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ABSTRACT

Recently, State Space Models (SSMs) with efficient hardware-aware designs, i.e.,
Mamba, have demonstrated significant potential in computer vision tasks due to
their linear computational complexity with respect to token length and their global
receptive field. However, Mamba’s performance on dense prediction tasks, in-
cluding human pose estimation and semantic segmentation, has been constrained
by three key challenges: insufficient inductive bias, long-range forgetting, and
low-resolution output representation. To address these challenges, we introduce
the Dynamic Visual State Space (DVSS) block, which utilizes multi-scale con-
volutional kernels to extract local features across different scales and enhance in-
ductive bias, and employs deformable convolution to mitigate the long-range for-
getting problem while enabling adaptive spatial aggregation based on input and
task-specific information. By leveraging the multi-resolution parallel design pro-
posed in HRNet (Wang et al., 2020), we introduce High-Resolution Visual State
Space Model (HRVMamba) based on the DVSS block, which preserves high-
resolution representations throughout the entire process while promoting effec-
tive multi-scale feature learning. Extensive experiments highlight HRVMamba’s
impressive performance on dense prediction tasks, achieving competitive results
against existing benchmark models without bells and whistles. We will make the
source code publicly accessible.

1 INTRODUCTION

Convolutional Neural Networks (CNNs)(He et al., 2016; Liu et al., 2022; Zhang et al., 2023;
2024a;b) and Vision Transformers (ViTs)(Yuan et al., 2021; Liu et al., 2021; Shaker et al., 2023;
Yun & Ro, 2024) have driven significant progress in tasks like image classification, human pose es-
timation, and semantic segmentation. While CNNs excel at local feature extraction with linear com-
putational complexity, they lack global context modeling. ViTs, despite capturing global receptive
fields via self-attention, face quadratic complexity and lack inductive bias, especially with large in-
puts. Mamba (Gu & Dao, 2023) introduces the S6 structure, improving the efficiency of State Space
Models (SSMs) for long-range feature extraction. By using input-dependent state-space parameters,
Mamba enables better context modeling with linear complexity. This led to many follow-up visual
Mamba models like ViM (Zhu et al., 2024), VMamba (Liu et al., 2024b), LocalVMamba (Huang
et al., 2024), GroupMamba (Shaker et al., 2024), and MambaVision (Hatamizadeh & Kautz, 2024).

However, visual Mamba models have not achieved optimal performance on dense prediction tasks,
including human pose estimation (Xu et al., 2024; Zhang et al., 2024d) and semantic segmenta-
tion (Wang et al., 2020; Touvron et al., 2021), due to three key challenges. Firstly, like ViT, visual
Mamba splits images into sequences of patches (tokens) and employs either a bidirectional (Zhu
et al., 2024; Li et al., 2024) or four-way scanning mechanism (Liu et al., 2024b; Huang et al., 2024)
to traverse these tokens, constructing a global receptive field. While this approach is effective for
handling long sequences, it disrupts the natural 2D spatial dependencies of images and lacks the in-
ductive bias crucial for effective local representation learning. Secondly, Mamba’s token processing
leads to the decay of the previous hidden state, resulting in long-range forgetting. Consequently, it
may lose high-level, task-specific features relevant to the query patch and instead focus on low-level
edge features, as shown in Fig. 1, column 21. Lastly, current visual Mamba models usually generate

1We use the attention activation map visualization method proposed by VMamba (Liu et al., 2024b).
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Input Image          S2:VSS Block    S2:VSS Block+DSS2D    S3:VSS Block     S3:VSS Block+DSS2D 

Figure 1: Activation maps of SSM for the query patch (marked by a red rectangle). We embed
the VSS block (Liu et al., 2024b) and VSS+DSS2D (with the SS2D block replaced by our proposed
DSS2D block) into the HRVMamba-S. Si represents the i-th stage of HRVMamba. We present the
activation map of the SSM from the second block of the first module of the first branch in Si. In the
early stage (S2), DSS2D block focuses on high-level features related to the query patch, while SS2D
block targets low-level edge features. In the later stage (S3), DSS2D block highlights human-related
details, whereas SS2D block captures more irrelevant background information.
single-scale, low-resolution features, which cause substantial information loss and make it difficult
to capture the fine-grained details and multi-scale variations necessary for dense prediction tasks.

To address these limitations, we introduce the Dynamic Visual State Space (DVSS) Block, building
on the Visual State Space (VSS) block proposed in VMamba. The DVSS block utilizes multi-
scale convolutional kernels to extract local features across different scales, enhancing inductive bias
for a range of visual feature scales. Additionally, it integrates the 3 × 3 Deformable Convolution
v4 (DCNv4)(Xiong et al., 2024), enabling dynamic high-level spatial aggregation based on input
and task-specific information. This mitigates Mamba’s long-range forgetting issue by enhancing
high-level semantic relationships between patches, enabling them to influence one another despite
long-range decay, rather than primarily focusing on low-level features. For example, as shown
in Fig.1, the left shoulder and chest features near the right shoulder are highlighted (row 1, col-
umn 3), the head features connected to the right shoulder are emphasized (row 1, column 5), along
with the highlighted features of both hands and the chest (row 2, column 3). We further adopt
the multi-resolution parallel design from HRNet (Wang et al., 2020), embedding the DVSS block
into parallel multi-resolution branches to construct the High-Resolution Visual State Space Model
(HRVMamba). HRVMamba maintains and enhances high-resolution representations, preserving
more fine-grained details and modeling multi-scale variations with the multi-resolution branches,
making it well-suited for dense prediction tasks.

The contributions of this study are as follows:

• We introduce the DVSS block, which integrates multi-scale convolutional kernels and de-
formable convolutions to mitigate the lack of inductive bias and long-range forgetting is-
sues in the VSS block.

• We propose HRVMamba, based on the DVSS block, as the first Mamba-based model ap-
plied in a multi-resolution branch structure, designed to preserve fine-grained details and
capture multi-scale variations specifically for dense prediction tasks.

• HRVMamba demonstrates promising performance in image classification, human pose es-
timation, and semantic segmentation tasks. Experimental results show that HRVMamba
achieves competitive results against existing CNN, ViT, and SSM benchmark models.

2 RELATED WORK

Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs). CNNs have long been
the cornerstone of computer vision, evolving from early models like AlexNet (Xiong et al., 2024)
and ResNet (He et al., 2016) to more recent architectures such as ConvNeXt (Liu et al., 2022),
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SCGNet (Zhang et al., 2023), FlashInternImage (Xiong et al., 2024), and FMGNet (Zhang et al.,
2024b). These models excel in local feature extraction, achieving remarkable performance across
tasks such as image classification, semantic segmentation, and human pose estimation. ViTs in-
troduce self-attention mechanisms from natural language processing (NLP), segmenting images
into patches to capture global dependencies, forming the foundation of Large Vision-Language
Models (Zhang et al., 2024c; Ying et al., 2024; Liu et al., 2024a). Various methods, including
DeiT’s (Touvron et al., 2021) distillation strategies, Swin Transformer’s (Liu et al., 2021) hierar-
chical structures, and SwiftFormer’s (Shaker et al., 2023) efficient attention mechanisms, have been
developed to broaden the adoption of ViTs in vision tasks. Recently, hybrid architectures (Yun
& Ro, 2024; Ma et al., 2024) that combine the strengths of CNNs and Transformers have gained
attention. These models leverage the inductive biases of CNNs for local feature extraction while
incorporating the global attention capabilities of ViTs, marking a significant direction in backbone
network research.

State Space Models (SSMs). SSMs are a mathematical framework for modeling dynamic systems
with linear computational complexity, making them efficient for long sequences. Optimizations
in models like S4 (Gu et al., 2021), S5 (Smith et al., 2022), and H3 (Fu et al., 2022) have en-
hanced SSMs performance through structure optimization, parallel scanning and hardware improve-
ments. Mamba (Gu & Dao, 2023) introduces input-specific parameterization and parallel scanning
(S6), positioning SSMs as a compelling alternative to Transformers. Since then, SSMs have been
widely adopted in vision tasks, with S4ND (Nguyen et al., 2022) being one of the first to process
visual data as continuous signals. Building on Mamba, models like ViM (Zhu et al., 2024) and
VMamba (Liu et al., 2024b) address the direction-sensitivity of Mamba with bidirectional or four-
way scanning. LocalVMamba (Huang et al., 2024) captures local details with windowed scanning,
while PlainMamba (Yang et al., 2024) refines 2D scanning for sequential processing. MambaVi-
sion (Hatamizadeh & Kautz, 2024) integrates SSMs with Transformers, and GroupMamba (Shaker
et al., 2024) improves training stability with a distillation-based approach. However, these visual
Mamba models often produce single-scale, low-resolution features, limiting their ability to capture
the fine-grained details and multi-scale variations required for dense prediction tasks.

High-Resolution Networks for Dense Prediction. The High-Resolution network was first intro-
duced in HRNet (Wang et al., 2020), demonstrating strong performance in tasks such as human pose
estimation and semantic segmentation. Its multi-resolution parallel branches combine information at
various scales by exchanging multi-resolution features through a multi-scale fusion module. Build-
ing on this, HRFormer (Yuan et al., 2021) integrates the local-window self-attention mechanism (Liu
et al., 2021) with the high-resolution structure, achieving excellent results in dense prediction tasks.
Further advancements, including Lite-HRNet (Yu et al., 2021), Dite-HRNet (Li et al., 2022), and HF-
HRNet (Zhang et al., 2024a), introduce lightweight CNNs through techniques such as depthwise and
dynamic convolutions, enabling high-resolution networks to be more efficiently deployed on mobile
devices. However, whether Mamba can perform optimally within high-resolution structures and
how to mitigate Mamba’s lack of inductive bias and long-range forgetting in dense prediction tasks
remain open areas for further investigation.

3 PRELIMINARIES

State Space Models (SSMs) map a 1D function or sequence x(t) ∈ R to output sequence y(t) ∈ R
though a hidden state h ∈ RN based on continuous linear time-invariant (LTI) systems. To integrate
deep models and adapt to real-world data, discretization must be applied to convert the continuous
differential equations of SSMs into discrete functions using the zero-order hold method. Specifically,
with a discrete-time step ∆ ∈ R, SSMs are discretized as follows:

ht = Āht−1 + B̄xt, (1)

yt = C⊤ht, (2)

where xt = x(∆t), A ∈ RN×N is the system’s evolution matrix, and B ∈ RN×1 and C ∈ RN×1

are the projection matrices. Ā = exp(∆A), B̄ = (∆A)−1(exp(∆A)− I) ·∆B ≈ ∆B.

Selective State Space Models (S6) are introduced in Mamba (Gu & Dao, 2023) to improve the
extraction of strong contextual information. S6 allows B, C, and ∆ to vary as functions of the input
xt, whereas in S4 (Gu et al., 2021), A, B, C, and ∆ are input-independent, which limits the model’s

3
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Figure 2: (a) Overall architecture of HRVMamba. HRVMamba has four stages, but for demon-
stration purposes, we only show three. H and W represent the height and width of the image, while
Ci denotes the number of channels in the i-th branch. (b) VSS block proposed in VMamba (Liu
et al., 2024b). (c) Dynamic Visual State Space block. LN, Linear, DWConv and SS2D represent
LayerNorm, Linear Layer, depthwise convolution, and 2D-Selective-Scan SSM (Liu et al., 2024b).

ability to extract crucial information from the input sequence. Formally, given an input sequence
x ∈ RB×L×C , where B, L, and C represent the batch size, sequence length, and feature dimension,
respectively, the input-dependent parameters B, C, and ∆ are computed as follows:

B = Linear(x) ∈ RB×L×N , (3)

C = Linear(x) ∈ RB×L×N , (4)

∆ = SoftPlus(∆̃ + Linear(x)) ∈ RB×L×C , (5)

where ∆̃ ∈ RB×L×C is a learnable parameter, and A ∈ RL×C is the same parameter as in S4.

4 HIGH-RESOLUTION VISUAL STATE SPACE MODEL

4.1 MULTI-RESOLUTION PARALLEL VMAMBA

Current visual Mamba models typically generate single-scale, low-resolution features, resulting in
significant information loss and difficulty in capturing the fine details and multi-scale variations
needed for dense prediction tasks. To address this, we adopt HRNet’s multi-resolution parallel
design (Wang et al., 2020), using parallel branches to develop the High-Resolution Visual State
Space Model (HRVMamba). We illustrate the overall architecture of HRVMamba in Fig. 3 (a).
Given an input image X ∈ RH×W×3, HRVMamba begins with a downsampling stem using two
3×3 convolutions with a stride of 2, reducing the feature resolution to H

4 × W
4 . It then progresses

through four stages, where the streams in later stages include the previous stage’s resolutions and
an additional lower one, with the final four branches having feature dimensions of H

4 × W
4 × C1,

H
8 × W

8 ×C2, H
16 ×

W
16 ×C3, and H

32 ×
W
32 ×C4. Previous studies (Yun & Ro, 2024; Ma et al., 2024)

have shown that convolution operations on larger feature maps in early stages are more effective for
visual feature extraction, so we adopt the BottleNeck structure in the first stage like HRNet. The
remaining stages use our proposed Dynamic Visual State Space (DVSS) block (Fig. 3 (c)) as the
basic unit. The multi-scale fusion method, following HRNet, incorporates a series of upsampling
and downsampling blocks to merge features from different parallel branches.

4.2 DYNAMIC VISUAL STATE SPACE (DVSS) BLOCK

We introduce the DVSS Block, building on the VSS block (Fig.3 (b)) of VMamba(Liu et al., 2024b).
As illustrated in Fig. 3 (c), the DVSS Block incorporates the 2D-Selective-Scan with Deformable
Convolution (DSS2D) block, the Multi-scale Depthwise (MultiDW) Block, and a Feed-Forward
Network (FFN) as feature extraction units.

4
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Table 1: The architecture configuration of HRVMamba. MDW, and DSS2D represent the
MultiDW block and DSS2D block respectively. (M1,M2,M3,M4): the number of mod-
ules, (B1, B2, B3, B4): the number of blocks, (S1, S2, S3, S4): the SSM expansion ratios,
(R1, R2, R3, R4): the MLP expansion ratios.
Res. Stage 1 Stage 2 Stage 3 Stage 4

4×
[

1 × 1,64
3 × 3,64
1 × 1,256

]
×B1×M1

 MDW
DSS2D,S1

FFN,R1

B2×M2

 MDW
DSS2D,S1

FFN,R1

B3×M3

 MDW
DSS2D,S1

FFN,R1

B4×M4

8×
 MDW

DSS2D,S2

FFN,R2

B2×M2

 MDW
DSS2D,S2

FFN,R2

B3×M3

 MDW
DSS2D,S2

FFN,R2

B4×M4

16×
 MDW

DSS2D,S3

FFN,R3

B3×M3

 MDW
DSS2D,S3

FFN,R3

B4×M4

32×
 MDW

DSS2D,S4

FFN,R4

B4×M4

Table 2: Architecture details of HRVMamba variants. HRVMamba-S and HRVMamba-B repre-
sent the small and base HRVMamba model, respectively.

Model #channels
(C1, C2, C3, C4)

#blocks
(B1, B2, B3, B4)

#modules
(M1,M2,M3,M4)

#SSM ratio
(S1, S2, S3, S4)

#MLP ratio
(R1, R2, R3, R4)

HRVMamba-S (32, 64, 128, 256) (2, 2, 2, 2) (1, 1, 4, 2) (2, 2, 2, 2) (2, 2, 2, 2)
HRVMamba-B(80, 160, 320, 640) (2, 2, 2, 2) (1, 1, 4, 2) (2, 2, 2, 2) (2, 2, 2, 2)

2D-Selective-Scan with Deformable Convolution (DSS2D) Block. As outlined in previous
study (Shi et al., 2024), the contribution of the m-th token to the n-th token (m < n, where m
and n are token indices) in SSM for an input sequence x ∈ R1×L×C can be represented as:

C⊤
n

n∏
i=m

ĀiB̄m = C⊤
n Ā(m→n)B̄m, where Ā(m→n) = exp

n∑
i=m

∆iA. (6)

Typically, the learned ∆iA is negative, causing the exponential factor Ā(m→n) in Eq. 6 to decrease
significantly as the sequence distance increases. This leads to a consistent weakening of the previous
hidden state with each new token, resulting in the long-range forgetting issue. Consequently, SSM
may lose high-level, task-specific features relevant to the query patch and instead focus on low-level
edge features, as illustrated in Fig. 1, column 2.

To mitigate the long-range forgetting issue, we replace the Depthwise convolution in the SS2D block
with a 3× 3 Deformable Convolution v4 (DCNv4)(Xiong et al., 2024) and build the DSS2D block.
Given an input X ∈ RH×W×C , the DCNv4 operation with K (K = 9 for 3 × 3 DCNv4) points is
defined for each reference point p0 as:

Yg =

K∑
k=1

mgkXg(p0 + pk +∆pgk), (7)

Y = Concat([Y1,Y2, ...,YG], axis=-1), (8)
where G represents the number of spatial aggregation groups, set to 4. The scalar mgk represents
the dynamic modulation weight of the k-th sampling point in the g-th group. pk is the k-th grid
sampling location {(−1,−1), (−1, 0), ..., (0,+1), ..., (+1,+1)}, and ∆pgk is its dynamic offset.

On the one hand, DCNv4 mitigates Mamba’s long-range forgetting issue by enhancing high-level
semantic relationships between patches like the attention mechanism, rather than primarily focusing
on low-level features. This may help ensure that high-level semantic relationships between patches
still influence distant tokens despite long-range decay. On the other hand, DCNv4 improves long-
range feature modeling with much higher computational efficiency compared to larger convolutional
kernels and self-attention mechanisms.

Multi-scale Depthwise (MultiDW) Block. Visual Mamba processes images as token sequences
using bidirectional or four-way scanning to establish a global receptive field. However, this approach

5
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Table 3: Comparison on the COCO pose estimation val set. ”Trans.” means transformer ar-
chitecture. − means the numbers are not provided in the original paper. † marks a model that is
not pretrained, while ‡ signifies that the backbone uses the classic decoder from ViTPose (Xu et al.,
2024). The #param. and FLOPs of HRFormer (Yuan et al., 2021) are based on the implementation
from MMPOSE (Contributors, 2020).
Arch. Method input size #param. FLOPs AP AP50AP75APM APL AR

CNN HRNet-W48 (Wang et al., 2020) 256× 192 63.6M 14.6G 75.1 90.6 82.2 71.5 81.8 80.4
FlashInternImage-B‡ (Xiong et al., 2024) 256× 192 100.7M 17.0G 74.1 90.6 82.0 70.3 80.4 79.3

Trans.

PRTR (Li et al., 2021a) 512× 384 57.2M 37.8G 73.3 89.2 79.9 69.0 80.9 80.2
TransPose-H-A6 (Yang et al., 2021) 256× 192 17.5M 21.8G 75.8 − − − − 80.8
TokenPose-L/D24 (Li et al., 2021b) 256× 192 27.5M 11.0G 75.8 90.3 82.5 72.3 82.7 80.9
HRFormer-S (Yuan et al., 2021) 256× 192 7.7M 3.3G 74.0 90.2 81.2 70.4 80.7 79.4
HRFormer-B (Yuan et al., 2021) 256× 192 43.2M 14.1G 75.6 90.8 82.8 71.7 82.6 80.8
Swin-B‡ (Liu et al., 2021) 256× 192 94.0M 19.0G 73.7 90.5 82.0 70.2 80.4 79.3
PVTv2-B2‡ (Wang et al., 2022) 256× 192 29.1M 5.1G 73.7 90.5 81.2 70.0 80.6 79.1
ViTPose-B (Xu et al., 2024) 256× 192 90.0M 17.9G 75.8 90.7 83.2 68.7 78.4 81.1
HRFormer-S (Yuan et al., 2021) 384× 288 7.7M 7.3G 75.6 90.3 82.2 71.6 82.5 80.7
HRFormer-B (Yuan et al., 2021) 384× 288 43.2M 30.9G 77.2 91.0 83.6 73.2 84.2 82.0
HRFormer-B† (Yuan et al., 2021) 384× 288 43.2M 30.9G 77.0 90.8 83.3 73.2 80.7 81.8

SSM

Vim-S‡ (Zhu et al., 2024) 256× 192 28.0M 6.1G 69.8 89.2 78.2 67.2 75.5 76.0
VMamba-T‡ (Liu et al., 2024b) 256× 192 34.7M 6.0G 74.4 90.4 82.3 70.8 81.0 79.6
VMamba-B‡ (Liu et al., 2024b) 256× 192 93.8M 16.3G 74.8 90.7 82.1 71.2 81.5 80.1
LocalVMamba-S‡ (Huang et al., 2024) 256× 192 54.2M 14.1G 74.1 90.4 81.8 70.9 80.4 79.9
MV-B‡ (Hatamizadeh & Kautz, 2024)2 256× 192 102.9M 24.6G 73.4 90.1 80.9 69.7 80.2 78.9
GroupMamba-B‡ (Shaker et al., 2024) 256× 192 57.7M 15.0G 73.2 90.3 81.1 69.8 79.8 78.7

SSM

HRVMamba-S 256× 192 8.0M 3.3G 74.6 90.5 81.7 71.1 81.0 79.9
HRVMamba-B† 256× 192 47.1M 14.2G 76.4 90.9 83.5 73.1 82.9 81.4

(Ours) HRVMamba-S 384× 288 8.0M 7.4G 76.4 90.9 83.3 72.7 83.0 81.3
HRVMamba-B† 384× 288 47.1M 32.0G 77.6 91.1 84.2 74.0 84.2 82.4

disrupts 2D spatial relationships and lacks the inductive bias needed for local features. To address
this, we introduce the MultiDW block, which employs multi-scale convolutional kernels to capture
local features at various scales, thereby enhancing the inductive bias for features of different scales.
Specifically, as shown in Eqs. 9, 10, and 11, the input features X are first divided into G groups along
the channel dimension, where G is set to 4. The g-th group undergoes a depthwise convolution with
a kernel size of Kg = 2g + 1. The resulting features are then concatenated, followed by a shuffle
operation to promote feature interaction across the different groups.

[X1,X2, ...,XG] = Split(X, axis=-1), (9)
Yg = DWConv g(Kg ×Kg)(Xg), (10)
Y = GELU(Shuffle(Concat([Y1,Y2, ...,YG], axis=-1)), (11)

where GELU represents the activation function.

4.3 HRVMAMBA ARCHITECTURE INSTANTIATION.

We illustrate the architecture configurations of HRVMamba in Table 1. In the i-th stage, Bi, Si,
Ri, and Mi represent the number of blocks, the SSM expansion ratio, the MLP expansion ratio, and
the number of modules, respectively. Furthermore, we designed two scales of HRVMamba, namely
HRVMamba-S and HRVMamba-B. Table 2 presents the details of the HRVMamba variants.

5 EXPERIMENTS

5.1 HUMAN POSE ESTIMATION

Training setting. We evaluate HRVMamba on COCO dataset (Lin et al., 2014) for human pose
estimation, which comprises over 200,000 images and 250,000 labeled person instances with 17
keypoints. Our experiments train on the COCO train 2017 dataset, which includes 57,000 images
and 150,000 person instances. The performance of our model is assessed on the val 2017 and

6
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Table 4: Comparison on the COCO pose estimation test-dev set. † marks a model that is not
pretrained, while ‡ signifies that the backbone uses the classic decoder from ViTPose.
Method input size #param. FLOPs AP AP50 AP75 APM APL AR
HRNet-W48 (Wang et al., 2020) 384× 288 63.6M 32.9G 75.5 92.5 83.3 71.9 81.5 80.5
PRTR (Li et al., 2021a) 512× 384 57.2M 37.8G 72.1 90.4 79.6 68.1 79.0 79.4
TransPose-H-A6 (Yang et al., 2021) 256× 192 17.5M 21.8G 75.0 92.2 82.3 71.3 81.1 −
TokenPose-L/D24 (Li et al., 2021b) 384× 288 29.8M 22.1G 75.9 92.3 83.4 72.2 82.1 80.8
HRFormer-S (Yuan et al., 2021) 384× 288 7.7M 7.3G 74.5 92.3 82.1 70.7 80.6 79.8
HRFormer-B (Yuan et al., 2021) 384× 288 43.2M 30.9G 76.2 92.7 83.8 72.5 82.3 81.2
HRFormer-B† (Yuan et al., 2021) 384× 288 43.2M 30.9G 76.0 92.6 83.6 72.9 810.5 81.0
Swin-L‡ (Liu et al., 2021) 384× 288 207.9M 88.2G 75.4 92.6 83.3 72.0 80.9 80.5
ViTPose-B (Xu et al., 2024) 256× 192 90.0M 17.9G 75.1 92.5 83.1 72.0 80.7 80.3
VMamba-B‡ (Liu et al., 2024b) 384× 288 93.8M 36.6G 75.3 92.7 83.3 72.0 80.9 80.3
HRVMamba-S 384× 288 8.0M 7.4G 75.3 92.5 83.1 72.1 80.9 80.3
HRVMamba-B† 384× 288 47.1M 32.0G 76.5 92.6 84.2 73.5 81.8 81.4

Table 5: Performance comparison for semantic segmentation. We report the mIoUs on
Cityscapes val and PASCAL-Context test. ’SS’ and ’MS’ denote evaluations performed at
single-scale and multi-scale levels, respectively.

method #param. Cityscapes PASCAL-Context
mIoU (SS) mIoU (MS) mIoU

Swin-B (Liu et al., 2021) 121M 66.6 67.4 36.0
ConvNeXt-B (Liu et al., 2022) 122M 71.5 71.9 39.5
VMamba-B (Liu et al., 2024b) 122M 71.8 72.0 40.7

LocalVMamba-S (Huang et al., 2024) 81M 76.3 77.0 12.2
GroupMamba-B (Shaker et al., 2024) 83M 71.5 72.0 40.3
MV-B (Hatamizadeh & Kautz, 2024) 130M 73.6 74.5 41.3
HRFormer-B (Yuan et al., 2021) 75M 77.3 77.7 42.6

HRVMamba-B 79M 79.4 80.2 43.5

test-dev 2017 sets, comprising 5,000 and 20,000 images, respectively. For training and evalua-
tion, we follow the implementation of MMPOSE (Contributors, 2020). The batch size is set to 256,
and the AdamW optimizer is used, configured with a learning rate of 5e-4, betas of (0.9, 0.999), and
a weight decay of 0.01. For HRVMamba-B, no pretraining techniques are employed, whereas, for
HRVMamba-S, we apply ImageNet (Deng et al., 2009) pretraining like HRFormer.

Results. Table 3 presents the results on the COCO val dataset. HRVMamba consistently outper-
forms other CNN models, ViT models, and recent state-of-the-art (SOTA) SSM methods. With an
input size of 256×192, HRVMamba-S achieves 74.6 AP, exceeding FlashInternImage-B (74.1 AP)
while using only one-fifth of the FLOPs. HRVMamba-B achieves 76.4 AP, surpassing SOTA SSM
methods like Vim-S, VMamba-B, MambaVision-B, and GroupMamba-B. At similar computational
complexity, HRVMamba-B improves by 3.2 AP and 2.7 AR over GroupMamba-B. Additionally,
HRVMamba-B outperforms ViTPose-B by 0.6 AP and 0.3 AR, with 50% fewer parameters and
20% fewer FLOPs. With an input size of 384 × 288, HRVMamba-S achieves a 0.8 AP gain over
HRFormer-S; HRVMamba-B gains 0.6 AP over HRFormer-B without pretraining on ImageNet.

We also provide comparisons on the COCO test-dev set in Table 4. Our HRVMamba-S achieves
an AP of 75.3, outperforming ViTPose-B by 0.2 while using only one-eleventh of its parameters.
It matches the performance of VMamba-B, but with just one-fifth of the FLOPs. Furthermore,
HRVMamba-B surpasses HRFormer-B by 0.5 in AP and 0.4 in AR without pretraining on Ima-
geNet, and achieves SOTA performance.

5.2 SEMANTIC SEGMENTATION

We adopt UPerNet (Xiao et al., 2018) as the foundational framework for all the models tested. All
models are pretrained on the ImageNet-1K dataset (Deng et al., 2009).

Cityscapes dataset (Cordts et al., 2016) is designed for urban scene understanding with 19 classes
used for semantic segmentation. The finely annotated 5K images are split into 2,975 train, 500
val, and 1,525 test images. We set the initial learning rate to 1e−4, weight decay to 0.01, crop
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Table 6: Comparison with the state-of-the-art on ImageNet. “iso.”, ”hie.”, ”hig.” represent
isotropic architecture without downsampling layers, hierarchical architecture, high-resolution archi-
tecture, respectively.
Type Arch. Model Input #Param (M) FLOPs (G) Top-1 Acc

iso.

CNN ConvNeXt-S (Liu et al., 2022) 2242 22 4.3 79.7
ConvNeXt-B (Liu et al., 2022) 2242 87 16.9 82.0

Trans. DeiT-S (Touvron et al., 2021) 2242 22 4.6 79.8
DeiT-B (Touvron et al., 2021) 2242 87 17.6 81.8

SSM

S4ND-ViT-B (Nguyen et al., 2022) 2242 89 - 80.4
Vim-Ti (Zhu et al., 2024) 2242 7 1.1 76.9
Vim-S (Zhu et al., 2024) 2242 26 4.3 80.5
VideoMamba–S (Li et al., 2024) 4482 26 16.9 83.2
PlainMamba-L3 (Yang et al., 2024) 2242 50 14.4 82.3

hie.

CNN ConvNeXt-T (Liu et al., 2022) 2242 29 4.5 82.1
ConvNeXt-B (Liu et al., 2022) 2242 89 15.4 83.8

Trans. Swin-T (Liu et al., 2021) 2242 28 4.5 81.3
Swin-B (Liu et al., 2021) 2242 88 15.4 83.5

SSM

VMamba-B (Liu et al., 2024b) 2242 89 15.4 83.9
LocalVMamba-S (Huang et al., 2024) 2242 50 11.4 83.7
ViM2-B (Behrouz et al., 2024) 2242 43 - 83.7
MV-B (Hatamizadeh & Kautz, 2024) 2242 50 15.0 84.2

hig.
Trans. HRFormer-S (Yuan et al., 2021) 2562 20 5.9 80.7

HRFormer-B (Yuan et al., 2021) 2242 57 14.2 83.2

SSM HRVMamba-S 2562 20 5.8 81.3
HRVMamba-B 2242 61 15.8 83.7

size to 1024×512, batch size to 16, and 80K training iterations. As shown in Table 5, HRVMamba-
B outperforms HRFormer-B by 2.1 mIoU in single-scale and 2.5 mIoU in multi-scale tests. It also
surpasses SSM models like GroupMamba-B and MambaVision-B with fewer parameters.

PASCAL-Context dataset (Mottaghi et al., 2014) includes 59 semantic classes and 1 background
class, with 4,998 train images and 5,105 test images. We set the initial learning rate to 1e−4,
weight decay to 0.01, crop size to 480×480, batch size to 16, and 80K training iterations. As shown
in Table 5, HRVMamba-B achieves an improvement of 0.9 mIoU and 2.2 mIoU over HRFormer-B
and MambaVision-B, respectively. Notably, LocalVMamba-S performs particularly poorly in tests
with variable input sizes, achieving only 12.2 mIoU.

5.3 IMAGENET CLASSIFICATION

Training setting. We conduct comparisons on the ImageNet-1K dataset (Deng et al., 2009), which
comprises 1.28M train images and 50K val images across 1000 classes. HRVMamba is trained
using the Swin Transformer (Liu et al., 2021) training framework on 8× 80GB A100 GPUs.

Results. Table 6 compares HRVMamba with several representative CNN, ViT, and SSM methods.
HRVMamba demonstrates competitive performance across isotropic architectures (Touvron et al.,
2021; Li et al., 2024), hierarchical architectures (Liu et al., 2021; 2024b), and high-resolution archi-
tectures (Yuan et al., 2021). Specifically, HRVMamba-B achieves a Top-1 accuracy of 83.7, using
only 30% of the FLOPs of VideoMamba-M, which achieves 83.8 in Top-1 accuracy. Although
MambaVision-B achieves a higher overall accuracy of 84.2, it employs the more advanced LAMB
optimizer, which is not used by the other models. Additionally, MambaVision-B is trained on 32
A100 GPUs, whereas our model utilizes only 8 A100 GPUs and does not rely on advanced training
techniques like distillation (Shaker et al., 2024). Importantly, as shown in Table 3, MambaVision-B
underperforms in dense prediction tasks, scoring 73.4 AP compared to 76.4 AP for HRVMamba-
B. Notably, HRVMamba achieves the best performance among high-resolution architectures,
with HRVMamba-S showing a 0.6-point improvement over HRFormer-S, and HRVMamba-B out-
performing HRFormer-B by 0.5 points with comparable FLOPs.
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Table 7: Ablation Experiments Results on COCO val set. All models are not pretrained on
the ImageNet. The HRVMamba-S in Table 2 is the basic architecture setting. The input size is
256× 192. † denotes their is only 3× 3 depthwise convolution in MultiDW Block.

SS2D Block DSS2D Block MultiDW Block MutiDW in FFN AP AR
✔ ✗ ✗ ✗ 73.5 78.8
✗ ✔ ✗ ✗ 73.9 79.2
✗ ✔ ✗ ✔ 73.5 79.1
✗ ✔ ✔ ✗ 74.2 79.5
✗ ✔ ✔† ✗ 73.9 79.2

5.4 ABLATION EXPERIMENTS

Multi-resolution Parallel architecture. The results in Table 3 demonstrate that HRVMamba, uti-
lizing the Multi-resolution Parallel architecture, achieved SOTA performance in pose estimation.
In particular, comparisons with other SOTA SSM models such as VMamba (Liu et al., 2024b),
VMamba-B (Liu et al., 2024b), MambaVision-B (Hatamizadeh & Kautz, 2024), and GroupMamba-
B (Shaker et al., 2024) highlight the advantages of the Multi-resolution Parallel architecture for
dense prediction tasks.

2D-Selective-Scan with Deformable Convolution. As shown in Table 7, the DSS2D block im-
proves AP by 0.4 points compared to the SS2D block (line 2 vs. line 1), demonstrating that in-
corporating DCN enhances Mamba’s spatial feature extraction. Specifically, as shown in Fig. 1,
DSS2D focuses on high-level features related to the query patch in the early stage (S2), while SS2D
targets low-level edge features. In the later stage (S3), DSS2D highlights human-related details,
whereas SS2D tends to capture irrelevant background information. We think DCNv4 enhances the
features of high-level semantic relations between patches, allowing them to influence each other
despite long-range decay (long-range forgetting issue).

Multi-scale Depthwise Block. HRFormer introduces depthwise convolution in the FFN to enhance
the model’s inductive bias. However, our experimental results in Table 7 show that embedding the
MultiDW Block into the FFN (line 3 vs. line 2) can even degrade the performance gains brought by
DCN. In contrast, when the MultiDW Block is used as a standalone module, as shown in Fig. 3, it
improves the AP to 74.2. Yet, replacing the multi-scale convolutional kernels with 3×3 convolution
does not result in any performance improvement (line 5 vs. line 3). This indicates that the multi-scale
convolutional kernels are effective in capturing local features at various scales, thus strengthening
the inductive bias for features.

6 FUTURE WORK

Our experimental results show that pretraining on ImageNet improves the performance of the smaller
model, HRVMamba-S, in pose estimation. However, for the larger model, HRVMamba-B, it can
even lead to a performance drop. This suggests that the pretraining strategy for SSM models might
differ from that of CNNs and ViTs due to the unique mechanisms of SSM. There is significant room
for further research into the pretraining strategy for HRVMamba. Exploring alternative pretraining
approaches may potentially enhance HRVMamba’s performance.

7 CONCLUSION

Visual Mamba’s performance on dense prediction tasks faces challenges such as insufficient induc-
tive bias, long-range forgetting, and low-resolution output representations. To address these issues,
we introduce the Dynamic Visual State Space (DVSS) block, which employs multi-scale convo-
lutional kernels to enhance inductive bias and utilizes deformable convolutions to mitigate long-
range forgetting. By leveraging the multi-resolution parallel design from HRNet, we present the
High-Resolution Visual State Space Model (HRVMamba), which maintains high-resolution repre-
sentations throughout the network, ensuring effective multi-scale feature learning. Extensive exper-
iments demonstrate that HRVMamba achieves competitive results across various dense prediction
benchmarks compared to CNNs, ViTs, and SSMs.
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