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Abstract

Recurrent Neural Networks (RNNs) are used to learn representations in partially
observable environments. For agents that learn online and continually interact with
the environment, it is desirable to train RNNs with real-time recurrent learning
(RTRL); unfortunately, RTRL is prohibitively expensive for standard RNNs. A
promising direction is to use linear recurrent architectures (LRUs), where dense
recurrent weights are replaced with a complex-valued diagonal, making RTRL
efficient. In this work, we build on these insights to provide a lightweight but
effective approach for training RNNs in online RL. We introduce Recurrent Trace
Units (RTUs), a small modification on LRUs that we nonetheless find to have
significant performance benefits over LRUs when trained with RTRL. We find
RTUs significantly outperform other recurrent architectures across several partially
observable environments while using significantly less computation.1

1 Introduction

Agents, animals, and people perceive their surrounding environment through imperfect sensory
observations. When the state of the environment is partially observable, agents construct and maintain
their own state from the stream of observations. The constructed agent state summarizes past
environment-agent interactions in a form that is useful to predict and control future interactions [41].
Recurrent Neural Networks (RNNs) provide a flexible architecture for constructing agent state
[19, 21, 13, 6, 10].

While standard RNN architectures have been mainly supplanted by Transformers [44], in online
reinforcement learning settings where the agent learns while interacting with the environment, RNNs
remain a promising direction to pursue [17, 11]. There are two main issues that limit the use of self-
attention mechanisms from Transformers in online learning. First, calculating the similarity between
each pair of points results in a computational complexity that is a function of k2, where k is the
sequence length. Moreover, calculating the similarity between all pairs ignores the temporal order of
the data points, which limits the usefulness of self-attention when the data is temporally correlated [47].
Second, we need access to the whole sequence of observations before taking an action or updating the
learnable parameters, which is impractical in continual learning. While recent works have reduced
the complexity of transformers from quadratic in the sequence length to linear [15, 16, 37], the
entire sequence length is still needed to train such architectures. Gated Transformer-XL attempts to
overcome this issue by keeping a moving window of previous observations [35]. A window of past
observations does not scale well to long sequences—the computation is quadratic in the sequence
length—and a window is one particular fixed function of history. The simpler recursive form in
RNNs, on the other hand, can learn a great variety of functions of history from the data and is well
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suited for updating the state online from a sequential data stream and have been shown to outperform
transformers in such settings [23].

A key open question is how to efficiently train RNNs in online RL. We can divide the literature
into methods that approximate Real-Time Recurrent Learning (RTRL) and those that restrict the
recurrent architecture. RTRL [46] exploits the recursive nature of the gradient for RNNs, carrying
forward the needed gradient information instead of unrolling the recurrent dynamics back in time
like Truncated Backpropagation Through Time (T-BPTT) [45]. RTRL avoids storing past data but is
so computationally expensive and is intractable for even moderately sized networks. Several methods
approximate the RTRL gradient update, including NoBackTrack [33], Unbiased Online Recurrent
Optimization [43, 5], Sparse N-Step Approximation (SnAp) [28]. All of these methods produce a
biased gradient estimate. Other works have tried to approximate an unbiased gradient estimate of
BPTT specifically for the case of policy gradient updates in RL. However, the approximation resulted
in a high variance due to added stochasticity to the policy [1].

Methods in the second category usually restrict the RNN architecture to a diagonal RNN [9, 30],
including Columnar Networks [18], the element-wise LSTM [17], and Independently Recurrent
Neural Networks (IndRNNs) [20]. The RTRL algorithm is computationally efficient for such
architectures. However, this approach sacrifices representation power and can perform poorly [18].
Recent work suggests overcoming the poor performance of diagonal RNNs with a small modification:
having a complex-valued recurrent state instead of restricting it to real values [34]. In fact, as we
will show in section 3.1, there exists an equivalence between using a dense linear recurrent layer
and a diagonal recurrent layer with complex values, indicating no loss of representational capacity.
LRUs have been combined with RTRL [48], though only empirically explored for supervised learning
datasets.

In this work, we extend the insights from LRUs into the online RL setting. Our primary contribution
are our experiments showing that such a lightweight recurrent architecture can outperform standard
approaches like Gated Recurrent Units (GRUs) [4] in RL, with significantly less computation. To
obtain this result, we propose a small extension on LRUs, which we call Recurrent Trace Units (RTUs).
RTUs incorporate nonlinearity into the recurrence and use a slightly different parameterization than
LRUs, but one we find is more amenable to the use of RTRL in online RL than LRUs. We extend
Proximal Policy Optimization (PPO) [40] to use RTRL, ablating the decision choices we propose.
We provide an in-depth study in an animal-learning prediction benchmark, showing that RTUs scale
better than GRUs with increasing compute and number of parameters and that RTUs outperform
alternative diagonal recurrent architectures trained with RTRL. We then show across numerous
control environments that RTUs have comparable or better performance, compared to GRUs and
LRUs.

2 Background

We formalize the problem setting as a Partially Observable Markov Decision Process (POMDP).
At each time step t = 0, 1, 2, . . ., the agent perceives an observation xt, a limited view of the state
st ∈ S, and takes an action At ∈ A(st). Depending on the action taken, the agent finds itself in a
new state st+1 ∈ S, observes the corresponding observation xt+1 and a reward Rt+1 ∈ R. In the
online control setting, the agent’s goal is to maximize the discounted sum of the received rewards. It
may also make predictions about its environment, such as future observations’ outcomes.

For prediction and control in a partially observable environment, the agent should use the stream of
observations to construct its agent state. The agent state summarizes information from the history
of the agent-environment interactions that are useful for prediction and control [41]. We could use
the whole history up to t, namely (x0, A1, R1,x1, A2, R2, . . .xt), as the agent state. Though the
history preserves all the information, it is not feasible to use directly. We want the agent to have
constant memory and computation per time step and storing the whole history causes the memory
and the computation to grow with time. Instead, the agent needs to compress this history into a
concise representation. We refer to the agent’s internal representation of the history at time t as
its agent state or its hidden state ht. The agent constructs its current agent state ht ∈ Rn from its
previous agent state ht−1 ∈ Rn and the recent observation xt ∈ Rd using a state-update function
g : Rn×Rd → Rn: ht = g(ht−1,xt).
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One way to learn this state-update function g is with a recurrent neural network (RNN). A simple
form is a linear recurrent layer, where g(ht−1,xt) = Wxxt +Whht−1 for weight matrices Wx

and Wh. We can also add a nonlinear activation, such as ReLU.

In general, we will write
ht = g(ht−1,xt,ψψψ),

where ψψψ are the learnable parameters in the network. The agent maps the agent state ht to an output
ŷt and then receives a loss Lt

.
= L(ŷt, yt) indicating how far the output is from a target yt. The agent

updates ψψψ to minimize this loss over time.

Two main gradient-based algorithms are widely used to train RNNs: Truncated Backpropagation
Through Time (TBPTT) and Real-Time Recurrent Learning (RTRL). T-BPTT specifies a truncation
length T , which controls the number of steps considered when calculating the gradient [45]. As a
result, the computation and memory complexities of T-BPTT are functions of the truncation length.
Learning with T-BPTT involves a trade-off between the network’s ability to look further back in time
and its compute and memory requirements. Picking a large T can be expensive, or require us to limit
the network size, but picking too small of a T can cause the agent to miss important relationships and
so result in poor performance.

Williams and Zipser (1989) introduced the Real-time Recurrent Learning algorithm (RTRL) as a
learning algorithm for continual recurrent learning. Instead of unrolling the recurrent dynamics back
in time, RTRL computes the gradient using the most recent observation, and the gradient is calculated
and carried from the last step [46]. Assuming the network parameters have not changed, this recursive
form gives the exact gradient and does not suffer from the truncation bias inherent to T-BPTT. We
provide a more detailed background on the BPTT and RTRL in Appendix A. In reality, the agent
updates its parameters frequently, so the gradient information saved from previous time steps is stale,
i.e., calculated w.r.t old parameters; yet, under the assumption of small learning rates, RTRL is known
to converge [46]. These properties make RTRL ideal for online learning, but unfortunately, there
is a catch: its computational complexity is quartic, of fourth order, in the size of ht, which can be
prohibitively expensive. For this reason, we pursue a restricted diagonal form in this work, for which
RTRL is efficient and linear in ht.

3 Recurrent Trace Units

In this section, we introduce Recurrent Trace Units (RTUs). We start by revisiting why complex-
valued diagonals represent dense recurrent layers, and why using real-valued diagonals is insufficient.
We then introduce the specific form for RTUs that leverages this relationship. We then provide the
RTRL update for RTUs, highlighting that it is simple to implement and linear in the hidden dimension.
We finally contrast RTUs to LRUs and motivate why this small extension beyond LRUs is worthwhile.

3.1 Revisiting Complex-valued Diagonal Recurrence

Assume we have the recurrence relationship, with learnable parameters Wh ∈ Rn×n and Wx ∈
Rn×d, ht

.
= Whht−1 + Wxu(xt), where u can be any transformation of the inputs xt before

they are inputted into the recurrent layer. We can rewrite the square matrix Wh using an eigenvalue
decomposition Wh = P Λ P−1, where P contains the n linearly independent eigenvectors and
Λ ∈ Cn×n is a diagonal matrix with the corresponding eigenvalues. Then we have that

ht = P(Λ P−1 ht−1 +P−1Wx u(xt)) =⇒ P−1ht = ΛP−1 ht−1 + P−1 Wx u(xt)

By defining ht
.
= P−1 ht ∈ Cn and Wx

.
= P−1Wx ∈ Cn×d, we get a new recurrence

ht = Λht−1 +Wxu(xt).

We can see ht and ht are representationally equivalent: they are linearly weighted for downstream
predictions, and so the linear transformation on ht can fold into this downstream linear weighting.
But it is more computationally efficient to use ht with a diagonal weight matrix Λ, meaning each
hidden unit only has one recurrent relation instead of n. LRUs precisely leverage this equivalence
[34]. Specifically, they learn a complex-valued ht, and use Re(W ht) as an input to an MLP for
downstream nonlinearity.
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Since we did not impose constraints on the matrix Wh, other than being diagonalizable, the eigenval-
ues of Wh can be complex or real numbers. Previous diagonal RNNs such as eLSTM [17], Columnar
networks [18], and IndRNN [20] use only real-valued diagonal matrices. Having only real-valued
diagonals assumes that the matrix Wh is symmetric. We provide a small experiment in Appendix B.2
showing that this assumption does not hold even in the simplest setting and that complex eigenvalues
do arise. We also investigate whether this result can be extended beyond linear recurrence, and largely
obtain a negative theortical result (see Appendix B.1 and C ).

3.2 The RTU Parameterization

A complex number can be represented in three ways: a+ bi (the real representation), r exp(iθ) (the
exponential representation), and r(cos(θ) + i sin(θ)) (the cosine representation). Mathematically,
these three representations are equivalent, but do they affect learning differently? Orvieto et al.
[34] empirically showed that using the exponential representation resulted in a better-behaved loss
function than the real representation on a simple task; we provide some discussion in Appendix D.1
further motivating why the real representation is less stable. We chose instead to pursue the cosine
representation, because it allows us to represent the complex hidden vector as two real-valued vectors.
The remainder of this section outlines RTUs, with and without nonlinearity in the recurrence.

Our goal is to learn a complex-valued diagonal matrix with weights λk = rk(cos(θk) + i sin(θk))
on the diagonal, for k = 1, . . . , n. Multiplying by a complex number is equivalent to multiplying
by a 2x2 block matrix with a rescaling. We can use this rotational form to avoid explicitly using
complex numbers, and instead use two real-values for each complex-valued hidden node. We write
this real-valued matrix Λ ∈ R2n×2n as blocks of rotation matrices2

Λ =

[
c1

· · ·
cn

]
where ck = rk

[
cos(θk) − sin(θk)
sin(θk) cos(θk)

]
. (1)

Each element of ht = Λht−1 +Wx xt ∈ R2n has two components hc1t ,h
c2
t , updated recursively:

hc1t = r cos(θθθ)⊙ hc1t−1 − r sin(θθθ)⊙ hc2t−1 +Wc1
x xt,

hc2t = r cos(θθθ)⊙ hc2t−1 + r sin(θθθ)⊙ hc1t−1 +Wc2
x xt.

We finally combine the new recurrent states into one state ht
.
= [f(hc1t ); f(hc2t )], potentially using a

non-linearity f after the recurrence.

We also adopt two parameterization choices made in LRUs that showed improved performance.
The first is learning logarithmic representations of the parameters rather than learning them directly:
instead of learning r and θθθ, the network learns νννlog and θθθlog, where r .

= exp(−ννν), ννν = exp(νννlog), and
θθθlog

.
= log(θθθ). This re-parametrization restricts the r to be ∈ (0, 1], required for stability. We found

these modifications to improve stability of RTUs (see Appendix E). The second parameterization
choice we adopt from LRUs is to multiply the input (Wxxt)k by a normalization factor of γk =

(1− r2k)
1/2. Putting this all together, the final formulation of RTUs is:

hc1t = g(νννlog, θθθlog)⊙ hc1t−1 −ϕϕϕ(νννlog, θθθlog)⊙ hc2t−1 + γγγ ⊙Wc1
x xt,

hc2t = g(νννlog, θθθlog)⊙ hc2t−1 +ϕϕϕ(νννlog, θθθlog)⊙ hc1t−1 + γγγ ⊙Wc2
x xt, (2)

ht = [f(hc1t ); f(hc2t )],

where γγγ ∈ Rn is the vector composed of γk = (1− exp(− exp(νlogk ))2)1/2 and

g(νk, θk)
.
= exp(− exp(νlogk )) cos(exp(θlogk )),

ϕ(νk, θk)
.
= exp(− exp(νlogk )) sin(exp(θlogk )).

(3)

Note that γγγ can be absorbed by W, and so does not change representation capacity.

There are two ways to incorporate non-linearity into RTUs: inside the recurrence or after the
recurrence. In the above, in Equation (2), the non-linearity is after the recurrence. These RTUs

2We assume the matrix Λ has only complex eigenvalues, as the network can easily turn a complex eigenvalue
into a real one by setting the imaginary component to 0.
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maintain the equivalence to a dense linear RNN, because the recurrence itself remains linear. We
refer to this definition of RTUs as Linear RTUs, because the recurrence is linear, even though we
have the ability to represent nonlinear functions by allowing for any nonlinear activation after the
recurrence. We also evaluated a different variation of RTUs where the non-linearity is added to the
recurrence directly. These Nonlinear RTUs are written as:

hc1t = f(g(νννlog, θθθlog)⊙ hc1t−1 −ϕϕϕ(νννlog, θθθlog)⊙ hc2t−1 + γγγ ⊙Wc1
x xt),

hc2t = f(g(νννlog, θθθlog)⊙ hc2t−1 +ϕϕϕ(νννlog, θθθlog)⊙ hc1t−1 + γγγ ⊙Wc2
x xt), (4)

ht = [hc1t ;hc2t ].

Notice now f—a nonlinear activation like ReLU—is used in the update to hc1t and hc2t , and the
final ht simply stacks these two components. Nonlinear RTUs lose the equivalence to dense RNNs,
though in our experiments, we find they perform as well or better than Linear RTUs.

3.3 The RTRL Update for RTUs

This section shows the RTRL updates for RTUs with more in-depth derivations in Appendix E. To
keep notation simpler, we write the updates as if we are directly updating r and θ; the updates for
νννlog and θθθlog are easily obtained then using the chain rule. The full derivation is in Appendix E.2.

Consider the partial derivative with respect to r1 for the first RTU with input x̄1
.
= (Wc1

x xt)1:

hc1t,1 = r1 cos(θ1)h
c1
t−1,1 − r1 sin(θ1)h

c2
t−1,1 +

√
(1− r21)x̄1.

Then ∂Lt
∂r1

=
∂Lt
∂hc1t,1

∂hc1t,1
∂r1

+
∂Lt
∂hc2t,1

∂hc2t,1
∂r1

.

Since r1 only impacts the two units in the first RTU, and derivatives w.r.t. the remaining hidden
units are zero. Therefore, we just need to keep track of the vector of partial derivatives for these two

components, er,c1t
.
= [

∂h
c1
t,1

∂r1
, . . . ,

∂h
c1
t,n

∂rn
] and er,c2t

.
= [

∂h
c2
t,1

∂r1
, . . . ,

∂h
c2
t,n

∂rn
] with recursive formulas:

er,c1t =cos(θ)⊙ hc1t−1+r⊙ cos(θ)⊙ er,c1t−1 − sin(θ)⊙ hc2t−1 − r⊙ sin(θ)⊙ er,c2t−1 − r√
1−r2

⊙Wc1
x xt

er,c2t =cos(θ)⊙ hc2t−1+r⊙ cos(θ)⊙ er,c2t−1 + sin(θ)⊙ hc1t−1 + r⊙ sin(θ)⊙ er,c1t−1 − r√
1−r2

⊙Wc2
x xt

We can similarly derive such traces for θ. The update to r involves first computing ∂Lt

∂h
c1
t

, using
backpropagation to compute gradients back from the output layer to the hidden layer; this step
involves no gradients back-in-time. Then r is updated using the gradient ∂Lt

∂h
c1
t

⊙ er,c1t + ∂Lt

∂h
c2
t

⊙ er,c2t ,
which is linear in the size of r ∈ Rn, as the vectors er,c1t , er,c2t ∈ Rn can be updated with linear
computation in the above recursion. This update is the RTRL update, with no approximation.

3.4 Contrasting to LRUs

RTUs are similar to LRUs, with two small differences. First, RTUs have real-valued hidden units,
because the cosine representation is used instead of the exponential representation. Second, RTUs
use nonlinear activations in the recurrence, making them no longer linear. Though again a minor
difference, we find that incorporating nonlinearity in the recurrence can be beneficial. RTUs can be
seen as a small generalization of LRUs, moving away from strict linearity—and thus motivating the
name change—but nonetheless a generalization we find performs notably better in practice.

Let us now motivate the utility of moving to a cosine representation and real-valued traces. LRUs
parameterize each hidden unit with λk = rk exp(iθk) = exp(− exp(νlogk )+ i exp(θlogk )) and directly
work with complex numbers. Consequently, the hidden layer cannot be directly used to predict real-
values. It would be biased to take Re(ht) (see Appendix D.2), and instead an additional weight matrix
W ∈ Cn×n must be learned, to get Re(W ht). To understand why this works, assume that we took
the original ht from the dense NN, and handed it to an MLP. This would involve multiplying Wht
for some W. If we set W = WP, then W ht = WPP−1ht = Wht and we did not introduce any
bias. In fact, if W is set this way, we do not need to take the real-valued part, because the output of
Wht is real-valued. Of course, learning does not force this equivalence—in fact this parameterization
is more flexible than the original—and so it is necessary to take the real-part.
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RTUs avoid some of these complications by explicitly writing the recurrence and updates with real-
valued hidden states. Implicitly, the relationship between the two real-valued hidden vectors forces
them to behave like complex numbers (as rotations), but all equations and learning stay in real-valued
space. RTUs consequently avoid the need to post multiply by the matrix, removing a small number of
learnable parameters, allowing the use of a nonlinear activation directly on the output, and allowing
the hidden state to be immediately passed to a downstream MLP. We acknowledge that others may
argue that working directly with complex numbers is preferable. The preference for real-valued
hidden layers may simply be our own limitations, but we suspect much of the reinforcement learning
community is similarly more comfortable to work in real-valued space. We found small choices in our
implementation for LRU did not always behave as expected, partially due to how auto-differentiation
is implemented in packages for complex numbers3.In the end, our goal is to make these simple
recurrent traces easy to use, and providing updates with real numbers may remove some barriers.

4 Online Prediction Learning

In this section, we explore different architectural variants of RTUs and LRUs in a online prediction
task and then move on to study the tradeoffs between computational resources and performance when
using RTUs with RTRL compared to GRUs and LRUs with T-BPTT.

4.1 Ablation Study on Architectural Choices for RTUs and LRUs

In this first experiment, we investigate the impact of several architectural choices on the performance
of RTUs and LRUs varying where nonlinearity is applied. We use a simple multi-step prediction task
called Trace conditioning [39] inspired by experiments in animal learning. The agent’s objective is to
predict a signal—called the Unconditional Stimulus (US)—conditioned on an earlier signal—the
Conditional Stimulus (CS). The prediction is formulated as a return, Gt

.
=
∑∞
k=0 γ

kUSt+k+1, where
the agent’s goal is to estimate the value function for this return. More details on this environment and
experimental settings are in Appendix F. Figure 1 summarizes the results.

Figure 1: Ablation over different architectural choices for RTUs and LRUs. The RTU variants are
blue, and the LRU variants are orange. In each subplot, we restrict both architectures in a particular
way, reporting prediction error (MSRE) as a function of hidden state size. Across variations, RTUs
are often better and, at worst, tie LRU. Here, both architectures were using RTRL.

4.2 Learning under resources constraints

In this section, we investigate the tradeoffs between computational resources and performance when
using RTUs with RTRL compared to GRUs and LRUs with T-BPTT.

In the following experiments, all agents consist of a recurrent layer followed by a linear layer
generating the prediction. We measure performance of the agents online by calculating the Mean
Square Return Errors (MSRE), which is the mean squared error between the agent’s prediction at
time t and Gt. In all the experiments, we used the Adam optimizer. We first ran each agent with
different step sizes for 5 runs and 2 million steps. We then averaged the MSRE over the 2 million
steps and selected each agent’s best step size value. Finally, we ran the agents with the best step size
value for 10 runs, which we report here. We also report all agents’ step size sensitivity curves in
Appendix F.3.

3Autodiff can give unexpected results when dealing with complex numbers. For example, see the discussion
https://github.com/google/jax/discussions/6817.
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Figure 2: Learning under resources constraints in Trace Conditioning. Each of the four subplots
shows how each algorithm’s performance varies as a function of resources. (a) LRU and GRU with
T-TBTT is not competitive with RTUs even as T is increased while restricting the number of hidden
units in LRU and GRU so that all algorithms use about the same computation per step. (b) If we allow
GRU and LRU’s computation to increase (fixed network size) while increasing T , the performance
gap remains. (c) Fixing T to a large value to solve the task, we can increase the number of parameters,
holding the computation equal for all methods. (d) If we do not require compute to be equal across
methods as we scale parameters, then the LRU can eventually match the error of RTU, but GRU
cannot. The black dashed line represents the near perfect prediction performance.

Learning under computational constraints: We first investigate: how well do different agents
exploit the available computational resources? We specified a fixed computational budget of 15000
FLOPs. Since RTUs are learning using RTRL and have a linear computational complexity, the
computational budget only determines the number of hidden units in the architecture. For GRU
and LRU, both the truncation length and the hidden dimension contribute to the budget. We tested
several configurations of truncation lengths and parameters such that the overall computations fit
the computational budget. Figure 2.a shows the results of this experiment. As we move along the
horizontal axis, the number of parameters for GRU and LRU decreases as T increases to fit the
computational constraints. However, the RTU agents do not depend on T , so their performance and
computation is constant.

Scaling with computation: The computational complexity of T-BPTT depends on the truncation
length and the number of parameters in the neural network. Thus, the agent can use the additional
resources in two ways: (1) Increasing the truncation length, and (2) Increasing the number of
parameters. On the other hand, RTUs use all the computations to have more parameters.

Now, we move to our second question: how well do different methods scale with increasing the
computational budget? We answer this question in two stages: Firstly, we study T-BPTT with
increasing T and a fixed number of parameters. For RTU, the computation increases by adding
more parameters such that all corresponding points from GRU and RTU use the same amount of
computation. Secondly, we fixed the truncation length for GRU to 45, which is more than the
maximum distance between the CS and the US, and increased the computation by increasing the
number of parameters for GRU. Again, for RTU, we increased the computation by increasing the
number of parameters.

Figure of 2.b shows the first experiment’s results. While GRU’s performance improved as the
truncation length increased, RTU outperformed GRU across all different computational budgets.
Figure 2.c shows the results of the second experiment. The RTU agent’s performance consistently
improves as we increase the computation available. However, the performance improvement for the
GRU agent is inconsistent. The inconsistency of GRU performance could be associated with the
trade-off between the truncation length and the number of parameters.

Scaling With Parameters: Finally, we study the performance of RTU and GRU when given the same
number of parameters and allow the GRU agent to use more computation. We fixed the truncation
length for GRU to 45 as before and used the same number of parameters for both agents. Figure 2.d
shows the results of this experiment. For RTU, we see the same consistent performance improvement
as we increase the number of parameters. For GRU, the performance improvement is also consistent,
though it degrades slightly towards the end. The RTU agent outperforms the GRU agent even though
the GRU uses more computation.

We provide additional experiments comparing RTUs to two other approaches that use RTRL: online
LRUs and a real-valued diagonal RNN in Appendix F.1.
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5 Real-Time Recurrent Policy Gradient

This section first highlights some differences in using linear RTRL methods, i.e., RTRL with linear
complexity, in incremental and batch settings. We then investigate different ways of integrating linear
RTRL methods with policy gradient approaches, and we use PPO as a case study for this investigation.
Finally, we compare the performance of RTRL methods with T-BPTT methods and other baselines.

5.1 Linear RTRL Methods in Incremental and Batch Settings

The benefits of linear RTRL methods over T-BPTT are more evident in the incremental rather than
the batch setting. In the incremental learning setting, where the agent updates its parameters after
each interaction step, linear RTRL methods have a constant computational complexity per update
that depends only on the number of parameters. In contrast, T-BPTT methods have a complexity
proportional to the truncation length T since T-BPTT methods require storing a sequence of past T
activations to perform one gradient update. Figure 3 shows the time it takes to make one update with
linear RTRL and T-BPTT given the same number of parameters. For T-BPTT, the time to make one
update scales with the truncation length T, while for linear RTRL, it is constant.

Figure 3: Contrasting runtime in incremental
and batch settings. In the incremental set-
ting, evaluated in the animal-learning predic-
tion task, T-BPTT updates scale with trunca-
tion length, whereas linear RTRL is constant.
With batch updates, evaluated in Ant-P with
PPO, linear RTRL remains linear and T-BPTT
is slightly more efficient.

The computational analysis for the batch setting is different than the incremental setting. In the
batch setting, linear RTRL still have a constant cost per update and provide an untruncated yet stale
gradient for all the samples. When using T-BPTT in the batch setting, there are two possibilities for
the gradient updates. The first option, the typical strategy, is to divide the batch into non-overlapping
sequences, each of length T, and perform T-BPTT on each sequence. In this case, the cost of one
gradient update per sequence is a function of T, resulting in an effective update cost per sample
independent of T. As a result, T-BPTT is computationally efficient in this case, albeit at the expense
of a worse gradient estimate; in each sequence, only the last sample has a gradient estimate with T
steps [25]. Figure 3 shows the time it takes to make one batch update with linear RTRL and T-BPTT
given the same number of parameters. In this case, both methods use similar time per update. The
second option is to divide the batch into overlapping sequences, where each gradient uses a sequence
of T steps [25]. This approach increases the cost of updates per sample to be proportional to T,
as in the incremental setting, with the benefit of better gradient estimates. However, all standard
implementations of RL methods with T-BPTT use the computationally efficient option [38, 14, 24].

Integrating Linear RTRL Methods with PPO When performing batch updates, as with PPO, the
RTRL gradients used to update the recurrent parameters will be stale, as they were calculated during
the interaction with the environment w.r.t old policy and value parameters. One solution to mitigate
the gradient staleness is to go through the whole trajectory after each epoch update and re-compute
the gradient traces. However, this can be computationally expensive. In Appendix G, Algorithm 1, we
provide the pseudocode for integrating RTRL methods with PPO with optional steps for re-running
the network to update the RTRL gradient traces, the value targets, and the advantage estimates. We
also performed an ablation study to investigate the effect of the gradient staleness in RTRL when
combined with PPO, Appendix G. The results from the ablation study show that using a stale gradient
results in better performance with RTUs and suggests that the staleness might help PPO maintain the
trust region.

6 Experiments in Memory-Based Control

In this section, we evaluate the memory capabilities of RTUs when solving challenging RL control
problems. We divide the problems in this section based on the source of partial observability.
1) Missing sensory data, where we mask out parts of the agent’s observation. The agent must
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accumulate and integrate the sensory observations over time to account for the missing information. 2)
Remembering important cues, where the agent must remember an essential cue about the environment
that happened many steps in advance.

Integrating Sensory Observations: We use the standard Mujoco POMDP benchmark widely
used in prior work for evaluating memory-based RL agents [31, 12, 27, 32]. The benchmark
consists of several challenging tasks where the agent controls a multi-joint dynamical body while
only observing the joints’ positional (Mujoco-P) or velocity information (Mujoco-V). To increase
experiment throughput, we use the Jax implementation of Mujoco from the Brax library [7] and
implemented wrappers to mask either the velocity (Mujoco-P) or positional information (Mujoco-V).

We evaluated our Linear and Non-linear RTUs against GRU, LRU, and Online LRU. All agents use
PPO [40] as the control algorithm, and the difference between the agents is the recurrent component.
For all agents, we fixed the number of parameters for the recurrent part to be ∼ 24k. We tuned the
learning rate for all agents in all environments and selected the best learning rate for each agent
per environment. We also included a GPT2-transformer baseline. We followed the implementation
details in previous work [32], and used a GPT2 variant with 200k parameters. We provide the results
for GPT2 in Appendix H.

Figure 4: Learning curves on the Mujoco POMDP benchmark. Environments with -P mean that
velocity components are occluded from the observations, while -V means that the positions and
angles are occluded. All architectures have the same number of recurrent parameters ( 24k parameter).
For each architecture, we show the performance of its best-tuned variant.

When given the same number of parameters, RTU agents outperform other baselines in all environ-
ments in Figure 4. Furthermore, we show in Appendix H that even when increasing the truncation
length of both GRU and LRU agents to use significantly longer history, they outperform RTUs in
only one task. Of particular note is again that RTUs outperform online LRUs, highlighting again that
our simple modifications have a large impact on performance in this online RL setting.

Remembering Important Cues:
Next, we test the agents’ ability to remember essential environmental cues. We use several tasks
from the POPGym benchmark [29] in addition to the Reacher POMDP task, a modified version of
Mujoco Reacher where the agent observes the target position only at the beginning of the episode.

0.0 0.2 0.4 0.6 0.8 1.0
Env Steps 1e6

140

120

100

80

60

40

20

Undiscounted 
Return 

(30 runs)

Reacher POMDP

GRULinear RTUs

NonLinear RTUs

Online LRU

Figure 5: Reacher, 30 runs with standard
errors.

The POPGym tasks we consider along with the Reacher
POMDP are all long-term memory tasks [32] as the agent
must remember and carry the information for a long time.

Figure 5 summarizes the results for the reacher POMDP
task and the POPGym results can be found in Figure 6. In
both cases, we can see that RTUs outperform the other ap-
proaches. Non-linear RTUs achieve a better performance
than linear RTUs in reacher POMDP, and both achieve
a better performance in all tasks than online LRUs. In

Reacher POMDP, GRU was able to achieve a similar performance to that of linear RTUs.
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Figure 6: Results across several tasks from the POPGym benchmark.

7 Conclusion and Limitations

In this work, we investigated using complex-valued diagonal RNNs for online RL. We built on LRUs,
to provide a small modification (RTUs) that we found performed significantly better in online RL
across various partially observable prediction and control settings. We also found RTUs performed
better than the more computationally intensive GRUs. Overall, RTUs are a promising, lightweight
approach to online learning in partially observable RL environments.

A primary limitation of RTUs is the extension to multilayer recurrence. This limitation is inherent
to all RTRL approaches; with multilayers, we need to save the gradient traces of the hidden state
w.r.t the weights from all the preceding layers [17]. Previous work [17, 48] showed that using stop
gradient operations between the layers and not tracing the time dependencies across layers is a viable
choice. However, we need a more principled approach for tracing the gradient across layers.

One advantage of the linearity restriction in LRUs is that it allows the use of parallel scans for
training [26]. However, recent works have shown the possibility of employing parallel scans to
non-linear RNNs [8, 22]. A future direction is to investigate the use of parallel scans for training
RTUs.
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A Background on BackPropagation Through Time and Real-Time Recurrent
Learning

This section provides a brief background on BackPropagation Through Time (BPTT) and Real-Time
Recurrent Learning (RTRL) algorithms.

A.1 BackPropagation Through Time

BPTT calculates the gradient, ∇ψψψL, by unfolding the recurrent dynamics through time and incorpo-
rating the impact of the parameters on the loss from all observed time steps. Formally, we can write
∇ψψψL as:

∇ψψψL =
1

t

t−1∑
i=0

∇ψψψLi. (5)

Applying the chain rule, we re-write Eq.5 as:

∇ψψψL =
1

t

t−1∑
i=0

∇ψψψLi

=
1

t

t−1∑
i=0

∂Li
∂hi

∂hi
∂ψψψ

.

(6)

When calculating ∂hi

∂ψψψ , we need to consider the effect of ψψψ from all the time steps. To illustrate this
effect, consider unrolling the last 2 steps of the RNN dynamics:

ht = f(ht−1,xt,ψψψ)

Re-write ht−1 as f(ht−2,xt−1,ψψψ)

= f(f(ht−2,xt−1,ψψψ),xt,ψψψ)

Re-write ht−2 as f(ht−3,xt−2,ψψψ)

= f(f(f(ht−3,xt−2,ψψψ),xt−1,ψψψ),xt,ψψψ).

(7)

Equation 7 shows that the network parameters ψψψ affect the construction of the recurrent state ht
through two pathways: a direct pathway, i.e., using ψψψ to evaluate f(ht−1,xt,ψψψ), and an implicit
pathway, i.e., ψψψ affected constructing all previous recurrent states, ht−1, . . . ,h1, and all those
recurrent states affected ht construction. Thus, to calculate ∂ht

∂ψψψ , we need to consider those two
pathways:

∂ht
∂ψψψ

=
∂f(ht−1,xt,ψψψ)

∂ψψψ
+
∂f(ht−1,xt,ψψψ)

∂ht−1

∂ht−1

∂ψψψ
. (8)

Once again, we need to consider the two pathways when evaluating ∂ht−1

∂ψψψ in 8. For simplicity, let

Jt
.
= ∂ht

∂ψψψ , Bt =
∂f(ht−1,xt,ψψψ)

∂ψψψ , Ct =
∂f(ht−1,xt,ψψψ)

∂ht−1
, and re-write 8:

Jt = Bt +CtJt−1

= Bt +Ct (Bt−1 +Ct−1Jt−2) Unrolling Jt−1

= Bt +CtBt−1 +CtCt−1Jt−2

= Bt +CtBt−1 +CtCt−1 (Bt−2 +Ct−2Jt−3) Unrolling Jt−2

= Bt +CtBt−1 +CtCt−1Bt−2 +CtCt−1Ct−2Jt−3

= Bt +CtBt−1 +CtCt−1Bt−2 + · · ·+CtCt−1Ct−2 . . .C2B1 +CtCt−1Ct−2 . . .C1J0 Keep unrolling

=

t∑
k=1

(
t∏

i=k+1

Ci

)
Bk +

(
t∏
i=1

Ci

)
J0.

(9)
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Writing ∂ht

∂ψψψ using the results from 9:

∂ht
∂ψψψ

=
∂f(ht−1,xt,ψψψ)

∂ψψψ
+
∂f(ht−1,xt,ψψψ)

∂ht−1

∂ht−1

∂ψψψ

=

t∑
k=1

(
t∏

i=k+1

∂f(hi−1,xi,ψψψ)

∂hi−1

)
∂f(hk−1,xk,ψψψ)

∂ψψψ
+

(
t∏
i=1

∂f(hi−1,xi,ψψψ)

∂hi−1

)
∂h0

∂ψψψ
.

(10)

According to Eq. 10, the agent needs to store all the previous inputs to calculate ∂ht

∂ψψψ which is
impractical; the computation and memory complexity will be increasing with t.

A.1.1 Truncated-BackPropagation Through Time

Williams and Peng (1990) introduced Truncated-BackPropagation Through Time (T-BPTT) which
solves the issue of increasing memory and computational complexities of BPTT. In T-BPTT, we
specify a truncation length T , which controls the number of steps considered when calculating the
gradient in 10. We now write the truncated version of 9 which takes into consideration the gradient
from the last T steps only:

Jt =

t∑
k=t−T

(
t∏

i=k+1

Ci

)
Bk (11)

Using results from 11, we then write the approximated gradient of the loss w.r.t the learnable
parameters:

∇ψψψL =

t∑
j=t−T

∂Lj
∂hj

∂hj
∂ψψψ

=

t∑
j=t−T

∂Lj
∂hj

j∑
k=j−T

(
t∏

i=k+1

∂f(hi−1,xi,ψψψ)

∂hi−1

)
∂f(hk−1,xk,ψψψ)

∂ψψψ
+

(
t∏
i=1

∂f(hi−1,xi,ψψψ)

∂hi−1

)
∂h0

∂ψψψ

(12)

A.2 Real-Time Recurrent Learning

Williams and Zipser (1989) introduced the Real-time Recurrent Learning algorithm (RTRL) as a
learning algorithm for continual recurrent learning. RTRL employs the recurrent formulation of the
gradient in 8; instead of unrolling ∂ht−1

∂ψψψ further back in time, RTRL saves its calculated value from
the previous time step and use it later when needed. It is worth emphasizing that after the agent
updates its parameters, the gradient information saved from previous time steps would be stale, i.e.,
calculated w.r.t old parameters, however, under the assumption of small learning rates, RTRL is
known to converge. The gradient formulation of RTRL can be written as:

∇ψψψL =

t∑
i=0

∂Li
∂hi

∂hi
∂ψψψ

=

t∑
i=0

∂Li
∂hi(

∂f(hi−1,xi,ψψψ)

∂ψψψ
+
∂f(hi−1,xi,ψψψ)

∂hi−1

∂hi−1

∂ψψψ

)
(13)

B More Details on Representability with Complex-valued Diagonal
Recurrence

This section explains why we need complex-valued diagonals to represent dense recurrent layers.
We first show when it is equivalent to use complex-valued diagonal and a dense recurrent layer. We
highlight that using a real-valued diagonal is like restricting the weights to be symmetric—because
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the (complex) diagonal corresponds to the eigenvalues of the weight matrix—which can severely
limit representability. We provide a small experiment to show that complex eigenvalues naturally
arise when training both a dense linear and nonlinear RNN, further motivating the utility of moving
towards complex-valued diagonals.

B.1 Representability with Complex-valued Diagonals

Let us first consider when we can perfectly represent a dense, linear recurrent layer with a complex-
valued diagonal recurrent layer. Assume we have the recurrence relationship, with learnable parame-
ters Wh ∈ Rn×n and Wx ∈ Rn×d,

ht
.
= f(Whht−1 +Wxu(xt)) (14)

where f is a potentially nonlinear function that inputs a vector and outputs the same-sized vector and
u can be any transformation of the inputs xt before they are inputted into the recurrent layer. The
following equivalence result is straightforward but worthwhile formalizing.
Proposition B.1. Assume f ◦P = P◦f for any full rank, potentially complex-valued P ∈ Cn×n with
unit-length column vectors. Then given any Wh and Wx for Equation (14), there is a corresponding
complex-valued diagonal weight matrix Λ ∈ Cn×n and Wx ∈ Cn×d

ht = f(Λht−1 +Wx u(xt)). (15)

where ht ∈ Cn is a linear transformation of ht ∈ Rn.

Proof. We can rewrite the square matrix Wh using an eigenvalue decomposition Wh = P Λ P−1,
where P contains the n linearly independent eigenvectors and Λ is a diagonal matrix with the
corresponding eigenvalues. Then, we can re-write (14) as:

ht = f(P Λ P−1 ht−1 + PP−1Wx u(xt))

= Pf(Λ P−1 ht−1 + P−1Wx u(xt))

P−1ht = f(ΛP−1 ht−1 + P−1 Wx u(xt))

(16)

where P came outside of f under our assumption that it commutes with such matrices of eigenvectors.
By defining ht

.
= P−1 ht and Wx

.
= P−1Wx, we get Eq. (15).

We can see ht and ht are representationally equivalent: they are linearly weighted for downstream
predictions, and so the linear transformation on ht can fold into this downstream linear weighting.
But it is more computationally efficient to use ht with a diagonal weight matrix Λ, meaning each
hidden unit only has one recurrent relation instead of n.

Since we did not impose constraints on the matrix Wh, other than being diagonalizable, the eigen-
values of Wh can be complex or real numbers. Previous diagonal RNNs such as eLSTM [17],
Columnar networks [18], and IndRNN [20] use only real-valued diagonal matrices. Having only
real-valued diagonals implicitly assumes that the matrix Wh is a symmetric matrix. [34] suggested
using complex-valued diagonal matrices for better performance.

The above equivalence has only been used without any activation, namely in linear-recurrent units
(LRUs) [34]. A natural question is if only the identity f(x) = x (and linear functions) satisfy
this property of commuting with eigenvector matrices. Intuitively, this seems like the only option,
as imagining a nonlinearity that commutes is hard. Surprisingly, for the more restricted case of
symmetric Wh, we can show a slightly more general class of activations can be used, proving an
if-and-only-if relationship (see Appendix C). However, even for this restricted setting, this generalized
class is limited and such activations unlikely to be preferable to a linear recurrence. We see this as a
negative result, that suggests this equivalence only holds for the linear setting.

B.2 Complex Eigenvalues in Vanilla RNNs

We empirically investigate whether complex eigenvalues appear when training dense RNNs in a
simple task. The goal is to show that the weight matrix, Wh, is not a symmetric matrix, even in the
simplest tasks. Hence, having only real-valued diagonals is too restrictive.
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We used the Three State POMDP [42], depicted in Figure 7, for this experiment. In this task, the
agent needs to remember one cue from the previous time-step ago, to make a prediction about the next
time-step. The MDP has three states, s1, s2, and s3, and no actions. If the agent is in either s1 or s2, it
transitions to any of the three states with equal probability. However, if the agent is in s3, it transitions
to the state preceded by s3. A sequence of observations would look like 1, 3, 1, 2, 2, 3, 2, · · · , and we
ask the agent to predict the next observation.

Figure 7: Illustration of the Three State MDP. We used dashed lines for the transitions starting in s3
to make them more visible.

We trained a vanilla RNN with 3 hidden states with T-BPTT with truncation length 2, which is a
sufficient history length in this problem to predict the next observation. Since we have 3 hidden states,
the matrix Wh is ∈ R3×3 and could have at most 2 complex eigenvalues.

We measured the performance in terms of the percentage of correct predictions made in S3. We
recorded the number of complex eigenvalues of Wh after each parameter update, shown in Figure 8.
This agent reaches 100% accuracy in this problem relatively quickly. We can also see that the agent
oscillates between having two complex eigenvalues and zero eigenvalues. The average number of
complex eigenvalues across 30 run is above 1.5, which means that on more than 3

4 of the steps, the
RNN has two complex eigenvalues. The primary point is that we see complex eigenvalues appear
frequently.

0 200 400
Steps (×1K)

0.0

0.2

0.4

0.6

0.8

1.0Prediction 
Accuracy

0 200 400
Steps (×1K)

0.0

0.5

1.0

1.5

2.0# Complex 
Eigenvalues

Figure 8: Left: The percentage of correct predictions when training an RNN in the Three State MDP.
Right: Number of complex eigenvalues when training an RNN in the Three States MDP. The solid
line is the mean over 30 runs, the shaded region area is the standard error, and the lines are individual
runs.

C More on the Equivalence of Non-Linear RTUs and Dense RNNs

As discussed in the main body, we likely only have an equivalence between using a full dense weight
matrix and a complex-valued diagonal matrix for linear recurrent layers. However, we can obtain a
slightly more general equivalence in the restricted setting where the weight matrix for the recurrence
is symmetric. This restricted setting is not of general interest, but we include the result here because
it could be of interest to a few.
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For the case where we have a symmetric weight matrix, we need the activation to commute with
orthonormal matrices. Consider again the form

ht
.
= f(Whht−1 +Wxxt) (14)

where f is a potentially nonlinear function that inputs a vector and outputs the same-sized vector. To
obtain the equivalence, assume that for any orthonormal matrix A, f ◦A = A ◦ f . We can rewrite
the square and symmetric matrix Wh using an eigenvalue decomposition Wh = AΛA⊤, where
A contains the n linearly independent eigenvectors and is an orthonormal matrix and Λ is a diagonal
matrix with the corresponding eigenvalues. Then, we can re-write (14) as:

ht = f(AΛA⊤ ht−1 + AA⊤Wx xt)

= Af(ΛA⊤ ht−1 + A⊤Wx xt)

A⊤ht = ΛA⊤ ht−1 + A⊤ Wx xt
(17)

where A came outside of f because commutes with orthonormal matrices. By defining ht
.
= A⊤ ht

and Wx
.
= A⊤Wx, we get:

ht = f(Λht−1 +Wx xt). (15)

Each hidden unit now has one recurrent relation instead of n, because our weight matrix Λ is diagonal.

A natural question is if only the identity f(x) = x—namely linear recurrence—satisfies this property
of commuting with orthonormal matrices. We show below that it holds for a slightly more general
class of recurrent layers, proving an if-and-only-if relationship. We see the below result as a negative
result, highlighting that this equivalence largely only holds for the linear setting and does not
generalize to other activations of interest. It provides even further evidence that likely the only setting
of interest for the general non-symmetric case is also with a linear recurrence.

Nonetheless, let us obtain the if-and-only-if for completeness. A simple extension that continues to
satisfies this property is f(x) = xc(||x||2) for any c : R → R. We can see that for any orthonormal
A, we have

f(Ax) = Axc(||Ax||2) = Axc(||x||2) = Af(x).

This means that we can have activations that rescale the input x depending on the norm of that input.

More generally, the activation can involve matrices and rotations. We can define θ(x) = [x U(x)]⊤

where U(x) ∈ Rn×n−1 is a matrix where the columns are orthogonal vectors to each other and to
x. Then for any vector-valued g : R → Rn, we have that f(x) = θ(x)⊤g(||x||2) also satisfies this
property:

f(Ax) = θ(Ax)⊤g(||Ax||2) = [Ax;U(Ax)]g(||x||2)
= A[x;U(x)]g(||x||2) = Af(x).

The last line follows because AU(x) = U(Ax). Namely, for any orthogonal vector u with u⊤x = 0,
we have that ũ .

= Au satisfies ũ⊤Ax = u⊤A⊤Ax = u⊤x = 0 because A⊤A = I.

Now we show this formally. Denote On ⊂ Rn×n : A ∈ On ⇐⇒ ATA = AAT = I . Denote

ei =


0
...
1
...
0

, where the ith element is 1.

Definition C.1. θθθ(x) is a matrix such that:

θθθ(x) ∈ On

θθθ(x)x = ∥x∥22e1
(18)

Lemma C.2. θθθ(x) exits and ∀A ∈ On, θθθ(Ax) = θθθ(x)AT
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Proof. Let θθθ(x) be ∈ On. Then, by definition of On, θθθ(x)Tθθθ(x) = θθθ(x)θθθ(x)
T
= I . Let θθθ(x)[1] =

x, and θθθ(x)[2 :] be any orthogonal vectors, also orthogonal to x. Where θθθ(x)[i] be the ith row of
θθθ(x). Then, for x ∈ Rn, θθθ(x)x = ∥x∥2e1.

θθθ(Ax)Ax = ∥Ax∥22e1 = ∥x∥22e1 = θθθ(x)x

θθθ(Ax)
T
θθθ(Ax)Ax = θθθ(Ax)

T
θθθ(x)x

Ax = θθθ(Ax)
T
θθθ(x)x

ATAx = ATθθθ(Ax)
T
θθθ(x)x

x = ATθθθ(Ax)
T
θθθ(x)x

ATθθθ(Ax)
T
θθθ(x) = I

θθθ(Ax)
T
= θθθ(x)AT

(19)

Theorem C.3. Let f : Rn → Rn and A ∈ On. Then, f ◦A = A ◦ f ⇐⇒ ∃g : R → Rn, f(x) =
θ(x)

T
g(∥x∥2)

Proof. Define g(α) = f(α2e1).

f(x) = θθθ(x)
T
θθθ(x)f(x)

= θθθ(x)
T
f(θθθ(x)x)

= θθθ(x)
T
f(∥x∥22e1)

= θθθ(x)
T
g(∥x∥2)

(20)

(f ◦A)(x) = f(Ax)

= θθθ(Ax)
T
g(∥Ax∥2)

= θθθ(Ax)
T
g(∥x∥2)

= Aθθθ(x)
T
g(∥x∥2)

= (A ◦ f)(x)

(21)

D Issues with Two Alternative Parameterizations

In this section we provide a few additional insights on alternative ways to handle complex numbers
within an RNN, and why they are not preferable.

D.1 Stability

We look at the gradient when using each complex representation to understand how different repre-
sentations affect learning stability. Since each hidden unit has only one recurrent relation in diagonal
RNNs, it is sufficient to consider one unit, in isolation. To keep the below intuition simple, we also
omit the input of x, and consider

ht = λht−1 = . . . = λth0 (22)

where h0 is the initial hidden state.

Real Representation a+ bi: Substituting λ in (22) with the real representation, we get:

ht = (a+ bi)
t
h0 = h0

t∑
k=0

(
t

k

)
at−kbkik

18



Then it follows that the gradient w.r.t the learnable parameters a and b is:

∂ht
∂a

= h0

t∑
k=0

(
t

k

)
(t− k)at−k−1bkik

∂ht
∂b

= h0

t∑
k=0

(
t

k

)
kat−kbk−1ik

To prevent the gradient from vanishing/exploding, we need to restrict both |a| and |b| to be ∈ (0, 1].

Exponential Representation r exp(iθ): Substituting λ in (22) with the exponential representation,
we get:

ht = rtexp(itθ)h0

and the gradient w.r.t the learnable parameters r and θ is:

∂ht
∂r

= trt−1exp(itθ)h0,
∂ht
∂θ

= rtexp(itθ)ith0

To prevent the gradient from vanishing/exploding, we need to restrict r ∈ (0, 1].

Cosine Representation r(cos(θ) + i sin(θ)): Substituting λ in (22) with the cosine representation,
we get:

ht = rt(cos(tθ) + i sin(tθ))h0

and the gradient w.r.t the learnable parameters r and θ is:

∂ht
∂r

= trt−1(cos(tθ) + i sin(tθ))h0

∂ht
∂θ

= rt(it cos(tθ)− t sin tθ)h0.

To prevent the gradient from vanishing/exploding, we need to restrict r ∈ (0, 1]. It is simpler to
maintain stability with the exponential and cosine representations, since we only need to constrain
r ∈ (0, 1]. , whereas the real representation requires us to restrict both the complex number’s
magnitude and phase.

D.2 Biased gradient when only using the real part of the hidden state

We can attempt to get the benefits of having a real-valued hidden state by simply converting the
complex-valued state to a real-valued one within the LRU. However, taking only the real part results
in a biased gradient, as we show in this section.

Consider again the one recurrent unit example, but now also consider the output obtained by taking
only the real part of the recurrent state: yt = wRe{ht}, where w is a learnable parameter. The
gradient w.r.t r and θ is:

∂yt
∂r

= w
(
cos(θ)ht−1 + r cos(θ)

∂ht−1

∂r

)
∂yt
∂θ

= w
(
− r sin(θ)ht−1 + r cos(θ)

∂ht−1

∂θ

) (23)

Multiplying by a complex number z is equivalent to a rotation by the matrix
[
Re{z} −Img{z}
Img{z} Re{z}

]
and a scale by

√
Re{z}2 + Img{z}2. We re-write the recurrent unit using this property as:

hc1t = r cos(θ)hc1t−1 − r sin(θ)hc2t−1

hc2t = r cos(θ)hc2t−1 + r sin(θ)hc1t−1

yt = w(hc1t + hc2t )

(24)
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Notice that we don’t need to take the real part of the recurrent state in this formulation. We now write
the gradient using this new formulation:

∂yt
∂r

= w(r cos(θ)(hc1t−1 + hc2t−1) + r cos(θ)(
∂hc1t−1

∂r
+
∂hc2t−1

∂r
)

+ r sin(θ)(hc1t−1 − hc2t−1) + r sin(θ)(
∂hc1t−1

∂r
−
∂hc2t−1

∂r
))

∂yt
∂θ

= w(−r sin(θ)(hc1t−1 + hc2t−1) + r cos(θ)(
∂hc1t−1

∂θ
+
∂hc2t−1

∂θ
)

+ r cos(θ)(hc1t−1 − hc2t−1) + r sin(θ)(
∂hc1t−1

∂θ
−
∂hc2t−1

∂θ
))

(25)

Comparing Eq. 25 and Eq. 23, we can see that using only the real part of the recurrent state leads to a
loss of information in the gradient.

E Recurrent Trace Units

This appendix details the parametrization used for RTUs, the derivation of the RTRL update rules,
and the extension of RTUs to multi-layers.

E.1 Empirical Analysis for different r and θ parameterizations:

Since r represents the magnitude of a complex number, then r ∈ R+, it is preferred to have r ∈ (0, 1]
to avoid vanishing/exploding gradients as discussed in the previous section. Let wr be a learnable
parameter which could directly represent r or represent a function of r, we can enforce the constraints
on r in several ways:

1. Direct learning: Learn r directly, and clip it after each parameter’s update to be in (0, 1].
2. Enforcing r ∈ R+: Learn ν such that r .

= exp(−ν). This parameterization enforces r to be
positive. However, additional clipping is needed to enforce r ∈ (0, 1].

3. Enforcing stability on r: We can enforce r to be ∈ (0, 1] by using a positive non-linear
function. For example, learn νlog such that r .

= exp(− exp(νlog)), this parameterization
ensures that r ∈ (0, 1] and is suggested by Orvieto et al. [34]. Another example is learning
r = σ(ν), which also ensures r ∈ (0, 1].

Finally, we can also enforce stability on θ by learning θlog such that θ .
= exp(θlog) to ensure that θ is

always positive.

9 10 11 12 13 14 15 16 17 18
Step Size

0.10

0.15

0.20

0.25
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0.35

MSRE Linear RTU with 80 hidden units

r= exp( exp( log )), = exp( log )

r= exp( exp( log )),
r= exp( ),

Figure 9: Learning rate sensitivity for different parameterizations of r and θ for RTUs with 80 hidden
units.

We empirically compare the different parameterizations of r and θ. In our experiments, learning r
directly resulted in unstable training where the MSRE diverges. We plot the learning rate sensitivity
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Figure 10: Learning rate sensitivity for different parameterizations of r and θ for RTUs with 512
hidden units.

for the other parameterization for two different sizes of RTUs in Figures 9 and 10. While all the
parametrizations produce similar performance, we notice that learning θlog and νlog has better
learning rate sensitivity.

E.2 Real-Time Recurrent Learning for a Single Layer Linear RTUs

We now outline the details for the RTRL update rules for RTUs. The set of learnable parameters for
RTUs is ψψψ .

= {νννlog, θθθlog,Wc1
x ,W

c2
x }. At each time step t, the learner receives a loss Lt(ŷt, yt;ψψψ)

where yt is the network output at time t, then the gradient of the loss w.r.t the parameters is:

∂Lt
∂ψψψ

=
∂Lt
∂ht

∂ht
∂hc1t

∂hc1t
∂ψψψ

+
∂Lt
∂ht

∂ht
∂hc2t

∂hc2t
∂ψψψ

, (26)

where ∂h
c1
t

∂ψψψ =
{
∂h

c1
t

∂νννlog ,
∂h

c1
t

∂θθθlog
,
∂h

c1
t

∂WWW
c1
x
,
∂h

c1
t

∂WWW
c1
x

}
and ∂h

c2
t

∂ψψψ =
{
∂h

c2
t

∂νννlog ,
∂h

c2
t

∂θθθlog
,
∂h

c2
t

∂WWW
c2
x
,
∂h

c2
t

∂WWW
c2
x

}
.

We can derive the following gradients:

∂hc1t
∂νννlog

=
∂g(ννν,θθθ)

∂νννlog
⊙ hc1t−1 + g(ννν,θθθ)

∂hc1t−1

∂νννlog
− ∂ϕϕϕ(ννν,θθθ)

∂νννlog
⊙ hc2t−1 −ϕϕϕ(ννν,θθθ)

∂hc2t−1

∂νννlog
+

∂γγγ

∂νννlog
⊙Wc1

x xt

∂hc2t
∂νννlog

=
∂g(ννν,θθθ)

∂νννlog
⊙ hc2t−1 + g(ννν,θθθ)

∂hc2t−1

∂νννlog
+
∂ϕϕϕ(ννν,θθθ)

∂νννlog
⊙ hc1t−1 +ϕϕϕ(ννν,θθθ)

∂hc1t−1

∂νννlog
+

∂γγγ

∂νννlog
⊙Wc2

x xt

(27)

∂hc1t
∂θθθlog

=
∂g(ννν,θθθ)

∂θθθlog
⊙ hc1t−1 + g(ννν,θθθ)

∂hc1t−1

∂θθθlog
− ∂ϕϕϕ(ννν,θθθ)

∂θθθlog
⊙ hc2t−1 −ϕϕϕ(ννν,θθθ)

∂hc2t−1

∂θθθlog

∂hc2t
∂θθθlog

=
∂g(ννν,θθθ)

∂θθθlog
⊙ hc2t−1 + g(ννν,θθθ)

∂hc2t−1

∂θθθlog
+
∂ϕϕϕ(ννν,θθθ)

∂θθθlog
⊙ hc1t−1 +ϕϕϕ(ννν,θθθ)

∂hc1t−1

∂θθθlog

(28)

where

∂g(ννν,θθθ)

∂νννlog
= −g(ννν,θθθ) exp(νννlog)

∂g(ννν,θθθ)

∂θθθlog
= −ϕϕϕ(ννν,θθθ) exp(θθθlog)

∂ϕϕϕ(ννν,θθθ)

∂νννlog
= −ϕϕϕ(ννν,θθθ) exp(νννlog)

∂ϕϕϕ(ννν,θθθ)

∂θθθlog
= g(ννν,θθθ) exp(θθθlog)

(29)
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To efficiently compute the gradient w.r.t Wc1
x and Wc2

x , we look at the influence of each when
considering a single element from each recurrent state, hc1t and hc2t :

hc1t,i = g(νi, θi)h
c1
t−1,i − ϕ(νi, θi)h

c2
t−1,i + γi

d∑
j=0

wc1x,(i,j)xt,j

hc2t,i = g(νi, θi)h
c2
t−1,i + ϕ(νi, θi)h

c1
t−1,i + γi

d∑
j=0

wc2x,(i,j)xt,j .

(30)

We then get:

∂hc1t,i
∂W c1

x,(i,j)

= g(νi, θi)
∂hc1t−1,i

∂W c1
x,(i,j)

− ϕ(νi, θi)
∂hc2t−1,i

∂W c1
x,(i,j)

+ γixt,j

∂hc2t,i
∂W c1

x,(i,j)

= g(νi, θi)
∂hc2t−1,i

∂W c1
x,(i,j)

+ ϕ(νi, θi)
∂hc1t−1,i

∂W c1
x,(i,j)

∂hc1t,i
∂W c2

x,(i,j)

= g(νi, θi)
∂hc1t−1,i

∂W c2
x,(i,j)

− ϕ(νi, θi)
∂hc2t−1,i

∂W c2
x,(i,j)

∂hc2t,i
∂W c2

x,(i,j)

= g(νi, θi)
∂hc2t−1,i

∂W c2
x,(i,j)

+ ϕ(νi, θi)
∂hc1t−1,i

∂W c2
x,(i,j)

+ γixt,j .

(31)

We see that each hc1t,i gets affected by weights from only one row of Wc1
x , thus, ∂h

c1
t

W
c1
x

can be written

as a matrix of the same dimension as Wc1
x . The same is true for ∂h

c2
t

W
c2
x

,∂h
c1
t

W
c2
x

, and ∂h
c2
t

W
c1
x

.

E.3 Single Layer Non-Linear RTUs Formulation:

We extend the linear RTUs to non-linear RTUs by adding a non-linear activation function f to the
recurrent states. We can write the non-linear RTUs as follows:

hc1t = f(g(ννννννννν,θθθ)⊙ hc1t−1 −ϕϕϕ(ννννννννν,θθθ)⊙ hc2t−1 + γγγ ⊙Wc1
x xt)

hc2t = f(g(ννννννννν,θθθ)⊙ hc2t−1 +ϕϕϕ(ννννννννν,θθθ)⊙ hc1t−1 + γγγ ⊙Wc2
x xt)

ht = [hc1t ;hc2t ]

(32)

where f : Rn → Rn. Following the same procedure as in the linear case, we can derive RTRL update
rules for the non-linear RTUs.

∂hc1t
∂νννlog

= f ′(·)(∂g(ν
νν,θθθ)

∂νννlog
⊙ hc1t−1 + g(ννν,θθθ)

∂hc1t−1

∂νννlog
− ∂ϕϕϕ(ννν,θθθ)

∂νννlog
⊙ hc2t−1 −ϕϕϕ(ννν,θθθ)

∂hc2t−1

∂νννlog
)

∂hc2t
∂νννlog

= f ′(·)(∂g(ν
νν,θθθ)

∂νννlog
⊙ hc2t−1 + g(ννν,θθθ)

∂hc2t−1

∂νννlog
+
∂ϕϕϕ(ννν,θθθ)

∂νννlog
⊙ hc1t−1 +ϕϕϕ(ννν,θθθ)

∂hc1t−1

∂νννlog
)

(33)

∂hc1t
∂θθθlog

= f ′(·)(∂g(ν
νν,θθθ)

∂θθθlog
⊙ hc1t−1 + g(ννν,θθθ)

∂hc1t−1

∂θθθlog
− ∂ϕϕϕ(ννν,θθθ)

∂θθθlog
⊙ hc2t−1 −ϕϕϕ(ννν,θθθ)

∂hc2t−1

∂θθθlog
)

∂hc2t
∂θθθlog

= f ′(·)(∂g(ν
νν,θθθ)

∂θθθlog
⊙ hc2t−1 + g(ννν,θθθ)

∂hc2t−1

∂θθθlog
+
∂ϕϕϕ(ννν,θθθ)

∂θθθlog
⊙ hc1t−1 +ϕϕϕ(ννν,θθθ)

∂hc1t−1

∂θθθlog
)

(34)

hc1t,i = f(g(νi, θi)h
c1
t−1,i − ϕ(νi, θi)h

c2
t−1,i + γi

d∑
j=0

wc1x,(i,j)xt,j)

hc2t,i = f(g(νi, θi)h
c2
t−1,i + ϕ(νi, θi)h

c1
t−1,i + γi

d∑
j=0

wc2x,(i,j)xt,j)

(35)
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We then get:

∂hc1t,i
∂W c1

x,(i,j)

= f ′(·)(g(νi, θi)
∂hc1t−1,i

∂W c1
x,(i,j)

− ϕ(νi, θi)
∂hc2t−1,i

∂W c1
x,(i,j)

+ γixt,j)

∂hc2t,i
∂W c1

x,(i,j)

= f ′(·)(g(νi, θi)
∂hc2t−1,i

∂W c1
x,(i,j)

+ ϕ(νi, θi)
∂hc1t−1,i

∂W c1
x,(i,j)

)

∂hc1t,i
∂W c2

x,(i,j)

= f ′(·)(g(νi, θi)
∂hc1t−1,i

∂W c2
x,(i,j)

− ϕ(νi, θi)
∂hc2t−1,i

∂W c2
x,(i,j)

)

∂hc2t,i
∂W c2

x,(i,j)

= f ′(·)(g(νi, θi)
∂hc2t−1,i

∂W c2
x,(i,j)

+ ϕ(νi, θi)
∂hc1t−1,i

∂W c2
x,(i,j)

+ γixt,j)

(36)

E.4 Complexity Analysis of RTUs

We now move to calculate the computation and memory complexity of RTUs when learning using
the RTRL rules introduced in the previous section.

For an input xt ∈ Rd and hidden states ht = [f(hc1t ); f(hc2t )] ∈ R2n,we have g(ννν,θθθ),ϕϕϕ(ννν,θθθ), γγγ ∈
Rn and Wc1

x ,W
c2
x ∈ Rd×n.

An agent using the RTU with RTRL needs to store the gradient information,
∂h

c1
t−1

∂ψψψ and
∂h

c2
t−1

∂ψψψ , from
one step to the next. We denote the set of saved gradient information as:

∇νννt−1
.
=

{
∂hc1t−1

∂νννlog
,
∂hc2t−1

∂νννlog

}
∇θθθt−1

.
=

{
∂hc1t−1

∂θθθlog
,
∂hc2t−1

∂θθθlog

}
∇WWW t−1

x

.
=

{
∂hc1t−1

∂Wc1
x
,
∂hc2t−1

∂WWW c1
x
,
∂hc1t−1

∂Wc2
x
,
∂hc2t−1

∂WWW c2
x

}
.

(37)

The saved gradient information has the following dimensions:

∇νννt−1 ∈ R2n

∇θθθt−1 ∈ R2n

∇WWW t−1
x

∈ R4(d×n).

(38)

Then, it follows that memory complexity for RTU with RTRL is O(n+nd). i.e., linear in the number
of parameters.

For the computational complexity, a forward pass according to 2 has a computational complexity
of O(n + nd). Additionally, after doing the forward pass, the learner needs to update the saved
gradient information according to equations 27 through 31 which has a computational complexity of
O(n+nd). To summarize, using Real-Time Recurrent Learning with RTUs has linear computational
and memory complexities.

E.5 Multi-Layers Recurrent Trace Units

We now extend RTUs to a multilayer setting. We show that in the multilayer case, we lose the compu-
tational advantages. However, prior work suggested that treating each recurrent layer independently
is a sensible choice and allows us to gain a computational advantage[18]. Consider an RTU with n
layers, we refer to the hidden dimension of a layer i where 0 < i ≤ n as di. The network has the
following set of parameters:

ψψψ
.
= {ψψψ1,ψψψ2,ψψψ3, . . . ,ψψψn},

ψψψi
.
= {νννlog,i, θθθlog,i,Wc1,i

x ,Wc2,i
x }

(39)
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To update the network parameters, we need to calculate the gradient of the loss w.r.t the parameters
from all the layers:

∂Lt
∂ψψψ

=
∂Lt
∂hnt

∂hnt
∂ψψψ

∂hnt
∂ψψψ

=

{
∂hnt
∂ψψψ1

,
∂hnt
∂ψψψ2

,
∂hnt
∂ψψψ3

, . . . ,
∂hnt
∂ψψψn

} (40)

where

hnt =

[
f(hc1,nt )

f(hc2,nt )

]
(41)

Take as an example the gradient of hc1,nt w.r.t νννlog,n, νννlog,n−1, . . . , νννlog,1. Unrolling the last two
layers of the network, we get:

hc1,nt = ggg(νννn, θθθn)⊙ hc1,nt−1 −ϕϕϕ(νννn, θθθn)⊙ hc2,nt−1 + γγγn ⊙Wc1,n
x hn−1

t

= ggg(νννn, θθθn)⊙ hc1,nt−1 −ϕϕϕ(νννn, θθθn)⊙ hc2,nt−1 + γγγn ⊙Wc1,n
x

[
f(hc1,n−1

t )

f(hc2,n−1
t )

]
= ggg(νννn, θθθn)⊙ hc1,nt−1 −ϕϕϕ(νννn, θθθn)⊙ hc2,nt−1 + γγγn ⊙Wc1,n

x[
f(ggg(νννn−1, θθθn−1)⊙ hc1,n−1

t−1 −ϕϕϕ(νννn−1, θθθn−1)⊙ hc2,n−1
t−1 + γγγn−1 ⊙Wc1,n−1

x hn−2
t )

f(ggg(νννn−1, θθθn−1)⊙ hc2,n−1
t−1 +ϕϕϕ(νννn−1, θθθn−1)⊙ hc1,n−1

t−1 + γγγn−1 ⊙Wc2,n−1
x hn−2

t )

] (42)

The gradient of hc1,nt w.r.t νννlog,n can be calculated in linear complexity as indicated in the previous
section.

Calculating the gradient w.r.t the parameters from the earlier layer:

∂hc1,nt

∂νννlog,n−1
= g(νννn, θθθn)

∂hc1,nt−1

∂νννlog,n−1
−ϕϕϕ(νννn, θθθn)

∂hc2,nt−1

∂νννlog,n−1
+ γγγn ⊙Wc1,n

x

∂hn−1
t

∂νννlog,n−1

∂hn−1
t

∂νννlog,n−1
∈ R2dn−1 Can be calulated with linear complexity.

∂hc1,nt−1

∂νννlog,n−1
∈ Rdn×dn−1 Saved from previous timestep.

∂hc2,nt−1

∂νννlog,n−1
∈ Rdn×dn−1 Saved from previous timestep.

(43)

∂hc1,nt

∂νννlog,n−2
= g(νννn, θθθn)

∂hc1,nt−1

∂νννlog,n−2
−ϕϕϕ(νννn, θθθn)

∂hc2,nt−1

∂νννlog,n−2
+ γγγn ⊙Wc1,n

x

∂hn−1
t

∂νννlog,n−2

= g(νννn, θθθn)
∂hc1,nt−1

∂νννlog,n−2
−ϕϕϕ(νννn, θθθn)

∂hc2,nt−1

∂νννlog,n−2
+ γγγn ⊙Wc1,n

x

f ′(·)

g(νννn−1, θθθn−1)
∂h

c1,n−1
t−1

∂νννlog,n−2 −ϕϕϕ(νννn−1, θθθn−1)
∂h

c2,n−1
t−1

∂νννlog,n−2 + γγγn−1 ⊙Wc1,n−1
x

∂hn−2
t

∂νννlog,n−2

g(νννn−1, θθθn−1)
∂h

c2,n−1
t−1

∂νννlog,n−2 +ϕϕϕ(νννn−1, θθθn−1)
∂h

c1,n−1
t−1

∂νννlog,n−2 + γγγn−1 ⊙Wc2,n−1
x

∂hn−2
t

∂νννlog,n−2


∂hn−2

t

∂νννlog,n−2
∈ R2dn−2 Can be calulated with linear complexity.

∂hc1,n−1
t−1

∂νννlog,n−2
∈ Rdn−1×dn−2 Saved from previous timestep.

∂hc2,n−1
t−1

∂νννlog,n−2
∈ Rdn−1×dn−2 Saved from previous timestep.

∂hc1,nt−1

∂νννlog,n−2
∈ Rdn×dn−2 Saved from previous timestep.

∂hc2,nt−1

∂νννlog,n−2
∈ Rdn×dn−2 Saved from previous timestep.

(44)
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Let’s define Ji,i−1 = { ∂h
c1,i
t−1

∂νννlog,i−1 ,
∂h

c2,i
t−1

∂νννlog,i−1 }. Then, to calculate the gradient of the hidden units from
layer n w.r.t the parameters from layer n−1, we need save Jn,n−1, and to calculate the gradient of the
hidden units from layer n w.r.t the parameters of layer n− 2, we need to save Jn,n−2 and Jn−1,n−2.
If we keep going, to calculate the gradient of the hidden units of layer n w.r.t the parameters of the
first layer, we need to save Jn,1, Jn−1,1, Jn−2,1, . . . , J2,1.

E.6 Implementing RTRL within the reverse-mode automatic differentiation

For a function f : Rn → Rm, we have the Jacobian ∂f(x) ∈ Rm×n and we can calculate this
Jacobian in two ways: forward-mode or reverse-mode differentiation. In the forward-mode differ-
entiation, the chain rule is applied to each operation while traversing the computational graph in
the forward pass [2]. While computing the derivatives during the forward pass is appealing, we
need to do n forward passes to get the full Jacobian, where each forward pass would allow us to
compute the derivative w.r.t only one of the inputs. i.e., with forward mode differentiation, we
evaluate the Jacobian one column at a time. As a result, forward-mode differentiation is inefficient
for neural networks; neural networks map from learnable parameters, which can be in millions, to a
loss function, hence, have very wide jacobians, n≫ m.

Reverse-mode differentiation, on the other hand, offers a more efficient approach. It allows us to
evaluate the Jacobian one row at a time, which is particularly advantageous for neural networks. This
efficiency comes at the cost of two passes through the network: a forward pass for function evaluation
and a backward pass for derivative evaluation [2].

RTRL is an instance of forward-mode differentiation; during the forward pass, the gradient infor-
mation is evaluated along with the recurrent function computation. As a result, there is no need to
perform a backward pass for the recurrent component. To efficiently use a recurrent layer with RTRL
within a larger neural network, we combine RTRL for the recurrent layer with the reverse mode for
the rest of the network. We use a stop gradient operation on the recurrent layer hidden state and do a
normal reverse-mode differentiation. Due to the stop gradient operation, the gradient from the reverse
mode assumes no time dependencies between the recurrent states. We then use the gradient traces
calculated during the forward pass of the recurrent layer to correct the gradient from the reverse mode
and account for the time dependencies between the recurrent states [3]. 4

F Additional Details on Trace Conditioning Experiments

In animal learning, Trace conditioning is a type of experiment where animals predict the occurrence
of a stimulus (e.g., food), based on the occurrence of another stimulus like a tone. There is no prior
connection between the two stimuli. However, after enough repetitions of pairing them together—
playing the tone and then serving the food—the animal learns to anticipate food arrival when it hears
the tone [36]. We use an open-source trace conditioning benchmark introduced in prior work [39].
Two signals appear sequentially: the Conditional Stimulus (CS) and the Unconditional Stimulus
(US). The CS is the trigger signal, similar to the tone, and the US is the signal of interest and appears
several time steps after the CS, similar to the food. The agent also observes several distractor signals
which are uncorrelated with the CS and US; the agent must learn ignore them and focus only on
predicting the US.

The agent’s objective is to predict the onset of the US, which we model as a prediction of the
discounted sum of the future US, Gt:

Gt
.
=

∞∑
k=0

γkUSt+k+1, (45)

where γ is a discount factor determining the prediction horizon. This problem is challenging because
the CS appears, then disappears, and sometime later the US appears; the agent must construct an
internal state that represents the time period between the two signals.

4This can be implemented by defining a custom vjp for the recurrent layer, which modifies the backward
pass for the recurrent layer to include the gradient traces.
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Figure 11: Comparison to a block diagonal RNN.

F.1 Additional Trace Conditioning Experiments

Comparison to Other RTRL-based Architectures: We now compare RTUs to other RTRL-based
approaches with similar architectures: an online version of LRU [48] and a vanilla block diagonal
RNN. The block diagonal is a recurrent formulation similar to RTU but ignores the relation between
the learnable parameters. i.e., replaces ck in 3.2 with ck =

[
ak bk
ck dk

]
.

The results in figure 11 indicate that these seemingly small differences between the diagonal RNNs
can result in significantly different behavior. RTUs outperform online LRUs, with the differences
discussed in-depth in Section 3.4. RTUs also outperform the block diagonal RNN. We emphasized
using real-valued diagonals implicitly assumes symmetric matrices, but that is for a single real-value.
This block diagonal has more representational capacity than the RTU. This result suggests it is
beneficial for learning to enforce these constraints on the learnable parameters, that they correspond
to the rotational representation of complex numbers.

On the role of RTRL in RTUs: To highlight the role of RTRL in RTUs, we evaluated the performance
of both linear and non-linear RTUs with T-BPTT. In this experiment, we all agents use the same
number of parameters; the only difference is whether they use RTRL or BPTT.

Figure 12 summarises the results of this experiment. We can see that the performance of T-BPTT
approaches the performance of RTRL as the truncation length increases to cover the whole context of
the task.
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LRU

Figure 12: Evaluating RTUs with BPTT.
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F.2 Trace Conditioning Experiments Details

All agents have one recurrent layer, either an RTU or a GRU, and one linear layer. At each time
step t, the agent passes the observation ot to the recurrent layer, which outputs the recurrent state,
the agent state. The recurrent state is then passed to the linear layer generating the prediction.
For each agent, we swept over the learning rate α used to update the network parameters, α ∈
{10−1, 10−2, 10−3, 10−4, 10−5, 10−6}, and averaged the performance for each learning rate over
5 independent runs. We then selected the best-performing learning rate for each agent and ran 30
independent runs using it. For all the experiments, we ran the agents for 2 million steps, and the
performance was the mean squared prediction error averaged over the 2 million steps.

F.3 Learning Rate Sensitivity

We show the learning rate sensitivity for all agents in the animal learning benchmark.
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Figure 13: GRUs used in the animal learning benchmark. The (H: T) in the label refers to the (hidden
dimension: truncation length) for the GRU.
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Figure 14: LRUs used in the animal learning benchmark. The (H: T) in the label refers to the (hidden
dimension: truncation length) for the GRU.
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Figure 15: RTUs used in the animal learning benchmark. The number in the label refers to the
number of hidden units in the RTU.

G Integrating Linear RTRL Methods with PPO

When performing batch updates, as with PPO, the RTRL gradients used to update the recurrent
parameters will be stale, as they were calculated during the interaction with the environment w.r.t
old policy and value parameters. One solution to mitigate the gradient staleness is to go through
the whole trajectory after each epoch update and re-compute the gradient traces. However, this can
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Figure 16: RTUs used in the animal learning benchmark.
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Figure 17: RTUs used in the animal learning benchmark.

be computationally expensive. In Algorithm 1, we provide the pseudocode for integrating RTRL
methods with PPO with optional steps for re-running the network to update the RTRL gradient traces,
the value targets, and the advantage estimates.

Figure 18: The impact of stale gradients and stale targets when combining RTRL and PPO on Ant.

In the next experiment, we investigate the effect of the gradient staleness in RTRL when combined
with PPO and how this staleness interacts with the targets and advantage estimates. To understand this
interaction, we evaluate all combinations of stale gradient and stale targets with increasing the number
of epoch updates. We perform this analysis on the Ant-P environment from the Mujoco POMDP
benchmark [31, 12, 27, 32]. Surprisingly, Figure 18 shows that using a stale gradient results in better
performance with RTUs than re-computing the gradient traces. This performance improvement is
also consistent when we increase the number of epochs from 4 to 8. It also shows that re-computing
the value targets and advantage estimates has a minimal effect on the performance. We repeated the
same experiments for NonLinear RTUs and Online LRU with consistent results in figures 19 and 20.

One hypothesis for the superior performance of stale gradients is that the staleness is helping PPO
maintain the trust region. We investigate this hypothesis by measuring the KL divergence between
the policy used to collect the trajectory and the most recent policy. We use the following estimate for
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the KL divergence between the two policies as (r − 1)− log(r), where r = (πθnew)/(πθold). The
rightmost subplot of Figure 18 shows that at the beginning of learning, agents with stale gradients
move away from the old policy more slowly than agents with fresh gradients; perhaps stale gradients
help with maintaining the trust region. However, this hypothesis still needs more investigation in
future work.

Figure 19: (a) Approximate KL divergence for NonLinear RTU with 4 epochs.(b) Approximate KL
divergence for NonLinear RTU with 8 epochs.

Figure 20: (a) Approximate KL divergence for LRU with 4 epochs.(b) Approximate KL divergence
for LRU with 8 epochs.

H More Details on the Memory-Based Control Experiments

In our implementations, we use a shared representation learning network followed by two MLPs
for the actor and the critic heads, as illustrated in Figure 21. The shared representations consist of
a feedforward layer with 64 hidden units and memory components: an RTU, LRU, or a GRU. The
actor and the critic’s heads consist of two feedforward layers with tanh activation function.

Additional Mujoco Results:

In Figures 22 and 23, we set the truncation length for GRU and LRU to be 64, which is larger than
needed to solve the Mujoco POMDP tasks. These results show that even when the truncation length
is larger than needed, RTUs still outperform T-BPTT baselines. We also show that the transformer-
based models, GPT2, perform worse than RNN-based models. This is consistent with previous work
suggesting that transformers might not be suitable for RL tasks [32].
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Algorithm 1 Pseudocode for integrating RTRL methods with PPO
Inputs: a differentiable policy parametrization π(a|s,Wp).
Inputs: a differentiable state-value function parametrization v̂(s,Wv).
loop

Generate a trajectory using the current policy O0, A0, R1, . . . ,OM , AM , RM ,
Store the transition and the gradient traces for the recurrent components along the way for
i = 0, . . . ,M
Compute the advantage estimates and the target value for each timestep t
for epoch = 1, . . . , k do

Divide the trajectory into minibatches and shuffle them.
for minibatch = 1, . . . , m do

Calculate PPO loss
Perform a gradient step with AutoDiff and correct it with the RTRL saved gradient as
discussed in E.6.

end for
[Optional] Re-run network to update hidden states and the gradient traces for the trajectory.
[Optional] Update value targets and advantages estimates for the trajectory.

end for
end loop

Figure 21: Agents architectures used in our control experiments.
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Figure 22: Additional results on Mujoco-P, where we allow GRU and LRU to use a larger truncation
length than needed to solve these tasks. We also show results for GPT2.

Learning Rate Sensitivity: Figures 24, 25, 26, and 27 show the learning rate sensitivity for all
agents in the Mujoco POMDP benchmark. Finally, we used the default hyper-parameters for PPO
[40] indicated in Table 1 for all agents.
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Figure 23: Additional results on Mujoco-P, where we allow GRU and LRU to use a larger truncation
length than needed to solve these tasks.
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Figure 24: Learning rate sweep for LRU in the control experiments.
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Figure 25: Learning rate sweep for RTUs in the control experiments.
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Figure 26: Learning rate sweep for GRUs in the control experiments.

I Compute resources

We ran the Mujoco-P, Mujoco-V on NVIDIA P100 GPU. Each of the Mujoco-P and Mujoco-V trials
took around 30 minutes to complete on a single GPU. For the POPGym experiments and animal
learning experiments, we used a large CPU cluster. Each trial of the POPGym experiments took
around 2 hours to complete. While each run of animal learning took around 15 minutes to complete
on a single CPU with memory less than 1 GB.
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Figure 27: Learning rate sweep for GPT in the control experiments.

Name Value

Buffer size 2048
Num epochs 10
Number of Mini-batches 32
GAE,λ 0.95
Discount factor, γ 0.99
policy clip parameter 0.2
Value loss clip parameter 0.5
Gradient clip parameter 0.5
Optimizer Adam
Optimizer step size [1e− 05, 3e− 05, 1e− 04, 3e− 04, 1e− 03]

Table 1: Hyper Parameters for PPO.
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