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Abstract

Large language models (LLMs) have achieved001
impressive performance across various mathe-002
matical reasoning benchmarks. However, there003
are increasing debates regarding whether these004
models truly understand and apply mathemati-005
cal knowledge or merely rely on shortcuts for006
mathematical reasoning. One essential and fre-007
quently occurring evidence is that when the008
math questions are slightly changed, LLMs can009
behave incorrectly. This motivates us to eval-010
uate the robustness of LLMs’ math reasoning011
capability by testing a wide range of question012
variations. We introduce the adversarial grade013
school math (GSM-PLUS) dataset, an exten-014
sion of GSM8K augmented with various math-015
ematical perturbations. Our experiments on 25016
LLMs and 4 prompting techniques show that017
while LLMs exhibit different levels of math018
reasoning abilities, their performances are far019
from robust. In particular, even for problems020
that have been solved in GSM8K, LLMs can021
make mistakes when new statements are added022
or the question targets are altered. We also023
explore whether more robust performance can024
be achieved by composing existing prompting025
methods, in which we try an iterative method026
that generates and verifies each intermediate027
thought based on its reasoning goal and calcu-028
lation result.029

1 Introduction030

Mathematical reasoning stands as a crucial tes-031

tament to the development of artificial intelli-032

gence (Lake et al., 2017). It requires rigorous033

problem understanding, strategy formulating, and034

calculation performing abilities (Baroody, 1987;035

Verschaffel et al., 1999). Large language models036

(LLMs) (Brown et al., 2020; Touvron et al., 2023a)037

have demonstrated strong performance on various038

mathematical benchmarks including grade school039

math GSM8K (Cobbe et al., 2021), high school040

math MATH (Hendrycks et al., 2021), and college041

Then he realized that he forgot something at home 
and had to return and increased his speed to 5 miles/
hour. After one more hour, how far is he from home? 
       Answer: 
Step 1: In the first 2 hours, he walks 2 * 4 = 8 miles. 
Step 2: In the third hour, he walks 1 * 5 = 5 miles.
Step 3: Therefore, James is 8 + 5 = 13 miles away 
from home.       (It should be 8 - 5 = 3 miles due to 
“return” yielding the opposite directions.)

Question Context: James leaves home for shopping.  He walks 4 miles/hour in the first 2 hours. 

Then he increased his speed to 5 miles/
hour. After one more hour, how far is he 
from home?
       Answer: 
Step 1: In the first 2 hours, James walks 2 
* 4 = 8 miles. 
Step 2: For the remaining one hour, he 
walks 1 * 5 = 5 miles. 
Step 3: Therefore, James is 8 + 5 = 13 
miles away from home. 

Question 1 Question 2

Figure 1: Comparing the answers of GPT-3.5-Turbo to
a math word question and its variation with additional
constraints, the former answer is correct, while the latter
answer is incorrect (red) due to the misuse of operators.

math Theoremqa (Chen et al., 2023). Regarding the 042

widely-used GSM8K benchmark, proprietary mod- 043

els like GPT-4 and cutting-edge open-source mod- 044

els have reported accuracy rates exceeding 90% 045

and 80%, respectively. However, the debate within 046

the research community regarding whether these 047

models truly understand and apply mathematical 048

knowledge or merely solve math word problems 049

based on superficial patterns (Patel et al., 2021) or 050

even due to training data leakage (Golchin and Sur- 051

deanu, 2023) has never ceased. Apparent evidence 052

supports such concerns. Figure 1 shows an exam- 053

ple case of GPT-3.5-turbo performing multiple-step 054

reasoning on the GSM8K dataset, where LLMs 055

sometimes make simple errors that humans would 056

not (Zhou et al., 2023b; Shi et al., 2023). Sim- 057

ply due to the fact that GPT-3.5-turbo struggles 058

with distinguishing the directions of “leave” and 059

“return”, resulting in the misuse of an operator. 060

In response to these issues, we advocate for a 061

more rigorous and adversarial evaluation bench- 062

mark that can systematically study the math reason- 063

ing capability of LLMs. Our benchmark revealed 064

a gap of up to 20% between the accuracy reported 065

by the current model and the accuracy observed 066

in our setting, while human performance remains 067

unaffected due to the unchanged inherent difficulty 068

level of the questions. In this work, we perturb the 069

most popularly used GSM8K dataset, yielding an 070
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Grade School Math Dataset Parent Set Size Answer Format Annotation Robustness

ASDiv-A (Miao et al., 2020) N/A 2,305 Equation-formed Human (A.) N/A
GSM8K (Cobbe et al., 2021) N/A 1,319 Open-formed Human (Q.,A.) N/A

SVAMP (Patel et al., 2021)? ASDiv-A 1,000 Equation-formed Human (Q.,A.) P R
MetaMathQA (Yu et al., 2023a) GSM8K, MATH 240K Open-formed GPT-3.5-Turbo R
GSM-HARD (Gao et al., 2023) GSM8K 1,319 Program-formed Codex (Q.A.), Human (A.) I
GSM-IC (Shi et al., 2023)? GSM8K 58,052 Open-formed Human (Q.) P D
GSM8k_robust (Chern et al., 2023)? GSM8K 1,319 Open-formed GPT-4 N
GSM-PLUS (Our)? GSM8K 10,552 Open-formed GPT4, Human (Q.,A.) N D I A R P D C

Table 1: Overview of the grade school math datasets. ?refers to datasets specifically designed to evaluate the
robustness of model performance. Different colors represent different perturbation types: N umerical Substitution;
D igit Expansion; I integer-decimal-fraction Conversion; A dding Operation; R eversing Operation; P roblem
Understanding; D istractor Insertion; C ritical Thinking.

adversarial dataset for grade school math GSM-071

PLUS. Motivated by the capability taxonomy for072

solving math problems mentioned in Polya’s prin-073

ciples (Polya, 2004), we identify 5 perspectives074

to guide the development of GSM-PLUS: (1) nu-075

merical variation refers to altering the numerical076

data or its types (e.g., from integer to decimal).077

(2) arithmetic variation refers to reversing or in-078

troducing additional operations, such as addition,079

subtraction, multiplication, and division, to math080

problems. (3) problem understanding refers to081

rephrasing the text description of the math prob-082

lems. (4) distractor insertion refers to inserting083

topic-related but useless sentences to the problems.084

(5) critical thinking focuses on question or doubt085

ability when the question lacks necessary state-086

ments. Based on the 1,319 test questions from087

GSM8K, we create eight variations for each ques-088

tion, the yielding GSM-PLUS comprises 10,552089

question variations. By testing LLMs using each090

question and its eight variations, GSM-PLUS can091

facilitate the holistic evaluation of LLMs’ robust-092

ness in solving math word problems.093

We use GSM-PLUS to evaluate the robustness094

of 25 LLMs with different model scales and task-095

specific fine-tuning, along with 4 popular prompt-096

ing techniques to obtain LLMs’ math reasoning097

results. Overall, we find that LLMs can accurately098

solve the GSM8K questions while struggling with099

answering the variations in GSM-PLUS. Our de-100

tailed findings are in three folds:101

• Task-specific optimization, e.g., math SFT, usu-102

ally gives better accuracy on benchmarks, while103

the robustness depends more on the selection of the104

base model and fine-tuning dataset (§5.1).105

• LLMs perform far less well when confronted106

with critical thinking, arithmetic variation, and dis-107

tractor insertion, but they are relatively resilient to108

perturbations in numerical variation and problem109

understanding (§5.2).110

• All investigated prompting techniques show a 111

lack of robustness, especially for arithmetic vari- 112

ation and critical thinking. We further explore a 113

compositional prompting method by drawing on 114

advancements in other domains, which involves 115

iteratively generating and verifying each reasoning 116

thought, and demonstrates good performance on 117

both GSK8K and GSM-PLUS (§5.4). 118

Based on the endeavors and results of this work, 119

we urge further research on LLMs in math domains 120

to enhance not only their performance for math 121

reasoning but also their performance robustness. 122

2 Related Work 123

Numerous datasets have been curated to assess 124

the mathematical reasoning abilities of AI systems. 125

Early math datasets (Kushman et al., 2014; Ling 126

et al., 2017, i.a.) focused on basic math prob- 127

lems with equation-based solutions. Subsequently, 128

more difficult datasets have been introduced, span- 129

ning grade-school level (Cobbe et al., 2021; Mishra 130

et al., 2022), high-school level (Hendrycks et al., 131

2021), and college-level datasets (Sawada et al., 132

2023; Zheng et al., 2021). Amid this progress, 133

there has been a surge in the development of LLMs 134

towards solving those math benchmarks (Ahn et al., 135

2024). Despite the substantial difficulties posed 136

by advanced-level math for LLMs, recent LLMs 137

has shown huge potential for solving grade school 138

math (Touvron et al., 2023a). 139

Supervised fine-tuning (SFT) is a line of work to 140

effectively adapt language models to mathematics 141

domains (Luo et al., 2023; Azerbayev et al., 2023; 142

Liang et al., 2023; Gou et al., 2023, i.a.). Meta- 143

Math (Yu et al., 2023a) highlights the efficacy of 144

question bootstrapping, while MAmmoTH (Yue 145

et al., 2023) proved the benefits of training LLMs 146

on various data sources and hybrid rationales. 147

Another trend improves LLMs’ math capabilities 148
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Seed Question: Each ice cube cools the coffee by 3 degrees and weakens it by 2 milliliters. How much weaker, in milliliters, is an iced coffee when cooled by 9 degrees?
Solution: Shannon’s iced coffee has 65 / 13 = 5 ice cubes in it. The ice makes the coffee 5 * 12 = 60 milliliters weaker. After adding cream, Shannon’s iced coffee is 60 + 15 = 75
milliliters weaker. Answer: 75

Perturbation Category Question Variation

Numerical
Variation

Num. Sub. 3 → 1 2 → 5 9 →7

Digit Exp. 3 → 30 2 → 14 9 →52

IDF Conv. 3 → 3.5 2 → 12.3 9 →24.5

Arithmetic
Variation

Add. Op. Each ice cube . . . and weakens it by 2 milliliters. Any added liquid also weakens the coffee. Lisa adds 5 milliliters of cream to her
coffee. How much weaker . . . 9 degrees?

Rev. Op.
Each ice cube cools the coffee by certain degrees and weakens it by certain milliliters. An iced coffee is weakened by 6 milliliters when
cooled by 9 degrees. How much weaker in milliliters does each ice cube make the coffee?

Problem Understanding Each ice cube reduces the coffee’s temperature by 3 degrees and dilutes it by 2 milliliters. A coffee is chilled by 9 degrees. How many
milliliters has the coffee been diluted?

Distractor Insertion Today is 22 degrees Celsius. Each ice . . . 9 degrees?

Critical Thinking Each ice cube cools the coffee and weakens it by 2 milliliters . . . 9 degrees?

Table 2: An example of question variations generated using 8 perturbations from 5 perspectives based on a seed
math question. Modifications are marked in green.

by prompting with carefully designed inputs (Yao149

et al., 2023; Yang et al., 2023; Zhou et al., 2023a,150

i.a.). Chain-of-thought prompting guides models151

to generate natural language reasoning steps before152

reaching the final answer (Wei et al., 2022; Ko-153

jima et al., 2022). Program-of-thought prompting154

generates programs as the intermediate steps and155

integrates external tools like a Python interpreter156

for precise calculation (Gao et al., 2023; Chen et al.,157

2022). The promising outcomes made by LLMs, es-158

pecially in grade school math, motivate researchers159

to study whether they can maintain high perfor-160

mance in realistic settings (Bubeck et al., 2023).161

In this work, we aim to develop a consolidated162

benchmark that systematically examines the robust-163

ness of LLMs in solving math word problems. Re-164

cent work concerns the robustness of math reason-165

ing using different perturbations, such as semantic166

substitution (Jin et al., 2020; Li et al., 2020; Wang167

et al., 2023; Zhou et al., 2023b), reversal predic-168

tion (Berglund et al., 2023; Yu et al., 2023a), and169

irrelevant context distraction (Shi et al., 2023; Li170

et al., 2023). However, as shown in Table 1, most171

existing evaluation settings only cover limited types172

of automatically constructed perturbations. In con-173

trast, we create eight variations of a single question174

by perturbing it with eight different math reasoning175

skills. Using GSM-PLUS, we conduct a systematic176

evaluation of the LLM’s robustness across vari-177

ous reasoning types. For most LLMs, GSM-PLUS178

is a challenging benchmark, with GPT-3.5-Turbo179

reaching only 61.19% accuracy.180

3 The GSM-PLUS Dataset181

To comprehensively evaluate the robustness of182

LLMs in utilizing math-related skills, we build an183

adversarial dataset GSM-PLUS using the GSM8K184

dataset as a foundation. Inspired by Polya’s princi- 185

ples, we design eight types of perturbations from 186

five different perspectives to test the robustness of 187

LLMs in math reasoning, as depicted in Table 2. 188

3.1 Perturbation Categories 189

Numerical variation tests whether LLMs have 190

been overfitted by altering the numerical data and 191

seeing the prediction behaviors. We define three 192

subcategories of numerical variation below: 193
• Numerical Substitution: replaces numerical data 194

with another number that has the same number of 195

digits, such as replacing “3” with “1”. 196

• Digit Expansion: increases the number of digits 197

in a number, such as replacing “3” with “30”. 198

• Integer-decimal-fraction Conversion: uses differ- 199

ent representation types of numbers instead of only 200

integers, e.g., converting “9” into “24.5”. 201

Arithmetic variation focuses on the models’ flexi- 202

bility in applying arithmetic operations according 203

to the question requirements. We define two sub- 204

categories of arithmetic variation as below: 205

• Adding Operation: increases seed question’s 206

statements but restricts the operations in addition, 207

subtraction, multiplication, and division. 208

• Reversing Operation: transforms a statement of 209

the seed question into the queried answer in the 210

generated variation. For example, the statement 211

“weakens it by 2 milliliters” in the seed question is 212

transformed into “How much weaker in milliliters 213

does each ice cube make the coffee?”. 214

Problem understanding rephrases the question 215

to investigate the potential impact of question- 216

wording on the model’s understanding. 217

Distractor insertion introduces topic-related but 218

useless sentences with numbers to test models’ abil- 219

ity of statement evaluation. 220
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Critical thinking requires that models can ques-221

tion or doubt during the process of mathematical222

reasoning, rather than mindless sycophancy (Wei223

et al., 2023a). This means that a model should ex-224

plicitly specify this issue if an essential statement225

is removed from the seed question.226

Previous findings indicate that LLMs are typi-227

cally robust to numerical variation (Bubeck et al.,228

2023) and problem understanding (Zhou et al.,229

2023b), but sensitive to distractor insertion (Wei230

et al., 2023b). Other perturbations such as arith-231

metic variation and critical thinking remain under-232

explored in math domains due to annotation diffi-233

culties, but all of them are important for humans to234

solve problems. Our pilot experiments found that235

models struggle to perform well on these pertur-236

bations. Our work offers a comprehensive dataset237

and evaluation of the math reasoning robustness in238

fine-grained eight perturbations.239

3.2 Dataset Construction240

In previous work (Norberg et al., 2023; Yu et al.,241

2023a), GPT-4 has been exclusively used to con-242

struct variations. We initially utilize GPT-4’s243

question-rewriting capabilities to generate question244

variations and then prompt it to generate answer245

candidates for these variations. However, we dis-246

cover that GPT-4 is not always reliable: it may (i)247

fail to incorporate perturbations into the variations,248

e.g., for “distractor insertion”, the newly-added249

sentences affect the final answer, (ii) include addi-250

tional changes beyond the specified perturbations,251

(iii) generate invalid questions, (iv) significantly252

increase questions’ difficulty, surpassing the grade253

school level, or (v) generate incorrect answers.254

To ensure data quality, all question variations255

and answers produced by GPT-4 are further refined256

by human annotators through a rigorous process.257

Annotators are first required to annotate 24 varia-258

tions as a qualifying exam to ensure the accuracy259

of their annotation. To further control annotation260

quality, the annotators are assigned workloads in261

batches, with each batch consisting of 50 seed ques-262

tions. Prompt feedback is provided throughout the263

annotation process. Specifically, 10% of the varia-264

tions were cross-annotated by at least 3 annotators265

with a high inter-annotation consistency rate of266

90.02%, demonstrating the reliability of human re-267

visions. Overall, human annotators revised 18.85%268

of the variations produced by GPT-4, highlighting269

the importance of human revision. Detailed statis-270

tics across perturbation types are presented in Ta-271

ble 6 of the Appendix. Details of human annotation 272

can be found in Appendix B.2. 273

3.3 Evaluation Metrics 274

We adopt the performance drop rate (PDR) met- 275

ric to measure the relative performance decline on 276

question variations compared to the performance 277

on initial questions. 278

PDR = 1 −
∑(x,y)∈Da

I[LM(x), y]/∣Da∣
∑(x,y)∈D I[LM(x), y]/∣D∣

, (1) 279

where Da and D represent the GSM-PLUS and 280

GSM8K datasets, respectively. Additionally, we 281

measure the percentage of accurately solved pairs 282

(ASP), where the seed question x and its variation 283

x′ are both correctly answered by a specific LLM. 284

ASP =
∑x,y;x′,y′ I[LM(x), y] ⋅ I[LM(x′), y′]

N ⋅ ∣D∣
, (2) 285

Each (x, y) sample in D has N sample pairs 286

(x, y;x′, y′) across N perturbations. 287

4 Experimental Setup 288

We compare the accuracy of representative LLMs 289

on the GSM8K and GSM-PLUS datasets, and use 290

the PRD and ASP metrics to evaluate the robust- 291

ness in diverse math reasoning. 292

We consider closed-source foundation mod- 293

els, i.e., GPT-4 (OpenAI, 2023) and GPT-3.5- 294

Turbo (OpenAI, 2022), open-source foundation 295

models, i.e., Mistral (Jiang et al., 2023), LLaMA- 296

2 (Touvron et al., 2023b), and CodeLlama (Roziere 297

et al., 2023), as well as open-source SFT mod- 298

els specifically designed for math reasoning, i.e., 299

MetaMath (Yu et al., 2023a), Abel (Chern et al., 300

2023), ToRA (Gou et al., 2023), MAmmoTH (Yue 301

et al., 2023), and SEGO (Zhao et al., 2023). The 302

decoding temperature is set to 0 for deterministic 303

predictions. Open-source base models are inferred 304

using 8 demonstrations. Our results on the GSM8K 305

of the listed LLMs match their previously reported 306

accuracy. We also establish a human performance 307

baseline by engaging qualified human annotators 308

who have successfully passed a qualification exam. 309

All annotators possess at least a bachelor’s degree. 310

Further details can be found in Appendix C.1. 311

5 Experiments 312

5.1 Overall Results on GSM-PLUS 313

We first evaluate whether LLMs achieve similar 314

performance on GSM8K and GSM-PLUS. Results 315
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Model Foundation Math-SFT Output Format GSM8K GSM-PLUS ∆ PDR (%) ↓ ASP (%) ↑

Human - - NL Rationale 96.77 98.75 -2.05 92.11

closed-source models
GPT-4 - Unknown NL Rationale 93.25 85.58 8.23 81.54
GPT-3.5-Turbo - Unknown NL Rationale 73.62 61.19 16.88 51.36

open-source foundation models (7-70B)
Mistral-7B‡ - No NL Rationale 39.58 26.18 33.86 18.66
LLaMA-2-7B‡ - No NL Rationale 13.42 8.12 39.49 3.97
CodeLlama-7B‡ LLaMA-2 No Program 25.32 15.05 40.21 10.00
LLaMA-2-13B‡ - No NL Rationale 25.40 16.57 34.76 9.96
CodeLlama-13B‡ LLaMA-2 No Program 35.78 21.12 41.24 15.11
CodeLlama-34B‡ LLaMA-2 No Program 45.64 21.12 53.72 15.63
LLaMA-2-70B‡ - No NL Rationale 56.71 40.04 29.40 32.31

open-source models in mathematics (7B)
MetaMath-Mistral Mistral MetaMathQA-395K NL Rationale 78.01 56.25 27.69 50.56
MetaMath LLaMA-2 MetaMathQA-395K NL Rationale 66.79 44.35 33.53 37.91
Abel LLaMA-2 Unreleased NL Rationale 59.51 37.09 37.67 29.64
ToRA LLaMA-2 TORA-CORPUS-16k Program+NL Rationale 67.48 43.60 35.39 37.89
MAmmoTH LLaMA-2 MathInstruct-260K Program 52.84 32.14 39.17 25.63
MAmmoTH-Coder CodeLLaMA MathInstruct-260K Program 59.89 38.73 35.33 32.02
SEGO CodeLLaMA GSM8K+MATH+AQuA Program 68.69 44.71 34.91 40.68

open-source models in mathematics (13B)
MetaMath LLaMA-2 MetaMathQA-395K NL Rationale 70.81 48.58 31.39 41.06
Abel LLaMA-2 Unreleased NL Rationale 66.72 45.39 31.97 37.45
ToRA LLaMA-2 TORA-CORPUS-16k Program+NL Rationale 71.80 47.88 33.31 42.43
MAmmoTH LLaMA-2 MathInstruct-260K Program 62.40 40.82 34.58 34.05
MAmmoTH-Coder CodeLLaMA MathInstruct-260K Program 64.90 43.97 32.25 36.93
SEGO CodeLLaMA GSM8K+MATH+AQuA Program 72.50 49.30 32.00 44.79

open-source models in mathematics (70B)
MetaMath LLaMA-2 MetaMathQA-395K NL Rationale 82.41 59.36 27.71 52.30
Abel LLaMA-2 Unreleased NL Rationale 83.85 59.94 28.52 55.31
MAmmoTH LLaMA-2 MathInstruct-260K Program 75.89 53.41 29.62 47.96

Table 3: Accuracy of current LLMs on GSM8K and GSM-PLUS. Models marked with ‡ indicate their performance
under an 8-shot setting. Math-SFT means whether the model has been fine-tuned on any math reasoning datasets.

are shown in Table 3. We observe a substantial316

decline in performance on all investigated LLMs.317

The ASP of all models is notably lower than their318

accuracy on the GSM8K dataset. GPT-4 exhibits319

the highest level of robustness with the smallest320

PDR of 8.23%. CodeLlama shows the largest PDR321

(40.21%, 41.24%, and 53.72% for 7B, 13B, and322

34B), exceeding its foundation model LLaMA-2-323

7B (39.49%) and math SFT models fine-tuned on it,324

e.g., SEGO-7B (34.91%). The limited robustness325

of program-only LLMs suggests the necessity of326

natural language guidance and task-specific fine-327

tuning for robust math reasoning. We make some328

detailed comparisons of the LLMs in the following.329

Math SFT models vs. foundation models.330

While the math fine-tuning models achieve bet-331

ter performance on both GSM8K and GSM-PLUS332

compared to their foundation models, the PDR333

of these SFT models is not significantly smaller334

than that of their foundation models. For instance,335

the PDR of LLaMa-2-13B and LLaMa-2-70B is336

34.76% and 29.40%, respectively, whereas the337

PDR of the subsequent SFT models, Abel-13B and338

MAmmoTH-70B, is 37.67% and 29.62%, showing339

the math SFT process may be hard to improve the340

model’s math problem-solving robustness. 341

Comparisons between Math SFT model. 342

Among Math SFT models, larger models generally 343

display lower PDR than smaller models. For 344

instance, the PDR of Abel-7B, Abel-13B, and 345

Abel-70B stand at 37.67%, 31.97%, and 28.52%, 346

respectively. Notably, good foundation models 347

are helpful in both the accuracy and robustness 348

of the subsequent math SFT models. MetaMath- 349

Mistral-7B (SFT on Misral-7B with its PDR 350

33.86%) presents notable stability (with a PDR of 351

27.69%) than other math SFT models of similar 352

or larger sizes, such as MetaMath-7B (SFT on 353

LLaMa-2-13B with its PDR 34.76% ) with a PDR 354

of 33.53%. Similarly, MAmmoTH-Coder-13B 355

(SFT on CodeLLaMA-13B with its PDR 41.24%) 356

demonstrates lower accuracy drops compared to 357

MAmmoTH-13B (SFT on LLaMA-2-13B with its 358

PDR 34.76%) (32.25% vs. 34.58%). 359

Effectiveness of SFT datasets. Among SFT 360

models from the same foundation model, there are 361

noticeable gaps in their performance stability. For 362

example, after LLaMA-2-7B finetuned on Meta- 363

MathQA, Abel-data, TORA-CORPUS, and Math- 364
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Figure 2: The PDR distribution across 8 perturbation
types. The bars below the line indicate an increase in
performance for the corresponding perturbation com-
pared to the performance on GSM8K.

Instruct datasets, the PDRs are 33.53%, 37.67%,365

35.39%, and 39.17% respectively. This shows the366

critical impact of SFT datasets.367

5.2 Performance of LLMs across Diverse368

Question Variations369

Next, we evaluate the models’ performance sta-370

bility across eight question variations (Figure 2).371

Detailed performance drops and specific cases are372

provided in Figure 6 and Table C.3 in the Appendix.373

All models demonstrate inferior robustness com-374

pared to humans in critical thinking (purple), addi-375

tion operation and reversing operation from arith-376

metic variation (blue), distractor insertion (pink),377

and integer-decimal-fraction conversion (orange).378

For numerical substitution and problem understand-379

ing, models maintain their performance and even380

show slight improvements. Program-based mod-381

els (e.g. MAmmoTH-Coder-13B with a PDR of382

11.80%) exhibit greater robustness in numerical383

variation than natural-language-based models (e.g.384

Abel-13B with a PDR of 14.03%). Whereas for385

non-numerical variations, e.g., distractor insertion,386

NL-based models are more stable, the PDR values387

of the two models are 23.2% and 16.1%. Detailed388

analysis of each variation is provided below.389

Critical thinking. Except for humans and closed-390

source models, the performance of other models391

notably deteriorates (nearly 100% as shown in Fig-392

ure 6) when an essential statement is removed from393

the problems. In such cases, they may generate a394

hallucinated solution instead of acknowledging the395

absence of the required information.396

Arithmetic variation. For questions with an in- 397

creased number of statements (adding operation), 398

models exhibit limited capacity. Except GPT-4 and 399

GPT-3.5-Turbo, most models, regardless of size 400

and output format, experience an accuracy drop 401

exceeding 40%. Despite the importance of flexi- 402

ble reasoning from different perspectives, all mod- 403

els exhibit notable PDR values when reversing the 404

statements of the questions (reversing operation). 405

This finding aligns with the observations of Deb 406

et al. (2023) that model performance significantly 407

deteriorates when engaging in backward reasoning. 408

Distractor insertion. Larger models exhibit a 409

greater capacity to resist disturbances, e.g., Abel- 410

70B has a lower PDR value than GPT-3.5-Turbo. 411

Program-based models tend to be sensitive when 412

inserting distractors. For example, MammoTH- 413

13B (40.6%) and SEGO-13B (43.9%) have higher 414

PDRs than NL-based models MetaMath-13B 415

(39.4%) and Abel-13B (31.8%). 416

Numerical variations. The model’s performance 417

shows minimal fluctuations for general numerical 418

substitution and digit expansion. LLaMA-2-13B 419

even exhibits a slight improvement (2.1%) on nu- 420

merical substitution. In contrast, even for program- 421

based models, integer-decimal-fraction conversions 422

lead to a significant decline. 423

Problem understanding. Most LLMs show ro- 424

bust performances when answering rephrased ques- 425

tions by GPT-4, which is somewhat surprising as 426

models are typically sensitive to question wording. 427

5.3 Mathematical Reasoning Transferability 428

Previous sections have presented the results ob- 429

tained from the complete sets of GSM8K and 430

GSM-PLUS. Here, we partition the entire set based 431

on whether the questions are answered correctly 432

or not. This division allows us to study whether 433

a seed question from GSM8K, when successfully 434

solved by an LLM, increases the likelihood of cor- 435

rectly answering its variations in GSM-PLUS, and 436

vice versa (high ASP value). If this assertion holds, 437

we can say that LLMs exhibit robust performance 438

on this specific subset of math problems, even if 439

not across the entire dataset. In our setup, each 440

GSM8K question and its variations in GSM-PLUS 441

are transformed into eight pairs. The distribution 442

of each partition set is presented in Figure 3. 443

Among the 6 right-most mathematical models, 444

MetaMath-70B stands out with the highest ASP 445
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Figure 3: The reasoning transferability of LLMs between the question pairs of GSM8K and GSM-PLUS. The
purple (both correct) and blue (both wrong) bars represent consistent model behavior, while the red (GSM8K
correct&GSM-PLUS wrong) and yellow (GSK8K wrong&GSM-PLUS correct) bars represent the inconsistent
model behavior. The heights of the purple and red bars indicate the number of correctly solved GSM8K questions.
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Figure 4: The accuracy of LLMs across various question variations and GSM8K questions differs based on the
prompting techniques used. Complexity-based CoT and LTM use 8 and 1 in-context examples, respectively.

value (55.31%), even surpassing the ASP for GPT-446

3.5-Turbo (51.36%). The existence of the red bars,447

where the seed question is solved correctly but its448

variations are not, indicates the limited transfer-449

ability of most models. While the performance450

on seed questions varies (heights of purple and451

red bars), their performance transferability shows a452

similar level (height of red bars). This implies the453

inadequacy of existing benchmarks for accurately454

assessing the true ability of models in math rea-455

soning. High accuracy alone does not necessarily456

indicate strong reasoning robustness.457

Notably, a small proportion of seed questions458

are not solved, but their variations are correctly459

answered (yellow bars). This further implies that460

a model’s incapacity to reason mathematically on461

some samples not always be implied by failures in462

those samples. A holistic evaluation is valuable for463

assessing the nuanced performance of the models.464

5.4 Prompting to Enhance the Robustness of465

LLMs for Math Word Problems?466

As reviewed in Section 2, various prompting meth-467

ods that require LLMs to generate their explicit rea-468

soning steps have demonstrated improvement for469

math reasoning, such as Chain-of-thought prompt-470

ing, i.e., COT (Wei et al., 2022; Kojima et al.,471

2022), and Program-of-Thought Prompting, i.e.,472

POT (Gao et al., 2023; Chen et al., 2022). Similarly,473

Least-to-most prompting (LTM (Zhou et al., 2022))474

simplifies the problem-solving process by breaking 475

down a complex problem into a series of subprob- 476

lems, Besides, complexity-based COT (Fu et al., 477

2022) uses examples with a greater number of steps 478

as in-context demonstrations and enhances LLMs’ 479

reasoning capability. The above progress motivates 480

us to investigate whether employing a prompting 481

method can help LLM attain comparable perfor- 482

mance on both seed questions from GSM8K and 483

their eight variations from GSM-PLUS. 484

Which prompts are more robust? We select 485

four representative LLMs: GPT-4 and GPT-3.5- 486

Turbo as the highest-performing instruction-tuned 487

models, LLaMA-2-70B as the best open-source 488

general model, and MAmmoTH-70B as an SFT- 489

model fine-tuned on LLaMA-2-70B. Then we ran- 490

domly select a subset of 120 seed questions and 960 491

variations to evaluate the performance of different 492

prompting methods when applied to these LLMs. 493

Results are shown in Figure 4. Overall, complexity- 494

based COT shows superior performance for GPT-4, 495

GPT-3.5-Turbo, and LLaMA-2-70B, while POT ex- 496

hibits the least effectiveness across all question vari- 497

ations. COT and LTM exhibit similar patterns, ex- 498

celling in variations such as problem understanding 499

and numerical substitution, but performing poorly 500

on distractor insertion and adding operation. For 501

MAmmoTH, the performance of the four prompts 502

is similar due to the task-specific training. None of 503
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Question

Key Premises

Subgoal of Thought 1 Calculation of Thought 1
Subgoal Subresult

Subgoal of Thought N Calculation of Thought N

…

Final Result

Success? Yes

A phone costs for $800. 
Lisa has $500. Her dad 
gave her some money so 
she only needs $160. 
How much money does 
Lisa’s dad give her?  

#1 A phone costs $800.
#2 Lisa initially has $500.
#3 Her dad gave some money
#4 She only needs $160.
#5 How much money does her 
dad give Lisa

Step 1: Calculate the remaining 
amount Lisa needs.

Lisa has $500 saving. The phone costs 
$800. So Lisa needs $800 - $500 = $300.

Step 2: Calculate the amount of 
money Lisa’s dad gives her. Lisa only needs $160. The 

remaining amount Lisa needs is 
$300. So Lisa’s dad gives her 
$300 - $160 = $140. Result: $140

Prompt1

Prompt2

Prompt3

Prompt4

Success?Prompt4 No

Figure 5: Illustration of a compositional prompting
method that alternates between generating a subgoal
and performing the corresponding calculation.

the studied prompting techniques are sufficiently ro-504

bust to attain consistent performance across all vari-505

ations comparable to the performance on GSM8K.506

Compositional Prompting. Based on the results507

in Figure 4, we want to explore how to enhance ro-508

bustness based on existing prompting methods. We509

find that LLMs often overlook steps or make errors510

in the middle stages of the solution. For the first511

issue, a straightforward strategy is to prompt LLMs512

to iteratively decompose complex problems, as513

demonstrated in multi-hop-QA (Khot et al., 2022).514

To address the second issue, we attempt to have515

LLMs provide feedback for each iteration of their516

generation, which has proven effective across multi-517

ple domains (Madaan et al., 2023; Yu et al., 2023b).518

Given these observations, we try to study whether519

methods from other domains can be beneficial520

for math reasoning, and explore a compositional521

prompting method COMP, as shown in Figure 5.522

Specifically, the LLM is first prompted to extract523

essential premises, particularly those related to524

numbers, as auxiliary contexts (PROMPT1). Based525

on the question and the premises, LLM is itera-526

tively instructed to generate a goal (PROMPT2) and527

calculate the goal (PROMPT3) for each reasoning528

thought. For each thought, its goal and calcula-529

tion and query the LLM to determine if the desired530

answer is obtained (PROMPT4). If not, we will531

proceed with generating the next thought. The full532

prompts are listed in Appendix C.4.533

As shown in Table 4, COMP improves the534

model’s performance across various variation types535

by iterative generation and verification. Compared536

to LTM, COMP exhibits a notable improvement of537

3.4% on GSM8K and 4.7% on GSM-PLUS. Since538

self-consistency (SC) technique (Wang et al., 2022)539

Method GSM8K GSM-PLUS Num. Var Arith. Var. Crit. Thinking

COT 74.17 62.92 70.33 57.08 40.83
LTM ‡ 74.17 62.60 71.67 54.58 39.17
COMP 76.67 65.52 70.83 58.34 54.17
COT + SC 76.67 66.88 75.83 62.50 40.00
COMP + SC 80.00 69.47 76.64 66.25 55.83

Table 4: Performance of GPT-3.5-Turbo with different
prompting techniques. The COT + SC method aggre-
gates each answer by sampling 5 predictions.

can further boost performance with majority vot- 540

ing, we implement an ensemble-based approach 541

COMP + SC, which marginalizes over intermediate 542

thoughts that produce the same subgoal and cal- 543

culation. When compared to the ensemble-based 544

COT, i.e., COT + SC, COMP + SC shows remark- 545

able improvements with compositional prompting. 546

See Appendix C.7 and Appendix C.8 for accuracy 547

on eight perturbations and model predictions. 548

Although compositional prompting improves 549

performance on seed questions and their variations, 550

it does not bridge the performance gap of LLMs 551

between the standard benchmark and the adversar- 552

ial benchmark. Greater dedication should be given 553

to the development of robust models. 554

6 Conclusions and Discussions 555

In this work, we introduce GSM-PLUS, a bench- 556

mark designed to systematically analyze the ro- 557

bustness of LLMs in solving math word problems. 558

We examine a variety of perturbation types to eval- 559

uate the performance stability of LLMs in under- 560

standing and utilizing math-related knowledge, Our 561

evaluation of 25 prominent models found that com- 562

pared to their performance on the standard bench- 563

mark, significant declines are observed in perfor- 564

mance when perturbations are introduced in math 565

questions that were successfully solved. 566

This disparity set a clear direction for future re- 567

search: (1) the systematic evaluation of models 568

across diverse math-related skills; (2) the develop- 569

ment of models capable of consistently and flexi- 570

bly performing math reasoning while remaining re- 571

silient to minor variations. Although compositional 572

prompting can enhance the performance of LLMs, 573

its impact is limited in terms of both performance 574

and robustness. It is crucial to acknowledge that 575

most LLMs, particularly for open-source models, 576

still fall significantly short of human performance, 577

particularly in math domains where even small er- 578

rors can lead to task failure. Overall, GSM-PLUS 579

aims to facilitate detailed evaluation and under- 580

standing of LLMs on math reasoning. Dataset and 581

evaluation suits will be released. 582
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Limitations583

The limitations of our work are as follows.584

• In this work, we mainly focus on the ro-585

bustness of math reasoning at the elemen-586

tary school level, given the promising results587

achieved by various LLMs, including open-588

sourced models. Evaluating the robustness of589

math reasoning at other levels of education is590

left as future work.591

• To assess robustness, we compare the an-592

swer accuracy of models on both GSM8K and593

GSM-PLUS, along with the utilization of two594

customized metrics. However, we do not in-595

vestigate the accuracy of solution chains due596

to the challenges in designing a reliable metric597

for this purpose.598

• GSM-PLUS focuses on evaluating the robust-599

ness of LLMs in solving math word problems600

under various perturbations but does not in-601

vestigate the underlying reasons behind the602

failures of solving problems.603

Ethics Statement604

We honor the Code of Ethics. No private data or605

non-public information is used in this work.606
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A Perturbation Types893

Mathematical problem-solving is a complex cog-894

nitive process that humans have developed (Ba-895

roody, 1987; Verschaffel et al., 1999, i.a.). Polya’s896

principles (Polya, 2004) suggest that humans solve897

mathematical problems generally in four stages: (1)898

identifying variables and relevant context, (2) rep-899

resenting the problem’s structure and discovering a900

potential pattern, (3) calculating an answer, and (4)901

verifying the correctness, which are widely used in902

mathematics education (Baroody, 1987; Carpenter903

et al., 1989; Verschaffel et al., 1999, i.a.).904

Motivated by Polya’s principles, we design eight905

perturbation types for testing LLM’s mathematical906

reasoning capabilities. The definition of shown in907

Table 5.908

B Dataset Construction909

B.1 Generating Initial Variations with GPT-4910

Prompt for Generating Question Variations911

When provided with a specified perturbation and912

a seed question-answer pair, GPT-4 is directed to913

generate a question variation based on the given914

perturbation description.915

Example B.1: Generating Question Variation

You are a helpful assistant and good at following
instructions.

Your objective is to rewrite a given math question using the
specified perturbation strategy ({Perturbation Name}). The
rewritten question should be reasonable, understandable,
and able to be responded to by humans.

Perturbation strategy: {Perturbation Description}

The given question: {The Seed Question}

Answer of the given question: {Answer Rationale}

Please rewrite the question using the specified perturbation
strategies while minimizing edits to avoid significant
deviation in the question content. It is important to ensure
that the rewritten question has only one required numerical
answer.

The rewritten question:
916

Prompt for Generating Answers of Question917

Variations Then GPT-4 is required to answer the918

question variation generated by itself.919

Example B.2: Generating Answers

Your task is to solve a series of math word problems by
providing the final answer. Use the format #### [value]
to highlight your answer. For example, if the answer is
560, you should write #### 560. Make sure to carefully
read and understand each problem before providing your
answer.
{A Question Variant}

920

B.2 Human Annotation 921

Before participating in the evaluation of question 922

variations and answers generated by GPT-4, evalu- 923

ators are required to complete a qualifying exam: 924

1. They are first pre-screened with a qualification 925

study, which involves reading an evaluation 926

guideline and annotating 24 variations for 3 927

GSM8K questions. 928

2. We individually review the submitted evalua- 929

tions from the qualification study and provide 930

feedback to clarify any misconceptions about 931

the task. 932

3. Evaluators who performed well on the qual- 933

ification study and demonstrated a thorough 934

understanding of the evaluation guidelines are 935

selected to participate in the main round eval- 936

uation. 937

Ultimately, we selected 5 evaluators with at least 938

bachelor’s degrees to participate in dataset qual- 939

ity evaluation. Throughout the whole process, the 940

annotators are assigned workloads in batches with 941

the batch size being 50 seed questions. For every 942

batch, two seed questions are chosen at random, 943

and the authors verify the annotations for question 944

variations and their corresponding answers using 945

a side-by-side annotation approach. We maintain 946

constant communication with evaluators to answer 947

any questions. 948

Qualified human evaluators are involved to en- 949

sure that the questions generated by GPT-4 are free 950

from the errors specified in §3.2. If there are any 951

errors in the question variations generated by GPT- 952

4, the annotators will compose a qualified one with 953

minimal modifications. They then proceed to verify 954

the correctness and format of GPT-4’s answers. 955

Taking into consideration the experiment costs, 956

we randomly selected 1000 question variations, en- 957

suring that each question was evaluated by at least 958

3 annotators. For question variations that are as- 959

sessed by multiple evaluators, the authors manually 960
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Perturbation Description

Numerical Substitution It involves changing some numerical data while minimizing alterations to the
textual aspects, ensuring the question’s validity remains intact.

Digit Expansion It refers to the process of increasing the number of digits of some numerical
values while minimizing alterations to the textual aspects, ensuring the ques-
tion’s validity remains intact.

Integer-decimal-fraction Conversion It refers to the process of converting some integer numbers into decimal or
fractional representations while trying to keep the textual aspects unchanged,
ensuring that the validity of the question is maintained.

Adding Operation It involves adding extra statements to the original problems, thereby increas-
ing the number of reasoning steps or operations required to solve the rewritten
question. The allowed operations are limited to addition, subtraction, multi-
plication, and division.

Reversing Operation It refers to converting the required answer of the original question into a
known condition and transforming one known variable into the newly desired
answer while avoiding the introduction of additional constraints. As a result,
the rewritten question yields a distinct required answer compared to the
original solution.

Problem Understanding It refers to transforming the original problem into a new problem that uses
different wording or different sentence structures but does not change the
solution of the original problem.

Distractor Insertion involves introducing distracting conditions that have no impact on the final
answer. These introduced conditions should be relevant to the topic of the
original question and preferably include numerical values. However, the
rewritten problem must maintain an identical solution to that of the original
problem.

Critical Thinking refers to eliminating a condition from the original question that is crucial for
solving it while keeping the rest of the content unchanged. The rewritten
problem should no longer have a valid answer, as it lacks the constraint that
was removed.

Table 5: Definitions of eight perturbation categories in GSM-PLUS for robustness evaluation.

review the rewrites in instances of evaluator dis-961

agreement. The inter-annotator agreements (IAA)962

measured by Krippendorff’s α show a relatively963

reliable value of 0.567.964

Category Subcategory Pass Rate

Numerical
Variation

Numerical Substitution 91.51

Digit Expansion 92.60

Integer-decimal-
fraction Conversion

84.24

Arithmetic
Reasoning

Adding Operation 75.75

Reversing Operation 29.76

Problem Understanding 97.49

Distractor Insertion 88.25

Critical Thinking 87.77

Table 6: The pass rate of human annotators for the
question variations generated by GPT4.

Effectiveness of GPT-4 Rewriting Table 6965

presents the percentages of questions generated966

by GPT-4 that satisfy all criteria. GPT-4 excels in967

generating question variations involving numerical968

substitution, digit expansion, and problem under- 969

standing with high pass rates. For “reversing opera- 970

tion” perturbation, human involvement is necessary 971

to ensure variation validity. As the generation of 972

question variations relies on the question rewrit- 973

ing capabilities of GPT-4, it is important to note 974

that this process is not directly related to its math 975

reasoning abilities. During manual checking, we 976

found that generating qualified variations does not 977

necessarily guarantee correct answers. 978

C Experiments 979

C.1 Human Performance 980

We randomly selected 50 seed questions from 981

GSM8K and combined them with their correspond- 982

ing variations from GSM-PLUS to create a subset 983

of 450 questions. This suggests that the randomly 984

selected subset is close to the distribution of the 985

whole test set. 986

We utilized the Tencent crowdsource platform1 987

for selecting three qualified human annotators to 988

1https://aidata.tencent.com/
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Model GSM8K GSM-PLUS8 ∆ PDR (%)8 ↓ ASP (%)8 ↑ GSM-PLUS7 ∆ PDR (%)7 ↓ ASP (%)7 ↑

Human 96.77 98.75 -2.05 92.11 97.65 -0.91 92.11

closed-source models
GPT-4 93.25 85.58 8.23 81.54 88.16 5.46 84.12
GPT-3.5-Turbo 73.62 61.19 16.88 51.36 63.18 14.18 53.60

open-source general models (7-70B)
Mistral-7B‡ 39.58 26.18 33.86 18.66 29.12 26.43 21.08
LLaMA-2-7B‡ 13.42 9.28 30.85 33.82 9.28 30.85 4.54
CodeLlama-7B‡ 25.32 17.20 32.07 45.40 17.20 32.07 11.43
LLaMA-2-13B‡ 25.40 16.57 34.76 9.96 18.89 25.63 11.37
CodeLlama-13B‡ 35.78 21.12 41.24 15.11 27.03 32.76 17.26
CodeLlama-34B‡ 45.64 21.12 53.72 15.63 34.08 25.33 17.86
LLaMA-2-70B‡ 56.71 40.04 29.40 32.31 45.72 19.38 36.90

open-source models in mathematics (7B)
MetaMath-Mistral 78.01 56.25 27.69 50.56 61.22 21.52 56.55
MetaMath 66.79 44.35 33.53 37.91 48.95 26.71 62.79
Abel 59.51 37.09 37.67 29.64 42.25 29.00 33.81
ToRA 67.48 43.60 35.39 37.89 49.83 26.16 43.14
MAmmoTH 52.84 32.14 39.17 25.63 36.73 30.49 29.30
MAmmoTH-Coder 59.89 38.73 35.33 32.02 44.27 26.08 36.60
SEGO 68.69 44.71 34.91 40.68 51.10 25.61 46.50

open-source models in mathematics (13B)
MetaMath 70.81 48.58 31.39 41.06 53.70 24.32 46.77
Abel 66.72 45.39 31.97 37.45 51.62 22.63 42.63
ToRA 71.80 47.88 33.31 42.43 54.72 23.79 48.29
MAmmoTH 62.40 40.82 34.58 34.05 46.65 25.24 38.91
MAmmoTH-Coder 64.90 43.97 32.25 36.93 50.25 22.57 42.20
SEGO 72.50 49.30 32.00 44.79 56.34 22.29 51.19

open-source models in mathematics (70B)
MetaMath 82.41 59.36 27.71 52.30 64.23 22.07 59.53
Abel 83.85 59.94 28.52 55.31 68.08 18.81 62.86
MAmmoTH 75.89 53.41 29.62 47.96 61.04 19.57 54.81

Table 7: Accuracy of current LLMs on GSM8K and GSM-PLUS, with (GSM-PLUS8) and without (GSM-PLUS7)
“critical thinking” variation.

evaluate human performance on math reasoning.989

To ensure the quality of the results, each human990

annotator is required to have a track record of com-991

pleting over 1,000 HIT tasks and must successfully992

pass a qualification exam consisting of 9 questions993

before commencing the problem-solving annota-994

tion. Their annotation time for each answer is995

recorded for reference.996

C.2 Model Performance on GSM8K and997

GSM-PLUS998

Table 7 presents the model performance on GSM-999

PLUS and their overall robustness. We can see that1000

the most challenging perturbation, critical thinking,1001

significantly contributes to the substantial decrease1002

in model performance.1003

C.3 Cases on Diverse Question Variations1004

Critical Thinking. We present two examples1005

where one model (GPT-4) successfully detects the1006

absence of a statement issue (Example C.1), while1007

another model (ToRA-13B) fails to do so (Exam-1008

ple C.2).1009

Example C.1: Critical Thinking (GPT-4)

GSM8K Question: Mike plays ping pong for 40 minutes.
In the first 20 minutes, he scores 4 points. In the second
20 minutes, he scores 25% more points. How many total
points did he score?
Correct Answer: In the second 20 minutes, Mike scores
4*0.25=1 more points in the second 20 minutes. Thus, in
the second 20 minutes, he scores 4+1=5 points. In total,
Mike scores 4+5=9 points.
GSM-PLUS Question: Mike plays ping pong for 40 min-
utes. In the first 20 minutes, he scores 4 points. In the
second 20 minutes, he scores more points. How many
total points did he score?
Correct Answer: The problem does not provide the num-
ber of points Mike scored in the second 20 minutes. There-
fore, it is impossible to determine the total points he scored.

1010
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Example C.2: Critical Thinking (ToRA-13B)

GSM8K Question: Mike plays ping pong for 40 minutes.
In the first 20 minutes, he scores 4 points. In the second
20 minutes, he scores 25% more points. How many total
points did he score?
Correct Answer:
def total_points():

"""Mike plays ping pong for 60 minutes. In the first
30 minutes, he scores 6 points. In the second 30 minutes,
he scores 50% more points. How many total points did he
score?"""

total_minutes = 60
first_half_minutes = total_minutes / 2
second_half_minutes = total_minutes / 2
first_half_points = 6
second_half_points = first_half_points * 1.5
total_points = first_half_points + second_half_points
return total_points

total_points = total_points()
“‘output 15.0 ”’
GSM-PLUS Question: Mike plays ping pong for 40
minutes. In the first 20 minutes, he scores 4 points. In the
second 20 minutes, he scores more points. How many
total points did he score?
Wrong Answer:
def total_points():

"""Mike plays ping pong for 40 minutes. In the first
20 minutes, he scores 4 points. In the second 20 minutes,
he scores more points. How many total points did he
score?"""

total_time = 40

first_half_time = 20

second_half_time = total_time -

first_half_time

first_half_points = 4

second_half_points = first_half_points * 2

total_points = first_half_points +

second_half_points

return total_points

total_points = total_points()

print(total_points)

“‘output 12 ”’
Correct answer: None. The question does not provide
information about the specific increase in points
during the second 20 minutes. The model generates
a fabricated response, “first_half_points * 2” without
any factual basis.

1011

Adding Operation. Example C.3 shows an ex-1012

ample of failure for GPT-3.5-Turbo, where it fails1013

to consider one condition (text in green) in the1014

GSM-PLUS question.1015

Example C.3: Adding Operation

GSM8K Question: A raspberry bush has 6 clusters of 20
fruit each and 67 individual fruit scattered across the
bush. How many raspberries are there in total?
Correct Answer: The number of fruit in the clusters is 6 *
20 = 120 fruit. [1] Adding the number of individual fruit,
we have 120 + 67 = 187 fruit. [2] (simplification)
GSM-PLUS Question: A raspberry bush has 6 clusters of
20 fruit each and 67 individual fruit scattered across the
bush. If a bird eats 15 raspberries from one of the clusters
and a squirrel takes away 3 clusters, how many raspberries
are left on the bush?
Wrong Answer: The total number of raspberries in the
clusters is 6 * 20 = 120. [1] Next, we subtract the 15
raspberries that the bird ate from one of the clusters: 120 -
15 = 105. [2] Finally, we need to subtract the 3 clusters that
the squirrel took away. Each cluster has 20 raspberries, so
the total number of raspberries in the 3 clusters is 3 * 20 =
60. [3] Therefore, there are 105 - 60 = 45 raspberries left in
the bush. [4] (simplification) Correct answer: 112. The
condition highlighted in green, which was overlooked
by the model, should be considered after step [1] and
before step [2].

1016

The given example highlights the concern regard- 1017

ing the performance robustness of current LLMs, 1018

as they struggle to maintain consistent performance 1019

across questions with varied conditions. 1020

Distractor Insertion. Example C.4 showcases a 1021

failure of MAmmoTH-13B, where the interference 1022

condition (a book for $30) is incorporated into the 1023

solution, leading to the wrong answer: 1024
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Example C.4: Distractor Insertion
GSM8K Question:Jack had $100. Sophia gave him 1/5 of
her $100. How many dollars does Jack have now?
Correct Answer:
jack_initial_amount = 100

sophia_initial_amount = 100

sophia_gave_jack = sophia_initial_amount/5

jack_final_amount =

jack_initial_amount+sophia_gave_jack

print(jack_final_amount)

# 120

GSM-PLUS Question: Jack had $100. Sophia, who gave
Jack 1/5 of her $100 and just bought a book for $30 from
her remaining money (Interference). How many dollars
does Jack have now?
Wrong Answer:
initial_amount = 100

given_amount = 1/5

book_cost = 30

remaining_amount = initial_amount-given_amount

final_amount = remaining_amount-book_cost

print(final_amount)

# 69.8

Correct answer: 120. The program erroneously in-
cludes irrelevant inference conditions in its calculations,
which impacts the accuracy of the final answer.

1025

The generated program indiscriminately treats1026

all the conditions mentioned in the GSM-PLUS1027

question as program variables, without making any1028

distinction among them.1029

Reversing Operation. Example C.5 illustrates1030

the performance of GPT-4 on GSM8K and GSM-1031

PLUS. While it successfully answers the total flour1032

needed for a two-day cookie bakery, it fails to cal-1033

culate the cookie requirement for a single day when1034

the problem is reversed.1035

Example C.5: Reversing Operation

GSM8K Question: Two cups of flour are needed to make
a dozen cookies. Carla is making 36 cookies today and
30 cookies tomorrow. How many cups of flour will Carla
need to bake the cookies today and tomorrow?
Correct Answer: Since 2 cups of flour are needed for 12
cookies, then 2/12 = 1/6 cup of flour is needed for one
cookie. The total number of cookies Carla is 36 + 30 = 66
cookies. So, 66 * 1/6 = 11 cups of flour. So, Carla will
need 11 cups of flour. (simplification)
GSM-PLUS Question: Two cups of flour are needed to
make a dozen cookies. Carla has 11 cups of flour. If she
bakes 36 cookies today, how many cookies can she bake
tomorrow without needing more flour? (The question
corresponds to the known condition of GSM8K ques-
tion.)
Wrong Answer: 2 cups of flour makes a dozen cookies.
For 36 cookies (which is 3 dozen), Carla used 2*3 = 6 cups
of flour. So, 11 - 6 = 5 cups of flour are left for tomorrow.
Since 2 cups of flour are needed for a dozen cookies, with
5 cups of flour, Carla can bake 5/2 = 2.5 dozen cookies.
Since we can’t have half a dozen cookies, we round
down to 2 dozen. So, Carla can bake 2 dozen of cookies
tomorrow: 2*12 = 24 cookies. (simplification) Correct
answer: 30. Instead of inferring 2.5 dozen as an equal
value of 30, the model approximates it as 2 dozen.

1036

Integer-decimal-fraction Conversion. Below 1037

are two examples from program-based SEGO-13B 1038

and NL-based Abel-13B: 1039

Example C.6: IDC Conversion
GSM8K Question: Paul has 52 marbles. His friend gave
him 28 marbles. Then, he lost 1/4 of his marbles. How
many marbles does Paul have left?
Correct Answer:
marbles = 52

marbles += 28

marbles -= marbles * (1/4)

return marbles

GSM-PLUS Question: Paul has 52.0 marbles. His friend
gave him 28.0 more. Then, he lost 0.25 of his total marbles.
How many marbles does Paul have left?
Wrong Answer:
marbles = 52.0

marbles += 28.0

marbles -= 0.25

return marbles

Correct answer: 60. The program statement becomes
incorrect when the fraction 1/4 is changed to its decimal
representation, 0.25.

1040
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Example C.7: IDC Conversion
GSM8K Question: Betsy and Donovan made a meal to-
gether. Betsy’s part took 18 minutes longer than Dono-
van’s part. The meal was made in 98 minutes. How many
minutes long was Betsy’s part?
Correct Answer (SEGO):
total_time = 98

x = (total_time - 18) / 2

betsy_part = x + 18

return betsy_part

Correct Answer (Abel): Let’s assume Donovan’s part
took x minutes, so Betsy’s part took x + 18 minutes. The
total time for the meal was 98 minutes: x + (x + 18) = 98.
Then we get 2x + 18 = 98, 2x = 80, x = 40. Betsy’s part
took x + 18 = 40 + 18 = 58 minutes.
GSM-PLUS Question: Betsy and Donovan made a meal
together. Betsy’s part took 1.8 times longer than Dono-
van’s part. The meal was made in 9.8 hours. How many
hours long was Betsy’s part?
Wrong Answer (SEGO):
x = 4.5

betsy_time = 1.8 * x

return betsy_time

Wrong Answer (Abel): Let’s say Donovan’s part took x
hours. Betsy’s part took 1.8 times longer, so it took 1.8x
hours. The total time for the meal was 9.8 hours. So, x +
1.8x = 9.8. We get 2.8x = 9.8, x = 3.5 Therefore, Betsy’s
part took 1.8x = 1.8 * 3.5 = 6 hours.
Correct answer: 6.3. The reasoning chain of SEGO be-
comes meaningless, and Abel’s calculation is incorrect.

1041

When we modified the numerical values of1042

the original GSM8K question, the program-based1043

model exhibited a complete shift in reasoning be-1044

haviors and produced hallucinatory results. On the1045

other hand, the NL-based models faltered due to1046

calculation errors.1047

Problem Understanding Example C.8 illus-1048

trates a scenario involving MetaMath-Mistral,1049

which provides an incorrect answer to the GSM8K1050

question but correctly responds to the rephrased1051

version of the same question on GSM-PLUS, gen-1052

erated by GPT-4.1053

Example C.8: Problem Understanding

GSM8K Question: Duncan’s age eight years ago was two
times Adam’s age four years ago. If Duncan’s age is 60
now, how old will Adam be in 8 years?
Wrong Answer: If Duncan’s age is 60 now, then 8 years
ago his age was 60 - 8 = 52. Let’s represent Adam’s age 4
years ago as A. Duncan’s age 8 years ago was two times
Adam’s age 4 years ago, so we can write the equation:
52 = 2(A + 4). We get: 52 = 2A + 8, 44 = 2A, A = 22. If
Adam’s age 4 years ago was 22, then his current age is 22
+ 4 = 26. In 8 years, Adam will be 26 + 8 = 34 years old.
Correct answer is 38. The model makes a reasoning
error by considering “4 years ago” as A, which conflicts
with the equation 52 = 2(A + 4).
GSM-PLUS Question: Eight years prior, Duncan was
twice as old as Adam was four years in the past. Given
that Duncan is currently 60 years old, what will be Adam’s
age eight years from now? (the rephrased version of the
GSM8K question)
Correct Answer: If Duncan is currently 60 years old, then
eight years ago he was 60 - 8 = 52 years old. Eight years
ago, Duncan was twice as old as Adam was four years in
the past, so Adam was 52 / 2 = 26 years old four years ago.
If Adam was 26 years old four years ago, currently he is
26 + 4 = 30 years old. Eight years from now, Adam will
be 30 + 8 = 38 years old.

1054

C.4 Prompt for COMP Method 1055

Prompt for Key Premise Extraction The fol- 1056

lowing is the exact prompt used to distill the essen- 1057

tial premises from a given math problem, specifi- 1058

cally focusing on numerical-related conditions, re- 1059

ferred to as PROMPT 1 in Figure 5. 1060

Example C.9: Generating Key Premises from a
Math Problem

Question:
James gets 10 new CDs. Each CD cost $15. He gets them
for 40% off. He decides he doesn’t like 5 of them and sells
them for 40. How much money was he out?

Answer:
First, let us rewrite the question with labels.
#1. James gets 10 new CDs.
#2. Each CD cost $15, and he gets them for 40% off.
#3. He sells 5 of them for 40.
#4. How much money was he out?

Question:
{A Math Problem}

Answer:
First, let us rewrite the question with labels.

1061

Generating the Reasoning Goal of Each 1062

Thought The below prompt corresponds to 1063
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PROMPT 2 in Figure 5 for generating the subgoal1064

of the initial thought.1065

Example C.10: Generating the Subgoal of the
First Reasoning Thought

Solve the math question step by step. Please start each step
with “Step :” and split steps with “\n”. There are a few
things you should be aware of:

- Opt for the most straightforward approach to perform
each reasoning step.
- Carefully process the numerical variables in the question
and perform each calculation sequentially.
- Carefully consider each key information provided and
incorporate them systematically into your solution.
- Discern any distractions that are irrelevant to the queried
answer.
- If there is no valid answer, please conclude with "So the
answer is None" at the end of the output.

This is a math question:
Question: James gets 10 new CDs. Each CD cost $15. He
gets them for 40% off. He decides he doesn’t like 5 of
them and sells them for 40. How much money was he out?

The following is key information extracted from the
question:
#1. James gets 10 new CDs.
#2. Each CD cost $15, and he gets them for 40% off.
#3. He sells 5 of them for 40.
#4. How much money was he out?

Step 1: Calculate the price of each CD after the 40%
discount.
- Since the original price per CD is $15 and the discount is
40% off, the price per CD after discount is $15 * (1 - 0.40)
= $15 * 0.60 = $9
- Result: $9

This is a math question:
Question: {A Math Problem}

The following is key information extracted from
the question:
{Key Premise}

1066

The following prompt corresponds to PROMPT 21067

of Figure 5 for generating the subgoal of the second1068

and subsequent thoughts (Prompt C.11).1069

Example C.11: Generating the Subgoal of the
Secondary or Subsequent Rea-
soning Thought

Solve the math question step by step. Please start each step
with “Step :” and split steps with “\n”. There are a few
things you should be aware of:

- Opt for the most straightforward approach to perform
each reasoning step.
- Carefully process the numerical variables in the question
and perform each calculation sequentially.
- Carefully consider each key information provided and
incorporate them systematically into your solution.
- Discern any distractions that are irrelevant to the queried
answer.
- If there is no valid answer, please conclude with "So the
answer is None" at the end of the output.

This is a math question:
Question: {A Math Problem}

The following is key information extracted from
the question:
{Key Premise}

The following are the first few steps in a solution to the
problem:
{Previous Thoughts, including Subgoals and Calculations}

1070

After generating the subgoal of the initial 1071

thought, GPT-3.5-Turbo proceeds to generate the 1072

remaining calculations, which serve as a reference 1073

for conducting the calculation for this subgoal. 1074

Prompt for Performing Calculation of a Speci- 1075

fied Goal Prompt C.12 is used to guide the LLM 1076

in performing calculations for a given subgoal of 1077

thought 1, which corresponds to PROMPT 3 in Fig- 1078

ure 5. 1079
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Example C.12: Calculating the Subgoal for the
Initial Reasoning Thought

Solve the math question step by step. Please start each step
with “Step :” and split steps with “\n”. There are a few
things you should be aware of:

- Opt for the most straightforward approach to perform
each reasoning step.
- Carefully process the numerical variables in the question
and perform each calculation sequentially.
- Carefully consider each key information provided and
incorporate them systematically into your solution.
- Discern any distractions that are irrelevant to the queried
answer.
- If there is no valid answer, please conclude with "So the
answer is None" at the end of the output.

This is a math question:
Question: {A Math Problem}

The following is key information extracted from the
question:
{Key Premise}

The following is the first reasoning step. Carefully review
each item in the first reasoning step.
{Subgoal of Thought 1}
{A Reference for Calculation}

If you have a strong belief that errors exist in the above
reasoning step, explain why and regenerate this step. Oth-
erwise, output “Pass”.

1080

We utilize Prompt C.13 to guide the LLM in1081

performing calculations for a specific subgoal in1082

the second thought or subsequent thoughts.1083

Example C.13: Calculating Subgoals for Sec-
ondary or Subsequent Reason-
ing Steps

Solve the math question step by step. Please start each step
with “Step :” and split steps with “\n”. There are a few
things you should be aware of:

- Opt for the most straightforward approach to perform
each reasoning step.
- Carefully process the numerical variables in the question
and perform each calculation sequentially.
- Carefully consider each key information provided and
incorporate them systematically into your solution.
- Discern any distractions that are irrelevant to the queried
answer.
- If there is no valid answer, please conclude with "So the
answer is None" at the end of the output.

This is a math question:
Question: {A Math Problem}

The following is key information extracted from the
question:
{Key Premise}

The following are the first few steps in a solution to the
question:
{Previous Thoughts, including Subgoals and Calculations}

The next step is as follows. Carefully review each item in
the next reasoning step.
{Subgoal of the Current Thought}
{A Reference for Calculation}

If you have a strong belief that errors exist in the above
reasoning step, explain why and regenerate this step. Oth-
erwise, output “Pass”.

1084

Verifying the Completion Status of the Final An- 1085

swer Once each thought is completed, we merge 1086

the subgoals and calculations of the current thought 1087

and previous thoughts (PROMPT 4). Then we query 1088

the LLM to determine if we have achieved the de- 1089

sired answer for the question. 1090
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Example C.14: Verifying the Model’s Acquisi-
tion of the Final Answer

This is a math question:
Question: {A Math Problem}

The following is key information extracted from the
question:
{Key Premise}

{Previous Thoughts, including Subgoals and Calculations}

Does the goal of last step “{Last Subgoal}” meets up the
target of the math question “{Queried Answer}”? If yes,
please output “So the answer is [VALUE]”. Otherwise,
please output “No” and explain why.

1091

We consider the final sentence of the math prob-1092

lem as the “queried answer”. If the model’s self-1093

verification process yields a response of “No”,1094

COMP proceeds with subgoal generation for the1095

subsequent thoughts (Prompt C.11). However, if1096

the responses include the phrase “So the answer1097

is”, COMP terminates the iteration and arrives at1098

the final answer.1099

C.5 Accuracy of LLMs Across Various1100

Perturbation1101

We present the model’s performance on eight dis-1102

tinct mathematical perturbations in Figure 6.1103

C.6 Answer Extraction for Questions1104

Rewritten with the Rule of Removed1105

Necessary Constraints1106

Question variations that are rewritten using the1107

“critical thinking” perturbation lack certain contexts1108

and therefore do not have valid answers. In such1109

cases, we have observed that the LLM tends to1110

decline providing answers in various expressions.1111

To extract the expressions, we regard the model’s1112

solution as correct if it contains any of the follow-1113

ing expressions: does not provide enough infor-1114

mation, does not specify, does not provide, can’t1115

provide, can not provide, don’t know, do not know,1116

doesn’t specify, not specify, not mention, doesn’t1117

mention, don’t have enough information, do not1118

have enough, not provide, doesn’t provide, cannot1119

calculate, can’t calculate, can’t determine, cannot1120

determine, missing necessary information, none.1121

C.7 Accuracy of Compositional Prompting1122

for Various Question Variations1123

Table 8 reports the accuracy scores for both the1124

GSM8K questions and their corresponding vari-1125

GSM8K
Num. Sub.

Digit Exp.
IDF Conv.

Add. Op.
Rev. Op.

Prob. Underst.
Dist. Ins.

Crit. ThinkingHuman
GPT-4GPT-3.5-TurboMistral-7BLLaMA-2-7BCodeLlama-7BLLaMA-2-13B

CodeLlama-13B
CodeLlama-34BLLaMA-2-70B

MetaMath-MistralMetaMath-7B
Abel-7B
ToRA-7BMAmmoTH-7B

MAmmoTH-Coder-7B
SEGO-7BMetaMath-13B
Abel-13BToRA-13B

MAmmoTH-13B

MAmmoTH-Coder-13BSEGO-13BMetaMath-70B
Abel-70B

MAmmoTH-70B

96.77 92.9
(4.0)

100.0
(-3.3)

100.0
(-3.3)

100.0
(-3.3)

87.5
(9.6)

100.0
(-3.3)

100.0
(-3.3)

100.0
(-3.3)

93.25 89.8
(3.7)

90.5
(3.0)

89.0
(4.5)

93.9
(-0.7)

79.5
(14.7)

90.8
(2.7)

83.7
(10.2)

67.5
(27.6)

73.62 69.5
(5.6)

70.4
(4.4)

62.3
(15.3)

74.2
(-0.8)

48.5
(34.2)

62.2
(15.6)

55.2
(25.0)

47.3
(35.7)

40.33 35.2
(12.8)

35.9
(10.9)

29.9
(25.9)

38.7
(4.1)

14.4
(64.3)

28.1
(30.4)

21.8
(46.0)

5.5
(86.3)

13.42 13.0
(3.4)

10.0
(25.4)

10.4
(22.6)

13.9
(-4.0)

3.0
(77.4)

7.6
(43.5)

7.0
(47.5)

0.0
(100.0)

25.17 22.3
(11.4)

23.8
(5.4)

19.1
(24.1)

25.9
(-3.0)

8.6
(66.0)

11.4
(54.8)

9.3
(62.9)

0.0
(100.0)

25.4 25.9
(-2.1)

22.9
(9.8)

17.7
(30.2)

27.4
(-7.8)

9.5
(62.7)

15.4
(39.4)

13.4
(47.2)

0.3
(98.8)

35.94 29.6
(17.7)

29.9
(16.7)

28.2
(21.5)

34.6
(3.6)

14.6
(59.5)

16.7
(53.6)

15.4
(57.2)

0.0
(100.0)

45.64 29.6
(35.2)

29.9
(34.4)

28.2
(38.2)

34.6
(24.1)

14.6
(68.1)

16.7
(63.5)

15.4
(66.3)

0.0
(100.0)

56.71 53.3
(6.0)

53.1
(6.4)

42.1
(25.8)

56.6
(0.3)

31.5
(44.4)

46.9
(17.4)

36.6
(35.4)

0.3
(99.5)

77.79 71.0
(8.7)

70.0
(10.0)

61.9
(20.4)

77.5
(0.4)

45.1
(42.0)

55.6
(28.5)

58.1
(25.2)

10.6
(86.4)

66.72 59.1
(11.4)

58.8
(11.9)

49.7
(25.6)

64.9
(2.7)

30.9
(53.8)

36.7
(45.0)

49.7
(25.6)

5.2
(92.3)

59.51 56.1
(5.7)

51.0
(14.4)

38.6
(35.1)

58.7
(1.4)

24.6
(58.6)

33.3
(44.1)

33.5
(43.7)

1.0
(98.3)

67.48 62.0
(8.1)

64.8
(3.9)

54.1
(19.8)

68.2
(-1.1)

32.2
(52.2)

26.0
(61.5)

41.4
(38.7)

0.0
(100.0)

52.84 45.2
(14.5)

49.3
(6.7)

38.2
(27.7)

51.8
(2.0)

21.5
(59.4)

24.4
(53.8)

26.8
(49.4)

0.0
(100.0)

59.89 54.8
(8.5)

56.6
(5.4)

45.8
(23.5)

58.5
(2.4)

29.0
(51.5)

33.7
(43.8)

31.5
(47.5)

0.0
(100.0)

68.69 60.4
(12.1)

64.3
(6.4)

51.7
(24.7)

67.2
(2.1)

35.9
(47.8)

37.2
(45.8)

41.0
(40.3)

0.0
(100.0)

70.81 61.5
(13.2)

64.3
(9.2)

53.1
(24.9)

71.7
(-1.2)

36.3
(48.7)

42.9
(39.4)

53.9
(23.9)

4.9
(93.0)

66.72 62.4
(6.5)

59.7
(10.5)

50.0
(25.1)

67.3
(-0.9)

34.8
(47.8)

45.5
(31.8)

41.6
(37.6)

1.8
(97.3)

71.8 65.3
(9.0)

67.8
(5.5)

56.7
(21.0)

72.7
(-1.3)

39.9
(44.5)

34.7
(51.6)

45.8
(36.2)

0.0
(100.0)

62.4 54.9
(12.0)

58.5
(6.2)

48.7
(22.0)

61.9
(0.8)

31.4
(49.7)

37.1
(40.6)

34.1
(45.3)

0.0
(100.0)

64.9 59.4
(8.5)

62.0
(4.4)

50.3
(22.5)

63.8
(1.6)

36.9
(43.1)

43.2
(33.4)

36.2
(44.3)

0.0
(100.0)

72.5 65.5
(9.7)

68.5
(5.5)

58.6
(19.2)

71.6
(1.3)

43.6
(39.9)

40.6
(43.9)

45.9
(36.6)

0.0
(100.0)

82.11 74.9
(8.8)

74.5
(9.2)

65.0
(20.9)

79.6
(3.0)

51.0
(37.9)

61.9
(24.6)

58.0
(29.4)

9.9
(87.9)

83.85 76.7
(8.6)

76.9
(8.3)

63.6
(24.1)

81.4
(2.9)

53.1
(36.6)

64.8
(22.7)

60.0
(28.4)

3.0
(96.5)

75.89 67.4
(11.2)

71.7
(5.6)

59.2
(22.0)

75.5
(0.5)

47.8
(37.1)

56.6
(25.4)

49.1
(35.3)

0.0
(100.0)

Figure 6: LLMs’s performance across various types of
question variations. Darker cell colors indicate larger
performance decay rates under corresponding question
variations. The value in parentheses represents PDR
values in performance compared to the performance on
GSM8K. The cell in purple indicates a slight increase
in performance for the corresponding question variation
compared to the original GSM8K test set. The majority
of models struggle to indicate the absence of statements
when confronted with critical thinking variations.

ations in GSM-PLUS. The results suggest that 1126

COMP is significantly effective in variations regard- 1127

ing general numerical substitution, problem under- 1128

standing, adding operation, and critical thinking. 1129

COMP serves as a valuable method for iteratively 1130

inferring the subgoal of each reasoning thought and 1131
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Numerical Variation Arithmetic Variation
Method GSM8K GSM-PLUS Num. Sub. / Digit Exp. / IDF Conv. Add. Op. / Rev. Op. Prob. Underst. Dist. Ins. Crit. Thinking

COT 74.17 62.92 70.00 / 75.83 / 66.67 50.83 / 63.33 72.50 63.33 40.83
LTM ‡ 74.17 62.60 68.33 / 75.00 / 71.67 45.83 / 63.33 72.50 65.52 39.17
COMP 76.67 65.52 75.00 / 75.00 / 62.50 52.50 / 64.17 78.33 62.50 54.17
COT + SC 76.67 66.88 80.00 / 80.00 / 67.50 59.17 / 65.83 80.83 61.67 40.00
COMP + SC 80.00 69.47 75.83 / 82.50 / 71.67 60.83 / 71.67 78.33 70.83 55.83

Table 8: Fine-grained performance of GPT-3.5-Turbo on GSM8K and GSM-PLUS with different prompting
techniques. The methods listed in the upper half of the table evaluate the pass@1 accuracy, whereas the methods
presented in the lower half of the table employ ensemble-based decoding to determine a result from multiple
candidates.

performing the corresponding calculations.1132

The COMP method benefits from repeated at-1133

tempts, leading to improved performance on ques-1134

tions with inserted distractors. We have not ob-1135

served a substantial improvement in questions re-1136

lated to “numerical variation” as COMP + SC pri-1137

marily emphasizes subgoal optimization and may1138

encounter similar calculation errors without the use1139

of external tools or ensemble-based approaches.1140

C.8 Sample Predictions on GSM8K and1141

GSM-PLUS1142

We show example questions and predictions by1143

different techniques (Tables 9 and Tables 10).1144
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Method Original GSM8K Question GSM-PLUS (Reversing Operation)
Adam wants to eat some sliced apples. A large apple can
be sliced into 5 pieces, and a small apple can be sliced
into 3 pieces. Adam decides to slice 3 large and 5 small
apples and then eats 15 slices. How many apple slices are
left?

Adam wants to eat some sliced apples. A large
apple can be sliced into 5 pieces, and a small apple
can be sliced into 3 pieces. Adam decides to slice 3
large and some small apples and then eats 15 slices.
After eating 15 slices, he counts and finds that he
has 15 slices left. How many small apples did he
originally have?

COT Adam slices 3 large apples into 3 * 5 = 15 slices. Adam
slices 5 small apples into 5 * 3 = 15 slices. In total, Adam
slices 15 + 15 = 30 apple slices. Adam eats 15 slices, so
there are 30 - 15 = 15 apple slices left. #### 15 ✓

First, let’s calculate the total number of slices from
the large apples. Since each large apple can be
sliced into 5 pieces, and Adam sliced 3 large apples,
the total number of slices from the large apples is 5
* 3 = 15 slices.
Next, let’s calculate the total number of slices from
the small apples. Since each small apple can be
sliced into 3 pieces, and Adam has 15 slices left
after eating, the total number of slices from the
small apples is 15 - 15 = 0 slices. (reasoning error)
Since Adam originally sliced some small apples,
the total number of slices from the small apples
must be greater than 0. Therefore, Adam did not
slice any small apples. So, the answer is #### 0. ✗

LTM 1. How many slices can be made from the large apples? 2.
How many slices can be made from the small apples? 3.
How many slices were made in total? 4. How many slices
are left?
1. A large apple can be sliced into 5 pieces, so 3 large
apples can be sliced into 3 x 5 = 15 slices.
2. A small apple can be sliced into 3 pieces, so 5 small
apples can be sliced into 5 x 3 = 15 slices.
3. In total, 15 slices were made from the large apples and
15 slices were made from the small apples, so there were
15 + 15 = 30 slices in total.
4. Adam ate 15 slices, so there are 30 - 15 = 15 slices left.
The answer is: 15. ✓

1. How many slices did Adam have before eating?
2. How many slices did Adam have after eating?
3. How many slices did Adam eat? 4. How many
small apples did Adam originally slice?
1. Adam had 15 slices left after eating, so before
eating he had 15 + 15 = 30 slices.
2. Adam ate 15 slices, so after eating he had 30 - 15
= 15 slices.
3. Adam had 15 slices left after eating, so he ate 30
- 15 = 15 slices.
4. A large apple can be sliced into 5 pieces, so
Adam sliced 3 large apples into 3 x 5 = 15 slices.
Since Adam had 15 slices left after eating, he must
have originally sliced 15 - 15 = 0 small apples. The
answer is: 0. ✗ (reasoning error)

COMP Step 1: Calculate the total number of slices from the large
apples.
- Since each large apple can be sliced into 5 pieces, the
total number of slices from the 3 large apples is 3 * 5 =
15 slices. Result: 15 slices
Step 2: Calculate the total number of slices from the small
apples.
- Adam slices 5 small apples, each sliced into 3 pieces.
The total number of slices from the small apples is 5 * 3 =
15 slices. Result: 15 slices.
Step 3: Calculate the total number of slices Adam left.
- Adam has 15 slices from the large apples. Adam also has
15 slices from the small apples. Adam has a total of 15
+ 15 = 30 slices. Adam eats 15 slices, so the number of
slices left is 30 - 15 = 15 slices. Result: 15 slices.
So the answer is 15 slices. ✓

Step 1: Calculate the total number of slices from
the large apples.
- Since each large apple can be sliced into 5 pieces,
the total number of slices from the 3 large apples is
3 * 5 = 15 slices. Result: 15 slices.
Step 2: Calculate the total number of slices from
the small apples.
- Let’s assume the number of small apples Adam
sliced is “x”. Since each small apple can be sliced
into 3 pieces, the total number of slices from the
small apples is x * 3 = 3x slices. Result: 3x slices.
Step 3: Calculate the total number of slices Adam
had before eating.
- The total number of slices is the sum of the slices
from the large apples and the slices from the small
apples. So, the equation is 15 slices (from the large
apples) + 3x slices (from the small apples) = 30
slices. Result: 15 + 3x = 30
Step 4: Solve the equation to find the value of x.
- Subtract 15 from both sides of the equation: 15 +
3x - 15 = 30 - 15. Simplify: 3x = 15. Divide both
sides of the equation by 3: 3x/3 = 15/3. Simplify: x
= 5. So the answer is 5. ✓

Table 9: Prediction example for different prompting techniques, on a GSM8K question and a corresponding question
variation based on “reversing operation” rewriting. While all techniques provide accurate answers to the original
GSM8K question, it is only our proposed method, COMP, that consistently produces the correct answer for the
modified question in GSM-PLUS.
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Method Original GSM8K Question GSM-PLUS (Adding Operation)
Anne purchased a box of sweets that contains 15 packs,
and each pack has 60 pieces. She kept two packs and gave
the rest to her 10 friends equally. How many pieces of
sweets did each of her friends receive?

Anne purchased a box of sweets that contains 15
packs, and each pack has 60 pieces. She kept
two packs for herself and gave one pack to her
brother. She then divided the remaining packs
equally among her 10 friends. After a day, each
of her friends gave back 10 pieces of sweets to her.
How many pieces of sweets did each of her friends
end up with after returning some to Anne?

COT Anne kept 2 packs of sweets, so she gave away 15 - 2 =
13 packs of sweets to her friends. Each pack contains 60
pieces of sweets, so Anne gave away a total of 13 * 60 =
780 pieces of sweets to her friends. Anne has 10 friends,
so each of her friends received 780 / 10 = 78 pieces of
sweets. Therefore, each of Anne’s friends received ####
78 pieces of sweets. ✓

First, Anne purchased a box of sweets that contains
15 packs, and each pack has 60 pieces. So, the
total number of sweets in the box is 15 * 60 = 900
pieces. Anne kept two packs for herself, so she has
2 * 60 = 120 pieces. Anne gave one pack to her
brother, so her brother has 1 * 60 = 60 pieces. The
remaining packs are 15 - 2 - 1 = 12 packs. Anne
divided the remaining packs equally among her 10
friends, so each friend received 12 / 10 = 1.2 packs.
Since we can’t have a fraction of a pack, we need
to round down to the nearest whole number. Each
friend received 1 pack. (missing reasoning step:
conversion from “1.2 pack” to “72 piece”)
Each of her friends gave back 10 pieces of sweets.
So, each friend has 60 - 10 = 50 pieces. #### 50. ✗

LTM 1. How many packs of sweets did Anne give to her
friends? 2. How many pieces of sweets are in each pack?
3. How many pieces of sweets did each friend receive?
1. Anne purchased a box of sweets that contains 15 packs.
She kept two packs, so she gave 15 - 2 = 13 packs to her
friends.
2. Each pack has 60 pieces of sweets.
3. Each friend received 60 pieces of sweets per pack, so
each friend received a total of 60 x 13 / 10 = 78 pieces of
sweets.
Each of Anne’s friends received 78 pieces of sweets. ✓

1. How many packs of sweets did Anne keep for
herself? 2. How many packs of sweets did Anne
give to her brother? 3. How many packs of sweets
did Anne divide among her friends? 4. How many
pieces of sweets did each friend receive? 5. How
many pieces of sweets did each friend return to
Anne? 6. How many pieces of sweets did each
friend end up with after returning some to Anne?
1. Anne kept 2 packs of sweets for herself.
2. Anne gave 1 pack of sweets to her brother.
3. Anne divided the 15 - 2 - 1 = 12 packs of sweets.
4. Each friend received 12 / 10 = 1.2 packs of
sweets.
5. Each friend returned 10 pieces of sweets to Anne.
6. Each friend ended up with 60 pieces - 10 pieces
= 50 pieces of sweets after returning some to Anne.
The answer is: 50 pieces of sweets. ✗ (omission of
the 4th reasoning result)

COMP Step 1: Calculate the total number of packs Anne gave to
her friends.
- Anne purchased 15 packs of sweets. She kept 2 packs
for herself. So, she gave 15 - 2 = 13 packs to her friends.
Result: 13 packs
Step 2: Calculate the total number of pieces of sweets in
the packs Anne gave to her friends.
- Each pack has 60 pieces of sweets. Anne gave 13 packs
to her friends. So, the total number of pieces of sweets
in the packs Anne gave to her friends is 60 * 13 = 780
pieces.
Step 3: Calculate the number of pieces of sweets each of
Anne’s friends received.
- Anne gave 780 pieces of sweets to her 10 friends equally.
To find out how many pieces each friend received, divide
the total number of pieces by the number of friends. 780
pieces / 10 friends = 78 pieces.
Step 4: Calculate the total number of pieces of sweets
each friend received. So the answer is 78. ✓

Step 1: Calculate the total number of pieces of
sweets in the box.
- Since each pack has 60 pieces and there are 15
packs, the total number of pieces of sweets in the
box is 60 * 15 = 900 pieces.
Step 2: Calculate the number of packs Anne kept
for herself and gave to her brother.
- Anne kept two packs for herself and gave one pack
to her brother, so she kept a total of 2 + 1 = 3 packs.
Step 3: Calculate the number of packs Anne had
left after keeping some for herself and giving one
to her brother.
- Anne divided the remaining 12 packs equally
among her 10 friends, so each friend received 12 /
10 = 1.2 packs.
Step 4: Calculate the total number of pieces of
sweets each friend received.
- Since each pack has 60 pieces, each friend received
1.2 * 60 = 72 pieces.
Step 5: Calculate the number of pieces of sweets
each friend had after returning some to Anne.
- Each friend returned 10 pieces of sweets. So the
answer is 72 - 10 = 62 pieces of sweets. ✓

Table 10: Prediction example for different prompting techniques, on a GSM8K question and a corresponding
question variation based on “adding operation” rewriting. While all techniques provide accurate answers to the
original GSM8K question, it is only our proposed method, COMP, that consistently produces the correct answer for
the modified question in GSM-PLUS. 23
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