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Abstract

We consider online prediction of a binary sequence with expert advice. For this
setting, we devise label-efficient forecasting algorithms, which use a selective
sampling scheme that enables collecting much fewer labels than standard proce-
dures. For the general case without a perfect expert, we prove best-of-both-worlds
guarantees, demonstrating that the proposed forecasting algorithm always queries
sufficiently many labels in the worst case to obtain optimal regret guarantees, while
simultaneously querying much fewer labels in more benign settings. Specifically,
for a scenario where one expert is strictly better than the others in expectation, we
show that the label complexity of the label-efficient forecaster is roughly upper-
bounded by the square root of the number of rounds. Finally, we present numerical
experiments empirically showing that the normalized regret of the label-efficient
forecaster can asymptotically match known minimax rates for pool-based active
learning, suggesting it can optimally adapt to benign settings.

1 Introduction

This paper considers online prediction with expert advice in settings where collecting feedback might
be costly or undesirable. In the classical framework of sequence prediction with expert advice, a
forecasting algorithm aims to sequentially predict a stream of labels on the basis of predictions issued
by a number of experts (see, for instance, [1, 2, 3] and references therein). Typically, the forecaster
receives the correct label after making a prediction, and uses that feedback to update its prediction
strategy. There are, however, situations where collecting labels is costly and potentially unnecessary.
In the context of online prediction, this naturally leads to the notion of selective sampling strategies,
also called label-efficient prediction [4, 5, 6, 7, 8, 9]. In this line of work, there is a natural tension
between performance (in terms of regret bounds) and label complexity, i.e., the number of labels
collected. For a worst-case scenario, the optimal label-efficient strategy amounts to “flipping a coin”
to decide whether or not to collect feedback, irrespective of past actions and performance [5]. Indeed,
in the worst case, the number of labels that one has to collect is linear in the number of rounds for any
algorithm [10]. This is a rather pessimistic perspective, and can miss the opportunity to reduce label
complexity when prediction is easy. With this in mind, the adaptive selective sampling algorithms we
develop follow naturally from a simple design principle: optimize the label collection probability at
any time while preserving worst-case regret guarantees. This principled perspective leads to a general
way to devise simple but rather powerful algorithms. These are endowed with optimal worst-case
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performance guarantees, while allowing the forecaster to naturally adapt to benign scenarios and
collect much fewer labels than standard (non-selective sampling) algorithms.

From a statistical perspective, the scenario above is closely related to the paradigm of active learning
[11, 12, 13, 14, 15, 16]. For instance, in pool-based active learning, the learner has access to a large
pool of unlabeled examples, and can sequentially request labels from selected examples. This extra
flexibility, when used wisely, can enable learning a good prediction rule with much fewer labeled
examples than what is needed in a passive learning setting, where labeled examples are uniformly
sampled from the pool in an unguided way [17, 14, 15, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27]. Our
work is partly motivated by such active learning frameworks, with the aim of devising a simple and
adaptive methodology that does not rely on intricate modeling assumptions.

The main contributions of this paper are novel label-efficient exponentially weighted forecasting
algorithms, which optimally decide whether or not to collect feedback. The proposed approach
confirms, in a sound way, the intuition that collecting labels is more beneficial whenever there is a
lack of consensus among the (weighted) experts. The proposed algorithms are designed to ensure
that, in adversarial settings, they retain the known worst-case regret guarantees for full-information
forecasters (i.e., forecasters that collect all labels) while providing enough flexibility to attain low label
complexity in benign scenarios. To characterize the label complexity of the label-efficient forecaster,
we focus on a scenario where the expected loss difference between the best expert and all other experts
for all n rounds is lower-bounded by ∆, and show that the label complexity is roughly

√
n/∆2,

ignoring logarithmic factors. This shows that the label-efficient forecaster achieves the “best of both
worlds”: it smoothly interpolates between the worst case, where no method can have optimal regret
with less than O(n) queries, and the benign, stochastic case, where it is sufficient to make O(

√
n)

queries. Finally, to further examine the performance of the label-efficient forecaster, we conduct a
simulation study. We find that the performance of the label-efficient forecaster is comparable to its
full-information counterpart, while collecting significantly fewer labels. Intriguingly, for a threshold
prediction setting studied in [14], the numerical results indicate that the label-efficient forecaster
optimally adapts to the underlying prediction problem, so that its normalized regret displays the same
asymptotic behavior as known minimax rates for active learning.

Before formally introducing our setting, we discuss additional related work. Selective sampling
for online learning was studied by [4, 5, 28], with a focus on probabilistic threshold functions and
margin-based sampling strategies. Similarly, [8] consider kernel-based linear classifiers, and base
their sampling procedure on the estimated margin of the classifier. For the same setting as we consider,
[29, 30] propose a selective sampling approach based on the maximum (unweighted) prediction
disagreement among the experts, and numerically demonstrate its merits. Finally, results in a similar
spirit to ours have recently been established in different settings. Namely, for a strongly convex loss,
[9] devised an algorithm for selective sampling with expert advice, which provably retains worst-case
regret guarantees, where the sampling strategy is based on the variance of the forecaster’s prediction.
[31] study a setting with shifting hidden domains, and establish a tradeoff between regret and label
complexity in terms of properties of these domains. For a setting where the hypothesis class has
bounded VC dimension and the data satisfies a Tsybakov noise condition, [32] devise a sampling
strategy, with bounds on the regret and label complexity, based on a notion of disagreement where
hypotheses are discarded based on their discrepancy relative to the empirical risk minimizer.

2 Setting

Throughout, we focus on a binary prediction task with the zero-one loss as a performance metric.
We refer to yt as the outcome at time t ∈ [n] := {1, . . . , n}. No assumptions are made on this
sequence, which can potentially be created in an adversarial way. To aid in the prediction task, the
forecaster has access to the predictions of N experts. The prediction of the forecaster at time t can
only be a function of the expert predictions (up to time t) and the observed outcomes up to time t− 1.
Furthermore, the algorithm can make use of internal randomization.

Formally, let fi,t ∈ {0, 1}, with i ∈ [N ] := {1, . . . , N} and t ∈ [n], denote the advice of the experts.
At every time t ∈ [n], the forecasting algorithm must: (i) output a prediction ŷt of yt; (ii) decide
whether or not to observe yt. Specifically, for each round t ∈ [n]:

• The environment chooses the outcome yt and the expert advice {fi,t}Ni=1. Only the expert
advice is revealed to the forecaster.
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• The forecaster outputs a (possibly randomized) prediction ŷt, based on all of the information
that it has observed so far.

• The forecaster decides whether or not to have yt revealed. We let Zt be the indicator of that
decision, where Zt = 1 if yt is revealed and Zt = 0 otherwise.

• A loss ℓ(ŷt, yt) := 1 {ŷt ̸= yt} is incurred by the forecaster and a loss ℓi,t := ℓ(fi,t, yt) is
incurred by expert i, regardless of the value of Zt.

Our goal is to devise a forecaster that observes as few labels as possible, while achieving low regret
with respect to any specific expert. Regret with respect to the best expert at time n is defined as

Rn := Ln − min
i∈[N ]

Li,n ,

where Ln :=
∑n

t=1 ℓ(ŷt, yt) and Li,n :=
∑n

t=1 ℓ(fi,t, yt). Note that the regret Rn is, in general, a
random quantity. In this work, we focus mainly on the expected regret E[Rn].

Clearly, when no restrictions are imposed on the number of labels collected, the optimal approach
would be to always observe the outcomes (i.e., take Zt = 1 for all t ∈ [n]). This is optimal in a
worst-case sense, but there are situations where one can predict as efficiently while collecting much
fewer labels. The main goal of this paper is the development and analysis of methods that are able to
capitalize on such situations, while still being endowed with optimal worst-case guarantees.

2.1 Exponentially weighted forecasters

All proposed algorithms in this paper are variations of exponentially weighted forecasters [2]. For
each time t ∈ [n], such algorithms assign a weight wi,t ≥ 0 to the ith expert. The forecast prediction
at time t and decision whether to observe the outcome or not are randomized, and based exclusively on
the expert weights and the expert predictions at that time. Therefore, ŷt ∼ Ber(pt) and Zt ∼ Ber(qt)
are conditionally independent Bernoulli random variables given pt and qt. Here, pt and qt depend on
the past only via the weights {wi,j−1}i∈[N ],j∈[t] and the current expert predictions {fi,t}i∈[N ]. The
exact specifications of pt and qt depend on the setting and assumptions under consideration.

After a prediction has been made, the weights for all experts are updated using the exponential
weights update based on the importance-weighted losses ℓi,tZt/qt. Specifically,

wi,t = wi,t−1 e
−η

ℓi,tZt
qt , (1)

where η > 0 is the learning rate. To ensure that the definition in (1) is sound for any qt ≥ 0, we
set wi,t = wi,t−1 if qt = 0. Finally, we define the weighted average of experts predicting label 1 at
time t as

A1,t :=

∑N
i=1 wi,t−1fi,t∑N
i=1 wi,t−1

. (2)

This quantity plays a crucial role in our sampling strategy. We will use the name exponentially
weighted forecaster liberally to refer to any forecaster for which pt is a function of A1,t. Throughout,
we assume that the weights for all forecasters are uniformly initialized as wi,0 = 1/N for i ∈ [N ].

3 Regret bounds with a perfect expert

In this section, we consider a very optimistic scenario where one expert is perfect, in the sense that
it does not make any mistakes. The results and derivation for this setting are didactic, and pave
the way for more general scenarios where this assumption is dropped. We say that the ith expert is
perfect if ℓi,t = 0 for all t ∈ [n]. The existence of such an expert implies that mini∈[N ] Li,n = 0.
Therefore, the regret of a forecaster is simply the number of errors it makes, that is, Rn = Ln. In
such a scenario, any reasonable algorithm should immediately discard experts as soon as they make
even a single mistake. For an exponentially weighted forecaster, this is equivalent to setting η = ∞.
Due to the uniform weight initialization, the scaled weight vector N · (w1,t, . . . , wN,t) is thus binary,
and indicates which experts agree with all the observed outcomes up to time t.

First, consider a scenario where the forecaster always collects feedback, that is, qt = 1 for all t ∈ [n].
A natural forecasting strategy at time t is to follow the majority, that is, to predict according to the
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majority of the experts that have not made a mistake so far. When the forecaster predicts the wrong
label, this implies that at least half of the experts still under consideration are not perfect. Since the
number of experts under consideration is at least halved for each mistake the forecaster incurs, this
strategy is guaranteed to make at most log2 N mistakes. Therefore, we have

Rn = Ln ≤ log2 N . (3)

Clearly, this implies the following bound on the expected cumulative loss, and thus the regret:

L̄(N)
n := E[Ln] ≤ log2 N . (4)

Here, the superscript (N) explicitly denotes the dependence on the number of experts. This bound is
tight when the minority is always right and nearly equal in size to the majority.

A natural question to ask is if there exists an algorithm that achieves the expected cumulative loss
bound (4) while not necessarily collecting all labels. This is, in fact, possible. The most naive
approach is to not collect a label if all experts still under consideration agree on their prediction, as in
that case, they must all be correct due to the existence of a perfect expert. However, a more refined
strategy that can collect fewer labels is possible, leading to the following theorem.
Theorem 1. Consider the exponentially weighted follow-the-majority forecaster with η = ∞.
Specifically, let pt = 1 {A1,t ≥ 1/2}, so that ŷt = 1 {A1,t ≥ 1/2}. Furthermore, let

qt =

{
0 if A1,t ∈ {0, 1},
− 1

log2 min(A1,t,1−A1,t)
otherwise.

For this forecaster, we have
L̄(N)
n ≤ log2 N .

Recall that A1,t is simply the proportion of experts still under consideration that predict yt = 1. It is
insightful to look at the expression for qt, as it is somewhat intuitive. The bigger the disagreement
between the experts’ predictions, the higher the probability that we collect a label. Conversely,
when A1,t approaches either 0 or 1, qt quickly approaches zero, meaning we rarely collect a label.
Theorem 1 tells us that, remarkably, we can achieve the same worst-case bound as the full-information
forecaster while sometimes collecting much less feedback. The proof of this result, in Appendix A,
uses a clean induction argument that constructively gives rise to the expression for qt. This principled
way of reasoning identifies, in a sense, the best way to assess disagreement between experts: the
specified qt is the lowest possible sampling probability that preserves worst-case regret guarantees.

A slightly better regret bound is possible by using a variation of follow the majority, called the
boosted majority of leaders. For this algorithm, the upper bound is endowed with a matching lower
bound (including constant factors). In Appendix B, we devise a label-efficient version of the boosted
majority of leaders, retaining the same worst-case regret bound as its full-information counterpart.

4 General regret bounds without a perfect expert

In this section, we drop the assumption of the existence of a perfect expert. It is therefore no longer
sensible to use an infinite learning rate η, since this would discard very good experts based on
their first observed error. We consider the general exponentially weighted forecaster described in
Section 2.1, now simply with pt = A1,t.

For the scenario where qt = 1 for all t, a classical regret bound is well-known (see, for instance, [3,
Thm 2.2]). Specifically, for the general exponentially weighted forecaster, with pt = A1,t, qt = 1,
and uniform weight initialization, we have

R̄n := E[Rn] = E
[
Ln − min

i∈[N ]
Li,n

]
≤ lnN

η
+

nη

8
. (5)

In Theorem 2 below, we prove a stronger version of (5) that allows for an adaptive label-collection
procedure. As before, we focus on the expected regret, R̄n = E[Rn]. As done in Section 3 for the
case of a perfect expert, we identify an expression for qt, which is not necessarily identically 1, but
still ensures the bound in (5) is valid. To state our main result, we need the following definition,
which is guaranteed to be sound by Lemma 1.
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Figure 1: The function q∗(x, η) for various values of η. Panel (b) is a zoomed version of panel (a).

Definition 1. For x ∈ [0, 1] and η > 0, define

q∗(x, η) = inf

{
q ∈ (0, 1] : x+

q

η
ln

(
1− x+ xe−η/q

)
≤ η

8
, (6)

1− x+
q

η
ln

(
x+ (1− x)e−η/q

)
≤ η

8

}
.

In the following theorem, we present the label-efficient version of (5).
Theorem 2. Consider an exponentially weighted forecaster with pt = A1,t and

qt ≥ q∗(A1,t, η) := q∗t .

For this forecaster, we have

R̄n = E
[
Ln − min

i∈[N ]
Li,n

]
≤ lnN

η
+

nη

8
. (7)

The proof, which is deferred to Appendix C, is similar to that used for Theorem 1, but with key
modifications to account for the lack of a perfect expert. In particular, we need to account for the
finite, importance-weighted weight updates, and carefully select q∗t accordingly. While the proof
allows for non-uniform weight initializations, we focus on the uniform case, as this enables us to
optimally tune the learning rate. The result for general weight initializations is given in Appendix C.

Theorem 2 shows that the proposed label-efficient forecaster satisfies the same expected regret bound
as the exponentially weighted forecaster with qt := 1. While the expression for q∗(x, η) in (6) is
somewhat opaque, the underlying motivation is constructive, and it arises naturally in the proof of the
theorem. In fact, q∗t is the smallest possible label-collection probability ensuring the regret bound (7).
One may wonder if q∗t is well defined, as it is the infimum of a set that may be empty. However, as
shown in the following lemma, this set always contains the point 1, ensuring that q∗t ≤ 1.
Lemma 1. For all η > 0 and x ∈ [0, 1], we have

1 ∈
{
q ∈ (0, 1] : x+

q

η
ln
(
1− x+ xe−η/q

)
≤ η

8

}
.

The proof is presented in Appendix D, and is essentially a consequence of Hoeffding’s inequality.
While q∗(x, η) does not admit an analytic solution, its behavior as a function of x, depicted in
Figure 1, is rather intuitive. Since η =

√
8(lnN)/n minimizes the regret bound (7), we are primarily

interested in small values of η. When the learning rate η is not too large, the behavior of q∗t can be
interpreted as follows: the larger the (weighted) disagreement of the experts is, the closer the value of
A1,t is to the point 1/2. In this case, q∗t will be close to 1, and we collect a label with high probability.
When A1,t is close to 0 or 1, the (weighted) experts essentially agree, so the probability of collecting
a label will be small. For large learning rates, the behavior of q∗t appears a bit strange, but note that
for η ≥ 8, the regret bound is vacuous. Thus, for this case, q∗(x, η) = 0 for all x ∈ [0, 1].

The regret guarantee in Theorem 2 is valid provided one uses any choice qt ≥ q∗t . The following
lemma provides both an asymptotic characterization of q∗t as η → 0, as well as a simple upper bound
that can be used for both analytical purposes and practical implementations.
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Lemma 2. For any x ∈ [0, 1], we have
lim
η→0

q∗(x, η) = 4x(1− x) .

Furthermore, for any η > 0 and x ∈ [0, 1],
q∗(x, η) ≤ min(4x(1− x) + η/3, 1) . (8)

The proof of this result is somewhat technical and tedious, and deferred to Appendix E. In the
remainder of this paper, we will use this upper bound extensively.

5 Label complexity

We now examine the label complexity, defined as Sn :=
∑n

t=1 Zt. In [10, Thm. 13], it is shown
that there exists a setting for which the expected regret of a forecaster that collects m labels is
lower-bounded by cn

√
ln(N − 1)/m for some constant c. Hence, in the worst case, the number

of collected labels needs to be linear in n in order to achieve an expected regret that scales at most
as

√
n. However, since q∗t can be less than 1, it is clear that the label-efficient exponentially weighted

forecaster from Theorem 2 can collect fewer than n labels in more benign settings. To this end,
we consider a scenario with a unique best expert, which at each round is separated from the rest
in terms of its expected loss. To state the condition precisely, we need to define Et = E[ · | Ft−1]
as the expectation at time t conditional on all possible randomness up to time t − 1, that is, for
Ft = σ({Zj , yj , f1,j , . . . , fN,j}j=1,...,t). With this, we assume that there is a unique expert i∗ ∈ [N ]
such that, for all i ̸= i∗ and t ∈ [n],

Et[ℓi,t − ℓi∗,t] ≥ ∆ > 0 almost surely.
The parameter ∆ characterizes the difficulty of the given learning problem. If ∆ is large, the best
expert significantly outperforms the others, and is thus easily discernible, whereas if ∆ is small, the
best expert is harder to identify. In particular, if the vectors (yt, f1,t, . . . , fN,t) are independent and
identically distributed over rounds t ∈ [n], ∆ is just the difference in expected loss between the best
and the second-best expert in a single round, which is a common measure of difficulty for stochastic
bandits [33, Thm. 2.1]. This difficulty measure has also been used in the context of prediction with
expert advice [34]. Similar stochastic assumptions are standard in (batch) active learning, and highly
relevant in practical settings (see [14, 15, 18, 21, 27] and references therein). Strictly speaking, our
result holds under a more general assumption, where the best expert emerges after a time τ∗ instead
of being apparent from the first round. This means that the best expert is even allowed to perform
the worst for some rounds, as long as it performs well in sufficiently many other rounds. While we
state and prove the result under this more general condition in Appendix F, we present the simpler
assumption here for clarity.

We now state our main result for the label complexity.
Theorem 3. Consider the label-efficient exponentially weighted forecaster from Theorem 2 with
qt = min(4A1,t(1−A1,t) + η/3, 1) and any η > 0. Suppose that there exists a single best expert
i∗ such that, for all i ̸= i∗ and all t ∈ [n],

Et[ℓi,t − ℓi∗,t] ≥ ∆ > 0 almost surely.
Then, for any n ≥ 4, the expected label complexity is at most

E[Sn] ≤
50

η∆2
ln

(N lnn

η

)
+ 3ηn+ 1 . (9)

Proof sketch. Initially, the sampling probability qt is large, but as we collect more labels, it will
become detectable that one of the experts is better than the others. As this happens, qt will tend to
decrease until it (nearly) reaches its minimum value η/3. We therefore divide the forecasting process
into time t ≤ τ and t > τ . With a suitable choice of τ ≈ 1/(η∆2) (up to logarithmic factors), we
can guarantee that the sampling probability is at most qt ≤ 4η/3 for all t > τ with sufficiently high
probability. This is shown by controlling the deviations of the cumulative importance-weighted loss
differences Λ̃i

t =
∑t

j=1(li,j − li∗,j)/qj for i ̸= i∗ from their expected values by using an anytime
version of Freedman’s inequality. With this, we simply upper bound the label complexity for the
first τ rounds by τ , and over the remaining rounds, the expected number of collected labels is roughly
η(n− τ) ≤ ηn. This leads to a total expected label complexity of 1/(η∆2) + ηn, up to logarithmic
factors. The full proof is deferred to Appendix F.
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As mentioned earlier, the learning rate optimizing the regret bound (7) is η =
√

8 ln(N)/n. For this
particular choice, the label complexity in (9) is roughly

√
n/∆2, up to constants and logarithmic

factors. We have thus established that the label-efficient forecaster achieves the best of both worlds:
it queries sufficiently many labels in the worst case to obtain optimal regret guarantees, while
simultaneously querying much fewer labels in more benign settings. It is interesting to note that
the label complexity dependence of 1/∆2 on ∆ is less benign than the dependence of the regret
bound from, e.g., [34, Thm. 11], which is 1/∆. The underlying reason for this is that, while the
two are similar, the label complexity is not directly comparable to the regret. In particular, the label
complexity has much higher variance.

The bound of Theorem 3 relies on setting the sampling probability qt to be the upper bound on q∗t
from Lemma 2. This bound is clearly loose when q∗t is approximately zero, and one may wonder if
the label complexity of the algorithm would be radically smaller when using a forecaster for which
qt = q∗t instead. With the choice η =

√
8 ln(N)/n, which optimizes the bound in (7), it seems

unlikely that the label complexity will substantially change, as numerical experiments suggest that
the label complexity attained with qt set as q∗t or the corresponding upper bound from (8) appear to
be within a constant factor. That being said, for larger values of η, the impact of using the upper
bound in (8) is likely much more dramatic.

6 Numerical experiments

To further assess the behavior of the label-efficient forecaster from Theorem 2, we consider a classical
active learning scenario in a batch setting, for which there are known minimax rates for the risk under
both active and passive learning paradigms. We will set the sampling probability to be

qt = min(4A1,t(1−A1,t) + η/3, 1) .

Let Dn = ((Xt, Yt))
n
t=1 be an ordered sequence of independent and identically distributed pairs of

random variables with joint distribution D. The first entry of (Xi, Yi) represents a feature, and the
second entry is the corresponding label. The goal is to predict the label Yi ∈ {0, 1} based on the
feature Xi. Specifically, we want to identify a map (x,Dn) 7→ ĝn(x,Dn) ∈ {0, 1} such that, for a
pair (X,Y ) ∼ D that is drawn independently from Dn, we have small (zero-one loss) expected risk

Risk(ĝn) := P(ĝn(X,Dn) ̸= Y ) .

Concretely, we consider the following scenario, inspired by the results in [14]. Let the features Xi be
uniformly distributed in [0, 1], and Yi ∈ {0, 1} be such that P(Yi = 1|Xi = x) = ζ(x). Specifically,
let τ0 ∈ [0, 1] such that ζ(x) ≥ 1/2 when x ≥ τ0 and ζ(x) ≤ 1/2 otherwise. Furthermore, assume
that for all x ∈ [0, 1], ζ(x) satisfies

c|x− τ0|κ−1 ≤ |ζ(x)− 1/2| ≤ C|x− τ0|κ−1 ,

for some c, C > 0 and κ > 1. If τ0 is known, the optimal classifier is simply g∗(x) = 1 {x ≥ τ0}.
The minimum achievable excess risk when learning ĝn from Dn in this type of problems has been
studied in, e.g., [14, 35]. For this setting, it is known that

inf
ĝn

sup
τ0∈[0,1]

Risk(ĝn)− Risk(g∗) ≍ n
−κ

2κ−1 ,

as n → ∞. However, rather than the classical supervised learning setting above, we can instead
consider active learning procedures. Specifically, consider a sequential learner that can generate
feature-queries X ′

i and sample a corresponding label Y ′
i , such that P(Y ′

i = 1|X ′
i = x) = ζ(x).

This is often referred to as pool-based active learning. At time t, the learner can choose X ′
t as a

function of the past ((X ′
j , Y

′
j ))

t−1
j=1 according to a (possibly random) sampling strategy An. This

extra flexibility allows the learner to carefully select informative examples to guide the learning
process. Similarly to the passive learning setting, the ultimate goal is to identify a prediction rule
(x,D′

n) 7→ ĝAn (x,D
′
n) ∈ {0, 1}, where D′

n = ((X ′
t, Y

′
t ))

n
t=1. In [14], it is shown that for this active

learning setting, the minimax rates are also known, and given by

inf
ĝA
n ,An

sup
τ0∈[0,1]

Risk(ĝAn )− Risk(g∗) ≍ n
−κ

2κ−2 ,
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Figure 2: Numerical results for expected regret and label complexity when n = 50000 and N = 225.
Panels (a) and (b) depict the expected regret E[Rt] as a function of t, for κ = 2 and κ = 1.5
respectively. Panels (c) and (d) depict the expected label complexity of the label-efficient forecaster,
E[St], as a function of t for κ = 2 and κ = 1.5 respectively. The expectations were estimated
from 500 independent realizations of the process and the shaded areas indicate the corresponding
pointwise 95% confidence intervals.

as n → ∞. This shows that there are potentially massive gains for active learning, particularly
when κ is close to 1. A natural question is whether similar conclusions hold for streaming active
learning. In this setting, instead of selecting which example X ′

i to query, the learner observes the
features (X1, . . . , Xn) sequentially, and decides at each time t whether or not it should query the
corresponding label. This is analogous to the online prediction setting discussed in this paper.

We now study this setting numerically. For the simulations, we use the specific choice

ζ(x) =
1

2
+

1

2
sign(x− τ0)|x− τ0|κ−1 ,

to generate sequences (Y1, . . . , Yn), based on a sequence of features (X1, . . . , Xn) sampled from the
uniform distribution on [0, 1]. Furthermore, we consider the class of N experts such that

fi,t = 1

{
Xt ≥

i− 1

N − 1

}
,

with i ∈ [N ] and t ∈ [n].

6.1 Expected regret and label complexity

In the simulations, we set τ0 = 1/2 and N = ⌈
√
n⌉+ 1 {⌈

√
n⌉ is even}. This choice enforces that

N is odd, ensuring the optimal classifier is one of the experts. Throughout, we set η =
√
8 ln(N)/n,

which minimizes the regret bound (7). First, we investigate the expected regret relative to the optimal
prediction rule for the label-efficient exponentially weighted forecaster with qt given by (8), and
compare it with the corresponding regret for the full-information forecaster that collects all labels.
Specifically, the regret at time t of a forecaster that predicts {Ŷj}nj=1 is given by

E[Rt] =

t∑
j=1

E[ℓ(Ŷt, Yt)− ℓ(g∗(Xt), Yt)] .

8
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Figure 3: Numerical results for the normalized regret as a function of the expected label complexity
when n = 50000 and N = 225. The straight dotted lines are displayed for comparison, and have
slopes given by −κ/(2κ− 1) (full information) and −κ/(2κ− 2) (label efficient). The expectations
were estimated from 500 independent realizations of the process and the shaded areas indicate the
corresponding pointwise 95% confidence intervals.

Furthermore, to study the potential reduction in the number of collected labels, we also evaluate the
expected label complexity E[St] of the label-efficient forecaster. To approximate the expectations
above, we use Monte-Carlo averaging with 500 independent realizations. Further experimental details
are given in Appendix G. The results are shown in Figure 2. We see that the regret is comparable
for the full-information and label-efficient forecasters, albeit slightly higher for the latter. Since
P (g∗(X) ̸= Y ) = 1

2 − 1
κ2κ , the expected cumulative loss of the optimal classifier grows linearly

with t. For instance, when κ = 2, we have
∑t

j=1 E[ℓ(g∗(Xt), Yt)] = 3t/8. Hence, the regret relative
to the best expert is much smaller than the pessimistic (i.e., worst-case for adversarial environments)
bound in (7). We also observe that the expected label complexity grows sub-linearly with t, as
expected, and that E[Sn] ≪ n, demonstrating that a good prediction rule can be learned with
relatively few labels. When κ = 1.5, the number of collected labels is significantly smaller than
when κ = 2. This is in line with the known minimax rates for active learning from [14]. To further
examine this connection, we now turn to normalized regret.

6.2 Normalized regret relative to the number of samples

To relate the results of the label-efficient forecaster with known minimax rates for active learning, we
investigate the expected regret normalized by the number of samples. Specifically, let

r(t) =
1

t
E[Rt] =

1

t

t∑
j=1

E[ℓ(Ŷt, Yt)− ℓ(g∗(Xt), Yt)] .

For the full-information forecaster, we expect that r(t) ≍ t−κ/(2κ−1) as t → ∞. The same holds
for the label-efficient forecaster, but in this case, the relation between r(t) and the expected number
of collected labels E[St] is more interesting. If the label-efficient forecaster performs optimally,
we expect r(t) ≍ E[St]

−κ/(2κ−2) as t → ∞. To examine this, we plot r(t) against E[St] (which
equals t for the full-information forecaster) in logarithmic scales, so the expected asymptotic behavior
corresponds to a linear decay with slopes given by −κ/(2κ− 1) for the full-information forecaster
and −κ/(2κ− 2) for the label-efficient forecaster. This is shown in Figure 3 for κ = 1.5 and κ = 2.

We see that the observed behavior is compatible with the known asymptotics for active learning,
and similar results arise when considering different values of κ. More importantly, it appears that
the label-efficient forecaster optimally adapts to the underlying setting. This is remarkable, as the
label-efficient forecaster does not rely on any domain knowledge. Indeed, it has no knowledge of
the statistical setting, and in particular, it has no knowledge of the parameter κ, which encapsulates
the difficulty of the learning task. Note that our regret bounds are too loose to provide a theoretical
justification of these observations via an online-to-batch conversion, and that such theoretical analyses
will only be fruitful when considering non-parametric classes of experts, for which the asymptotics
of the excess risk are ω(1/

√
n).
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7 Discussion and outlook

In this paper, we presented a set of adaptive label-efficient algorithms. These follow from a very
straightforward design principle, namely, identifying the smallest possible label collection probability
qt that ensures that a known worst-case expected regret bound is satisfied. This leads to simple, yet
powerful, algorithms, endowed with best-of-both-worlds guarantees. We conjecture that a similar
approach can be used for a broader class of prediction tasks and losses than what is considered in this
paper. For instance, the results we present can be straightforwardly extended to a setting where the
expert outputs take values in [0, 1], as long as the label sequence and forecaster prediction remain
binary and take values in {0, 1}. In fact, the same inductive approach can be used when yt ∈ [0, 1]
and one considers a general loss function. However, the resulting label collection probability will be
significantly more complicated than that of Definition 1. An interesting side effect of our analysis
is that it leads to an inductive proof of the regret bound for standard, full-information algorithms.
Extending the label complexity result, and in particular connecting it with known minimax theory
of active learning in statistical settings, remains an interesting avenue for future research. Finally,
another intriguing direction is to extend our approach to the bandit setting. In the setting we consider
in this paper, we observe the losses of all experts when observing a label. In contrast, in the bandit
setting, only the loss of the selected arm would be observed for each round. This would necessitate
the forecaster to incorporate more exploration in its strategy, and the analysis of a label-efficient
version seems like it would be quite different from what is used in this paper, although some of the
ideas may transfer.
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A Proof of Theorem 1

Theorem 1. Consider the exponentially weighted follow the majority forecaster with η = ∞.
Specifically, let pt = 1 {A1,t ≥ 1/2}, so that ŷt = 1 {A1,t ≥ 1/2}. Furthermore, let

qt =

{
0 if A1,t ∈ {0, 1},
− 1

log2 min(A1,t,1−A1,t)
otherwise.

For this forecaster, we have

L̄(N)
n ≤ log2 N .

Proof. The main idea is to proceed by induction on n. For n = 1, the result holds trivially, regardless
of the choice for qt. Now, suppose that L̄(N)

t ≤ log2 N for all values t ∈ [n− 1], any sequence of
observations and expert predictions, and any number of experts N . Based on this assumption, we
will derive a bound for L̄(N)

n . Let k :=
∑N

i=1 ℓi,1 be the number of experts that make a mistake when
t = 1. Note that 0 ≤ k ≤ N − 1, as there is one perfect expert. When k < N/2, the majority vote ŷ1
is necessarily equal to y1. Therefore,

L̄(N)
n = E[ℓ(ŷ1, y1)] +

n∑
t=2

E[ℓ(ŷt, yt)] =
n∑

t=2

E[ℓ(ŷt, yt)]

=

n∑
t=2

q1E[ℓ(ŷt, yt)|Z1 = 1] + (1− q1)E[ℓ(ŷt, yt)|Z1 = 0]

= q1L̄
(N−k)
2:n + (1− q1)L̄

(N)
2:n

≤ log2 N , (10)

where L̄
(N)
2:n denotes the expected cumulative loss in rounds 2, . . . , n with N experts. Because the

internal state of the algorithm only consists of a list of experts that have made no errors so far, the task
in rounds 2, . . . , n is equivalent to a task over n− 1 rounds starting with the experts that remain after
round 1. Therefore, we can apply the induction hypothesis to obtain L̄(N−k)

2:n ≤ log2(N−k) ≤ log2 N

and L̄
(N)
2:n ≤ log2 N , which justifies the last inequality. We conclude that, when k < N/2, the bound

holds regardless of the choice of q1.

On the other hand, if N/2 ≤ k ≤ N − 1, the forecaster incurs an error at time t = 1. Using the
induction hypothesis and an analogous reasoning as above, we find that

L̄(N)
n = 1 + q1L̄

(N−k)
2:n + (1− q1)L̄

(N)
2:n ≤ 1 + q1 log2(N − k) + (1− q1) log2(N) . (11)

To ensure that the right-hand-side of (11) satisfies the desired bound, we need to select q1 such that

1 + q1 log2(N − k) + (1− q1) log2(N) ≤ log2 N ,

which can be written equivalently as

1

q1
≤ log2 N − log2(N − k) .

If we do not observe a label, we do not know the value k. All we know is that, since y1 ∈ {0, 1}, we
have k ∈

{∑N
i=1 fi,1, N −

∑N
i=1 fi,1

}
. Therefore, to ensure the induction proof works, we need

q1 ≥ − 1

log2 min (A1,1, 1−A1,1)
,

where A1,1 = 1
N

∑N
i=1 fi,1. Note that the case k = N cannot occur as there is always a perfect

expert, but to ensure that the above definition is sound, we define q1 = 0 when A1,1 ∈ {0, 1}.
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B Label-efficient boosted majority of leaders

Through a variation of follow the majority, a slightly better regret bound than the one in Theorem 1
can be obtained, as well as a matching lower bound. As shown by [36, Proposition 18.1.3], there exists
an adversarial strategy for the environment such that any forecaster will incur at least ⌊log2 N⌋/2 ≥
⌊log4 N⌋ errors in expectation. A matching upper bound can be obtained, when N is a power of two,
by considering a forecaster that incorporates randomness in its predictions. This is referred to as
the boosted majority of leaders. As shown in the following theorem, this procedure can be made
label-efficient while ensuring the same expected regret bound.
Theorem 4. Consider an exponentially weighted forecaster for which η = ∞ and

pt =


0 if A1,t ≤ 1/4
1 + log4 A1,t if 1/4 < A1,t ≤ 1/2
− log4(1−A1,t) if 1/2 < A1,t ≤ 3/4
1 if A1,t > 3/4

and

qt =


0 if A1,t = 0
−1/ log4 A1,1 if 0 < A1,t < 1/4
1 if 1/4 ≤ A1,t ≤ 3/4
−1/ log4(1−A1,1) if 3/4 < A1,t < 1
0 if A1,t = 1

.

For this forecaster, we have
L̄(N)
n ≤ log4 N .

Proof. The proof technique is analogous to that of Theorem 1: we use an induction argument to find
a choice of qt that guarantees the desired regret bound. We will proceed by analyzing different cases,
depending on the value of A1,t. First, assume that A1,1 ≤ 1/4. If y1 = 0, then

L̄(N)
n = 0 + q1L̄

(N(1−A1,1))
2:n + (1− q1)L̄

(N)
2:n .

Thus, taking q1 ≥ 0 suffices. If y1 = 1, then

L̄(N)
n = 1 + q1L̄

(NA1,1)
2:n + (1− q1)L̄

(N)
2:n ,

and, using the same reasoning as before, it suffices to take

q1 ≥ − 1

log4 A1,1
.

An analogous reasoning applies when A1,1 > 3/4, so that for this case, it suffices to take

q1 ≥ − 1

log4(1−A1,1)
.

Now, consider the case 1/4 < A1,1 ≤ 1/2. If y1 = 0, then

L̄(N)
n = 1 + log4 A1,1 + q1L̄

(N(1−A1,1))
2:n + (1− q1)L̄

(N)
2:n

≤ 1 + log4 A1,1 + q1 log4(N(1−A1,1)) + (1− q1) log4 N ,

which implies that

q1 ≥ − 1 + log4 A1,1

log4(1−A1,1)
.

Similarly, if y1 = 1, we must have

q1 ≥ −− log4 A1,1

log4 A1,1
= 1 .

Since we do not know y1 before the decision, the only possibility is to take q1 = 1.

A similar reasoning applies to the case 1/2 < A1,1 ≤ 3/4. Therefore, the above relations determine
the expression for qt in the theorem, while enforcing the desired regret bound.
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C Proof of Theorem 2

As mentioned after Theorem 2, an analogous result holds for non-uniform weight initializations. We
will state and prove this more general result below, from which Theorem 2 as stated in the main text
follows as a special case.
Theorem 2 (with non-uniform weight initialization). Consider an exponentially weighted forecaster
with initial weight vector w·,0 = (w1,0, . . . , wN,0) such that

∑
i∈[N ] wi,0 = 1, pt = A1,t and

qt ≥ q∗(A1,t, η) := q∗t .

For this forecaster, we have

E
[
L(w·,0)
n

]
≤ E

[
min
i∈[N ]

(
Li,n − lnwi,0

η

)]
+

nη

8
. (12)

where the superscript in L
(w·,0)
n :=

∑n
t=1 ℓ(ŷt, yt) makes the dependence on the initial weights

explicit. In particular, for the choice of initial weights wi,0 := 1/N for all i ∈ [N ], we have

R̄n = E[Ln]− E
[
min
i∈[N ]

Li,n

]
≤ lnN

η
+

nη

8
.

Proof. The proof strategy is similar to that used in Theorem 1. We begin by noting that at time t,
the internal state of the label-efficient exponentially weighted forecaster is determined by the weight
vector w·,t−1 = (w1,t−1, . . . , wN,t−1). Therefore, it suffices to focus on the requirements for q1 for
an arbitrary weight vector. As in Theorem 1, we proceed by induction on n.

For n = 1, the theorem statement is trivially true, as this algorithm coincides with the ordinary
exponentially weighted forecaster (also, the right-hand-side of (12) is bounded from below by 1/2).
Proceeding by induction in n, suppose (12) holds for 1, . . . , n− 1 outcomes. Let L̄(w·,0)

n|1 denote the
expected cumulative loss of the forecaster given (y1, {fi,1}Ni=1), i.e., the true label and the expert
predictions for time t = 1:

L̄
(w·,0)

n|1 = E
[
L(w·,0)
n

∣∣ y1, {fi,1}Ni=1

]
.

Then, we have

L̄
(w·,0)

n|1 = E
[
ℓ(ŷ1, y1) | y1, {fi,1}Ni=1

]
+ E

[
n∑

t=2

ℓ(ŷt, yt)
∣∣ y1, {fi,1}Ni=1

]

= A1,1+(1−2A1,1)y1 + q1E

[
n∑

t=2

ℓ(ŷt, yt)
∣∣Z1=1, y1, {fi,1}Ni=1

]

+ (1−q1)E

[
n∑

t=2

ℓ(ŷt, yt)
∣∣Z1=0, y1, {fi,1}Ni=1

]
≤ A1,1 + (1− 2A1,1)y1 + q1L̄

(w·,1)
n−1 + (1− q1)L̄

(w·,0)
n−1 .

In order to prove the desired result, it is enough to show that

L̄
(w·,0)

n|1 ≤ E
[
min
i∈[N ]

(
ℓi,1 + Li,2:n − lnwi,0

η

)]
+

nη

8
= E

[(
ℓi′,1 + Li′,2:n − lnwi′,0

η

)]
+

nη

8
.

Here, we let Li,2:n :=
∑n

t=2 ℓi,t and let i′ denote the argmin of the right-hand side. Now, using the
induction hypothesis, we obtain

L̄
(w·,0)

n|1 ≤ A1,1 + (1− 2A1,1)y1 +
(n− 1)η

8

+ E
[
min
i∈[N ]

(
Li,2:n + q1

− lnwi,1

η
+ (1− q1)

− lnwi,0

η

)]
≤ A1,1 + (1− 2A1,1)y1 +

(n− 1)η

8

+ E
[(

Li′,2:n + q1
− lnwi′,1

η
+ (1− q1)

− lnwi′,0

η

)]
.
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In the last step, we used the fact that since the upper bound holds for the minimum i, it holds for i′ in
particular. To ensure that the bound in the theorem holds, it is thus sufficient to select A1,1 such that
it satisfies

A1,1 + (1− 2A1,1)y1 +

(
q1
η

(lnwi′,0 − lnwi′,1)− ℓi′,1

)
≤ η

8
.

Notice that, after the first observation, we are back in a situation similar to that at time t = 1, but
possibly with a different weight vector. Specifically, for i ∈ [N ],

wi,1 =
wi,0e

−ηℓi,1/q1∑N
i=1 wi,0e−ηℓi,1/q1

.

It is important at this point that wi,1 depends on the choice q1, so we cannot simply solve the above
equation for q1. To proceed, it is easier to consider the two possible values of y1 separately.

Case y1 = 0: Note that

wi,1 =
wi,0e

−ηℓ(fi,1,y1)/q1

1−A1,1 +A1,1e−η/q1
.

Therefore, it suffices to have

A1,1 +
q1
η

ln
(
1−A1,1 +A1,1e

−η/q1
)
≤ η

8
. (13)

Case y1 = 1: Similarly as above,

wi,1 =
wi,0e

−ηℓ(fi,1,y1)/q1

A1,1 + (1−A1,1)e−η/q1
.

Therefore, it suffices to have

1−A1,1 +
q1
η

ln
(
A1,1 + (1−A1,1)e

−η/q1
)
≤ η

8
. (14)

As we do not know the values of y1 when computing q1, we must simultaneously satisfy (13) and
(14). Nevertheless, these two conditions involve only η and A1,1. Thus, we can identify the range
of values that q1 can take, as a function of η and A1,1, while still ensuring the desired regret bound.
Specifically, we require that q1 ≥ q∗1 , where

q∗1 := q∗1(A1,1, η) = inf

{
q ∈ (0, 1] : A1,1 +

q

η
ln

(
1−A1,1 +A1,1e

−η/q
)
≤ η

8
,

1−A1,1 +
q

η
ln

(
A1,1 + (1−A1,1)e

−η/q
)
≤ η

8

}
.

At this point, it might be unclear if q∗1 is well defined, namely, if there always exists q ∈ [0, 1]
satisfying both (13) and (14). This is indeed the case, as shown in Lemma 1. By noting that
E[L̄(w·,0)

i,n|1 ] = L̄
(w·,0)
i,n , we have completed the induction step.

As stated at the beginning of the proof, looking at q1 suffices to determine the general requirements
for qt, concluding the proof. The statement given in (7) follows from instantiating the general result
with uniform initial weights.

D Proof of Lemma 1

Lemma 1. For all η > 0 and x ∈ [0, 1], we have

1 ∈
{
q ∈ (0, 1] : x+

q

η
ln
(
1− x+ xe−η/q

)
≤ η

8

}
.

Proof. Let B ∼ Ber(x), with x ∈ [0, 1]. Note that E[e−ηB ] = (1− x) + xe−η. Note also that, by
[3, Lem. A.1] we have lnE[e−ηB ] ≤ −ηx+ η2/8. Putting these two facts together we conclude that

x+
1

η
ln
(
1− x+ xe−η

)
≤ x− x+ η/8 = η/8 .

Therefore, the point 1 is always contained in Definition 1, concluding the proof.
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E Proof of Lemma 2

Lemma 2. For any x ∈ [0, 1], we have
lim
η→0

q∗(x, η) = 4x(1− x) .

Furthermore, for any η > 0 and x ∈ [0, 1],
q∗(x, η) ≤ min(4x(1− x) + η/3, 1) .

Proof. As already shown in Lemma 1, we know that q∗(x, η) ≤ 1. Let η > 0 be arbitrary. Note that
q∗(x, η) needs to be a solution in q of the following equation:

ηx+ q ln(1− x+ xe−η/q)︸ ︷︷ ︸
:=g(η)

≤ η2

8
. (15)

Note that limη→0 g(η) = 0, so we can extend the definition of g to 0 by continuity. Specifically,

g(η) :=

{
ηx+ q ln(1− x+ xe−η/q) if η > 0
0 if η = 0

.

We proceed by using a Taylor expansion of g(η) around 0. Tedious, but straightforward computations
yields

g′(η) =
∂

∂η
g(η) = x

(
1− 1

x+ (1− x)eη/q

)
; g′′(η) =

1

q
x(1− x)

eη/q

(x+ (1− x)eη/q)2
,

and

g′′′(ξ) =
1

q2
(−τ + 3τ2 − 2τ3) , with τ =

xe−ξ/q

1− x+ xe−ξ/q
,

where ξ > 0. In conclusion,

g(η) = g(0) + g′(0)η + g′′(0)
η2

2
+ g′′′(ξ)

η3

6

=
1

q
x(1− x)

η2

2
+ g′′′(ξ)

η3

6
.

where ξ ∈ [0, η]. At this point we can examine the structure of the solution of (15) when η → 0.
Note that q∗(x, η) necessarily satisfies

g(η) =
1

q∗(x, η)
x(1− x)

η2

2
+ o(η2) =

η2

8
,

implying that q∗(x, η) → 4x(1− x) as η → 0, proving the first statement in the lemma.

For the second statement in the lemma, one needs to more carefully control the error term g′′′(ξ). We
begin by noting that τ ∈ [0, x]. This implies that −τ + 3τ2 − 2τ3 ≤ x(1− x) (this can be checked
by algebraic manipulation1). Therefore, q∗(x, η) ≤ q, where q is the solution of

1

q
x(1− x)

η2

2
+

1

q2
x(1− x)

η3

6
=

η2

8
.

This is a simple quadratic equation in q, yielding the solution

q = 2x(1− x) +

√
(2x(1− x))2 +

4

3
x(1− x)η .

Although the above expression is a valid upper bound on q∗(x, η), it is not a very convenient one. A
more convenient upper bound can be obtained by noting that

2x(1− x) +

√
(2x(1− x))2 +

4

3
x(1− x)η ≤ 4x(1− x) + η/3

⇐⇒ (2x(1− x))2 +
4

3
x(1− x)η ≤ (2x(1− x) + η/3)

2

⇐⇒ 4

3
x(1− x)η ≤ 4

3
x(1− x) +

η2

9
.

Thus, we have q ≤ 4x(1− x) + η/3, concluding the proof.
1It suffices to check that the solutions in τ of −1 + 3τ − 2τ2 ≤ 1− x, if they exist, satisfy τ ∈ [0, x].
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F Proof of Theorem 3

In the proof of Theorem 3, we will require the following anytime version of Freedman’s inequality:

Lemma 3. Let X1, . . . , Xn be a martingale difference sequence with respect to some filtration
F1 ⊂ · · · ⊂ Fn and with |Xt| ≤ b for all t almost surely. Let Σ2

t =
∑t

j=1 E[X2
j |Fj−1]. Then, for

any δ < 1/e and n ≥ 4,

P
(
∃t ∈ [n] :

t∑
j=1

Xj > 2max
{
2
√
Σ2

t ln(1/δ), b ln(1/δ)
})

≤ ln(n)δ .

A proof of this result for the special case that Ft = σ(X1, . . . , Xt) can be found in [37, Lemma 3],
which is an extended version of [38]. Their proof goes through unchanged for general filtrations.

We are now ready to prove Theorem 3. As aforementioned, we will prove the result under a more
general condition than given in the theorem statement. Specifically, instead of assuming that the best
expert in expectation is apparent from the first round, we only require the best expert to emerge after
a time τ∗. This condition is given in a precise form in (17). Clearly, the assumption stated in the
main text implies that the condition in (17) holds with τ∗ = 0.

Theorem 3 (with the best expert emerging after a time τ∗). Consider the label-efficient exponentially
weighted forecaster from Theorem 2 with qt = min(4A1,t(1−A1,t) + η/3, 1) and any η > 0.
Define τ as

τ =

⌈
48 ln(1/δ2)

η∆2
+

2

η∆
ln

(N
η

)⌉
. (16)

Suppose that there exists a single best expert i∗ and a time τ∗ ≤ τ such that, for all i ̸= i∗,

1

t

t∑
j=1

Et[ℓi,j − ℓi∗,j ] ≥ ∆ > 0 almost surely for t ≥ τ∗. (17)

Then, for any n ≥ 4, the expected label complexity is at most

E[Sn] ≤
50

η∆2
ln

(N lnn

η

)
+ 3ηn+ 1 .

Proof. Recall that the estimated losses are ℓ̃i,t = ℓi,tZt/qt. Let Λ̃i
t =

∑t
j=1 l̃i,j − l̃i∗,j denote the

cumulative estimated loss relative to that of the best expert, and let Λ̃min
t = mini ̸=i∗ Λ̃

i
t.

Our argument separates the analysis in two regimes: Regime 1, where t ≤ τ , and Regime 2, where
t > τ . The specific choice of τ given above arises naturally later in the analysis. Regime 1, in
which labels will be collected frequently, is expected to be relatively short, so we simply upper-bound
Sτ ≤ τ . It then remains to bound the number of collected labels in Regime 2. To this end, we need τ
to be chosen such that

qt ≤
4η

3
for all t > τ (18)

with probability at least 1− δ1, where δ1 ∈ (0, 1] will be fixed later. Let E denote the event that (18)
holds. It then follows that the expected number of labels collected in Regime 2 is at most

E[Sn − Sτ ] = E
[ n∑
t=τ+1

qt1 {E}
]
+ E

[ n∑
t=τ+1

qt1
{
Ē
} ]

≤ 4
3ηnPr(E) + nPr(Ē) ≤ 4

3ηn+ nδ1 .

All together, we arrive at the following bound on the expected label complexity:

E[Sn] ≤ τ + 4
3ηn+ nδ1 . (19)

It remains to verify that the choice of τ in (16) leads to δ1 being sufficiently small. To this end, let

A∗
t :=

∑
i:fi,t=fi∗,t

wi,t−1∑N
i=1 wi,t−1

18



denote the weighted proportion of experts that agrees with the best expert at time t. Then

A∗
t+1 ≥ wi∗,t∑N

i=1 wi,t

=
1

1 +
∑

i ̸=i∗ e
−ηΛ̃i

t

≥ 1

1 +Ne−ηΛ̃min
t

.

Note that A1,t ∈ {A∗
t+1, 1−A∗

t+1}. Consequently,

qt+1 ≤ 4A∗
t+1(1−A∗

t+1) +
η

3
≤ 4(1−A∗

t+1) +
η

3
≤ 4

1 + eηΛ̃
min
t /N

+
η

3
.

The desired condition from (18) is therefore satisfied if, for all i ̸= i∗,

Λ̃i
t ≥

1

η
ln

(
N

η

)
for all t = τ, . . . , n− 1. (20)

To study the evolution of Λ̃i
t, we use a martingale argument. Consider any fixed i ̸= i∗, and define

the martingale difference sequence

Xt = −(ℓ̃i,t − ℓ̃i∗,t) + Et[ℓ̃i,t − ℓ̃i∗,t] = − (ℓi,t − ℓi∗,t)Zt

qt
+ Et[ℓi,t − ℓi∗,t] .

Without loss of generality, we may assume that η ≤ 3, because otherwise (19) holds trivially for any
pair of τ and δ1. Then qt ≥ η/3, |Xt| ≤ 2/qt ≤ 6/η, and

E[X2
t |Ft−1] ≤ E

[
(ℓ̃i,t − ℓ̃i∗,t)

2|Ft−1

]
= E

[ (ℓi,t − ℓi∗,t)
2

qt
|Ft−1

]
≤ 3

η
.

Hence, by Lemma 3, we have

Λ̃i
t ≥

t∑
j=1

Et[ℓi,t − ℓi∗,t]−max
{
4

√
3t

η
ln(1/δ2),

12

η
ln(1/δ2)

}
for all t ∈ [n] . (21)

Using Assumption (17), it follows that

Λ̃i
t ≥ t∆−max

{
4

√
3t

η
ln(1/δ2),

12

η
ln(1/δ2)

}
for all t ≥ τ∗ (22)

with probability at least 1− (ln(n)δ2) for any δ2 ∈ (0, 1/e]. By taking δ2 = min{δ1/(N lnn), 1/e}
and applying the union bound, we can make (22) hold for all i ̸= i∗ simultaneously with probability
at least 1− δ1. A sufficient condition for (22) to imply (20) is then to take

τ =

⌈
48 ln(1/δ2)

η∆2
+

2

η∆
ln

(N
η

)⌉
,

matching the definition in (16). We prove this claim in Lemma 4 below. Note that if our choice of
τ > n, then (19) still holds trivially, because Sn ≤ n. Evaluating (19) with the given choice of τ
and taking δ1 = η (assuming η < 1, since (19) holds trivially if δ1 ≥ 1), we arrive at the following
bound:

E[Sn] ≤
⌈
48 ln(1/δ2)

η∆2
+

2

η∆
ln

(N
η

)⌉
+ 4

3ηn+ nδ1

≤ 48 ln(N ln(n)/δ1)

η∆2
+

2

η∆
ln
(N
η

)
+ 4

3ηn+ nδ1 + 1

=
48 ln(N ln(n)/η)

η∆2
+

2

η∆
ln
(N
η

)
+ 4

3ηn+ ηn+ 1

≤ 50 ln(N ln(n)/η)

η∆2
+ 3ηn+ 1 ,

thus completing the proof.
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Lemma 4. Assume that

Λ̃i
t ≥ t∆−max

{
4

√
3t

η
ln(1/δ2),

12

η
ln(1/δ2)

}
for all t ≤ n .

Then, with

τ =

⌈
48 ln(1/δ2)

η∆2
+

2

η∆
ln

(N
η

)⌉
,

we have

Λ̃i
t ≥

1

η
ln

(
N

η

)
for all t = τ, . . . , n− 1 .

Proof. We will consider the two possible outcomes of the maximum separately. First, we consider
the case where the first term is the maximum. Then, we need to find τ such that for t ≥ τ ,

Λ̃i
t ≥ t∆− 4

√
3t

η
ln(1/δ2)−

1

η
ln

(
N

η

)
≥ 0 .

A straightforward calculation shows that this is satisfied for

t ≥

(√
48 ln(1/δ2) + 4∆ ln(N/η) + 4

√
3∆ ln(1/δ2)

)2

4η∆2
.

Since (a+ b)2 ≤ 2a2 + 2b2 for a, b > 0, this is satisfied given the simpler condition

t ≥
⌈

48

η∆2
ln(1/δ2) +

2

η∆
ln

(
N

η

)⌉
= τ .

Next, we assume that the second term is the maximum. Then, we have

Λ̃i
t ≥ t∆− 12

η
ln(1/δ2)

≥ τ∆− 12

η
ln(1/δ2)

=

⌈
48 ln(1/δ2)

η∆2
+

2

η∆
ln

(N
η

)⌉
∆− 12

η
ln(1/δ2)

≥ 48 ln(1/δ2)

η∆
+

2

η
ln

(N
η

)
− 12 ln(1/δ2)

η∆

≥ 2

η
ln
(N
η

)
,

where we used the assumption that t ≥ τ . Thus, for this case, the desired condition holds with the
specified τ . Therefore, with the specified τ , the desired statement holds for t = τ, . . . , n− 1.

G Experimental details

In this section, we describe the simulation study in Section 6 in detail. The full code, which can be
executed in less than one hour on an M1 processor, is provided in the supplementary material.

We consider a sequential prediction problem with n = 50000 total rounds and N = 225 experts.
The number of experts is chosen to be higher than

√
n and odd. Then, we repeat the following

simulation for 500 independent runs. First, we generate n independent features {Xi}i∈[n] from the
uniform distribution on [0, 1]. Then, for each feature Xi, we randomly generate a label Yi, where the
probability P(Yi = 1|Xi = x) = ζ(x), where

ζ(x) =
1

2
+

1

2
sign(x− 1/2)|x− 1/2|κ−1 .

Note that the optimal prediction of the label is simply 1 {x ≥ 1/2}. We run simulations both
for κ = 1.5 and κ = 2.

20



We set the experts to be threshold classifiers, with thresholds uniformly spaced across [0, 1]. Specifi-
cally, for all i ∈ [N ] and t ∈ [n],

fi,t = 1

{
Xt ≥

i− 1

N − 1

}
.

In order to optimize the regret bound in (7), we set η =
√
8 ln(N)/n. For each time t ∈ [n], we

consider two different weight vectors: {wP
i,t}i∈[N ], corresponding to the passive, full-information

forecaster, and {wA
i,t}i∈[N ], corresponding to the active, label-efficient forecaster. The weight for

each expert for both forecasters is uniformly initialized as wP
i,0 = wA

i,0 = 1/N .

Then, for each timestep t ∈ [n], we proceed as follows. First, we compute the probability of
prediction the label 1 for each forecaster, given by pPt for the full-information forecaster and pAt for
the label-efficient forecaster, as

pPt = AP
1,t =

∑N
i=1 w

P
i,t−1fi,t∑N

i=1 w
P
i,t−1

, pAt = AA
1,t =

∑N
i=1 w

A
i,t−1fi,t∑N

i=1 w
A
i,t−1

,

where the expert predictions are computed based on Xt. Here, the weighted proportion of experts
that predict the label 1 are given by AP

1,t for the full-information forecaster and AA
1,t for the label-

efficient forecaster. On the basis of this, each forecaster issues a prediction for the label, given
by ŷPt ∼ Ber(pPt ) for the full-information forecaster and ŷAt ∼ Ber(pAt ) for the label-efficient one.

Finally, the weights for each forecaster are updated as follows. For the full-information forecaster,
the weight assigned to each expert is updated as

wP
i,t = wP

i,t−1 e
−ηℓi,t , (23)

where ℓi,t = 1 {fi,t ̸= Yt}. In order to determine whether the label-efficient forecaster observes a
label or not, we compute qt = min(4AA

1,t(1−AA
1,t)− η/3, 1) and generate Zt ∼ Ber(qt). Then, the

weights of the label-efficient forecaster are updated as

wA
i,t = wA

i,t−1 e
−η

ℓi,tZt
qt . (24)

Hence, if Zt = 0, the weights of the label-efficient forecaster are not updated, since the label is not
observed.

After all n rounds have been completed, we compute the regret of the full-information forecaster RP
n

and the label-efficient forecaster RA
n as

RP
n =

n∑
t=1

1
{
ŷPt ̸= Yt

}
− 1 {y∗t ̸= Yt} , RA

n =

n∑
t=1

1
{
ŷAt ̸= Yt

}
− 1 {y∗t ̸= Yt} .

Here, for each t ∈ [n], the optimal prediction is given by y∗t = 1 {Xt ≥ 1/2}. Furthermore, we
compute the label complexity Sn as

Sn =

n∑
t=1

Zt .

The results of these simulations are presented in Figure 2 and 3.
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