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Abstract001

Pixel language models operate directly on im-002
ages of rendered text, eliminating the need003
for a fixed vocabulary. While these models004
have demonstrated strong capabilities for down-005
stream cross-lingual transfer, multilingual pre-006
training remains underexplored. We introduce007
PIXEL-M4, a model pretrained on four visu-008
ally and linguistically diverse languages: En-009
glish, Hindi, Ukrainian, and Simplified Chi-010
nese. Multilingual evaluations on semantic011
and syntactic tasks show that PIXEL-M4 out-012
performs an English-only counterpart on non-013
Latin scripts. Word-level probing analyses014
confirm that PIXEL-M4 captures rich linguis-015
tic features, even in languages not seen during016
pretraining. Furthermore, an analysis of its017
hidden representations shows that multilingual018
pretraining yields a semantic embedding space019
closely aligned across the languages used for020
pretraining. This work demonstrates that multi-021
lingual pretraining substantially enhances the022
capability of pixel language models to effec-023
tively support a diverse set of languages.024

1 Introduction025

Visually-rendered text has emerged as an alterna-026

tive to sub-word tokenization for language mod-027

els (Salesky et al., 2021; Rust et al., 2023). In028

comparison to sub-word tokenization, processing029

visually-rendered text enables models to transfer to030

unseen languages without needing to initialize new031

embeddings (Dobler and de Melo, 2023), or rely-032

ing on back-off mechanisms based on bytes (Xue033

et al., 2022) or characters (Clark et al., 2022). Pre-034

vious work on pixel-based language models has035

predominantly focused on monolingual pretrain-036

ing on English data (Rust et al., 2023; Lotz et al.,037

2023), with related efforts extending to multilin-038

gual pretraining for machine translation (Salesky039

et al., 2023). Given evidence that pixel-based mod-040

els facilitate positive transfer through visual simi-041

larity (Lotz et al., 2025; Muñoz-Ortiz et al., 2025),042
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Figure 1: Average performance across tasks compar-
ing PIXEL-M4 and PIXEL-BIGRAMS grouped by scripts:
Arabic, Brahmic, Chinese-Japanese-Korean, Cyrillic,
Latin, and others. Both models share the same architec-
ture and hyperparameters, but PIXEL-M4 is pretrained
in four visually and linguistically diverse languages: En-
glish, Hindi, Ukrainian and Simplified Chinese. PIXEL-
M4 performs better in almost all non-Latin script lan-
guages without sacrificing Latin-script performance.

we investigate multilingual pretraining for general- 043

purpose representation learning specifically by se- 044

lecting only one language per script. This approach 045

is particularly valuable for low-resource languages 046

that can benefit from transfer via visually similar, 047

high-resource languages. 048

We present PIXEL-M4: a multilingual version of 049

PIXEL (Rust et al., 2023). PIXEL-M4 is pretrained 050

on four equally-sized amounts of visually diverse 051

scripts sourced from mC4 (Xue et al., 2021): En- 052

glish (Latin script), Hindi (Devanagari script), Sim- 053

plified Chinese (Han script), and Ukrainian (Cyril- 054

lic script). These scripts were chosen to represent 055

abugida, alphabetic, logographic/logosyllabic writ- 056

ing systems, covering billions of speakers. Fur- 057

thermore, not only do these scripts represent visual 058

diversity, they also represent grammatical diversity, 059
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covering Balto-Slavic, Indo-Iranian, Germanic, and060

Sino-Tibetan languages.061

In downstream task experiments, we investi-062

gate the ability of PIXEL-M4 to transfer to new063

languages in three conditions (i) same-script; (ii)064

related-script; and (iii) unrelated scripts to better065

understand what is gained by multilingual pretrain-066

ing.1 The same-script experiments focus on Simpli-067

fied Chinese (Han), Hindi (Devanagari), and vari-068

ous Latin and Cyrillic script languages. The related-069

script experiments include Japanese and Brahmic070

script languages; while the unrelated-script experi-071

ments focus on Armenian, Greek, Korean and lan-072

guages using the abjad writing system (e.g. Ara-073

bic and Hebrew). Compared to its monolingually-074

pretrained equivalent, PIXEL-BIGRAMS (Lotz et al.,075

2023), we find consistent improvements in perfor-076

mance for almost all non-Latin script languages on077

text classification, dependency parsing and named078

entity recognition.079

We conduct word-level probing experiments080

using LINSPECTOR (Şahin et al., 2020) to com-081

pare differences in linguistic understanding across082

15 languages from multilingual versus monolin-083

gual pretraining. We find that PIXEL-M4 captures084

linguistic features more effectively than PIXEL-085

BIGRAMS, both for seen scripts (e.g., Russian086

and Macedonian) and unseen scripts (Arabic, Ar-087

menian, Greek). Additionally, an exploration of088

PIXEL-M4’s embedding space reveals that earlier089

layers primarily encode visual information, while090

deeper layers shift toward semantic understand-091

ing, corroborating earlier observations by Tatariya092

et al. (2024). Through cross-lingual retrieval ex-093

periments, we find that PIXEL-M4 has learned a094

semantic representation space that is shared across095

the pretraining languages.096

In short, the main contributions of this paper are:097

• We present the first multilingually-pretrained098

general-purpose pixel language model,2099

trained over four visually and linguistically100

diverse languages.101

• Experiments on syntactic and semantic tasks102

show consistent improvements for non-Latin103

script languages compared to previous PIXEL104

language models.105

1The downstream task languages also cut across different
language families, e.g. Indo-European, Sino-Tibetan, and
Turkic. However, we focus on script transfer, given the visual
nature of the data processed by PIXEL-M4.

2Code and models: https://blind.for.review

• Word-level probing analyses show that multi- 106

lingual pretraining produces representations 107

that capture more linguistic features across 108

languages, such as case marking, part-of- 109

speech tags, and verb tense. 110

• Sentence-level analyses of the learned hid- 111

den representations reveal that PIXEL-M4 has 112

learned a representation space highly aligned 113

between a subset of its pretraining languages. 114

2 PIXEL-M4 115

In this section, we describe our methodology in 116

detail, including the selection of pretraining lan- 117

guages, the pretraining data creation procedure 118

(§2.1), the model architecture and the pretraining 119

procedure (§2.2). 120

2.1 Pretraining Data 121

Following our motivation to explore multilingual 122

pretraining through a diverse selection of scripts 123

rather than a large range of languages, PIXEL-M4 124

is pretrained on text written in Latin (English), 125

Cyrillic (Ukrainian), Simplified Chinese charac- 126

ters (Chinese), and Devanagari (Hindi). For each 127

script, a corresponding subset of the mC4 (Xue 128

et al., 2021) corpus is rendered into images, fol- 129

lowing the strategy of rendering two characters per 130

image patch from Lotz et al. (2023). With a se- 131

quence length of 529 image patches and a batch 132

size of 256, the model observes approximately 135 133

billion image patches over 1 million pretraining 134

steps – this is the same total amount of data as the 135

original PIXEL and PIXEL-BIGRAMS models. How- 136

ever, PIXEL-M4 is trained on an order-or-magnitude 137

more unique samples than PIXEL-BIGRAMS. This 138

difference is due to the fact that PIXEL-BIGRAMS 139

was trained by iterating 10 times over the English- 140

only Wikipedia + BookCorpus datasets (Zhu et al., 141

2015), whereas PIXEL-M4 processes each sample 142

in our subset of mC4 only once across the four 143

pretraining languages. 144

2.2 Pretraining Procedure 145

Both PIXEL-M4 and PIXEL-BIGRAMS follow the 146

PIXEL pretraining recipe from Rust et al. (2023), 147

including hyperparameter values. Based on the 148

Masked Autoencoding Vision Transformer (He 149

et al., 2022), the models render each input sequence 150

to a 529-patch image using the PangoCairo render- 151

ing library,3 where each image patch is 16×16 pix- 152

3https://docs.gtk.org/PangoCairo
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els. We use the Google Noto Sans fonts collection153

to ensure that the majority of Unicode codepoints154

can be accurately rendered.4 PIXEL-M4 is trained155

by mixing the four languages within each batch;156

however, each individual sample consists of only157

one language. The image patches are first embed-158

ded through a linear projection, 25% of them are159

masked (in spans of up to 6 consecutive patches),160

and only the unmasked patches plus a CLS token161

are passed to the encoder. After the encoder, a162

lightweight decoder reconstructs the pixel values163

of only the masked patches. For downstream tasks164

we remove the decoder and instead attach a task-165

specific head, and disable patch masking in inputs.166

3 Experimental Setup167

This section contains the details of our experi-168

ments:5 §3.1 contains information regarding tasks169

and benchmarks and §3.2 describes the baselines.170

3.1 Tasks & Benchmarks171

Text Classification. We first test the models on172

the sentence-level semantic task of topic classifica-173

tion using the SIB-200 benchmark (Adelani et al.,174

2024). Each example in SIB-200 is semantically175

aligned across languages. This aspect of SIB-200176

allows us to make a controlled comparison across177

different languages and scripts. Our first set of178

evaluations cover the four pretraining languages179

of PIXEL-M4: Latin (English ENG), Han (Chinese180

ZHO), Cyrillic (Ukrainian UKR), and Devanagari181

(Hindi HIN). For the same-script transfer setting,182

we experiment with Latin script languages (Ger-183

man DEU, Finnish FIN, French FRA, Turkish TUR,184

Uzbek UZN) and Cyrillic script languages (Kyrgyz185

KIR, Russian RUS). For the related-script transfer186

setting, we perform experiments in Japanese (JPN)187

and Brahmic script languages (Bengali BEN, Stan-188

dard Tibetan BOD, Tamil TAM, Telugu TEL). Lastly,189

we cover Armenian (HYE), Greek (ELL), Hebrew190

(HEB), Korean (KOR) and Arabic script languages191

(Egyptian Arabic ARZ, Uyghur UIG, Urdu URD) to192

test transfer to unrelated novel scripts. We report193

macro-averaged F1 score as the metric.194

Dependency Parsing. We evaluate on the token-195

level syntactic parsing task of dependency pars-196

ing using the Universal Dependencies (UD) bench-197

mark (Nivre et al., 2020; Zeman et al., 2022). We198

also compare the models using the same three199

4https://fonts.google.com/noto
5See Appendix for implementation details.

transfer learning settings again: (i) same-script 200

languages seen during pretraining: Latin (English 201

ENG, Vietnamese VIE), Devanagari (Hindi HIN), 202

Han (Chinese ZHO), and Cyrillic (Ukrainian UKR, 203

Russian RUS, Bulgarian BUL); (ii) languages in 204

scripts related to at least one pretraining script: 205

Coptic (COP), Japanese (JPN) and Brahmic script 206

languages (Tamil TAM, Telugu TEL); (iii) lan- 207

guages in scripts unrelated to the pretraining scripts: 208

Arabic abjad (Arabic ARA, Urdu URD) and Korean 209

(KOR). We report Labeled Attachment Score (LAS) 210

as the evaluation metric. 211

Named Entity Recognition. Lastly, we per- 212

form experiments on the token-level semantic 213

task of Named Entity Recognition (NER) us- 214

ing three benchmarks: the multilingual Universal 215

NER (Mayhew et al., 2024, UNER) and Naama- 216

padam (Mhaske et al., 2023) benchmarks, as well 217

as the NER portion of the Korean Language Un- 218

derstanding Evaluation (Park et al., 2021, KLUE). 219

Once again, we cover same-script, related-script 220

and unrelated-script transfer scenarios. Here, three 221

of the four scripts seen during pretraining – Latin 222

(English ENG, Serbian SRP), Han (Chinese ZHO), 223

and Devanagari (Hindi HIN) – are additionally eval- 224

uated on Korean KOR, as well as three Brahmic 225

scripts (Bengali BEN, Tamil TAM, Telugu TEL). We 226

report macro-averaged F1 scores. 227

3.2 Baselines 228

We mainly compare PIXEL-M4 against the mono- 229

lingual PIXEL-BIGRAMS model, which is trained 230

exclusively on English text rendered at the bigram 231

level. PIXEL-M4 implements the identical architec- 232

ture, text rendering strategy and pretraining proce- 233

dure with the same set of hyperparameters, but 234

PIXEL-M4 is multilingually pretrained on equal 235

amounts of English, Hindi, Ukrainian and Simpli- 236

fied Chinese. This comparison allows us to observe 237

the effects of multilingual pretraining for pixel lan- 238

guage models in different transfer learning settings. 239

We additionally compare PIXEL-M4 against four 240

monolingual BERT variants: The original English 241

BERT (Devlin et al., 2019) primarily for the Latin 242

languages, Chinese BERT (Devlin et al., 2019) for 243

Han and Japanese scripts, a Hindi BERT (Samuel 244

et al., 2023) for the Brahmic script languages, and 245

a Ukrainian BERT (Samuel et al., 2023) for the 246

Cyrillic languages. English BERT is also used as a 247

fallback option to evaluate languages that do not 248

belong to any of the pretraining scripts, such as 249
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Arabic Brahmic Cyrillic

ARZ UIG URD BOD BEN HIN TAM TEL KIR RUS UKR

BERT-MONO 29.1 43.9 31.1 40.7 38.4 87.2 48.6 29.5 73.5 83.8 86.5
PIXEL-BIGRAMS 38.3 48.6 36.5 36.9 31.7 32.6 39.7 39.9 47.1 37.7 44.4
PIXEL-M4 37.5 53.7 41.6 46.3 46.2 78.6 64.5 46.6 62.9 74.7 80.5

Latin CJK Others
Avg.

DEU ENG FIN FRA TUR UZN ZHO JPN KOR ELL HEB HYE

BERT-MONO 63.8 88.1 43.5 76.1 62.7 59.4 89.5 78.9 15.4 32.6 32.7 36.5 55.3
PIXEL-BIGRAMS 63.8 84.3 59.7 73.2 60.7 56.7 48.5 41.0 37.8 34.3 26.7 37.3 46.0
PIXEL-M4 67.3 83.9 60.6 70.7 59.9 56.2 75.5 65.0 64.7 36.9 31.3 44.8 58.7

Table 1: Text classification results on a selected language subset of the SIB-200 benchmark using macro F1-score.
BERT-MONO indicates that the monolingual BERT model varies by language (see §3.2 for details). Best performances
are bolded. PIXEL-M4 significantly outperforms its English-only-pretrained equivalent PIXEL-BIGRAMS in almost
all non-Latin languages, and PIXEL-M4 performs better than monolingual BERT models on novel writing systems.

Arabic or Hangul. This allows us to test whether250

multilingually-pretrained pixel models can match251

or exceed the cross-lingual transfer capabilities252

of the tokenizer-based models, not only for Latin253

scripts but also for others.254

4 Results and Discussion255

We discuss the results of the downstream task ex-256

periments in this section.257

Text Classification. Table 1 presents the results258

on SIB-200 for text classification. PIXEL-M4259

outperforms PIXEL-BIGRAMS by large margins260

in its pretraining languages (HIN: +46.0, UKR:261

+36.1, ZHO: +27.0), which are unseen by PIXEL-262

BIGRAMS during the pretraining. We also observe263

substantial gains in Cyrillic languages (KIR: +15.8,264

RUS: +37.0), showing that pretraining pixel mod-265

els on a particular script enhances transfer learning266

within the same-script languages. In English and267

other Latin languages, both models achieve similar268

performances. The significant performance gains269

in Japanese (JPN: +24) and the Brahmic languages270

(BEN: +14.5, BOD: +9.4, TAM: +24.8, TEL: 6.7)271

showcase PIXEL-M4’s cross-lingual transfer learn-272

ing ability to novel scripts orthographically related273

to one pretraining script. Lastly, we compare both274

PIXEL-M4 and PIXEL-BIGRAMS in languages with275

writing systems visually distant to the pretraining276

scripts. Once again, PIXEL-M4 performs better277

than PIXEL-BIGRAMS in these languages, where278

we can observe improvements for Armenian (HYE:279

+7.5), Greek (ELL: +4.3), Korean (KOR: +26.9) and280

the languages in right-to-left abjad writing systems 281

(HEB: 4.6, UIG: +5.1, URD: +5.1). These results il- 282

lustrate that multilingual pretraining with a diverse 283

set of scripts accelerates cross-lingual generaliza- 284

tion even for novel and distant writing systems. 285

Overall, these results highlight that visually and 286

linguistically diverse multilingual pretraining for 287

pixel models leads to substantial gains in all types 288

of transfer learning scenarios investigated in this 289

work. 290

Compared to the monolingual BERT variants, 291

PIXEL-M4 performs consistently better, especially 292

in the transfer learning setting involving unseen 293

scripts. Conversely, BERT-MONO models surpass 294

PIXEL-M4 in transfer learning within the same- 295

script, yet BERT-MONO pretrained in English falls 296

behind PIXEL-M4 in German (DEU: +3.5) and 297

Finnish (FIN: +17.1). 298

Dependency Parsing. Table 2 presents the re- 299

sults on the UDP benchmark. In the pretraining 300

languages, PIXEL-M4 significantly improves upon 301

PIXEL (HIN: +3.0, UKR: +9.9, ZHO: +6.0) ex- 302

cept in English (ENG: -2.0), which both models 303

have seen in their pretraining. PIXEL-M4 outper- 304

forms PIXEL on the languages written in Cyrillic 305

(BUL: +2.5, RUS: +3.9), which demonstrates im- 306

proved cross-lingual transfer learning within the 307

same-script languages once again. For the unseen 308

Brahmic languages, PIXEL-M4 achieves a slight 309

gain in Telugu (TEL: +0.7) and a much larger per- 310

formance boost in Tamil (TAM: +10.7). For the 311

orthographically distant Korean language, PIXEL- 312
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Arabic Brahmic Cyrillic Latin CJK Other
Avg.

ARA URD HIN TAM TEL BUL RUS UKR ENG VIE ZHO JPN KOR COP

BERT-MONO 77.7 71.9 92.8 43.4 75.6 89.8 87.5 92.0 90.6 49.4 85.5 87.9 30.2 13.0 70.5

PIXEL-BIGRAMS 77.7 75.3 88.6 49.8 79.0 86.3 79.1 74.4 89.6 49.4 73.9 90.8 78.1 81.4 76.7

PIXEL-M4 74.2 75.9 91.6 60.5 79.7 88.8 83.0 84.3 87.6 49.4 79.9 91.2 82.3 81.6 79.3

Table 2: Dependency parsing results for the selected set of languages in the UDP benchmark with LAS. BERT-MONO
indicates that the monolingual BERT model varies by language. PIXEL-M4 outperforms PIXEL-BIGRAMS in non-
Latin script languages, and it again achieves a better performance than BERT-MONO on novel scripts.

Latin Brahmic CJK
Avg.

ENG SRP HIN BEN TAM TEL KOR ZHO

BERT-MONO 79.3 85.8 82.5 75.4 67.3 78.3 30.6 85.4 73.1

PIXEL-BIGRAMS 63.4 81.6 79.0 78.0 67.9 79.6 80.4 61.4 73.9

PIXEL-M4 67.3 82.1 80.9 78.5 68.0 79.6 81.6 74.9 75.9

Table 3: NER results by macro-averaged F1-scores.
BERT-MONO is the monolingual BERT model varies by
language based on their scripts. Overall, PIXEL-M4
performs better than PIXEL-BIGRAMS and BERT-MONO
with an average score of 75.9.

M4 outperforms PIXEL-BIGRAMS (KOR: +4.2). For313

the Arabic-script languages, we observe mixed re-314

sults: In Arabic, the performance drops (ARA: -315

3.5), while we observe a modest gain in Urdu316

(URD: +0.6). Altogether, multilingually-pretrained317

PIXEL-M4 improves on PIXEL-BIGRAMS on the318

dependency parsing task for the unseen languages319

considering various cross-lingual transfer learning320

settings. Lastly, our findings on this task is similar321

to the SIB-200 findings for comparing PIXEL-M4322

against monolingual BERT models: (i) PIXEL-M4323

achieves a better overall performance than BERT-324

MONO in cross-lingual transfer involving writing325

systems unknown to both; (ii) BERT-MONO per-326

forms better than PIXEL-M4 for the pretraining327

scripts and cross-lingual transfer within the same-328

script.329

Named Entity Recognition. Table 3 reports330

macro-averaged F1 for NER across eight lan-331

guages. As expected, multilingual pixel pretraining332

(PIXEL-M4) outperforms the English-only PIXEL-333

BIGRAMS model on every language, raising the334

average F1 from 73.9 to 75.9. The largest boost335

is seen in Chinese (ZHO: +13.5), reflecting that336

exposure to Chinese during PIXEL-M4’s pretrain-337

ing. Other pretraining languages also benefit from338

multilingual pretraining (ENG: +3.9, HIN: +1.9).339

Differently from the other tasks, both PIXEL-M4340

and PIXEL-BIGRAMS perform on par in the Brah-341

mic scripts (HIN: +1.9, BEN: +0.5, TAM: +0.1, TEL: 342

0.0): This might be due the larger training sets 343

available in the Naamapadam benchmark. Later, 344

in §5, we show that PIXEL-M4 outperforms PIXEL- 345

BIGRAMS with large margins in low-resource set- 346

tings. Lastly, +1.2 gain in Korean suggests that 347

PIXEL-M4 can transfer visual substructure from 348

unrelated scripts for better entity processing. 349

The monolingual BERT models achieve a bet- 350

ter performance than PIXEL-M4 for the languages 351

with writing systems known by both models, un- 352

derscoring that world-knowledge and semantic co- 353

occurrence patterns encoded into specific token 354

entities remain crucial for this semantic task. This 355

is especially the case for English, as both BERT 356

and PIXEL-BIGRAMS are pretrained using exactly 357

the same data. Nonetheless, our findings for the 358

languages in unseen scripts is inline with previ- 359

ous experiments where PIXEL-M4 performs better 360

than BERT-MONO: (BEN: +3.1, TAM: +0.7, TEL: 361

1.6). These improvements highlight how pixel 362

models can process languages in related scripts 363

directly, avoiding the tokenization failure modes of 364

subword-based models. 365

5 Analysis 366

We perform three different analyses to examine the 367

outcomes of multilingual pretraining, where each 368

subsection covers a different analysis. 369

5.1 Data-Efficiency Analysis 370

To investigate the capabilities of PIXEL-M4 further, 371

we perform a data-efficiency analysis on Naama- 372

padam – the Indic languages benchmark. Using 373

the original training splits, we create subsets of 374

size 1024, 2048, 4096 and 8192 examples. We 375

repeat this process 8 times using different random 376

seeds, resulting 32 different subsets. Next, we train 377

both PIXEL-BIGRAMS and PIXEL-M4 on these sub- 378

sets and compare them in terms of data-efficiency. 379
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Figure 2: Data-efficient learning experiments on the Naamapadam NER benchmark showing the mean test F1 score
as a function of training set size in log scale for four Brahmic languages. In each experiment, PIXEL-M4 consistently
outperforms PIXEL-BIGRAMS, with the largest relative gains under the smallest data regimes.

Figure 2 illustrates this comparison, where each380

subplot represents the results for the specified lan-381

guage. For Hindi, Bengali and Tamil, PIXEL-M4382

performs significantly better than PIXEL in all set-383

tings. The results in Bengali and Tamil also high-384

light the cross-lingual transfer learning capacity of385

the PIXEL-M4 in low-resource settings. As we de-386

crease the number of examples, we observe more387

substantial gains in all languages including Tel-388

ugu, where PIXEL-M4 performs slightly better than389

PIXEL-BIGRAMS on the entire set of tasks. Over-390

all, multilingual pretraining of pixel language mod-391

els substantially enhances transfer learning in low-392

resource settings.393

5.2 Word-Level Probing394

We also performed a probing analysis similar to395

Tatariya et al. (2024). Here, we use LINSPECTOR396

(Şahin et al., 2020), a multilingual word-level prob-397

ing benchmark, to investigate the transferability of398

multilingual representations encoded by PIXEL-M4.399

We investigate hidden representations encoded by400

both PIXEL-M4 and PIXEL-BIGRAMS after each401

layer, and compare them against each other. We402

perform this analysis on four different tasks (Case403

Marking, POS, SameFeat, TagCount) using five dif-404

ferent languages (Arabic, Armenian, Greek, Rus-405

sian, Macedonian).6 Case Marking requires as-406

sessing the grammatical case (e.g. nominative, ac-407

cusative) of a given input word. POS involves408

predicting the POS tag for the given word. The409

SameFeat task measures the ability to detect the410

mutual morphological feature of two given words411

in their surface forms. Lastly, TagCount requires412

correctly predicting the number of morphological413

tags for the given input word. SameFeat and Tag-414

Count are more difficult than the other tasks, as415

both require predicting the entire set of morpholog-416

ical features for the given word(s).417

6See Appendix for a larger set of tasks and languages.

We show the results of our probing analyses in 418

Figure 3. In this grid of subplots, each row in- 419

vestigates a different task, and each column inves- 420

tigates a different language. In Macedonian and 421

Russian, PIXEL-M4 learns significantly better rep- 422

resentations compared to PIXEL-BIGRAMS, which 423

is expected because PIXEL-M4 has seen a similar 424

language in the same script during pretraining. The 425

gap between two models in earlier layers (1-3) is 426

smaller on SameFeat and TagCount, as they re- 427

quire more complex linguistic assessment. This 428

also applies for the other tested languages, and it 429

is in line with the observations of Tatariya et al. 430

(2024), where earlier layers focus more on visual 431

rather than semantic processing. In Arabic, Arme- 432

nian, and Greek, PIXEL-M4 still performs slightly 433

better than PIXEL-BIGRAMS on the majority of 434

tasks, which showcases its improved visual pro- 435

cessing and transfer learning to unseen languages. 436

For these unseen languages, the performance of 437

PIXEL-M4 starts to plateau starting from the 7th or 438

8th layer. Overall, these results demonstrate that 439

the multilingual pretraining produces a better set of 440

hidden representations throughout the entire model, 441

even for the unseen scripts. 442

5.3 Analyzing Hidden Representations 443

Similar to Salesky et al. (2023), we visualize the 444

hidden representations learned by both PIXEL and 445

PIXEL-M4 using t-SNE (Van der Maaten and Hin- 446

ton, 2008). To perform this analysis, we use a sub- 447

set of SIB-200 (Adelani et al., 2024) including the 448

training splits of 26 languages. We perform t-SNE 449

visualization throughout the model, starting from 450

the convolved input representations (Layer 0) to the 451

output of the last transformer layer (Layer 12). Fig- 452

ure 4 shows t-SNE plots: rows correspond to mod- 453

els, columns to layers, and ‘×’ marks the PIXEL- 454

M4 pretraining-language centroids. We observe the 455

same phenomenon for the convolved features as 456
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Figure 3: Word-level probing analysis on LINSPECTOR, where each row investigates a different task, and each
column investigates a different language. In each subplot, y-axis represents the model accuracies and x-axis
represents the corresponding layer number for the used hidden representations. Multilingually-pretrained PIXEL-M4
has learned better linguistic representations even for the languages with orthographically distant writing systems.

Figure 4: t-SNE visualization of the outputs for the specified layers. Each row contains visualizations for a particular
model, and each column focuses on a particular layer. Each ‘×’ marker appear at the centroid of a different
pretraining language seen by PIXEL-M4. Both models cluster languages based on their scripts, yet PIXEL-M4 clusters
some pretraining languages in the later layers.

demonstrated in Salesky et al. (2023): Languages457

which use the same or a related writing script are458

grouped together. This can be observed for both459

models, where we can see large clusters for Arabic,460

Cyrillic and Latin, and Chinese-Japanese language461

clusters appear next to each other. As we move462

through in the model layers, we start to see some463

languages form their own separate clusters by mov-464

ing away from their script clusters (e.g. Layer 4 and465

8). More importantly, in the later layers of PIXEL-466

M4, we observe that the pretraining languages move467

away from the rest of the languages that share the468

same script, and they start to cluster together. This469

observation demonstrates that PIXEL-M4 shifts its 470

focus from visual processing more to the seman- 471

tics in the later layers. This raises the question of 472

whether PIXEL-M4 has learned a semantic represen- 473

tation space shared between different pretraining 474

languages. 475

To determine whether PIXEL-M4 has learned a 476

representation space shared between different pre- 477

training languages, we perform a cross-lingual re- 478

trieval experiment on the multilingually aligned 479

SIB-200 benchmark. To obtain sentence embed- 480

dings, we apply L2 normalization to the mean 481

pooled hidden representations after each layer. At 482
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each layer, we treat each sentence embedding in483

one language as a query and compute its cosine484

similarity against every sentence embedding in the485

other language. We report recall@5, i.e., the per-486

centage of the examples where the true translation487

is ranked in the top 5. Since each sentence has ex-488

actly one correct translation, retrieval performance489

per example is binary, taking values of either 0 or490

1. Figure 5 shows the results for each language491

pair. We see that the semantic alignment between492

each language pair increases as we move through493

in the layers. Particularly, the semantic alignment494

between English and Ukrainian is very high, as495

they are also tightly clustered in the t-SNE feature496

space. We can also observe a high semantic align-497

ment between English and Hindi, yet the remaining498

pairs do not share a highly aligned semantic repre-499

sentation space.500

6 Related Work501

Salesky et al. (2021) proposed an encoder-decoder-502

based machine translation model that replaces the503

tokenizer in the encoder by processing source text504

as rendered images. Rust et al. (2023) proposed505

PIXEL, the first model that relies on purely process-506

ing visually rendered text. Later, Lotz et al. (2023)507

investigated different strategies for text rendering508

with the aim of removing redundant patches. Fei509

et al. (2024) experimented with replacing BERT’s510

tokenizer with pixel-based processing. Gao et al.511

(2024) extended PIXEL with a mixed modality pre-512

training objective, which produced substantial im- 513

provements. Tai et al. (2024) pretrained PIXAR, 514

which is the first autoregressive pixel language 515

model that purely relies on processing rendered 516

text. Gao et al. (2024); Chai et al. (2024) also pro- 517

posed pixel language models with text generation 518

abilities, yet they achieved this by still depending 519

on subword tokenizers. Recently, Lotz et al. (2025) 520

embedded pixel language models into the English- 521

centric language models as a fallback mechanism 522

to better adapt these models to novel languages 523

and scripts. Most notably, Salesky et al. (2023) is 524

closely related to our work as it employs a multilin- 525

gual pretraining. However, their experiments focus 526

on learning a shared encoder for machine trans- 527

lation, while we pretrained a multilingual pixel 528

language model for general-representation learning 529

without relying on any tokenizer. 530

7 Conclusion 531

In this work, we explored multilingual pretraining 532

for pixel language models. We pretrained PIXEL- 533

M4, a multilingual pixel-based language model on 534

four visually and linguistically diverse languages, 535

namely English, Hindi, Ukrainian and Simplified 536

Chinese. We performed downstream task exper- 537

iments on three different tasks: sentence classi- 538

fication, dependency parsing, and named entity 539

recognition. In these experiments, we covered a 540

diverse set of languages and scripts, where we eval- 541

uated on 27 languages and 15 scripts. Our exper- 542

iments revealed that PIXEL-M4 achieves superior 543

performance in low-resource settings compared to 544

its monolingually-pretrained predecessor PIXEL- 545

BIGRAMS, outperforming it in almost all non-Latin 546

languages by a large margin. In order to better un- 547

derstand the representations learned by PIXEL-M4, 548

we conducted word-level and sentence-level anal- 549

yses. Our word-level probing analysis illustrated 550

that PIXEL-M4 has learned better hidden represen- 551

tations than PIXEL-BIGRAMS throughout the net- 552

work for the unseen scripts, highlighting its cross- 553

lingual transfer capabilities. Additionally, an analy- 554

sis on the hidden layer representations revealed that 555

PIXEL-M4 has learned a semantic representation 556

space shared by a subset of pretraining languages 557

in the later layers. In future work, we aim to scale 558

up multilingual pretraining for pixel models with 559

larger model capacity and more languages included 560

in pretraining. 561
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Limitations562

PIXEL-M4 inherits many of the limitations of its563

predecessors. First, rendering text using the bi-564

grams strategy leads to increased sequence lengths565

when a bigram does not fit into single patch. Like566

Rust et al. (2023) and Lotz et al. (2023), PIXEL-567

M4 cannot generate text. The improvements over568

PIXEL-BIGRAMS are also limited for Latin-script569

languages and also for high-resource settings. Fi-570

nally, due to our limited compute budget, we pre-571

trained a single PIXEL-M4 model on only four572

languages-each in a different script. Consequently,573

we have not explored larger or different combina-574

tions of languages and scripts, such as additional575

Latin-script languages (e.g. French, Estonian, Turk-576

ish) or right-to-left scripts (e.g. Hebrew, Arabic).577

We leave these comparisons to future work.578
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A Appendix805

This appendix section contains a summary of806

data statistics, implementation details of the down-807

stream task experiments and the rest of the LIN-808

SPECTOR word-level probing analyses.809

A.1 Data Statistics810

We summarize data statistics of the benchmark811

used in this work in this section. Table 4 contains812

statistics for SIB-200 (Adelani et al., 2024; Goyal813

et al., 2022; NLLB Team et al., 2022) and LINSPEC-814

TOR (Şahin et al., 2020), where each language split815

contains same number examples for training, val-816

idation and testing purposes. Table 5 reports the817

statistics of dependency parsing treebanks used in818

this work. Lastly, we share the NER benchmarks819

statistics in Table 6.820

A.2 Implementation Details821

PIXEL-M4. Table 7 lists the hyperparameter con-822

figurations used for pixel language models, PIXEL-823

M4 and PIXEL-BIGRAMS, across downstream tasks.824

Overall, we use the same set of hyperparameters825

with the previous work (Lotz et al., 2023). We re-826

peat the same experiment using different random827

seeds. For reporting test results, we average the test828

scores of the five runs with the highest validation829

split performance.830

Monolingual BERT Models. All models were831

fine-tuned in 16-bit BrainFloat (Abadi et al., 2016)832

using AdamW (Kingma and Ba, 2015; Loshchilov833

and Hutter, 2019) with a maximum learning rate of834

5e−5 that is warmed up over the first 100 steps and835

subsequently linearly decayed toward 0. Across all836

Benchmark License Train Validation Test

SIB-200 CC BY-SA 4.0 701 99 204
LINSPECTOR Apache 2.0 7000 2000 1000

Table 4: Data statistics for the equally-sized SIB-200
and LINSPECTOR language splits.

tasks, we fine-tune for at maximum 15,000 steps, 837

while evaluating every 500 steps for dependency 838

parsing and NER, whereas topic classification is 839

evaluated every epoch. Early stopping of 5 eval- 840

uation cycles (DP and NER) or 20 epochs with a 841

threshold of 0.0 is implemented. For all tasks and 842

languages, when a separate evaluation split is avail- 843

able, we selected the checkpoint performing best 844

on it and evaluated on the test split. If no separate 845

evaluation split was available, we selected and re- 846

ported the best performance on the evaluation split. 847

Inputs were truncated or padded to a maximum 848

length of 256 tokens for parsing and classification, 849

and 196 tokens for NER. For parsing and NER, a 850

batch size of 64 is used, while topic classification is 851

trained with batch size 32. We followed Rust et al. 852

(2023) and evaluated dependency parsing using a 853

biaffine parsing head (Dozat and Manning, 2017; 854

Glavaš and Vulić, 2021). 855

A.3 LINSPECTOR Results 856

In this appendix section, we share the results for the 857

rest of the word-level probing analyses on LINSPEC- 858

TOR (Şahin et al., 2020). We analyze our model on 859

fifteen languages—Arabic, Armenian, Bulgarian, 860

Dutch, Estonian, Finnish, French, German, Greek, 861

Hungarian, Macedonian, Polish, Russian, Swedish, 862

and Turkish—across fourteen linguistic probing 863

tasks: Case Marking (Fig. 6), Gender (Fig. 17), 864

Mood (Fig. 7), Number (Fig. 8), OddFeat (Fig. 9), 865

Person (Fig. 10), Polarity (Fig. 18), POS (Fig. 11), 866

Possession (Fig. 19), Pseudo (Fig. 12), SameFeat 867

(Fig. 13), TagCount (Fig. 14), Tense (Fig. 15), and 868

Voice (Fig. 16). 869

These analyses provide further support for the 870

findings reported in §5. Throughout the entire net- 871

work, PIXEL-M4 captures more robust linguistic 872

features than PIXEL-BIGRAMS on all tasks for the 873

Cyrillic script languages, Bulgarian, Macedonian 874

and Russian. This is again expected since PIXEL- 875

M4 has seen a similar language, e.g. Ukrainian, 876

during pretraining. Similarly, our observations 877

are the same for the languages in unseen scripts, 878

Arabic, Armenian and Greek, showcasing the im- 879
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Language Treebank #Sentences License

ENG English-EWT 16621 CC BY-SA 4.0
ARA Arabic-PADT 7664 CC BY-NC-SA 3.0
BUL Bulgarian-BTB 11138 CC BY-NC-SA 3.0
COP Coptic-Scriptorium 2011 CC BY 4.0
HIN Hindi-HDTB 16647 CC BY-NC-SA 4.0
JPN Japanese-GSD 8100 CC BY-SA 4.0
KOR Korean-GSD 6339 CC BY-SA 4.0
RUS Russian-GSD 5030 CC BY-SA 4.0
TAM Tamil-TTB 600 CC BY-NC-SA 3.0
TEL Telugu-MTG 5130 CC BY-SA 4.0
UKR Ukrainian-IU 5030 CC BY-NC-SA 4.0
URD Urdu-UDTB 5130 CC BY-NC-SA 4.0
VIE Vietnamese-VTB 3000 CC BY-SA 4.0
ZHO Chinese-GSD 4997 CC BY-SA 4.0

Table 5: Total number of sentences of Universal Dependencies v2.10 (Zeman et al., 2022; Nivre et al., 2020)
treebanks used for dependency parsing task evaluations, including dataset licenses. Adapted from Rust et al. (2023).

Language Source #Sentences License

ENG English-EWT 16621 CC BY-SA 4.0
SRP Serbian-SET 4384 CC BY-SA 4.0
HIN Naamapadam 1M CC0
BEN Naamapadam 967k CC0
TAM Naamapadam 501k CC0
TEL Naamapadam 511k CC0
KOR KLUE 26k CC BY-SA 4.0
ZHO Chinese-GSD 4997 CC BY-SA 4.0

Table 6: Overview of NER datasets (Mayhew et al., 2024; Mhaske et al., 2023; Park et al., 2021).

proved cross-lingual transfer learning capabilities880

of PIXEL-M4. Furthermore, on Latin script lan-881

guages, both models achieve similar overall perfor-882

mances across the layers. Nonetheless, on some883

tasks, PIXEL-M4 captures better linguistic features884

for Latin languages with diacritics (e.g. Turkish,885

Swedish). Additionally, on more complex tasks886

such as OddFeat and SameFeat, PIXEL-M4 outper-887

forms PIXEL-BIGRAMS on Latin script languages888

like German and Hungarian, where the two models889

perform similarly on the other tasks.890
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Parameter SIB-200 UDP NER

Classification head pooling Mean — —
Optimizer AdamW
Adam β 0.9, 0.999
Adam ε 1e−8
Weight decay 0
Learning rate {1e−5, 3e−5, 5e−5, 7e−5, 9e−5}
Learning rate schedule Linear decay
Warmup steps 100
Max sequence length 256 256 196
Stride — — —
Batch size 32 64 64
Max steps 15 000 15 000 15 000
Eval strategy epochs steps steps
Eval steps — 500 500
Early stopping ✓
Early stopping patience 20 5 5
Dropout probability 0.1

Table 7: Hyperparameters used for fine-tuning and evaluating models on the SIB-200, UDP parsing, and NER tasks.

60

70

80

90

100

Bulgarian Estonian Finnish German

1 2 3 4 5 6 7 8 9 10 11 12
55

60

65

70

75

80

85

Hungarian

PIXEL-BIGRAMS

PIXEL-M4

1 2 3 4 5 6 7 8 9 10 11 12

Polish

1 2 3 4 5 6 7 8 9 10 11 12

Swedish

1 2 3 4 5 6 7 8 9 10 11 12

Turkish

Layer

C
as

e

Figure 6: Word-level probing analysis on LINSPECTOR for the Case task. Each subplot shows a different language;
in each, the y-axis represents model accuracies and the x-axis represents layer number of the hidden representations.
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Figure 7: Word-level probing analysis on LINSPECTOR for the Mood task. Each subplot shows a different language;
in each, the y-axis represents model accuracies and the x-axis represents layer number of the hidden representations.
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Figure 8: Word-level probing analysis on LINSPECTOR for the Number task. Each subplot shows a different
language; in each, the y-axis represents model accuracies and the x-axis represents layer number of the hidden
representations.
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Figure 9: Word-level probing analysis on LINSPECTOR for the OddFeat task. Each subplot shows a different
language; in each, the y-axis represents model accuracies and the x-axis represents layer number of the hidden
representations.
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Figure 10: Word-level probing analysis on LINSPECTOR for the Person task. Each subplot shows a different
language; in each, the y-axis represents model accuracies and the x-axis represents layer number of the hidden
representations.
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Figure 11: Word-level probing analysis on LINSPECTOR for the Pos task. Each subplot shows a different language;
in each, the y-axis represents model accuracies and the x-axis represents layer number of the hidden representations.
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Figure 12: Word-level probing analysis on LINSPECTOR for the Pseudo task. Each subplot shows a different
language; in each, the y-axis represents model accuracies and the x-axis represents layer number of the hidden
representations.
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Figure 13: Word-level probing analysis on LINSPECTOR for the SameFeat task. Each subplot shows a different
language; in each, the y-axis represents model accuracies and the x-axis represents layer number of the hidden
representations.
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Figure 14: Word-level probing analysis on LINSPECTOR for the TagCount task. Each subplot shows a different
language; in each, the y-axis represents model accuracies and the x-axis represents layer number of the hidden
representations.
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Figure 15: Word-level probing analysis on LINSPECTOR for the Tense task. Each subplot shows a different language;
in each, the y-axis represents model accuracies and the x-axis represents layer number of the hidden representations.
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Figure 16: Word-level probing analysis on LINSPECTOR for the Voice task. Each subplot shows a different language;
in each, the y-axis represents model accuracies and the x-axis represents layer number of the hidden representations.
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Figure 17: Word-level probing analysis on LINSPECTOR for the Gender task. Each subplot shows a different
language; in each, the y-axis represents model accuracies and the x-axis represents layer number of the hidden
representations.
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Figure 18: Word-level probing analysis on LINSPECTOR
for the Polarity task. Each subplot shows a different lan-
guage; in each, the y-axis represents model accuracies
and the x-axis represents layer number of the hidden
representations.
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Figure 19: Word-level probing analysis on LINSPECTOR
for the Possession task. Each subplot shows a different
language; in each, the y-axis represents model accu-
racies and the x-axis represents layer number of the
hidden representations.
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