, let D?(z) be the square of the minimum distance to a seed. The next seed cj41 is chosen at
random from X\Sj using the probability D?(-). Under this selection scheme, the outcome ®x is a random
variable satisfying E [Px| /Px opr < 8(In K + 2) (Arthur & Vassilvitskii, 2007). A useful heuristic also de-
scribed in (Arthur & Vassilvitskii, [2007) consists of choosing each new seed as the best out of a pool of size (.
This seeding variant, referred to as greedy k-means++ or k-means++-G (Celebi et al.| 2013)), is implemented
in scikit-learn with [ = 2 +log K candidates. The method has approximation factors of O(I? log® K) and
Q(I?log® K/log*(llog K)) (Bhattacharya et al., 2020; |Grunau et al., 2023). It is theoretically preferable to
use a single seed, as increasing the pool size reduces randomization whence the quality of seeds.

Improved seeding with reselectors. So-called local searches (LS) consist of replacing seeds by samples
when @ decreases (Kanungo et all, [2002)). To replace one seed, the k-means++-LS algorithm samples the
new candidate seed with the D? strategy instead of checking all possible options (Lattanzi & Sohler| 2019).
Running Z = Q(K loglog K) iterations yields a constant approximation factor (CFA) of 509 (Lattanzi &
2019), later improved to ~ 26.64 (Grunau et al} [2023). The number of iterations to obtain such a
CFA has also been studied (Choo et al.l 2020), as well as the complexity of the method 2023)).
In practice, though, k-means++-G outperforms these improvements—see our Experiments. Last but not
least, the multi-swap variant consists of opting out p > 1 seeds instead of one (Beretta et al.| 2023), yielding
the k-means++-MS algorithm. Using p = O(1) and Z = O(ndKP~!) iterations yields a CFA < 10.48.
Practically, exploring the (K+p ) candidate swaps is not effective. Starting from K +p seeds, a greedy variant
iteratively discards the seed minimizing the cost increase—thus less representative of the data. This greedy
version, denoted k-means++-MS-G, outperforms k-means++-G in practice (Beretta et al.,|2023)). But as we
shall see, it is outperformed by our seeders, especially for the running time.

Deterministic seeding. Deterministic seeding methods have also been proposed, in particular

k-means-var-pca and k-means-var-ca (Su & Dy, 2007). However, they require costly operations, and
k-means++ often performs on par with them.

A thorough experimental comparison has been presented in (Celebi et al.| 2013)), using 32 datasets up to ~ 2
M points and dimension up to d = 617. Three methods consistently outperform the remaining ones (Fig.
: k-means++, k-means++-G, k-means-var-pca.
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3 Previous work on Gaussian Mixture fitting using EM

Gaussian mixtures models (GMM) are of fundamental interest, both in theory and in practice. We briefly
review below recent results on the learnability of GMM and the role of seeding.

Learnability and connection to seeding. A k-GMM model is defined by as a weighted sum of Gaussian
distributions, that is N'(z | ©) = Zle wipN (@ | g, Xg), with Y-, wy, = 1. The learnability of GMM received
a considerable attention, and we only mention the most recent papers we are aware of, in two veins. The
first vein deals with the computation of a GMM close to the unknown one in total variation (TV) distance.
Assuming a lower bound on the mixing weights and also on the pairwise TV distance between the components,
a probabilistic polynomial time is possible (Liu & Moitray [2023). It exploits certain algebraic properties of
the higher order moments of the Gaussians. But as far as we know, such approaches are not of practical
interest. The second vein is the learnability via the recovery of clustering labels; that is, assuming that the
samples have been generated by a GMM, one wishes to identify which Gaussian generated which sample.
Optimal clustering rates were recently reported (Chen & Zhang, [2024), based on separability hypothesis on
the components involving the Mahalanobis distance between the centers. The algorithm uses a hard EM
starting from a decent initialization, namely a classifier with sublinear loss. Such a warm start is achieved
using the vanilla Lloyd algorithm—see also (Gao & Zhang, 2022), and our methods are of direct interest for
this step.

Initialization of EM for GMM fitting. When a GMM is fitted using EM, be it soft EM (Bishop &
Nasrabadi, 2006) or hard EM (Chen & Zhang] [2024), the outcome depends on the initial mixture, whose
design received a significant attention-see (Kwedlo, |2013; |Blomer & Bujnal 2016; [You et al., [2023) and
references therein. In short, the reference methods obtain a partition of the dataset and use the points of
the corresponding clusters to estimate the mixture components passed to EM. An interesting observation
is that it is often beneficial to estimate isotropic initial components instead of anisotropic ones (Algorithms
Means2SphGMM and Means2GMM), Algo. [2|and (Blomer & Bujnal 2016). Intuitively, along the greedy selection
process, the parameters estimated at step k — 1 are only a very coarse estimate of the (k — 1)-components
of an optimal k-GMM .

The initial clustering can be obtained using k-means++, yielding the initialization K-GMM-seeding-++.
However and as recalled in Introduction, since a k-GMM is to be estimated, it is interesting to replace the
Euclidean distance by alternative better suited to Gaussian components. Of particular interest is the seeding
method from (Kwedlo| 2013)), as the center of a component is iteratively chosen to maximize the Mahalanobis
distance to the already chosen center. Two generalization were proposed in (Blomer & Bujnal [2016):

e The Spherical Gonzalez (SG) method chooses a seed by maximizing the Mahalanobis distance to the
components already chosen. Doing so faces the risk of choosing outliers, so that the method samples candi-
dates in S C X, with |S| = [s|X|] — with s a hyperparameter € (0, 1].

e The Adaptive (Ad) method chooses points using a strategy similar to D?, except that the probability
distribution used mixes an o component of the Mahalanobis distance, and a 1 — « fraction of the uniform
distribution on points. This latter component aims at avoiding outliers.

A further independent option has been studied. As noted above, at each step, Means2SphGMM is used to
define the K mixture components. In addition, one classification EM step (CEM) may be used to refine the
mixture (Celeux & Govaert}, |1992)). (CEM can be seen as a classification version of EM, as it imposes a hard
classification step between the E-step and the M-step of EM.)

4 New seeding strategies for k-means
4.1 Selected useful observations

Notations for Sum of Squared Errors. The following notations will be useful:

od ;. the k-means SSE functional upon termination of k-means— Eq. .
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Figure 2: k-means: boxplot of the @2 and @%‘COM values along the seeding selection process for
each k€ 1,..., K. Statistics over 150 repeats on spam dataset.

e®D: the SSE of data points, using for each such point the distance to its nearest seed—which is also a data
point. That is, Eq. , where the centers are the K seeds.

0d$COM: the SSE of data points, using for each such point the distance to the center of mass (COM) of all
samples sharing the same seed. That is, Eq. , where the centers are the COM of the K clusters associated
with K seeds selected.

D? distances during seed selection. Another interesting parameter is the stability of the distribution
of distances used by the D? strategy. The typical behavior is a decreasing variance of the mean (over all
points) squared distance D’ along the seed selection (Fig. . This indicates that distance-wise, the choice

of seeds with a large index k € 1,..., K is more stable along seed selections than that of seeds with low
index.

. . . .. . -2
®D and #$-COM during seed selection. We replicate the analysis just carried out for D” to ®2. and

—2
<I>§(‘COM (Fig. [2| and Fig. . @Y. has a behavior similar to that of D. This suggests that k-means++-G
suffers from the limitation seen with k-means++, as the metric used to compare candidate seeds also stabilizes
when the index k increases. Interestingly, statistics for ®3:“°M are much more stable along seed selections,
with fewer outliers and more concentrated boxes.

4.2 Notations for seeding variants

The seeding in k-means++ and k-means++-G selects K seeds in one pass using distances from data points
to already selected seeds. We propose a multipass seed selection strategy, each pass being qualified by three
ingredients:

o (Options: sampling candidate seeds) E: Euclidean distance. (NB: used for the sake of coherence with seeding
methods for k-GMM , see Section [5])

o (Options: size of the pool of candidate seeds) O: One | G: Greedy. The symbol O (resp. G) refers to a seed
selection using a single (resp. log K +2) candidates—this latter number being that used in the scikit-learn
implementation.

o (Options: ranking candidate seeds) D: Data | C: COM | N: NA. The letter D (resp. C) refers to a selection
using the distance between data points (resp. from data points to the centers of masses induced by the
seeds). For a pool of size one, there is no such design strategy — whence N or Not Applicable.
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Summarizing, a seed selection process is described by the following regular expression:
Seeding-{E [O|G] [D|C|N] }*. (2)

Let us illustrate these conventions with k-means++ and k-means++-G:

e Seeding-EON: the seeding in k-means++. Seeds are selected in one pass; the selection of a seed uses a
single candidate (letter O, which implies letter N).

e Seeding-EGD: seeding used in k-means++-G. Seeds selected in one pass; the seed is selected amidst
a pool of candidates (letter G); in this pool, the seed retained is that yielding the lowest ® (Arthur &
Vassilvitskii, [2007), which uses the distance from samples to seeds, which are themselves samples (whence
the letter D).

4.3 New iterative seeding strategies

Variance reduction: Seeding-EGD-EGD. k-means++ uses a single pass strategy. To mitigate the influence
of the initial steps, we propose a two-pass zig-zag selection process of seeds (Algorithm . We have seen that
the variance of D? distances along seed selections decreases during the seed selection (Fig. . Therefore,
by reselecting the centers a second time, the D? selection is less dependent on randomness and thus more
accurate. This second selection can be done in two ways, by processing the seeds upstream (zig pass, from
1 to K), or downstream (zag pass, from K to 1). Experiments have not shown any significant difference,
so that we use the downstream order in the sequel of this work. Combining this multi-pass strategy with
a greedy selection results in the Seeding-EGD-EGD method : the second EGD zag pass reselects seeds,
choosing the best amidst a pool of log K + 3 candidates (log K + 2 candidates as in k-means++-G, and the
center obtained during the zig pass).

Look-ahead: Seeding-EGD-EGC. In anticipation for LLoyd iterations, we propose to use @%OOM instead
of ®2 to rank the seeds in a pool of candidates. Indeed, the first Lloyd iteration replaces the initial seeds
by the center of mass of that cluster.

In practice, this strategy is only effective for large values of k € 1,..., K, as @%‘COM does not sufficiently

discriminate candidates on the first seeds. The extreme case is that of the first seed selected, for which

the center of mass is unique. Experiments confirmed this behavior, so that we stick to the seed variant
Seeding-EGD-EGC, in which we replace ®%- with ®$“°M during the zag pass.

4.4 Seeding and final objective: correlation?

Given that we aim at optimizing the SSE functional @k, the look ahead principle just outlined seems
rational. However, it is also instrumental to think about the k-means problem in terms of energy / fitness
landscape (Dicks & Wales|, [2022). To do so, define the fitness landscape of a k-means problem as set of pairs
{(IL;, @k ;) }i>1 obtained during the Lloyd iterations, with II; the partition / clustering of the point cloud,
and P ; the corresponding SSE. (NB: index 0 corresponds to the seeding outcome.) Let us, intuitively,
define a funneled fitness landscape as a k-means problem such that the sequence of partitions II; visited
during Lloyd iterations eventually leads to a low lying local minimum @ g gna1, that is a clustering whose
SSE is close to the optimal value ®x op7. In that case, different initialization with drastically different ® g o
may yield to the same value ® g fina. Which means that no correlation will be observed between ® g o and
(I)K,ﬁnal-

To substantiate this intuition, we study the (Pearson and Spearman) correlations (®,®?) and
(@, DFCOM) on classical datasets (Celebi et al.,2013)), using k-means++-G for % and Seeding-EGD-EGC
for @%COM (Fig. . A mild correlation is observed is all cases, confirming our expectations. Importantly,
this fact does not contradict the approximation factors discussed in previous work: the approximation factors
qualify the distance to the optimal SSE ® x, while the aforementioned correlations depend on the topography
of the k-means fitness landscape, or, phrased differently, in the sequence of partitions II; visited during Lloyd
iterations.
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5 New seeding strategies for k-GMM

5.1 Notations for seeding variants

The seeding methods developed for k-GMM follow the multipass strategy introduced for k-means. Yet,
the use of a mixture model allows for new metrics both in the sampling and selection of candidate seeds.
Thus, our new seeding strategies consists in combinations of k-GMM seeding passes, followed by the use of
Means2GMM to transform the selected seeds into an initial model to be optimized. (NB: the seeds are used as
s arguments in the Algorithm ) The k-GMM passes are qualified with three ingredients:

o (Options: sampling candidate seeds) E: Euclidean distance | A: Adaptive Mahalanobis | G: Gaussian dis-
tance. The symbol E corresponds to the Euclidean distance originally used for D? weighting in k-means++.
The symbols A refers to the distances used in the Adaptive seeding method (with o = 0.5) (Blomer &
Bujna, 2016). Finally, G refers to a strategy using the D? method on distances (Eq. between Gaussian
distributions estimated at every data point. See details in Section

o (Options: size of the pool of candidate seeds) O: One | G:Greedy. Similar to k-means.

o (Options: ranking candidate seeds) D: Data | C: COM | L: Log-likelihood | N: NA. The letters D, C and
N match the options used for k-means. We add a new metric with the letter L, corresponding to the
log-likelihoods of mixture models estimated using each candidate seed.

Summarizing, a seed selection process is described by the following regular expression:

K-GMM-seeding-{[E|A|G] [O|G] [D|C|L|N] }*. (3)

5.2 New iterative seeding strategies

5.2.1 Greedy adaptive selection: X-GMM-seeding-AGL

The adaptive selection strategy combines Mahalanobis and uniform distances to select seeds (Blomer
& Bujnal |2016)), before running Means2SphGMM to obtain the GMM passed to EM. The seeding

K-GMM-seeding-AGL adds to this strategy a selection based on the likelihood, a look-ahead with respect to
the EM steps.

5.2.2 EM look-ahead : K-GMM-seeding-EGD-EGL

In a look-ahead spirit similar to that introduced with @%COM for k-means, we use the log-likelihood as a
selection metric to rank seeds among candidates. To obtain a log-likelihood value from a set of seeds, the
Means2GMM algorithm is used to construct a temporary Gaussian mixture model (Blomer & Bujnaj 2016)).
Similarly to the use of ®3%OM for k-means, the log-likelihood is irrelevant to discriminate candidates for
small values of k. Consequently, the K-GMM-seeding-EGD-EGL seeding variant uses it for the zag pass only.

Remark 1. The observations raised for k-means (Sec. are also valid for k-GMM .

5.2.3 EM look ahead and adaptive selection in the zag pass: K-GMM-seeding-EGD-AGL

We combine the best features used in the previous two methods. First, the adaptive selection using a GMM,
as in K-GMM-seeding-AGL. The adaptive selection is restricted to the second pass though, to ensure that
the GMM is representative of the cluster structure of the data. Second, the two pass and look-ahead strategy
of K-GMM-seeding-EGD-EGL. The resulting method is called K-GMM-seeding-EGD-AGL.

5.2.4 DZ with Gaussian distance

Finally, we explore the use of k-means++-G based on a distance between Gaussians locally estimated at
each sample, see method K-GMM-seeding-GGD in Section
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6 k-means seeding: tests

6.1 Experimental protocol

Implementation and stop criterion. We compare our seeding methods with k-means++-LS (with
Z = k) and k-means++-MS-G (with Z = K, p = 2 + log(K)) to initialize k-means. We chose Z = k
to match the number of swaps performed by our methods, and p = 2 + log(K) to match the candidate
pool size originally proposed for greedy kmeans++ in (Arthur & Vassilvitskii, 2007). All methods were
implemented in C++ using the Eigen library. The Lloyd iterations are stopped when the Frobenius norm of
the difference in the center clusters is smaller than le — 4. As a failsafe, the Lloyd iterations are also stopped
after reaching a maximum number of iterations of 50. A python implementation of the best contender,
Seeding-EGD-EGC, is available from https://gitlab.inria.fr/abs/improved-seeding-kmeans-kgmm.
An optimized C++ implementation is also available in the package SBL::Cluster_ engines of the Structural
Bioinformatics Library https://sbl.inria.fr/doc/Cluster_engines-user-manual.html.

Datasets. Our experiments involve 12 datasets from the UCI Machine Learning Repository, 11 of which
are a subset of the 32 used in (Celebi et al., [2013): {Cloud cover, Corel image features, Steel plates faults,
Letter recognition, Multiple features, Musk (Clean2), Optical digits, Pen digits, Image segmentation, Shuttle
(Statlog), Spambase, Yeast} [[]

These 12 datasets are the most challenging ones, due to variability incurred by the seeding strategies, and
its effect on the final clustering (Celebi et al.l [2013). The value of K for a dataset is that provided alongside
each dataset. They range in size from 1024 to 58,000 data points.

We also process the {KDD-BIO, KDD-PHY, RNA} datasets from (Lattanzi & Sohler] [2019) used in the
assessment, of the SOTA method k-means++-MS-G (Beretta et all 2023). They range in size from 100k to
485k points. Following (Lattanzi & Sohler| [2019), we cluster them with K = {25,50}.

In total, we investigate 12 4+ 3 + 3 = 18 datasets. Following common practice, on a per dataset basis, we
perform a min-max normalization on the coordinates to avoid overly large ranges.

Hardware. Calculations were run an a HP desktop computer running Fedora Core 39, equipped with 24
CPUs (i9-13900K) and 131 GB or RAM.

6.2 Statistical assessment

Chosen statistics. To compare the various methods, we consider the SSE ®; upon convergence of the
Lloyd iterations. We also measure the CPU time of each seeding strategy, as well as the average number
of Lloyd iterations needed for convergence in the following k-means. As the seeding methods are non-
deterministic, we report average results over a set of R = 100 repeats. For each dataset, we also provide
p-values to assess the null hypothesis stating two distributions of observed values—that of the best performing
method and that of a contender—are identical. We use two non parametric two-sample tests: first, the Mann-
Whitney U-test (U) whose test statistic uses the ranks of values; second the Kolmogorov-Smirnov (KS) test,
which uses the difference between the cumulative distribution functions. We use these two tests to chase
statistical power, since the U test overlooks the numerical values, and the KS test compares CDF while we
care for performances only.

Comparison across datasets and normalization issues. To compensate the variability of statistics
across datasets, we min-max normalize the statistics of interest (Px and running time t) in two ways. Let
m € M the particular method to be assessed and R the set of repeats of that method on a dataset. To
compare methods, the first normalization uses the average values (computed over repeats), assigning the
value 0 (resp. 1) to the worst (resp. best) method on a dataset — with mg(-) standing for min-max-Mean:

m (6 ) _ q)K,m - mil’lmleM (I)K,m’ (4)
3 Km) — — - —
maXy,’ (I)K m/ — 1Ny, (I)K m’

eEM , eEM )

1 Spambase is the one dataset not used in (Celebi et al.l [2013)
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To compare the methods on the range of possible values observed for a given dataset, the second normalization
reads as — with mg(+) standing for min-max-Global:

6 o (I)K,m - minm’EM,TER (DK,m’,T' 5
maxXm/e M,reR PK,m/,r — Mlllym/e M reR LK, m/ r

For the running times, we define likewise mg(t,,).

6.3 Results

Incidence of the seeding on ®x. We study the contenders from Section To assess the changes
brought by the zig-zag strategy itself, we involve Seeding-EGDx2, namely k-means++-G where we double
the amount of candidates.

Three observations stand out :

e Best method. In terms of m3(®x), Seeding-EGD-EGC outperforms all contenders but k-means++-MS-G
on datasets where seeding has a significant impact (Fig. [3] Fig. 4] Table (1} SI Table .

The comparison Seeding-EGD-EGC versus k-means++-MS-G shows that these methods perform on par for
m3(Pg), yet with much better running times for Seeding-EGD-EGC— see below.

o The zag pass is beneficial when using greedy strategies. The D? weighting coupled to the greedy seed
selection significantly benefits from the zag pass. As shown with the consistent improvements on several
datasets observed with Seeding-EGD-EGD and Seeding-EGD-EGC (Fig. [3} Fig. [4] Table [1} SI Table [SIJ).
Specifically, the zig-zag methods outperform Seeding-EGDx2 on most datasets, providing better seeds while
considering the same amount of candidates.

o Using center of masses to select seeds yields superior results. The method Seeding-EGD-EGC outperforms
Seeding-EGD-EGD (Fig. |3} Fig. [4f Table |1} ST Table confirming that ®$“°M is a better fit than ®x.

Running time. We study in tandem the CPU total times (Fig. [5| SI Table and the number of Lloyd
iterations to reach convergence (Fig. .

e Zig-zag seeding methods are slower than single pass equivalents but reduce the number of Lloyd iterations.

Let us first compare Seeding-EGD-EGC and k-means++-G: focusing on the initialization step only, our
method incurs an increase of running time by ~ x2-3; taking the entire execution into account (seeding
+Lloyd iterations) the increase in running time is around ~ x1.5 (Fig. |5, Table .

Similarly, let us compare Seeding-EGD-EGC and the SOTA method k-means++-MS-G: for the initialization
running time, k-means++-MS-G is ~ X6 times slower than Seeding-EGD-EGC; for the total running time,

k-means++-MS-G is ~ x4 times slower (Fig. Table . This owes to the following asymmetry: our
reselection requires finding the best seed to add (from a pool of [ candidates) once one seed has been
removed; the greedy multi-swap requires finding the best seed to remove after adding p of them—from a pool
of size K 4+ p (first seed removed) to K + 1 (last seed removed). Moreover, without any optimization /
additional storage, the @ cost update is O(n) for an addition, and O(Kn) for a removal.

e Seeding methods producing lower values of @k also tend to reduce the number of required Lloyd iterations.
We observe an average Pearson correlation coefficient of 0.816 between ® - and the number of Lloyd iterations
(Fig. . This is expected, as efficient seeding precisely aims at placing seeds near the optimal positions,
reducing the number of Lloyd iterations needed for to reach these positions.

6.4 Sensitivity to the pool size

While our experiments were conducted with log K + 2 candidates—as in the standard the scikit-learn
implementation, it naturally makes sense to study the sensitivity of the methods to the pool size [. To this
end, we consider three pool sizes on different scales, namely I € {2 + logK,2 + v K, max(2, K)}, reporting
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EON

EGDx2

EGD-EGD
EGD-EGC
KM++-LS

KM++-MS-G

Figure 3: k-means: min-max normalized value m3(®x) — Eq. , as a function of the seeding
Seeding-EGD, and Seeding-EGDx2 is

method. For the reference: the seeding used in k-means++-G is
the same with twice as many seeds to match the zig-zag strategy.

Figure 4: k-means:

0.5

EON

EGDx2

EGD-EGD
EGD-EGC
KM++-LS

KM++-MS-G
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3 3 E ] 3 % 3 3 g 5 o N : : 2 p

e H E b & 3 4 H 5 5 3 3 2 ] 3 & T

EGD-EGC vs. cl S £ 2 £ g o & @ @ > = £ ] E 2 F
[ EON (U-test) [ 0.000 [ 0.006 | 0.000 | 0.000 0.000 [ 0.000 [ 0.000 | 0.000 | 0.000 0.000 [ 0.000 [ 0.000 | 0.017 | 0.000 | 0.000 | 0.000 [ 0.000 [ 0.000 |
I EON (K-test) | 0.000 | 0.054 | 0.000 | 0.000 0.000 [ 0.000 | 0.010 | 0.000 | 0.000 0.000 [ 0.000 | 0.000 | 0.036 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
[ EGDx2 (U-test) [ 0578 [ 0.018 | 0.006 | 0.001 0.007 [ 0.000 [ 0.041 | 0.000 | 0.000 0.768 [ 0.001 | 0.003 | 0.123 | 0.000 | 0.000 | 0.000 [ 0.000 [ 0.000 |
I EGDx2 (K-test) | 0.908 | 0.078 | 0.004 | 0.016 0.010 | 0.016 | 0.054 | 0.000 | 0.000 0.054 | 0.010 | 0.000 | 0.470 | 0.002 | 0.000 | 0.000 | 0.000 | 0.000 |
[ EGD-EGD (U-test) | 0.832 | 0.782 | 0.007 | 0.314 0.011 [ 0.014 | 0.180 | 0.000 [ 0.000 0.192 [ 0.062 | 0.101 | 0.431 | 0.057 | 0.000 | 0.000 | 0.029 | 0.000 |
[ _EGD-EGD (K-test) | 0.908 | 0.908 | 0.024 | 0.470 0.111 | 0.702 | 0.3868 | 0.000 | 0.000 0.368 | 0.282 | 0.086 | 0815 | 0.054 | 0.000 | 0.000 | 0.086 | 0.000 |
[[KM++-MS-G (U-test) | 0.202 | 0.276 | 0.865 | 0.557 0.686 | 0.098 [ 0.076 | 0.027 | 0.071 0.088 [ 0.572 | 0.0388 | 0.772 | 0.303 | 0.515 | 0.813 | 0.342 | 0.051 |
[ KM+ +-MS-G (K-test) | 0.583 | 0.702 | 0.968 | 0.702 0.815 | 0.994 | 0.111 | 0.00L | 0.004 0470 | 0.583 | 0.002 | 0.702 | 0.470 | 0.702 | 0.470 | 0.470 | 0.054 |

Table 1: k-means:
EGD-EGC and each method, on each dataset. Low p-values indicate that the difference in results is

statistically significant. Three color level are used: [0,0.05): green; [0.05,0.15): pale green; [0.15, 1]: white.
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p-values for Mann-Whitney U-tests and Kolmogorov-Smirnov K-tests between
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—— EON
EGDx2
—— EGD-EGD
—— EGD-EGC
---- KM++-LS
---- KM++-MS-G

Figure 5: k-means: min-max normalized CPU total time m3(t¢) for each seeding method.

the min-max normalized values (m3(®x), Fig. ma(®Pk), Fig. and CPU times (m3(t), Fig. raw
times, Fig.[S9).

This comparison calls for two comments. First, the larger the pool size the better the result (and the longer
the running time). This is somewhat expected for selected datasets, keeping in mind however that for others,
increasing the pool size tames down randomization, yielding a worse approximation factor (Bhattacharyal
et al.l [2020; |Grunau et al., [2023).

Second, the span observed for ®x decreases when moving from k-means++-G to Seeding-EGD-EGC. The
lesser sensitivity of our method to the pool size illustrates its ability to identify meaningful seeds at the
onset, a pattern shared by k-means++-MS-G.

7 k-GMM seeding: tests
7.1 Experimental protocol

Implementation and stop criterion. All seeding methods as well as the EM iterations were implemented
in C++ using the Eigen library. Implementation to be released upon publication of the paper.

The stopping criterion for the EM iterations targets the relative difference in log-likelihood between two
iterations, and reads as [1(0n)=1(0n-1)I/j1(0,_1)| < le — 4. Alternatively, the EM iterations are stopped after
reaching a maximum number of 100 iterations.

Generated datasets. Following (Blomer & Bujnal, [2013), we use GMMs defined from the following param-
eters: (i) the separation between components (values s = 0.5,1,2), (ii) the weights of components (uniform,
different), (iii) the size of components (constant, different), and (iv) their eccentricity (e = maxa Xa/miny Ag;
e € [1,2,5,10]). (NB: code available from https://github.com/mdqyy/simple-gmm-initializations!)
In total, 30 combinations (out of the 48 possible) are selected, and further aggregated into three so-called
groups: spherical (12 models), elliptical (9 models), elliptical-difficult (9 models). Each GMM is used to
generate D = 30 datasets, yielding a total of 900 datasets, each involving n = 10,000 points.

We also consider noisy datasets, namely noisy spherical/elliptical/elliptical-difficult models. To generate a
noisy dataset, we generate 9000 points from the noise free model, and add 1000 points drawn uniformly at
random in the expanded bounding box of the 9000 samples.

11
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Summarizing, we consider in the sequel six groups involving 60 models (30 noise free, 30 noisy), for a total
of D = 1800 datasets.

Grid dataset. In addition, we include an artificial pathological case with the grid dataset. In this group, we
include data sampled from a single handcrafted 3-dimensional GMM composed of 27 Gaussians forming the
shape of a 3d cubic grid (Fig. The rationale is to highlight situations where the K-GMM-seeding-GGD
initialization method might be particularly well suited, as the data is generated using a GMM with easily
identifiable but highly intersecting and eccentric components. With this GMM, we also generate 30 datasets,
each composed of 250 * 27 = 6750 points.

Statistics. We aim at comparing N, = 9 initialization contenders using the log-likelihood — Eq. , for
every group of models out of six. For a given dataset, final log-likelihood values are obtained by averaging
the results of R = 30 runs of each initialization method in order to assess the variance inherent to their
randomness. This yields a vector of final log-likelihood values of size N, for each dataset (900 vectors for
noise free datasets, 900 for noisy datasets). Consider the resulting D x N, matrix, with D = 1800 and
N, =9. To be able to accumulate results over different datasets from the same group, we perform min-max
scaling over each matrix row, such that its entries are in [0, 1] (with O (resp. 1) corresponding to the worst
(resp. best) performing method at each row). These rescaled values are termed the min-max normalized
log-likelihoods. The matrix columns can then be split into 6 blocks, each corresponding to a specific group.
To compare the six groups, we average the min-max normalized log-likelihood values of each method on all
datasets of a given block — resulting in 6 X N, values in total.

7.2 Results

Seeding and the final log-likelihood. The following observations stand out (Fig. [} Fig6] Fig SI
Table [S3| (exact values)).

eThe zig-zag strategy 1is state-of-the-art. EM combined by the classical k-means++ seeding,
a.k.a  K-GMM-seeding-EGD, is outperformed by the variant using twice as many candidates
( K-GMM-seeding-EGD(x2)), which is itself outperformed by K-GMM-seeding-EGD-EGC. Consistent with
k-means, this corroborates the general efficacy of the zig-zag strategy in increasing the final log-likelihood
on all classes of datasets.

e Log-likelihood (LL) based methods are sensitive to noise. The comparison between noise free and noisy
datasets yields a clear separation between methods using the log-likelihood for seed selection. As illustration
comparison is that between K-GMM-seeding-EGD-EGC and K-GMM-seeding-EGD-EGL— which differ only by
the metric used to rank candidates. One the one hand, LL based methods are amongst the best on our noise
free datasets. On the other hand, these methods appears highly sensitive to outliers (Fig. and Fig. .

e Seeding using the Gaussian based distance is highly effective for mixtures with intersections. The case
of K-GMM-seeding-GGD, which uses the D? strategy on the Gaussian distance performs on par with

K-GMM-seeding-EGD for generated datasets. On the grid datasets, it is the best performing method over-
all, and significantly outperforms K-GMM-seeding-EGD as a single pass strategy (Fig. . As opposed to
the likelihood regulated methods, K-GMM-seeding-GGD incorporates the advantages of estimating Gaussian
components without suffering from the inclusion of noise.

Running time. Similarly to the k-means case, the zig-zag seeding methods are slower that their one
pass counterpart (Fig. , but the SSE regulated methods remain competitive (Fig. Most impor-
tantly, the likelihood regulated passes are 5x to 6x slower than the SSE regulated passes. Finally, the

K-GMM-seeding-GGD method is around two to three orders of magnitude slower than all shown methods
due to the cost of estimating Gaussians on each data points.

12
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—— K-GMM-EON
< K-GMM-EGD (x2)
"E’ —— K-GMM-EGD-EGC
= —— K-GMM-AGL (x2)
3 —— K-GMM-EGD-AGL
= —— K-GMM-GGD (x2)
= K-GMM-EGD

=3 ---- K-GMM-EGD-EGL
- K-GMM-AON

Figure 6: k-GMM : mean of the min-max normalized log-likelihood over datasets of each scenario.
The larger the log-likelihood, the better. See text for details.

8 Outlook

Clustering is a fundamental problem, and k-means is a fundamental approach to it. In search for efficient and
provably correct solutions, the smart seeding approach of k-means++ play a central role. Re-seeding methods
based on local searches and multi-swaps recently underwent important developments, both in theory and in
practice. We improve on these in several ways.

On the design side, while recent re-seeding methods have used distances to the data points, we use distances
to the centroids of the clusters induced by the centers, in the spirit of the early works of local searches. Also,
our methods are particularly simple and do not require any elaborate data structure to maintain nearest
neighbors of the seeds under scrutiny during re-selection. Our methods achieve SOTA performance but
currently lack theoretical guarantees, specifically in terms of a constant approximation factor (CFA). This
situation parallels that of k-means++-G, which has been the preferred practical method since 2007 despite
the absence of theoretical analysis until 2023, and since 2023 despite having a CFA worse than that of
k-means++. Our experiments also shed light on subtle properties of k-means often overlooked, including the
(lack of) correlations between the SSE upon seeding and the final SSE, the variance reduction phenomena
observed in iterative seeding methods and the sensitivity of the final SSE to the pool size for greedy methods.

Practically, we anticipate that our best seeding methods will become one of the standard seeding technique(s).

However, the analysis of our methods raises challenging questions. The first one is the role of the metric and

its coherence with the functional eventually optimized by Lloyd iterations for k-means, or EM iterations for
k-GMM .

The second relates to the ordering along which seeds are being opted out during reselection, as we only used
the reversed selection order in this work. For example, in a manner akin to simulated annealing, which lowers
the temperature strategy, re-seeding seeds with higher impact on variance first may provide finer results.
These intuitions have to be formally established and tested.

13
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S1 Supporting information: theory

S1.1 k-means

Algorithm 1 Seeding-EON-EON.
: procedure Seeding-EON-EON(data, K)

—

centers < Seeding-EON (data, K)
> Reselect centers in reverse order q
for K+ K to 1 do

Delete centers[k]

Choose new_ ¢ with the D? strategy

Insert new ¢y in centers at position k

IR R o

S1.2 EM for Gaussian Mixtures
S$1.2.1 The Means2GMM and Means2SphGMM algorithms

Consider a dataset and a hard partition of this dataset into clusters.

The algorithm 2| (Blomer & Bujna, [2016) converts this partition into a Gaussian mixture model. An inter-
esting observation is that it is often beneficial to estimate isotropic initial components instead of anisotropic
ones.

Algorithm 2 The classical Means2GMM algorithm. The variant Means2SphGMM consists of changing the
full anisotropic estimation of line [7] by the isotropic estimation of line [8| (Blomer & Bujnal, 2016)).

1: procedure Means2GMM(X, pt1, ..., i)

Derive partition C1, ..., Ck of X by assigning each point z; € X to its closest mean
> Build GMM components N
for k + 1to K do

e =1/|Ckl Ypec, @

w = |Ckl| / |1 X|

Sk =1/ICk] Ypee, (@ = )@ — )"

If 3y, is not positive definite, take ), = 1/(d|Ck|) Xy cc, 2 — 1kl* 1a)

If X is still not positive definite, take X = I4

© % TR

S$1.2.2 The E and M steps

In the following, we recall the EM algorithm to fit a GMM. The algorithm involves two steps.

The E-step. Given the functions at iteration ¢, one computes the responsibility of the gaussian g}t) for
the sample point z;

) (t t
o w9 @le))

g M t) (¢ N
g (@ile)

(6)

The sum of responsibilities associated to one component then read as

N
t t
ng) =3 (")
i=1
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It may be noted (Bishop & Nasrabadi, |2006)(Chapter 9) that the weight wj(-t) is the prior probability for
®

the sample z; to be generated by the j-th component; the responsibility r;;'is the corresponding posterior

probability.

The M-step. Re-estimate the parameters of g(»Hl)

; using the maximum likelihood:

1 1 < 1 Dy T
S = ST (@ -l @ - V)

Convergence. Consider the log likelihood for the n samples, that is

LLX|O)=InN(X|O)= Z ln(z weN (i | e, S))- (8)
k

i=1,...,n

One checks the convergence of the mixture parameters, or of the likelihood.

Numerics. In the E-step of the EM algorithm, the evaluation of the GMM needed to compute responsi-
bilities induces a risk of underflow. This is due to the evaluation of singular components on datapoints for
which they have no responsibility, resulting in pdf values that tend to 0.

To solve this problem, we adapt the E-step by computing the responsibilities using only the logarithmic
scale. We first compute the log-pdfs of singular components for individual unnormalized responsibilities. To
obtain normalized responsibilities, we must compute the log pdf of the whole mixture model.

This computation requires a summation of the pdf values of components, which cannot be explicitly ob-
tained without losing the logarithmic scale. We avoid this problem by performing the logsumexp trick
(https://en.wikipedia.org/wiki/LogSumExp) using the log-pdfs of individual components, allowing us to
obtain the log-pdf of the whole mixture model while staying in logarithmic scale throughout.

The logsumexp operation consists in the following:

logsumexp(xy, ..., Tpn) = log(z exp(x;)) 9)
i=1

Applied on the log-pdfs of individual components, this allows us to obtain the log-pdf of the mixture model,
but loses the logarithmic scale. Therefore, we apply the logsumexp trick by using the following equivalent
to the logsumexp operation:

logsumexp(xy,...,xn) = x* + log(z exp(x; —x*)) (10)
i=1

This equivalent allows us to shift the values in the exponent by an arbitrary constant. We can then set
z* = max{x1,...,x,}, to ensure the largest exponentiated term is equal to exp(0) = 1, avoiding the risk of

underflow on the result of the logsumexp operation.

S1.3 D% with Gaussian distance

Multivariate Gaussians and associated distance The parameter set of a multi-dimensional Gaussian
is denoted © = (p, X); it has dimension d+d(d+1)/2 = d(d+3)/2. The set of positive semidefinite matrices,
to which covariance matrices belong, is denoted Sj.
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The density of a multivariate Gaussian reads as:

xp(—=(z— )8 (@ — ). (11)

1
NICRE RS

Let ¥; and X5 be two PSD matrices; let 112 = 1 — pa, and let X190 = (31 4 X2)/2. Consider the generalized
eigenvalue problem (GEP) X1V = A\X,V, with V the column matrix of the generalized eigenvectors. The
Riemannian metric for PSD reads as (Forstner & Moonen, 2003)):

9(x]©) =

d
dpsp(S1,52) = (D log? )\j)1/2. (12)
i=1

Using this, one defines the following distance between Gaussian distributions (Abou-Moustafa et al., |2010)):
1/2 d 1/2
da(g1,92) = (p12"E i) 7 + (Z In? k) (13)
k=1

K-GMM-seeding-GGD: details. Using the previous gaussian distance we propose the K-GMM-seeding-GGD
seeding algorithm. This is a modification of the K-GMM-seeding-EGD algorithm, where the k-means++ seed-
ing method is used on locally estimated gaussians at each data point, instead of the data points themselves.
In other words, this method aims at sampling seeds from the datapoints by considering the shape of the
gaussian components that would result from selecting them. This local estimation of gaussians is done as
follows:

» At each data point z;, compute average distance ch to L-nearest neighbors {xl(] )}lel with the
following equation. Considering K components will be estimated in the following EM algorithm, we
set L to be equal to N/K .

L

N 1 ;

di= 7Y Nl =l (14)
=1

» For each pair of points z; and x;, compute the local distance weighted responsibility of point z;
for point x; with the following equation. These responsibilities are designed to correspond to the
evaluation on the point x; of an isotropic gaussian with variance d;, centered on the data point x;.

1 1|z — ;]2
LG(z:)

TN LG

)

Tij

o At each data point, compute local gaussians G; with the M-step update rules of the EM algorithm
(S1.2.2)), using the local responsibilities 7;.

This process provides a set G of locally estimated gaussians of size N, one gaussian for each datapoint. It
is then followed by a selection of K gaussians among G with the k-means++ algorithm using the gaussian

distance of Eq[I3] Finally, we select the K data points from which the K selected gaussians were obtained
as starting centers for the EM iterations, completing the seed selection.

S2 Supporting information: results

S2.1 k-means
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Figure S1: Plot of Table 2 from (Celebi et al., 2013), on 32 datasets. (Left) Minimum values scaled
by the minimum for a dataset (Right) Mean values scaled by the minimum for a dataset. The error bars
correspond to mean values + the std deviation.
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Figure S2: k-means: Correlations between (¥, ®R) and (®x, % °M) on the datasets from
(Celebi et al., [2013). Correlations are computed from the values of 150 repeats of k-means, using as
initialization k-means++-G for ® and Seeding-EGD-EGC for ®$COM.
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Figure S3: k-means: boxplot of the mean square distance D’ (each sample to its nearest seed)
along the seeding selection process — k € 1..K. Statistics over 150 repeats of k-means++ on each
dataset.
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Figure S4: k-means: scatterplot of the L and ®$-°°M values along the seeding selection process

for each k € 1..K. Statistics over 150 repeats on spam dataset. The darker the dot, the earlier in the
selection process the values were measured.
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Figure S5: k-means: incidence of the seeding method on the average number of Lloyd iterations.
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Figure S6: k-means: min-max normalized m3(®x) — Eq. @, as a function of the seeding method
and the candidate pool size.
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Figure S7: k-means: min-max normalized mg(®x) — Eq. , as a function of the seeding method
and the candidate pool size.

22



Published in Transactions on Machine Learning Research (10/2025)

1.0

0.8

0.6

ms(t)

0.4+

EGD | 2+log(k)

EGD | 2+sqgrt(k)

EGD | max(2,k)
EGD-EGC | 2+log(k)
EGD-EGC | 2+sqrt(k)
EGD-EGC | max(2,k)
KM++4-MS-G | 2+log(k)
KM++-MS-G | 2+sqrt(k)
KM++4-MS-G | max(2,k)

Figure S8: k-means: min-max normalized CPU time mj3(¢) as a function of the seeding method
and the candidate pool size.
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Figure S9: k-means: Raw CPU time (in seconds) as a function of the seeding method and the
candidate pool size.
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EON EGDx2 EGD-EGD EGD-EGC KM+ +-LS KM++-MS-G
cloud init 0.001 0.004 0.009 0.012 0.012 0.041
total 0.012 0.012 0.015 0.018 0.019 0.047
corel init 0.124 0.817 2.296 2.665 4.169 15.271
total 2.448 3.295 4.773 5.142 6.617 17.761
faults init 0.001 0.004 0.011 0.013 0.013 0.046
total 0.010 0.013 0.018 0.019 0.021 0.053
letter init 0.035 0.194 0.741 0.792 1.576 6.008
total 0.886 1.042 1.581 1.654 2.466 6.869
mfeat init 0.002 0.009 0.026 0.028 0.037 0.126
total 0.031 0.037 0.055 0.053 0.067 0.153
musk__clean init 0.003 0.010 0.046 0.063 0.027 0.117
total 0.014 0.020 0.059 0.074 0.038 0.133
optdigits init 0.005 0.027 0.078 0.081 0.106 0.360
total 0.083 0.095 0.146 0.145 0.178 0.431
pendigits init 0.006 0.026 0.072 0.081 0.106 0.402
total 0.108 0.110 0.150 0.152 0.180 0.476
segmentation init 0.001 0.005 0.013 0.014 0.016 0.052
total 0.013 0.016 0.023 0.022 0.026 0.061
shuttle init 0.025 0.114 0.315 0.356 0.365 1.333
total 0.309 0.395 0.573 0.568 0.609 1.580
spam init 0.004 0.018 0.056 0.058 0.079 0.267
total 0.065 0.077 0.116 0.108 0.142 0.329
yeast init 0.001 0.003 0.009 0.009 0.013 0.043
total 0.014 0.014 0.019 0.019 0.023 0.053
kdd-bio-25 init 0.994 7.690 18.520 23.204 55.951 173.514
total 10.831 18.493 29.365 34.213 66.843 184.628
rna-25 init 0.832 4.527 15.972 16.763 34.703 124.182
total 18.598 22.208 34.057 34.901 52.361 142.225
kdd-phy-25 init 0.683 5.907 14.136 18.350 42.176 126.584
total 4.344 9.646 17.892 21.533 45.816 129.795
kdd-bio-50 init 2.233 18.795 50.984 60.093 225.736 787.681
total 23.265 40.878 73.338 82.949 247.151 809.553
rna-50 init 1.738 10.976 51.131 53.497 135.014 560.411
total 36.062 45.791 85.948 87.920 169.170 595.723
kdd-phy-50 init 1.447 14.326 36.560 45.919 165.633 567.335
total 11.803 25.323 47.206 54.071 175.971 576.968

Table S2: k-means seeding: average CPU time (in seconds) for each seeding method. Init (resp.
Total) correspond to seeding (resp. seeding + Lloyd iterations).

S2.2 k-GMM
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Figure S10: k-GMM : Correlations (in absolute value) between (initial log-likelihood, final log-

likelihood) and (®$-COM| final log-likelihood) on the generated datasets from (Blomer & Bujna,

2013)). Correlations are computed from the values of 30 repeats of EM per dataset, using as initialization
K-GMM-seeding-EGD-EGC for log-likelihood and K-GMM-seeding-EGD-EGC for ®3:COM.
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Figure S11: k-GMM : Top and side views of a 3D point cloud generated by a mixture of 27
anisotropic Gaussian distributions.
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Figure S12: k-GMM : Boxplots of min-max normalized log-likelihoods for the grid dataset.
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K-GMM-seeding-EGD-EGC

K-GMM-seeding-EGD-EGL

Figure S13: k-GMM : Fitted models on a noisy-elliptical dataset with separation s = 0.5. Data
is generated using a GMM with 10 components. Each component is represented with a blue dot for the
mean, and contour lines to represent the confidence regions at [0.85, 0.90, 0.95] (darker lines corresponding
to higher confidence). Likelihood regulated methods (bottom) are highly sensitive to noise and consistently
outperformed by SSE regulated methods (top).
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K-GMM-seeding-EGD-EGC

K-GMM-seeding-EGD-EGL

Figure S14: k-GMM : Fitted models on a noisy-elliptical dataset with separation s = 2. Data is
generated using a GMM with 10 components. Conventions identical to Fig. @
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Figure S15: k-GMM : average CPU time in seconds over all datasets for initialization only, when
using each seeding method.
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Figure S16: k-GMM : average CPU time in seconds over all datasets for a full EM run, when
using each seeding method.
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