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Abstract—We consider lossy compression of an information
source when decoder-only side information may be absent. This
setup, also referred to as the Heegard-Berger or Kaspi problem,
is a special case of robust distributed source coding. Build-
ing upon previous works on neural network-based distributed
compressors developed for the decoder-only side information
(Wyner-Ziv) case, we propose learning-based schemes that are
amenable to the availability of side information. We find that our
learned compressors mimic the achievability part of the Heegard—
Berger theorem and yield interpretable results operating close to
information-theoretic bounds. Depending on the availability of
the side information, our neural compressors recover character-
istics of the point-to-point (i.e., with no side information) and the
Wyner-Ziv coding strategies that include binning in the source
space, although no structure exploiting knowledge of the source
and side information was imposed into the design.

I. INTRODUCTION

Imagine a distributed sensor network consisting of indi-
vidual cameras positioned across various locations within a
city, each independently capturing images of its surroundings.
In this scenario, each sensor node compresses and sends its
correlated image to a central processing unit, which then
combines them to generate a comprehensive visual map of the
city. However, direct communication among sensors is often
infeasible, and unreliable channels (e.g., due to fading) may
further hinder communication. This poses a key question: How
can we leverage the correlation among sensor data in a robust
manner, preventing a system failure when some nodes cannot
transmit their observations? In this work, we take a first step
on addressing the link failure scenario, where the decoder may
not receive some correlated sensor data.

Distributed source coding (DSC) refers to the task of
efficiently compressing information from physically separated
encoders. Wyner and Ziv (WZ) [1] examined a simple lossy
distributed compression case where the decoder has access to
a correlated source, known as the side information, losslessly.
WZ theorem relies on joint typicality and random binning ar-
guments, and is non-constructive. Although the theory of DSC
predicts substantial improvements in compression efficiency
compared to the point-to-point setups [2], developing practical
distributed compressors operating in the finite blocklength
regime remains a challenging open problem to date. Recent
work on learned Wyner—Ziv compressors [3], [4] showed
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Fig. 1: Lossy source coding when side information may be absent,
also known as the Heegard—Berger or the Kaspi problem.

binning-like behavior for the quadratic-Gaussian sources. Ad-
ditionally, practical models employing neural networks to
compress high-dimensional source data for distributed stereo
image compression [5], [6] and for distributed task-aware
image compression have been proposed [7].

An interesting question is whether it is still possible to
achieve a reconstruction with non-trivial distortion when side
information fails to reach the decoder in the WZ setup.
An equivalent formulation of this problem containing two
decoders, one with side information and the other without,
is illustrated in Fig. 1. Heegard and Berger (HB) [8] fully
characterized the asymptotic rate—distortion (R-D) function
for the quadratic-Gaussian case of Fig. 1, and also consid-
ered scenarios when different side information is available
at several decoders. In [9], Kaspi also established the R-D
function when side information is available at both encoder
and decoder. Intuitively, one can improve the robustness of
a WZ coding system against the absence of side information
by reducing the number of codewords in each bin. Such an
approach yields a trade-off between compression efficiency
and system robustness, encapsulating the essence of the robust
DSC scheme developed by Ishwar ef al. [10].

Recent studies in [3], [4], [11] have demonstrated that
learning-based WZ compressors can recover different types
of interpretable random binning mechanisms without any
specific structure being imposed onto the design. These results
offer empirical evidence that learned distributed compressors
can achieve competitive constructive solutions in the non-
asymptotic blocklength, closely resembling those of hand-
crafted frameworks such as DISCUS [12], without requiring
a priori knowledge of source statistics. In these learned WZ
compressors, the encoder sends the bin index, and the decoder
infers the quantization index with the help of the side informa-



tion. Finally, the decoder reconstructs the source by utilizing
the deduced quantization index and the side information,
according to the distortion criterion. In their current form,
it is not clear whether these learned WZ compressors can
effectively adapt to the unavailability of side information.

Expanding on the learned WZ compressors [3], [4], [11],
in this paper we find constructive solutions for the non-
asymptotic regime of the HB problem where side information
may be absent, by leveraging universal function approximation
capabilities of artificial neural networks (ANNs) [13], [14].
Similar to [3], [4], [11], our focus is on the one-shot regime,
where each source realization is compressed one at a time,
as in popular ANN-based image compressors [15], [16]. We
present three unique solutions for the HB problem, where we
either jointly address the quantization and binning components
(Figs. 2a and 2b) or alternatively, adopt a two-step approach
that involves a learned quantizer coupled with an ideal Slepian-
Wolf (SW) coder (Fig. 2c).

The paper is organized as follows. We first give an overview
of HB theorem, detailing the achievability result (Section II-A)
and the quadratic-Gaussian setup we consider (Section II-B).
To define training objectives for the proposed robust schemes,
we minimize upper bounds on mutual information. These are
formulated using one of three probabilistic models employing
ANNSs, which can also interpreted as operational robust dis-
tributed schemes (Section III). Finally, we discuss empirical
results (Section IV) and conclude the paper (Section V).

II. HEEGARD-BERGER PROBLEM SETUP

A. General setting

Let (X,Y) be a pair of random variables with joint distribu-
tion p(z,y) defined on the product alphabet X' x ), where X
and Y represent the source and decoder-only side information,
respectively. As shown in Fig. 1, the encoder wishes to
describe the source X to two decoders, an uninformed and
an informed one, with the latter having access to the side
information Y. The first decoder reconstructs X; in a point-to-
point fashion while the second decoder reconstructs X, with
the help of the side information Y, under distortion metrics
d; : X x X — R>o where X; are the reconstruction alphabets
for i € {1,2}. The goal is to find the minimum achievable rate
under two expected distortion constraints: E[d;(z, #;)] < D;
for some D; > 0. In the asymptotic blocklength regime, where
we consider joint compression of n i.i.d. source samples as
n — 0o, the following theorem by Heegard and Berger [§]
characterizes the optimal R-D function.

Theorem 1. (Heegard—Berger Theorem [8]) Let (X,Y) be
a pair of random variables with joint distribution p(z,y),
representing the source and the correlated side information
respectively, and d; : X x X — R>q be single letter distortion
measures for i € {1,2}. The R-D function for X with side
information Y available only at one of the decoders is:

p(w,ulz)

where the minimization is over all conditional probability dis-
tributions p(w, u|x) such that there exists functions g1 (W) =
X1 and go(W,U,Y) = X, satisfying the distortion constraints

E[di(X,X1)] < D1, Elda(X, X2)] < D2y ()
and (W,U) — X =Y is a Markov chain.

We remark that the informed decoder encounters a WZ
problem [1] (cf. second mutual information term in Eq. (1)),
while the uninformed decoder is subjected to an ordinary
point-to-point R-D problem (cf. first mutual information term
in Eq. (1)).

Note that the HB theorem considers two distortion con-
straints as in Eq. (2). Alternatively, one can opt for a combined
weighted sum distortion constraint given as:

E ﬁdl(X7X1)+(1—»3)d2(X7X2)} <D, 3)

for some S € [0, 1]. In this case, the asymptotically minimum
weighted distortion for a fixed rate is given as [17]:

D*(R) _D1,D221§1ér1l,D2)§RBD1 +1=8)D2
where R(D;, D) is given in Theorem 1. This weighted
distortion measure can also be conceptualized as having a 3
probability of receiving no side information (see the discussion
in [17]). As will be seen in Section III, considering a combined
distortion constraint, such as the one in Eq. (4), simplifies the
learning procedure of HB compressors, and yet, still offers
valuable insights about how close they operate with respect to
the optimum.

B. Quadratic-Gaussian case

Similarly to the WZ R-D function [1], the HB formula
in Eq. (1) has a closed-form expression only in few special
cases [8]. To compare the performance of our learned dis-
tributed compressors to the asymptotic HB R-D function, we
consider a quadratic-Gaussian setup: Suppose ¥ = X + N,
where N ~ N(0,02) is independent from X ~ N(0,02), and
the distortion metrics are d;(x,3;) = (v —3;)? for i € {1,2}.
The analytical expression of R(D1, D) for this case is given
as [8]:

1 o2 1 ol A

where A; = min(02, Dy), Ay = min([1/A;+1/02]71, Dy).
The two terms of Eq. (5) respectively correspond to the two
mutual information terms given in Theorem 1. The first and
second expressions in Eq. (5) represent the rate required to
describe W and U under the distortion constraints of D7 and
D, respectively. There are four operationally different R-D
regions depending on the Value of the pair (D7, D2). When
Dy < 02 and Dy > DDl 1_:;2, the second term in Eq. (5)
vanishes, and the problem degenerates into a standard point-
to-point lossy compression problem i.e., having only the ﬁrzst
decoder in Fig. 1. Similarly, when D > ag, and D,y < 1;31 f02
the first term in Eq. (5) vanishes, and the problem degenerates
to the WZ coding problem i.e., having only the second decoder

N 2 Dio,
in Fig. 1. When D; > o2, and Dy > Dt

both terms



vanish, and the distortion constraints can be trivially satisfied
with zero rate. The most operatioznally interesting region arises
when D; < ag and Dy < DD1 f:ﬁ' Here, both rate terms are
non-zero, forcing the encoder to allocate its total rate budget
between the point-to-point R-D problem of describing W and
the WZ R-D problem of describing U. Optimal weighted rate-
distortion function in Eq. (4) for the quadratic-Gaussian setting
can be found in [18].

III. OPERATIONAL NEURAL HEEGARD—-BERGER SCHEMES

For our learned compressors, we first consider the system
model in Fig. 2a, which corresponds to a straightforward
parametrization of the HB setup depicted in Fig. 1. Note that
in this case, a joint description is sent to both uninformed and
informed decoders, the latter having access to the side infor-
mation Y. By introducing the auxiliary variable V' = (W, U),
we first assume that the encoder in the achievability proof of
HB theorem can be represented by a probability model pg (v|z)
with parameters 6. This formulation, which we name as joint,
yields the following variational upper bound:

I(X; W) + I(X; U)Y, W) <I(X;U W) = 1(X5V),  (6)

Pe(v|$)}
<E . |log22YU% ] 4
B pféw)w)[og ) |7

where gy, (v), with parameters 7, is a model of the distribution
p(v) = p(w,u), which is generally not known in closed
form. rj(x) refers to the expectation in Eq. (7) with respect
to pg(v|x). The upper bound in Eq. (8) follows from cross-
entropy [19] being larger or equal to entropy [2].

Next, we consider the system models illustrated in Figs. 2b
and 2c. In these schemes, we opt for a layered encoding
approach, aligned more closely with the HB theorem, where
we separately encode the auxiliary variables W and U with
probability models p,,(w|x) and p~(u|w,x) (with parameters
w and -y), respectively. For our objective functions, building
onto Theorem 1, we will consider either a marginal or a
conditional formulation [3] whose variational upper bounds
respectively are:

I(X; W)+ I(X;U|Y,W) <E [1ogp°’(“’|”’)

pup((;v)\)x) a¢ (’U})

Poy(ulw,z)

pv(ﬂlw,x)}
+ log = Ep(z) Tm(7), 9

4y (ulw) 7
Po(w]z)
I(X; W)+ I(X;U[Y,W)<E . [log
pi((wzr:)c) q¢(w)

P~ (ufw,z)
ulw, x

§:§u=w7 y;:| = Ep(ac,y) I"C("E, y) (10)
where 1, (x) and r.(x,y) refer to respective expectations in
Egs. (9) and (10) with respect to p,,(w|z) and p~(u|lw,x).
Here g¢(w) (with parameters ¢) is a model of the distribution
p(w), and gy (ulw) and g, (u|lw,y) (with parameters ¢ and
1, respectively) are two different models of the distribution

+ log
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Fig. 2: The three lossy compression systems that we consider: (a)
learned compressor sending a joint description for both decoders
using a classic entropy coder (i.e., the joint formulation, see Eq. (13)),
(b) learned compressors sending individual descriptions to both
decoders using classic entropy coders (i.e., the marginal formulation,
see Eq. (14)), and (c) using a combination of a classic entropy coder
and an ideal Slepian—-Wolf coder (i.e., the conditional formulation,
see Eq. (15)). The learned parameters are indicated in green.

p(ulw,y).

We will utilize these probabilistic models (ie.,
po(v|x), pw(w|z) and p~(u|w,x)) to aid in the learning
process of respective encoders. We set the encoder outputs in a
deterministic way, similar to [3], e.g., v = arg max;, pg(h|x).
To actualize a practice-oriented compression setting, we
also set all encoder outputs (i.e., V, W, and U) as discrete.
Similarly to [3], [4], [11], without loss of generality, we
define all probabilistic models as discrete distributions with
probabilities P, = % for k € {1,...,K}, where
K is a model parameter. The unnormalized log-probabilities
(logits) are either directly treated as learnable parameters
(i.e., gn(v) and g¢(w)), or computed by ANNs as functions
of the conditioning variable (e.g., w and y for g, (ulw,y)).
These design choices keep the parametric families as general
as possible without imposing any structure. Specifically, this
allows the encoders to learn, when needed, quantization
schemes that may incorporate discontiguous bins in the
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Fig. 3: Visualizations of the learned optimized encoders, w = argmax, p. (h|z) and © = arg max; p(l|w,z) in Eq. (9), and of the
decoders, 1 = g (w) and T2 = g.(w, u,y) in Eq (12), for the marginal formulation (see Fig. 2b and Eq. (14)). Left: The dashed vertical
red lines are quantization boundaries induced by w, and the codebook points represent the outputs of the decoder g, to which all source
values within the corresponding quantization region are mapped. The height of each codebook stalk represents the likelihood of that code
vector under the entropy model g¢ (see Eq. (9)). Right: The dashed horizontal red lines coincide with those depicted in the left panel induced
by w, while the dotted-dashed horizontal blue lines are quantization boundaries induced by u. The colors between each boundary represent
a unique (w,u) pair. We depict the decoding function learned by g, with the solid lines, each representing a different pair of (w,u) as
inputs within its respective quantization region, distinguished by unique colors. The experimental setup parameters (see Section 1I-B) are
configured as o2 = 1.00, 62 = 0.01 and 8 = 0.20. This model attains -15.55 dB at a rate of 2.85 bits

source space, resembling the random binning operation in the
achievability part of the HB and WZ theorems. Previously, it
was demonstrated in [3], [4], [11] that a similarly parametrized
neural distributed compressor can learn different types of
interpretable binning mechanisms for the WZ problem, such
as periodic-like mappings for the quadratic-Gaussian case.

Since we focus on a weighted distortion metric (see Eq. (4)),
instead of having individual distortion constraints as is the case
for the HB theorem (see Section II), we define the following
distortion functions for the cases where there is either joint
(see Fig. 2a) or separate descriptions (see Fig. 2b and Fig. 2¢)
to the decoders, respectively, as:

dj(:t,y) :Bd(ﬁ,{hp(?)))-‘r(l —ﬁ)d(x,g.,.(v,y)), (1T)

ds(l‘, y) = /Bd(l’, gh‘,(w)) + (1 - ﬁ)d(xa gb(ua w, y))? (12)
where ¢4(v) and g.(w) denote the uninformed decoders,
represented by ANNs with parameters ¢ and k respectively,
which yield Z;. Similarly, g-(v,y) and g, (u, w,y) correspond
to the informed decoders, represented by ANNs with param-
eters 7 and ¢ respectively, which output Z,. Building on the
upper bounds developed in Egs. (8), (9) and (10) in tandem
with the distortion metrics defined in Eqgs. (11) and (12),
this yields the loss functions for three different variants we
consider:

L](0a777¢a7-) :E[I‘J(.’lf) +)‘dj(x7y)]a (13)
Lin(w,7,$,%, K, t) :E[rm(x)+)"d8($7y)]7 (14
Le(w,v,¢ p ko) = Efre(z,y) + A-ds(z,y)],  (15)

where we relax the constrained formulation of the HB theo-
rem to unconstrained ones using Lagrange multipliers. Here,

{0,n,¢,7,w,v,(, ¢, u, Kk, L} are optimization parameters,
and A > 0 controls the trade-off. We can obtain different
points in the achievable R-D region induced by the weighted
distortion constraint by simply varying the parameter A. The
optimized pg(v|z), pw,(w|z) and p~(u|w, ) models yield the
ANN-based encoders depicted in Fig. 2. Similarly, the opti-
mized (g¢(v),g-(v,y)) and (ge(w),g.(u, w,y)) correspond
to a pair of uninformed-informed decoder components for joint
and separate description cases, respectively.

Following the popular class of neural compressors [15],
[16], [21], we use stochastic gradient descent (SGD) to jointly
optimize all learnable parameters. Since SGD relies on a
Monte Carlo approximation of the expectations in the loss
functions, we use the Gumbel-max technique, as in previous
work [3], for sampling from discrete distributions. Similarly,
we also leverage Concrete distributions [22] to aid stochastic
optimization. Discussion on the operational meaning of the
different schemes and additional details about our experimen-
tal setup are provided in [18].

IV. DISCUSSION

We first consider a setting where the proposed neural
compressors clearly recover some elements of the optimal
theoretical solution for the lossy source coding problem where
side information may be absent. The visualization of the
learned compressor obtained with the marginal scheme (see
Fig. 2b) is provided in Fig. 3. As seen in the left panel of the
figure, the neural encoder p,, quantizes the source in a manner
similar to standard point-to-point lossy compression. Looking
at the right panel of the figure, we remark that the discon-
tiguous quantization bins are learned as the neural compressor
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Fig. 4: Rate—distortion (R-D) performances obtained with joint, marginal and conditional formulations (see Eqgs. (13), (14) and (15)), where
experimental setup parameters (see Section II-B) are set as o2 = 1.00, 02 = 0.10 and 8 = 0.01. In both panels, we plot the empirical
results versus the asymptotic bounds. We provide the expected distortion achieved by two decoders (see Fig. 2) in the left panel, while we
only plot the distortion attained by the informed decoder, which has access to side information, in the right panel. The 1.53 dB refers to the
mean-squared error gap that the entropy-constrained one-shot lattice quantizer is subjected to in high-rate regime [20].

exhibits periodic-like mappings in the source space, akin to the
binning-like behavior recovered by the neural WZ compressor
proposed in [3], [4], [11]. We note that this grouping behavior
is aligned with the achievability part of the HB theorem,
which yields a rate discount similar to the random binning
argument invoked in the WZ proof. The figure demonstrates
that this learned distributed compressor, formulated based on
the proposed marginal approach, exhibits a greater adaptability
to robust scenarios compared to the WZ compression case
previously explored in [3], [4], [11]. This is evident from
the model’s ability to recover both WZ and point-to-point
coding strategies, despite not imposing any explicit structure
exploiting the source knowledge onto the design. Although we
noticed similar behaviors persisting in different experimental
configurations other than the one considered in Fig. 3 for the
marginal variant, we did not observe such consistent binning-
like behavior in the visualizations of the compressors obtained
by the joint and conditional formulations (not shown). For
the conditional scheme, similar to the explanation in [3], we
posit that this is due to having an ideal SW coder in the
system design (see Fig. 2c¢), unlike the marginal variant (see
Fig. 2b). We speculate that this choice of entropy coding
scheme incentivizes the model to delegate the task of binning
solely to the ideal SW code, rather than to the learned encoder.

In Fig. 4a, we provide R-D performances achieved with
these three different formulations. The joint and marginal
variants achieve similar performances, whereas the condi-
tional model outperforms them, approaching the asymptotic
HB bound. We attribute the comparable performances of the
marginal and joint schemes to the operational equivalence
between having two layered descriptions managed by separate
classical entropy coders (see Eq. (9)) and having a single
classical entropy coder with the input being the unified de-
scription of these two representations (see Eq. (8)). We explain
the improved R-D performance of the conditional formulation
as follows. The SW code that this variant employs, which

may leverage high-dimensional channel codes (e.g., as in
DISCUS [12]), enables binning over long sequences, i.e., in a
multi-shot fashion. This type of compress-bin [23] is much
more efficient than the one that could be attained by the
learned encoder, which could only bin a one-shot manner as
it compresses each source realization one at a time. We refer
the reader to [18] for a discussion on an additional set of
experiments.

In Fig.4b, we illustrate the trade-off between system ro-
bustness and compression efficiency by evaluating distortion
attained only with the informed decoders of all three proposed
schemes, along with the learned WZ compressor proposed
in [3] (which operationally coincides with having 8 = 0
in Eq. (4), that is decoder-only side information is always
assumed to be available). Recalling that all three proposed
learned compressors are now also formulated to accommodate
scenarios where side information may be absent, which is
not the case for the learned WZ compressor studied in [3], a
decline in distortion is expected. Interestingly, the conditional
variant again surpasses all other learned schemes considered,
underscoring the efficiency of high-dimensional binning capa-
bility facilitated by the SW coder.

V. CONCLUSION

In this work, we have proposed three learning-based so-
Iutions to the problem of lossy source coding when side
information may be absent, for which the optimal theoretical
solution is asymptotic and non-constructive. By explicitly
visualizing the behavior of the learned encoders and decoders,
we demonstrated that they recover schemes aligned with the
characteristics of the achievability of the HB theorem, that
is WZ and standard lossy source coding. Future research
directions include analyzing the robustness in fully distributed
compression scenarios. Another interesting direction is to
explore the performance of the models for more complex,
high-dimensional sources such as images.
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