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Abstract

The ability to model relational information using machine learning has driven ad-
vancements across various domains, from medicine to social science. While graph
representation learning has become mainstream over the past decade, representing
higher-order relationships through hypergraphs is rapidly gaining momentum. In
the last few years, numerous hypergraph neural networks have emerged, most of
them falling under a two-stage, set-based framework. The messages are sent from
nodes to edges and then from edges to nodes. However, most of the advancement
still takes inspiration from the graph counterpart, often simplifying the aggrega-
tions to basic pooling operations. In this paper, we are introducing Wasserstein
Hypergraph Neural Network, a model that treats the nodes and hyperedge neigh-
bourhood as distributions and aggregates the information using Sliced Wasserstein
Pooling. Unlike conventional aggregators such as mean or sum, which only capture
first-order statistics, our approach has the ability to preserve geometric properties
like the shape and spread of distributions. This enables the learned embeddings
to reflect how easily one hyperedge distribution can be transformed into another,
following principles of optimal transport. Experimental results demonstrate that
applying Wasserstein pooling in a hypergraph setting significantly benefits node
classification tasks, achieving top performance on several real-world datasets.

1 Introduction

The potential to learn from relational data has substantially broadened the applicability of machine
learning, extending its reach to a wide range of fields [1, 2, 3, 4, 5, 6, 7]. The flexibility of graph
structures makes them well-suited for representing natural phenomena involving various types of
interactions. However, while graphs are restricted to model pairwise connections, many real-world
interactions involve more than two entities. To fill this gap, a generalisation of graphs called
hypergraphs was introduced, allowing the representation of relationships among multiple elements.

More precisely, a hypergraph is characterised by a set of edges, where each edge connects a set of
nodes, potentially of varying cardinality. The challenge of designing hypergraph networks becomes
the challenge of properly modelling these sets. Many approaches [8, 9, 10] tackle this using a two-step
process: first, the model aggregates information from the nodes within each hyperedge to compute
a representation for that hyperedge. Then, it updates each node’s representation using information
from the hyperedges it belongs to. Both steps rely on methods designed to handle sets of elements.

Although set representation learning has seen significant progress in recent years [11], hypergraph
networks still largely rely on sum-based aggregation methods such as Deep Sets [12] and Set
Transformers [13]. Table 1 presents the update rules of several widely used hypergraph networks,
emphasising that each of them utilises a form of the sum-based aggregator. Despite their strong
theoretical foundation, these aggregators can struggle to effectively capture the full geometry of
set-structured inputs [14].
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Table 1: Overview of the update rules used as aggregation steps in various hypergraph neural
networks from the literature. While theoretically powerful, summing can easily destroy all the
geometric relationships between points. Nv(i) is the neighbourhood of node vi of cardinality di,
Ne(j) is the neighbourhood of edge ej of cardinality dj and ϵ, W∗, W̃∗ are learnable parameters.

Model Hyperedge aggregation Node aggregation

HGNN [15] he ←
∑

i∈Ne(e)
1√
di
xiW xi ← 1√

di

∑
e∈Nv(i)

1
de
he

HCHA1 [16] he ←
∑

i∈Ne(e)
αe,ixiW xi ←

∑
e∈Nv(i)

α̃i,eheW̃

UniGIN [10] he ←
∑

i∈Ne(e)
xi xi ←

∑
e∈Nv(i)

heW + (1 + ϵ)xiW

ED-HNN [9] he ←
∑

i∈Ne(e)
MLP(xi) xi ←

∑
e∈Nv(i)

MLP(xi∥he)

AllDeepSets [8] he ← MLP(
∑

i∈Ne(e)
MLP(xi)) xi ← MLP(

∑
e∈Nv(i)

MLP(he))

AllSetTransformer2 [8] he ← σ(
∑

i∈Ne(e)
(αixiWv) xi ← σ(

∑
e∈Nv(i)

(α̃eheW̃v)

In this work, we are introducing Wasserstein Hypergraph Neural Networks (WHNN), a class of hy-
pergraph models that uses Sliced Wasserstein Pooling (SWP) [14] as node and hyperedge aggregator.
This pooling is based on the Wasserstein distance, an optimal transport metric which measures the
distance between two distributions based on the cost of transporting mass from one to another.

We argue that this geometric information is highly relevant for hypergraph learning. Our experi-
mental results support this claim, showing that WHNN not only outperforms traditional sum-based
aggregation methods used in previous hypergraph models but also achieves superior performance
compared to several strong hypergraph methods across a range of real-world datasets.

Our main contributions are summarised as follow: 1) We propose a novel hypergraph architecture,
the Wasserstein Hypergraph Neural Network (WHNN), which leverages Sliced Wasserstein
Pooling for both node and hyperedge aggregation to more effectively capture the geometric structure
of the feature space. 2) We empirically show that Wasserstein aggregation is highly effective for
hypergraph representation, consistently outperforming traditional sum-based methods such as
Deep Sets [12] and Set Transformers [13], regardless of the encoder used to process the nodes.
3) Wasserstein Hypergraph Neural Network achieves top results on multiple real-world datasets,
highlighting the advantages of incorporating optimal transport into hypergraph processing.

2 Wasserstein Hypergraph Neural Network

A hypergraph is a tuple H = (V,E) where V = {v1, v2 . . . vN} is a set of nodes, and E =
{e1, e2 . . . eM} is a set of hyperedges. Each node vi is characterised by a feature vector xi ∈ Rd. The
neighbourhood of hyperedge ei is the set of nodes that are part of that hyperedge {vj |vj ∈ ei}, while
the neighbourhood of a node vi is the set of all hyperedges containing that node Nvi = {ej |vi ∈ ej}.
Our WHNN model follows the two-stage framework, by sending information from nodes to hyper-
edges and vice versa. For simplicity, this section only describes the nodes-to-hyperedges mechanism,
as the hyperedge-to-node operation is entirely symmetrical. The pipeline is visually depicted in
Figure 2 of the Appendix. For readability, the algorithm is presented sequentially for each hyperedge.
However, our implementation processes all hyperedges in parallel.

First, we will project the node features into a more expressive representation. Each hyperedge is
then associated with a probability distribution, with its constituent nodes treated as samples. These
distributions are embedded using a Wasserstein-based aggregator to obtain the final hyperedge
representations. Then, the hyperedge representations are fed into the hyperedges-to-nodes stage.
Below, we elaborate on each of these stages.

1The coefficients αe,i used in summations are scalars predicted as MLP (xi||he)
2The function σ is a combination of residual connections and layer normalisations, while αi =

(θWq)(xiWk)
T with θ, Wq and Wk as learnable parameters.

2



ALGORITHM 1: One Layer of Wasserstein
Hypergraph Neural Network3

1: input: node features X of hypergraph H and
ref. distribution q

2: output: updated node features X̃

3: procedure WHNN(X,H, q)

4:
5: X0 ← X

6: # Sample reference sets
7: Qv, Qe ← sample(q)

8: # Extract node and edge neighbourhood
9: Nv,Ne ← neighbourhoods(H)

10: # Node to hyperedge
11: X ← encoder(X)
12: Z ←Wasserstein(X,Nv, Qv)

13: # Hyperedge to node
14: Z ← encoder(Z)
15: X ←Wasserstein(Z,Ne, Qe)

16: # Residual connection
17: X̃ ← αX + (1− α)X0

18: return X̃

3 For simplicity in handling shapes, we assume
encoders that are independent of the hyperedge.

ALGORITHM 2: Wasserstein aggregator

1: input: entity features X; list of neighbour-
hoods to aggregate N ; samples from refer-
ence distribution Q

2: output: aggregated neighbourhoods Z

3: procedure WASSERSTEIN(X,N , Q)

4: # Project entities into slices
5: X ← XΘ
6: # Sort the samples from the reference distr.
7: Q← sort(Q)

8: for all neighbourhoods S ∈ N
9: # Extract elements in the neighbourhood

10: Xs ← {xi}i∈S

11: # If |Xs| ̸= |Q| interpolate Xs to match size
12: X ′

s ← interpolate(Xs)

13: # Sort the elements of the neighbourhood.
14: X ′

s ← sort(X ′
s)

15: # Compute the dist that approx Wass dist
16: Zs: ← Q−X ′

s

17: # Combine the slices
18: Z ← ZW

19: return Z

Node encoder. The goal of this module is to enhance the representation of node features by projecting
them into a more informative space. We are experimenting with two types of encoders: an edge-
independent one where the node is carrying the same representation in each hyperedge it is contained,
and an edge-dependent one which takes into account pairwise interactions.

The edge-independent encoder is a simple MLP, which is applied in parallel for each node. This way,
a node i is characterised by the same feature vector in each hyperedge e it is part of.

x̃e
i = MLP(xi)

On the other hand, for the edge-dependent encoder, each node has a different representation in each
hyperedge it is part of. To achieve this, for each hyperedge, we are using a Set Attention Block
layer (SAB) as introduced in [13], which propagates the information between each pair of two nodes
contained in that hyperedge. The full version of the block acts as follows:

zei = σ(xi +
∑
j∈e

(xiWq)(xjWk)
T (xjWv))

x̃e
i = σ(zei + MLP(zei )),

where σ denote layer normalisation and Wk, Wq and Wv ∈ Rd×d are learnable parameters.

Hyperedges as probability distributions. Unlike traditional hypergraph approaches that treat a
hyperedge as a set of nodes, we model a hyperedge as a probability distribution, with its constituent
nodes being samples drawn from that distribution. This way, the hyperedges are not only characterised
by the combination of their elements, but by the regions of the space where their elements are situated.
The nodes became prototypes of the hyperedge behaviour.

For example, a hypergraph containing two clusters of nodes suggests a bimodal underlying distribution.
On the other hand, a hyperedge where nodes are close in the feature space denotes a unimodal
probability distribution, suggesting a homophilic behaviour. A hyperedge in which nodes have similar
representations indicates a low-variance distribution, while a hyperedge with diverse nodes suggests

3



a more uniform distribution. We consider these elements essential to capture; therefore, we design an
aggregator with the appropriate inductive bias to do so.

Let’s consider pi the probability distribution where the elements of the hyperedge ei are sampled
from. In other words, we assume each node vj ∈ ei is sampled as x̃i

j ∈ Rd ∼ pi. The goal is to
obtain hyperedge embeddings that preserve the geometric information of this underlying distribution,
such as spreading, shape etc. See Figure 2 in the Appendix for a visual representation of this structure.

Note that, by treating nodes as sampled from an underlying distribution, we make the assumption
that other unobserved nodes drawn from the same distribution are also likely to belong to the same
hyperedge. This probabilistic interpretation proved to be powerful for set representation learning [14],
and our experiments demonstrate that hypergraph models can benefit from it as well.

Wasserstein aggregator. Interpreting hypergraphs as a collection of probability distributions enables
us to derive more powerful similarity metrics between hyperedges. As shown in the previous section,
most of the current hypergraph architectures rely on mean pooling to create hyperedge embeddings
from node representations. However, from a probabilistic perspective, averaging compares distribu-
tions only based on their means. For complex data distributions, this approach fails to capture the full
underlying geometry. While models relying on summation, such as Deep Sets [12] have been proven
to be universal approximators, they heavily rely on the internal node encoder (an MLP) to map input
features into a space where first-order statistics like the mean effectively approximate the distribution.
In the hypergraph setting, where multiple sets interact in complex ways, this is hard to achieve.

This motivates us to adopt Sliced Wasserstein Pooling [14] to encode the hyperedge distributions.
Concretely, for each hyperedge e, given the node embeddings of all the nodes in the hyperedge
{x̃e

i}i∈e, we are aggregating them using the Sliced Wasserstein Pooling to obtain a vectorial hyperedge
representation: he = SWP({ x̃e

i}i∈e). The algorithm works as follows:

1. Step 1: Select a reference hyperedge distribution q and sample N points {yi}Ni=1 ∼ q.
Choose a set of directions {θl}Ll=1 with θl ∈ Rd×1 used as projection slices in the pooling
process. Note that, in order to obtain comparable embeddings across the entire hypergraph,
we share the same reference distribution and the same set of slices for all hyperedges.

2. Step 2: Project each node representation x̃e
i into each slice θl as follow: ze,θli = (x̃e

i )
T θl ∈

R. Since the algorithm requires the same number of sampled nodes from both the hyper-
edge distribution and the reference, when the cardinality of the hyperedge |e| ≠ N , we in-
crease/decrease the number of nodes in e using linear interpolation. ze,θli ← interp(ze,θli , N)

3. Step 3: For each hyperedge, for each slice, compute the distance between the node represen-
tations and the reference points. hθl

e = ||ze,θlπ(i) − yπ̃(i)||, where ze,θlπ and yπ̃ represent the
vectors in sorted order. The final hyperedge embedding is obtained as a weighted mean of
these embeddings: he =

∑L
l=1(wlh

θl
e ), where wl are learnable scalars combining the slices.

The process is also described in Algorithm 2. The directions θl and the reference distribution can be
either fixed or learnable. For a more detailed explanation of the Wasserstein distance and the Sliced
Wasserstein Pooling as applied in the set representation learning, see Section C.2 of the Appendix.

Intuitively, each hyperedge is represented by a vector which measures how difficult it is to transform
the hyperedge distribution into the reference distribution 4. Note that these reference distributions act
only as shared anchors, similar to the origin in Euclidean space.

The true strength of Wasserstein embeddings is not observed in isolation, but lies in their ability to
capture the relative distances between different entities (nodes/hyperedges). Following the theoretical
properties of Sliced Wasserstein Pooling [14], the Euclidean distance between two hyperedge rep-
resentations measures the cost of transforming one hyperedge distribution into another. Similarly,
the Euclidean distance between two node embeddings measures how easy it is to map one node
neighbourhood into the other node neighbourhood.

This type of information is particularly important in hypergraph learning, as it reflects the extent
of change required to transform the characteristics of one group to resemble those of another. In
the context of node classification, this means that if the neighbourhoods of two nodes are similar in

4As defined above, by hyperedge distribution we denote the distribution of nodes in the hyperedge.
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Figure 1: Ablation on the importance of Wasserstein aggregator. We test 2 versions of Sliced
Wasserstein Pooling: with fixed (FPSWE) or learnable (LPSWE) reference distribution. Wasserstein
aggregators outperform both Deep Sets and PMA, commonly used inside hypergraph models.

distribution, the nodes are likely to share the same label. In contrast, average pooling tends to assign
the same label to nodes whose neighbourhoods have similar average characteristics.

Edge to node step. For simplicity, we only described in detail the first stage of the framework, which
sends messages from nodes to hyperedges. The second stage of the framework, which creates node
representation by aggregating the information from neighbouring hyperedges, is done in a similar
way, only with different parameters. In conclusion, we not only capture the structural relationship
between hyperedges, but also the structural relationship between nodes’ neighbourhood.

3 Experiments

Our main goal is to understand to what extent Wasserstein aggregation is beneficial for hypergraph
neural networks. Additionally, we investigate how the choice of node encoder (whether edge-
dependent or edge-independent) affects overall performance. Finally, we compare our model against
a range of strong baseline methods from the existing literature.

Datasets. We evaluate our model on the node-classification task. We select seven real-world
datasets that vary in domain and scale. These include Cora, Citeseer, Cora-CA, DBLP-CA [17],
ModelNet40 [18], NTU2012 [19] and 20News [20]. Among the datasets that are usually used for
benchmarking hypergraph models [17], we omitted Pubmed due to the high percentage of isolated
nodes (80.5%), which makes the relational processing unnecessary. For a fair comparison with the
other methods, we follow the training procedures employed by [9], randomly splitting the data into
50% training, 25% validation and 25% test samples. In the Appendix B, we also offer additional
results on Senate, Congress [21] and House [22].

Importance of Wasserstein aggregator. Our main contribution consists of adopting Sliced Wasser-
stein Pooling as a powerful aggregator inside the hypergraph networks. As described in the previous
section, while most of the existing methods used variations of the sum pooling to aggregate the
information from each node and each hyperedge neighbourhood, our Wasserstein aggregator presents
a more in-depth understanding of the neighbourhood distribution, having the inductive bias to capture
subtle differences, such as the difference in shape or spread.

To understand to what extent this is contributing to a better hypergraph representation for real-world
scenarios, we design an ablation study in which we keep the underlying architecture fixed and
only modify the aggregator. Concretely, we are using as aggregators either Deep Set (as used by
AllDeepSet [8] and ED-HNN [9] models) or the PMA module (as in AllSetTransformer [8] model).
For our Wasserstein aggregator, we experiment with both a fixed-reference distribution (denoted as
FPSWE) or with learnable reference distribution (denoted as LPSWE). For a robust evaluation, we are
comparing these aggregators using both the edge-independent encoder (MLP) and the edge-dependent
one (SAB). The results on Citeseer and NTU2012 datasets are reported in Figure 1.

Regardless of the encoder and the dataset we are testing on, both Wasserstein aggregators are
consistently outperforming both the Deep Sets and the PMA aggregators by a significant margin. A
learnable reference seems to be beneficial however, the improvement is generally marginal. Additional
experiments on other datasets show a similar trend and are provided in the Appendix B.

Importance of edge-dependent encoder. The node and hyperedge encoder transforms features
into a space where their distribution within each hyperedge captures meaningful information about
the group. As stated in the model description, we equipped our model with two types of encoders.
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Table 2: Performance on a collection of hypergraph datasets. Our model using SWP as a node
and hyperedge aggregator shows superior results. We test our model in both its variants: with edge-
independent (MLP) and edge-dependent encoder (SAB). Both options are exhibiting competitive
performance. We mark the first, second and third best performing models for each dataset.

Name Cora Citeseer Cora_CA DBLP_CA ModelNet40 NTU2012 20News

HCHA 79.14 ± 1.02 72.42 ± 1.42 82.55 ± 0.97 90.92 ± 0.22 94.48 ± 0.28 87.48 ± 1.87 80.33 ± 0.80
HNHN 76.36 ± 1.92 72.64 ± 1.57 77.19 ± 1.49 86.78 ± 0.29 97.84 ± 0.25 89.11 ± 1.44 81.35 ± 0.61

HyperGCN 78.45 ± 1.26 71.28 ± 0.82 79.48 ± 2.08 89.38 ± 0.25 75.89 ± 5.26 56.36 ± 4.86 81.05 ± 0.59
HyperGNN 79.39 ± 1.36 72.45 ± 1.16 82.64 ± 1.65 91.03 ± 0.20 95.44 ± 0.33 87.72 ± 1.35 80.33 ± 0.42
AllDeepSets 76.88 ± 1.80 70.83 ± 1.63 81.97 ± 1.50 91.27 ± 0.27 96.98 ± 0.26 88.09 ± 1.52 81.06 ± 0.54

AllSetTransformers 78.58 ± 1.47 73.08 ± 1.20 83.63 ± 1.47 91.53 ± 0.23 98.20 ± 0.20 88.69 ± 1.24 81.38 ± 0.58
UniGCNII 78.81 ± 1.05 73.05 ± 2.21 83.60 ± 1.14 91.69 ± 0.19 98.07 ± 0.23 89.30 ± 1.33 81.12 ± 0.67
ED-HNN 80.31 ± 1.35 73.70 ± 1.38 83.97 ± 1.55 91.90 ± 0.19 97.75 ± 0.17 89.48 ± 1.87 81.36± 0.55

WHNN_MLP 79.84 ± 1.56 74.79 ± 1.19 84.12 ± 1.94 91.73 ± 0.24 98.47 ± 0.19 90.87 ± 1.59 81.83 ± 0.68
WHNN_(I)SAB 80.72 ± 1.96 74.92 ± 1.60 84.62 ± 1.77 91.99 ± 0.33 98.54 ± 0.21 90.68 ± 1.68 81.42 ± 0.60

An edge-independent module represented by an MLP, and an edge-dependent encoder represented
by a self-attention block (SAB). While the MLP is processing information independently for each
node/hyperedge, SAB is capturing pairwise interactions between nodes/hyperedges sharing a neigh-
bourhood. The results in Figure 1 and Table 2 show similar results among the encoders, with the
edge-dependent one being slightly more powerful. However, this comes with the cost of a more
expensive model, as the edge-dependent encoder requires more memory to store the representation
for all incident pairs (node, hyperedge). To alleviate that on the larger datasets (20News and DBLP),
we replace the SAB block with the ISAB low-rank approximation introduced by [13].

Comparison with baselines. In Table 2, we are comparing against a series of hypergraph net-
works from the literature. With respect to aggregation strategies, HNHN [23], HyperGNN [15],
AllDeepSets [8], UniGCNII [10] and ED-HNN [9] use variations of Deep Sets to aggregate the
information, HyperGCN [17] uses a max aggregator, while HCHA [16] and AllSetTransformer [8]
use an attention-based weighted summation. Regardless of the encoder used, our model consistently
obtains top results, outperforming the other methods on all datasets. This demonstrates the advantages
of using Wasserstein aggregators for higher-order processing. While we integrated this aggregator
into a standard two-stage framework, many existing models from the literature can be adopted to take
advantage of this type of geometric-inspired aggregation.

Implementation details. In all experiments, we train our models using Adam for 500 epochs, on
a single GPU NVIDIA Quadro RTX 8000 with 48GB of memory. Each model is trained 10 times
with different random splits and different initialisations. We report average accuracy along with the
standard deviation. The results represent the best performance obtained by each architecture using
hyper-parameter optimisation with random search. Details about all the hyperparameters can be
found in the Appendix. For the ablation study, the architecture is fixed to ensure a fair comparison.

We use a number of Wasserstein slices equal to the hidden dimension, and we experiment with both
learning the reference set or not. In all experiments, we are using a uniform distribution as a reference
and vary the number of points sampled. In the Appendix B, we offer an additional set of experiments
demonstrating that, as expected, the type of reference distribution is not essential, while the number
of reference points should be large enough to cover the complexity of the hyperedge set.

These experimental results show that aggregating node and hyperedge neighbourhoods using Sliced
Wasserstein Pooling is highly effective for hypergraph processing, the Wasserstein aggregator consis-
tently outperforming standard methods like Deep Sets and PMA.

4 Conclusion

In this work, we introduce Wasserstein Hypergraph Neural Networks (WHNN), a model for process-
ing hypergraph structures. The model relies on Sliced Wasserstein Pooling to aggregate the nodes into
hyperedge representations and vice versa. This design choice, inspired by optimal transport literature,
enables us to capture more information about the internal structure of the neighbourhoods, preserving
more geometric relations between elements. The experimental results on various datasets demonstrate
that this Wasserstein aggregator is effective for modelling higher-order interactions, outperforming
traditional aggregators, making WHNN a promising tool for hypergraph representation learning.
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Appendix: Wasserstein Hypergraph Neural Network

This appendix contains details related to our model, including potential limitations and future
work, additional datasets for the ablation experiments, details on the hyperparameters used in our
experiments and derivation of the computational complexity. The content is structured as follows:

• Section A highlights a series of potential limitations that can be addressed to improve the
current work, together with a discussion on potential future work.

• Section B presents additional experiments used as ablation for our model.
• Section C provides a brief introduction into Wasserstein distance.
• Section D presents an extensive related work.
• Section E presents the list of hyperparameters used in our experiments.
• Section F derives the computational complexity of our model.

Figure 2: One stage (node-to-hyperedge) of WHNN pipeline designed to be more sensitive to the
geometric structure of the hyperedge compared to the traditional aggregators. The hypergraphs are
viewed as a collection of probability distributions {pi}, one for each hyperedge, with the observed
nodes treated as samples drawn from it. An additional distribution q is picked as a reference. Finally,
the Sliced Wasserstein Pooling is adopted as an aggregation method: each hyperedge is represented
by its Sliced Wasserstein distance to a reference distribution.

A Limitations and Future work

As discussed in the main paper, we treat the neighbourhood of each node as a sample from an
underlying probability distribution. This approach assumes that any additional nodes drawn from
this distribution should belong to the same neighbourhood as the observed ones. This aligns with
the intuition that elements within a group should share common characteristics. While the datasets
we used support this assumption, there may be real-world scenarios where it does not hold. Our
model relies solely on the node encoder to project features into a space where the assumption is
approximately valid.

Moreover, due to this continuous view of the neighbourhood (as a distribution of probability) together
with the interpolation step, the current model may lose information about the exact cardinality of the
neighbourhoods. In situations where neighbourhood size is important, we recommend encoding it as
an explicit feature. However, we mention that this is an issue we share with the mean-based pooling
algorithms.

The main goal of this paper is to highlight the benefits of using geometrically-inspired poolings for
aggregating neighbourhood information in hypergraphs. While we focused entirely on hypergraphs,
a similar idea can be applied on graph neural networks or other topological structures to aggregate
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messages coming from each node’s neighbourhood. As future work, it would be interesting to see to
what extent these models can benefit from Wasserstein aggregators.

Moreover, while the proposed model integrates the Wasserstein aggregator into a standard two-stage
pipeline, several other architectures, such as ED-HNN which uses summation as an aggregator, might
benefit from adopting it. We are leaving this investigation as future work.

B Additional experiments

Importance of Wasserstein aggregator. Due to space constraints, in the main paper, we only
included ablation studies on Citeseer and NTU datasets. Here we report additional results for
Cora_CA and ModelNet40 datasets (Figure 3) together with the numerical results (Table 3).

For each experiment, we kept the architecture fixed and modified the aggregator used in the two
stages to be either Deep Set, PMA, and the learnable (LPSWE) or fixed (FPSWE) Wasserstein
aggregator. The results are similar across the datasets, with Wasserstein Pooling proving to be
beneficial compared to Deep Sets and PMA. In terms of encoder type, we noticed that, in some cases,
for a fixed architecture, SAB tends to model the distribution better than MLPs.

Figure 3: Additional results for the ablation study on the importance of Wasserstein aggregator
for hypergraph representation learning Cora_CA and ModelNet datasets. FPSWE denotes the
Wasserstein aggregator with fixed reference while LPSWE denotes the Wasserstein aggergator
with learnable reference distribution. Regardless of the encoder used to project the nodes and
hyperedges, the Wasserstein aggregators outperform both the Deep Sets and PMA commonly used
inside hypergraph models.

Table 3: Numerical results for the ablation study comparing DeepSet, PMA and our Wasserstein
aggregator with fixed (FPSWE) or learnable (LPSWE) references.

Model MLP encoder SAB encoder
Citeseer NTU Cora_ca ModelNet Citeseer NTU Cora_ca ModelNet

DeepSet 70.14 ± 0.69 88.75 ± 1.88 77.81 ± 2.03 97.43 ± 0.29 70.10 ± 0.57 88.15 ± 1.32 78.17 ± 1.02 96.45 ± 0.42
PMA 71.45 ± 0.48 87.87 ± 1.79 80.23 ± 0.81 98.14 ± 0.26 71.33 ± 0.86 87.67 ± 1.53 80.08 ± 1.35 96.81 ± 0.33
FPSWE 74.20 ± 0.66 89.74 ± 1.65 82.39 ± 1.27 98.04 ± 0.32 73.60 ± 0.99 89.62 ± 1.61 84.07 ± 1.23 97.91 ± 0.24
LPSWE 73.45 ± 0.81 89.98 ± 1.62 83.75 ± 1.74 98.20 ± 0.27 74.15 ± 0.99 89.94 ± 1.59 83.93 ± 1.68 98.27 ± 0.31

Influence of the reference distribution and the number of samples. For our nodes and hyperedge
embeddings, the reference distribution only acts as a common anchor, similar to the origin in
an Euclidean space. On its own, each set embedding (node/hyperedge representation) contains
information about how different the underlying distribution is compared to the same reference
distribution. However, when computing the relative distance between two sets (two nodes, two
hyperedges), the reference distribution cancels out, and we obtain information about how one
hyperedge can be transformed into another (regardless of the shape and characteristics of the reference
distribution). Because of that, we expect the choice of reference distribution to have minimal impact
on the performance, mostly attributed to numerical stability.

To validate this, we design a series of experiments in which we modify the shape of the reference
distribution and the number of samples used to represent it.
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Table 4: Ablation study comparing performance when varying the type of reference distributions
and the number of points sampled from them. Since the reference distribution serves only as a
shared anchor for all sets, it has little impact on final accuracy. The empirical results on three datasets
confirm this intuition.

(a) Ablation study on Citeseer dataset.

Distr. 2 ref 5 ref 10 ref 25 ref 50 ref

Uniform 74.55 ± 1.68 74.88 ± 1.59 74.72 ± 1.63 74.69 ± 1.77 74.84 ± 1.73
Normal 74.51 ± 1.73 74.83 ± 1.61 74.71 ± 1.65 74.71 ± 1.79 74.81 ± 1.72
Poisson 74.63 ± 1.54 74.81 ± 1.53 74.70 ± 1.66 74.66 ± 1.79 74.83 ± 1.73
Learnable 74.62 ± 1.55 74.60 ± 1.41 74.85 ± 1.54 74.68 ± 1.75 74.85 ± 1.69

(b) Ablation study on Cora_CA dataset

Distr. 2 ref 5 ref 10 ref 25 ref 50 ref

Uniform 84.38 ± 1.51 84.74 ± 1.60 84.63 ± 1.63 84.56 ± 1.71 85.03 ± 1.82
Normal 84.19 ± 1.79 84.69 ± 1.57 84.53 ± 1.65 84.50 ± 1.80 84.75 ± 1.79
Poisson 84.12 ± 1.80 84.51 ± 1.61 84.63 ± 1.66 84.49 ± 1.73 84.70 ± 1.71
Learnable 84.29±1.94 84.51 ± 1.49 84.50 ± 1.35 84.62 ± 1.63 84.62 ± 1.75

(c) Ablation study on NTU dataset.

Distr. 2 ref 5 ref 10 ref 25 ref 50 ref

Uniform 90.19 ± 1.38 90.21 ± 1.60 90.67 ± 1.17 90.47 ± 1.31 90.80 ± 1.21
Normal 90.18 ± 1.37 90.07 ± 1.57 90.59 ± 1.50 91.01 ± 1.46 90.41 ± 1.47
Poisson 90.19 ± 1.38 90.25 ± 1.61 90.50 ± 1.49 90.39 ± 1.02 90.41 ± 1.87
Learnable 90.51 ± 1.39 90.50 ± 1.38 90.52 ± 1.26 90.62 ± 1.37 90.58 ± 1.06

In the first experiment, we pick the reference distribution to be either uniform, Gaussian, Poisson or a
learned distribution. For the learnable distribution, we consider the samples from the distribution to
be learnable parameters.

The results in Table 4 suggest that the choice of distribution has little effect, with only slight
variations observed in the NTU datasets and for the learnable distribution, differences likely due to
computational stability issues.

In the second set of experiments, we run the same setup as before, but modify the number of sampled
points from the reference distribution. If all sets have the same cardinality, the standard approach
is to select a number of reference points equal to this cardinality (thus avoiding the need for linear
interpolation). However, this is not possible in the hypergraph domain, where hyperedges tend to
have various cardinalities. Thus, we expect the model to perform well as long as we pick the number
of reference points to be comparable to most of the cardinalities. The experiments in Table 4 show a
small drop in performance for very few reference points (when M = 2 for Citeeser and Cora_CA
datasets, and M ∈ {2, 5} for NTU), with comparable performance otherwise.

Experiments on additional datasets. In the main paper, we tested our model on seven benchmarks
usually used in the hypergraph literature. Here we provide additional results on three more datasets,
Senate, Congress [21] and House [22]. Compared to the previous ones, for these datasets, the nodes
are not equipped with features, so we adopt the usual setup in which synthetic features are generated
using Gaussian noise [9]. However, this limitation of the benchmarks makes it harder to interpret or
understand the input space we want to model.

The results in Table 5 show a consistent trend with the other benchmarks: even when the feature
space is synthetically generated, the Wasserstein aggregator enhances the representations and yields
improved performance.
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Table 5: Performance comparison on Congress, Senate, and House datasets. The WHNN model,
which improves the message passing hypergraph architecture with a Wasserstein aggregator, leads to
better results, clearly overcoming the DeepSet-based models.

Model Congress Senate House

HCHA 90.43 ± 1.20 48.62 ± 4.41 61.36 ± 2.53
HNHN 53.35 ± 1.45 50.93 ± 6.33 67.80 ± 2.59
HyperGCN 55.12 ± 1.96 42.45 ± 3.67 48.32 ± 2.93
HyperGNN 91.26 ± 1.15 48.59 ± 4.52 61.39 ± 2.96
AllDeepSets 91.80 ± 1.53 48.17 ± 5.67 67.82 ± 2.40
AllSetTransformer 92.16 ± 1.05 51.83 ± 5.22 69.33 ± 2.20
UniGCNII 94.81 ± 0.81 49.30 ± 4.25 67.25 ± 2.57
ED-HNN 95.00 ± 0.99 64.79 ± 5.14 72.45 ± 2.28

WHNN (ours) 95.67 ± 0.90 67.04 ± 4.80 72.66 ± 1.26

C Background

C.1 Hypergraph Representation Learning

A hypergraph is a tuple H = (V,E) where V = {v1, v2 . . . vN} is a set of nodes, and E =
{e1, e2 . . . eM} is a set of hyperedges. Different from the graph structure, where each edge contains
exactly two nodes, in a hypergraph, each hyperedge contains a set of nodes, which can vary in
cardinality. Each node vi is characterised by a feature vector xi ∈ Rd. We denote by neighbourhood
of hyperedge ei the set of nodes that are part of that hyperedge {vj |vj ∈ ei}. Similarly, the
neighbourhood of a node vi is the set of all hyperedges containing that node Nvi = {ej |vi ∈ ej}.
Several architectures were developed for hypergraph-structured input [15, 9, 24, 8]. However, the
most general pipeline follows a two-stage framework, inspired by the bipartite representation of the
hypergraphs. First, the information is sent from nodes to the hyperedges using a permutation-invariant
operator zj = fV→E({xi|vi ∈ ej}). Secondly, the messages are sent back from hyperedge to nodes
x̃i = fE→V ({zj |vi ∈ ej}).
While aggregators like Deep Sets [12] were theoretically capable of approximating any permutation-
invariant function on sets, they rely on the initial encoder (such as MLPs) to reshape the feature space
in a way in which the sum pooling does not lose important information. In other words, it moves
the complexity of the representation from the pooling to the initial encoding. This is in line with the
empirical results shown in [25] where, in order to preserve good performance, mean pooling requires
more complex encoders compared to more sophisticated pooling methods.

In this work, we are following the standard two-stage framework. Compared to existing methods, we
take advantage of the success demonstrated by Sliced Wasserstein Pooling in capturing and retaining
the geometric structure of sets and propose the first hypergraph model that uses optimal transport
techniques to perform the node and hyperedge aggregation.

C.2 Sliced Wasserstein Pooling (SWP)

To ensure the method’s readability, this section introduces all the key concepts underlying our
Wasserstein Hypergraph Neural Network. First, we will define the 2-Wasserstein metric, approximate
it using the tractable Sliced-Wasserstein distance and finally present the algorithm to compute the
SWP used as an aggregator in our model.

Definition 1. The 2-Wasserstein distance between two distributions pi and pj over Rd is defined as:

W2(pi, pj) =
(

inf
γ∈Γ(pi,pj)

∫
Rn×Rn

||x− y||2dγ(x, y)
) 1

2

, (1)

where Γ(pi, pj) represent the collection of all the transport plans with marginals pi and pj .

In simpler terms, the 2-Wasserstein distance quantifies the cost of transforming one distribution into
another.
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Figure 4: Diagram showing how different geometric arrangements of node embeddings correspond
to distributions with varying shapes and spreads.

Unfortunately, computing the infimum over all possible transport maps is generally untractable.
However, in the one-dimensional case (when d = 1) ), a closed-form solution exists that avoids
expensive optimisation. Specifically, when pi and pj are probability distributions over R, the 2-

Wasserstein distance is given byW2(pi, pj) =
( ∫ 1

0
|F−1

pi
(t)− F−1

pj
(t)|2dt

) 1
2

, where F−1
pi

and F−1
pj

denote the inverse cumulative distribution functions of pi and pj . A key practical benefit of this
formulation is that this inner integral can be empirically estimated using a discrete sum over sorted
samples from the distribution.

Building on this observation, Sliced Wasserstein distance [26] was introduced to approximate the
Wasserstein distance, by projecting the high-dimensional probabilities into 1D lines using all possible
directions on the unit sphere.

Definition 2. The Sliced Wasserstein distance between two distributions pi and pj over Rd is
defined as:

SW2(pi, pj) =
(∫

Sd−1

W2(Pθpi, Pθpj)dθ
) 1

2 ≈
( 1

L

L∑
l=1

W2(Pθlpi, Pθlpj)︸ ︷︷ ︸
1D Wasserstein distance

) 1
2

, (2)

where Sd−1 is the unit sphere in Rd, Pθpi represent the projection (pushforward) of pi onto the
line direction θ and {θl}Ll=1 represents the set of L directions used to empirically approximate the
expectation.

To avoid the computational cost of calculating distances between every pair of probability distributions,
the Sliced Wasserstein embedding [14] was introduced. It maps a probability distributions pi to a
vector ϕ(pi) in such a way that the Euclidean distance between the vectors (which is inexpensive to
compute) approximates the Sliced Wasserstein distance between the original distributions ||ϕ(pi)−
ϕ(pj)||2 ≈ SW2(pi, pj). In other words, it provides a vectorial representation that captures the
geometric structure of distributions, preserving information about how costly it is to transform one
distribution into another. This geometric encoding reflects characteristics such as shape, spread,
and density. This proves useful in our context, as it allows us to quantify the cost of transforming
one hyperedge into another, a measure we argue effectively captures the similarity between group
interactions (hyperedges). Figure 4 illustrates how different node features exhibit distinct underlying
distribution types.

Since our nodes and hyperedges are sets rather than distributions, we use a variant of this embedding
called Sliced Wasserstein Pooling [14], which is designed not as an embedding of probability
distributions themselves, but rather as an embedding of sets sampled from those distributions. In
short, Sliced Wasserstein Pooling encodes a set of points by measuring, in an efficient way, how
different they are positioned compared to a set of reference points. The complete algorithm as used
in our model is described in the main paper.
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D Related Work

Hypergraph representation learning. Hypergraphs represent a versatile structure for modelling
group-wise interactions, which allows us to capture interactions between various numbers of elements.
This flexibility, combined with the widespread presence of higher-order interactions in real-world
scenarios, has led to a growing interest in developing machine learning architectures for modelling
hypergraph data. Some methods [15, 27] reduce the hypergraph to a clique-expansion graph that
can be further processed with standard graph neural networks. A more popular approach is based
on a two-stage framework [8, 10], which sends the information from node to hyperedges and then
from hyperedges back to nodes. Depending on how these stages are instantiated, several architectures
emerged. HCHA and HERALD [16, 28] use an attention mechanism to combine the information.
AllDeepSets [8] uses Deep Set model, while AllSetTransformer [8] uses a PMA-like [13] pooling.

In all of these methods, the information sent from the node is independent of the target hyperedge.
Recently, models that create edge-dependent node representations have gained traction. ED-HNN [9]
uses as messages a concatenation of node and hyperedge information, while MultiSetMixer [29] uses
MLP-Mixer [30] to combine the information. Similar to our node encoder, CoNHD[31] incorporates
pairwise propagation at the hyperedge-level using self-attention blocks (SAB [13]) to create edge-
dependent representations. However, similar to [32], the model is only tested on hyperedge-dependent
node classification tasks, where each node is assigned multiple labels corresponding to the number of
hyperedges it participates in. A complementary line of work [33] represents uniform hypergraphs as
high-dimensional tensors and applies tensorial operators to propagate the information.

In contrast, we are interpreting the hyperedges as samples from a set of probability distributions,
and use Sliced Wasserstein Pooling to aggregate the information such that we preserve geometric
information. In terms of node encoders, we are experimenting with both edge-dependent and
edge-independent modules.

Set representation learning. The core operation in set representation learning is the permutation-
invariant operator that aggregates the information without imposing an order among elements. Popular
examples of such operators include summation, mean or maximum. More recently, a learnable version
of permutation-invariant poolings was introduced. Among these, Deep Sets [12] uses element-wise
encoding of the elements followed by summation and is proven to be a universal approximator for
permutation-invariant functions. Janossy Pooling [34] extends this model by explicitly aggregating
pairs of elements. On the other hand, Set Transformer [13] and [35] use an anchor set as a reference
and compute the similarity against this set as a representation, while FSPool [36] sorts the elements
feature-wise to create a canonical order. Recently, [25] shows empirically that combining an
equivariant backbone with an invariant pooling layer creates powerful set representation learning.
Inspired by optimal transport literature, Sliced Wasserstein Pooling was introduced in [14] as a
geometrically-interpretable set representation technique.

Wasserstein embeddings. In recent years, Wasserstein distance has attracted significant attention in
deep learning, demonstrating success in areas such as generative modeling [37, 38], natural language
processing [39] and point cloud processing [40]. In graph representation learning, Wasserstein
distance was used to define a similarity kernel between pairs of graphs [41]. While recognised as
a powerful tool, computing this distance for each pair of compared graphs is extremely inefficient.
More recent works [42, 43, 44] try to reduce this cost by introducing Wasserstein embeddings. The
purpose of a Wasserstein embedding is to infer a vector representation such that the L2 distance in
the vector space approximates the Wasserstein distance in the input space. Particularly important for
us is the work of [14] which produces set representations using efficient Wasserstein embeddings.

To more effectively capture the internal structure of node and hyperedge neighbourhoods, we employ
Sliced Wasserstein Pooling as the aggregation operator in hypergraph message passing, demonstrating
its advantages for hypergraph representation learning.

E Implementation details

The results reported in Table 2 of the main paper are obtained using random hyperparameter tuning.
We report here the range of parameters that we searched for. Table 6 and Table 7 contain the best
hyperparameter configuration for the WHNN_MLP model and WHNN_SAB. We depict in bold
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the parameters specific to the Wasserstein aggregator, in italic the parameters specific to the SAB
encoder, while the rest of them are the standard parameters used in the two-stage hypergraph models.
In our experiment, we search for the following hyperparameters:

• num_ref: number of elements sampled from the reference distribution {5, 10, 25, 50}
• learnable_W: choose between learning or not the reference distribution {True,False}
• heads: number of heads used by the SAB block {1, 2, 4}
• MLP_layers: number of layers in all MLPs used {0, 1, 2}
• MLP_hid: number of hidden units in all MLPs used. This is also the number of slices used

by Wasserstein aggregator. {128, 256, 512}
• MLP2_layers: using or not an additional linear projection after the residual connection of

each stage {0, 1}
• Cls_layers: number of layers in the final classifier MLP {1, 2}
• Cls_hid: number of hidden units in the final classifier MLP {96, 128, 256}
• self_loops: using or not self loops {True,False}
• dropout: dropout used inside the model {0.5, 0.6, 0.7}
• in_dropout: dropout used in the begining of the model {0.2, 0.5, 0.6, 0.7}
• fixed hyperparameters: All models use 1 layer of WHNN, LayerNorm normalisation, the

residual coefficient α fixed to 0.5, and they are trained for 500 epochs with a learning rate
of 0.001.

Table 6: The best configuration of hyperparameters used by our model WHNN_MLP on all tested
datasets. We mark with bold the parameters that are specific to the Wasserstein aggregator.

Parameter Cora Citeseer Cora_CA DBLP_CA ModelNet40 NTU2012 20News

num_ref 25 10 25 5 50 25 25
learnable_W True False True True False False False
MLP_layers 1 2 2 2 1 1 0
MLP2_layers 0 0 1 0 0 1 0
MLP_hid 128 256 256 512 256 512 512
Cls_layers 1 1 1 2 2 2 2
Cls_hid 256 128 96 96 96 96 96
self_loops True True True True True False False
dropout 0.7 0.5 0.6 0.7 0.5 0.5 0.5
in_dropout 0.7 0.5 0.6 0.7 0.2 0.2 0.2

Table 7: The best configuration of hyperparameters used by our model WHNN_SAB on all tested
datasets. We mark with bold the parameters that are specific to the Wasserstein aggregator and with
italic the parameters that are specific to the SAB encoder.

Parameter Cora Citeseer Cora_CA DBLP_CA ModelNet40 NTU2012 20News

num_ref 10 5 50 5 25 25 5
learnable_W True False False False False False True
heads 2 4 1 4 1 2 2
MLP_layers 2 2 2 1 1 2 2
MLP2_layers 0 0 1 1 0 0 0
MLP_hid 128 256 128 256 256 512 512
Cls_layers 1 1 1 2 2 2 2
Cls_hid 128 256 128 96 96 96 96
self_loops True False True True True True False
dropout 0.7 0.7 0.5 0.7 0.5 0.5 0.5
in_dropout 0.7 0.7 0.5 0.7 0.2 0.2 0.2
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F Computational complexity

In this section, we first derive the theoretical complexity for both versions of our Wasserstein
Hypergraph Neural Network: using the edge-independent encoder (WHNN_MPN) and using the
edge-dependent encoder (WHNN_SAB).

For the theoretical analysis, we present the complexity for a hypergraph with N nodes, M hyperedges,
the maximum cardinality of a hyperedge Ke, the maximum number of hyperedges a node is part of
Kv and R number of reference points sampled from the reference distribution.

Regarding the encoders, the edge-independent one (MLP) has a complexity of O(N) while the
edge-dependent one (SAB) has complexity O(M ×K2) due to the pairwise exchange of messages
(K2) inside each hyperedge (M ).

For the Wasserstein aggregator, the complexity for the nodes to hyperedges stage consists of the
complexity of the linear interpolation applied for each hyperedge to obtain R points from the set of
Ke points representing the hyperedge. After that, all we need to do is an elementwise difference
between the interpolated points and the reference points. To sort each hyperedge, the complexity is
O(KelogKe), and the complexity for interpolating on each sorted hyperedge is (R× logKe) for a
total of M × (R× logKe +KelogKe). Similarly, for the hyperedge to node stage, the complexity is
N × (R× logKv +KvlogKv).

For comparison, the complexity of a Deep Set pooling is O(M ×Ke +N ×Kv)
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: To our knowledge, this is the first paper that uses Sliced Wasserstein Pooling
as an aggregator inside hypergraph neural networks, and our experiments demonstrate its
effectiveness.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalise to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We included a section on Limitations and Future Work on the Supplementary
Material.
Guidelines:

• The answer NA means that the paper has no limitation, while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or when images are taken in low lighting. Or a speech-to-text system might not
be used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognise that individual actions in favour of transparency play an
important role in developing norms that preserve the integrity of the community.
Reviewers will be specifically instructed not to penalise honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA] .
Justification: The paper does not contain theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We did our best to include all the necessary information needed to reproduce
the results, including hyperparameters used in the experiments. We also plan to publicly
release the code upon acceptance.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We plan to release the code upon acceptance. The workshop platform does not
provide an option to include the code.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes] ,
Justification: We included the implementation details in the main paper and hyperparameters
used in the Supp material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Experiments were run with multiple runs and std is reported in the Table.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We reported in the paper the GPU used to run all the experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our work respects the NeurIPS Code of Ethics

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The paper is performing fundamental research and thus it has no direct societal
impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: No risk associated.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We will mention them in the ReadMe of the code repositories used to create
the code.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: No new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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