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TOWARDS NON-ASYMPTOTIC CONVERGENCE FOR
DIFFUSION-BASED GENERATIVE MODELS

Gen Li∗ Yuting Wei† Yuxin Chen†‡ Yuejie Chi§

ABSTRACT

Diffusion models, which convert noise into new data instances by learning to re-
verse a Markov diffusion process, have become a cornerstone in contemporary
generative modeling. While their practical power has now been widely recog-
nized, the theoretical underpinnings remain far from mature. In this work, we de-
velop a suite of non-asymptotic theory towards understanding the data generation
process of diffusion models in discrete time, assuming access to `2-accurate esti-
mates of the (Stein) score functions. For a popular deterministic sampler (based
on the probability flow ODE), we establish a convergence rate proportional to
1/T (with T the total number of steps), improving upon past results; for another
mainstream stochastic sampler (i.e., a type of the denoising diffusion probabilistic
model), we derive a convergence rate proportional to 1/

√
T , matching the state-

of-the-art theory. Imposing only minimal assumptions on the target data distribu-
tion (e.g., no smoothness assumption is imposed), our results characterize how `2
score estimation errors affect the quality of the data generation process. In con-
trast to prior works, our theory is developed based on an elementary yet versatile
non-asymptotic approach without resorting to toolboxes for SDEs and ODEs.

1 INTRODUCTION

Diffusion models have emerged as a cornerstone in contemporary generative modeling, a task that
learns to generate new data instances (e.g., images, text, audio) that look similar in distribution to
the training data (Ho et al., 2020; Sohl-Dickstein et al., 2015; Song & Ermon, 2019; Dhariwal &
Nichol, 2021; Jolicoeur-Martineau et al., 2021; Chen et al., 2021; Kong et al., 2021; Austin et al.,
2021). Originally proposed by Sohl-Dickstein et al. (2015) and later popularized by Song & Ermon
(2019); Ho et al. (2020), the mainstream diffusion generative models — e.g., denoising diffusion
probabilistic models (DDPMs) (Ho et al., 2020) and denoising diffusion implicit models (DDIMs)
(Song et al., 2020a) — have underpinned major successes in content generators like DALL·E 2
(Ramesh et al., 2022), Stable Diffusion (Rombach et al., 2022) and Imagen (Saharia et al., 2022),
claiming state-of-the-art performance in the now broad field of generative artificial intelligence (AI).
See Yang et al. (2022); Croitoru et al. (2023) for overviews of recent development.

In a nutshell, a diffusion generative model is based upon two stochastic processes in Rd:

1) a forward process
X0 → X1 → · · · → XT (1)

that starts from a sample drawn from the target data distribution (e.g., of natural images)
and gradually diffuses it into a noise-like distribution (e.g., standard Gaussians);

2) a reverse process
YT → YT−1 → · · · → Y0 (2)
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that starts from pure noise (e.g., standard Gaussians) and successively converts it into new
samples sharing similar distributions as the target data distribution.

Transforming data into noise in the forward process is straightforward, often hand-crafted by in-
creasingly injecting more noise into the data at hand. What is challenging is the construction of the
reverse process: how to generate the desired information out of pure noise? To do so, a diffusion
model learns to build a reverse process (2) that imitates the dynamics of the forward process (1) in a
time-reverse fashion; more precisely, the design goal is to ascertain distributional proximity1

Yt
d
≈ Xt, t = T, · · · , 1 (3)

through proper learning based on how the training data propagate in the forward process. Encour-
agingly, there often exist feasible strategies to achieve this goal as long as faithful estimates about
the (Stein) score functions — the gradients of the log marginal density of the forward process —
are available, an intriguing fact that can be illuminated by the existence and construction of reverse-
time stochastic differential equations (SDEs) (Anderson, 1982; Haussmann & Pardoux, 1986) (see
Section 2.2 for more precise discussions). Viewed in this light, a diverse array of diffusion models
are frequently referred to as score-based generative modeling (SGM). The popularity of SGM was
initially motivated by, and has since further inspired, numerous recent studies on the problem of
learning score functions, a subroutine that also goes by the name of score matching (e.g., Hyvärinen
(2005; 2007); Vincent (2011); Song et al. (2020b); Koehler et al. (2023)).

Nonetheless, despite the mind-blowing empirical advances, a mathematical theory for diffusion gen-
erative models is still in its infancy. Given the complexity of developing a full-fledged end-to-end
theory, a divide-and-conquer approach has been advertised, decoupling the score learning phase
(i.e., how to estimate score functions from training data) and the generative sampling phase (i.e.,
how to generate new data given the score estimates). In particular, the past two years have witnessed
growing interest and remarkable progress from the theoretical community towards understanding
the sampling phase (Block et al., 2020; De Bortoli et al., 2021; Liu et al., 2022; De Bortoli, 2022;
Lee et al., 2023; Pidstrigach, 2022; Chen et al., 2022b;a; Tang, 2023; Chen et al., 2023c; Tang &
Zhao, 2024; Li et al., 2024a). For instance, polynomial-time convergence guarantees have been
established for stochastic samplers (e.g., Chen et al. (2022b;a); Benton et al. (2023a)) and deter-
ministic samplers (e.g., Chen et al. (2023c); Benton et al. (2023b)), both of which accommodated a
fairly general family of data distributions.

This paper. The present paper contributes to this growing list of theoretical endeavors by devel-
oping a new suite of non-asymptotic theory for several score-based generative modeling algorithms.
We concentrate on two types of samplers (Song et al., 2021b) in discrete time: (i) a deterministic
sampler based on a sort of ordinary differential equations (ODEs) called probability flow ODEs
(which is closely related to the DDIM); and (ii) a DDPM-type stochastic sampler motivated by
reverse-time SDEs. We impose only minimal assumptions on the target data distribution (e.g., no
smoothness condition is needed), and would like to quantify the impact of `2 score estimation errors.
In comparisons to past works, our main contributions are three-fold.

Non-asymptotic convergence guarantees. For a popular deterministic sampler, we demonstrate that
the number of steps needed to yield ε-accuracy — meaning that the total variation (TV) distance
between the distribution of X1 and that of Y1 is no larger than ε — is proportional to 1/ε (in addi-
tion to other polynomial dimension dependency). This improves upon prior convergence guarantees
(Chen et al., 2023c) and does not exhibit exponential dependency on the smoothness assumption as
in Chen et al. (2023c); Benton et al. (2023b). For another DDPM-type stochastic sampler, we es-
tablish an iteration complexity proportional to 1/ε2, matching existing theory Chen et al. (2022b;a);
Benton et al. (2023a) in terms of the ε-dependency.

Score estimation errors for the determinstic sampler. In our convergence guarantees for the deter-
ministic sampler, the TV distance between X1 and Y1 are shown to be proportional to the `2 score
estimation error as well as the associated Jacobian errors. As far as we know, this is the first result
for this deterministic sampler that accounts for score estimation errors in discrete time. In compari-
son, other theoretical results that accommodate score errors for the probability flow ODE approach

1Two random vectors X and Y are said to obey X d
= Y (resp. X

d
≈ Y ) if they are equivalent (resp. close)

in distribution.
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either study certain stochastic variations of this deterministic sampler (Chen et al., 2023b) or fall
short of accommodating discretization errors (Benton et al., 2023b).

An elementary non-asymptotic analysis framework. From the technical viewpoint, the analysis
framework laid out in this paper is fully non-asymptotic in nature. In contrast to prior analyses that
take a detour to study the continuum limits and then control the discretization error, our approach
tackles the discrete-time processes directly using elementary analysis strategies. No knowledge of
SDEs or ODEs is required for establishing our theory, thereby resulting in a more versatile frame-
work and sometimes lowering the technical barrier towards understanding diffusion models.

Notation. For any two functions f(d, T ) and g(d, T ), we adopt the notation f(d, T ) . g(d, T ) or
f(d, T ) = O(g(d, T )) (resp. f(d, T ) & g(d, T )) to mean that there exists some universal constant
C1 > 0 such that f(d, T ) ≤ C1g(d, T ) (resp. f(d, T ) ≥ C1g(d, T )) for all d and T ; moreover,
the notation f(d, T ) � g(d, T ) indicates that f(d, T ) . g(d, T ) and f(d, T ) & g(d, T ) hold at
once. The notation Õ(·) is defined similar to O(·) except that it hides the logarithmic dependency.
Additionally, the notation f(d, T ) = o

(
g(d, T )

)
means that f(d, T )/g(d, T ) → 0 as d, T tend

to infinity. For any two probability measures P and Q, the total variation (TV) distance between
them is defined to be TV(P,Q) := 1

2

∫
|dP − dQ|. Throughout the paper, pX(·) (resp. pX |Y (· | ·))

denotes the probability density function of X (resp. X given Y ). For any matrix A, we denote
by ‖A‖ (resp. ‖A‖F) the spectral norm (resp. Frobenius norm) of A. Also, for any vector-valued
function f , we let Jf or ∂f∂x represent the Jacobian matrix of f .

2 PRELIMINARIES

In this section, we introduce the basics of diffusion generative models. The ultimate goal of a
generative model can be concisely stated: given data samples drawn from an unknown distribution
of interest pdata in Rd, we wish to generate new samples whose distributions closely resemble pdata.

2.1 DIFFUSION GENERATIVE MODELS

Towards achieving the above goal, a diffusion generative model typically encompasses two Markov
processes: a forward process and a reverse process, as described below.

The forward process. In the forward chain, one progressively injects noise into the data samples
to diffuse and obscure the data. The distributions of the injected noise are often hand-picked, with
the standard Gaussian distribution receiving widespread adoption. Specifically, the forward Markov
process produces a sequence of d-dimensional random vectors X1 → X2 → · · · → XT as follows:

X0 ∼ pdata, (4a)

Xt =
√

1− βtXt−1 +
√
βtWt, 1 ≤ t ≤ T, (4b)

where {Wt}1≤t≤T indicates a sequence of independent noise vectors drawn fromWt
i.i.d.∼ N (0, Id).

The hyper-parameters {βt ∈ (0, 1)} represent prescribed learning rate schedules that control the
variance of the noise injected in each step. If we define

αt := 1− βt, αt :=

t∏
k=1

αk, 1 ≤ t ≤ T, (5)

then it can be straightforwardly verified that for every 1 ≤ t ≤ T ,

Xt =
√
αtX0 +

√
1− αtW t for some W t ∼ N (0, Id). (6)

Clearly, if the covariance ofX0 is also equal to Id, then the covariance ofXt is preserved throughout
the forward process; for this reason, this forward process (4) is sometimes referred to as variance-
preserving (Song et al., 2021b). Throughout this paper, we employ the notation

qt := law
(
Xt

)
(7)

to denote the distribution of Xt. As long as αT is vanishingly small, one has the following property
for a general family of data distributions:

qT ≈ N (0, Id). (8)
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The reverse process. The reverse chain YT → YT−1 → . . .→ Y1 is designed to (approximately)
revert the forward process, allowing one to transform pure noise into new samples with matching
distributions as the original data. To be more precise, by initializing it as

YT ∼ N (0, Id), (9a)

we seek to design a reverse-time Markov process with nearly identical marginals as the forward
process, namely,

(goal) Yt
d
≈ Xt, t = T, T − 1, · · · , 1. (9b)

Throughout the paper, we often employ the following notation to indicate the distribution of Yt:

pt := law
(
Yt
)
. (10)

2.2 DETERMINISTIC VS. STOCHASTIC SAMPLERS: A CONTINUOUS-TIME INTERPRETATION

Evidently, the most crucial step of the diffusion model lies in effective design of the reverse process.
Two mainstream approaches stand out:

• Deterministic samplers. Starting from YT ∼ N (0, Id), this approach selects a set of func-
tions {Φt(·)}1≤t≤T and computes:

Yt−1 = Φt
(
Yt
)
, t = T, · · · , 1. (11)

Clearly, the sampling process is fully deterministic except for the initialization YT .
• Stochastic samplers. Initialized again at YT ∼ N (0, Id), this approach computes another

collection of functions {Ψt(·, ·)}1≤t≤T and performs the updates:

Yt−1 = Ψt

(
Yt, Zt

)
, t = T, · · · , 1, (12)

where the Zt’s are independent noise vectors obeying Zt
i.i.d.∼ N (0, Id).

In order to elucidate the feasibility of the above two approaches, we find it helpful to look at the
continuum limit through the lens of SDEs and ODEs. It is worth emphasizing, however, that the
development of our main theory does not rely on any knowledge of SDEs and ODEs.

• The forward process. A continuous-time analog of the forward process can be modeled as

dXt = f(Xt, t)dt+ g(t)dWt (0 ≤ t ≤ T ), X0 ∼ pdata (13)

for some functions f(·, ·) and g(·) (denoting respectively the drift and diffusion coefficient),
where Wt denotes a d-dimensional standard Brownian motion. As a special example, the
continuum limit of (4) takes the following form2 (Song et al., 2021b)

dXt = −1

2
β(t)Xtdt+

√
β(t) dWt (0 ≤ t ≤ T ), X0 ∼ pdata (14)

for some function β(t). As before, we denote by qt the distribution of Xt in (13).
• The reverse process. As it turns out, the following two reverse processes are both capable

of reconstructing the distribution of the forward process, motivating the design of two dis-
tinctive samplers. Here and throughout, we use ∇ log qt(X) to abbreviate ∇X log qt(X)
for notational simplicity.

– One feasible approach is to the so-called probability flow ODE (Song et al., 2021b)

dY ode
t =

(
− f

(
Y ode
t , T − t

)
+

1

2
g(T − t)2∇ log qT−t

(
Y ode
t

))
dt (0 ≤ t ≤ T ),

(15)

with Y ode
0 ∼ qT , which exhibits matching distributions as follows:

Y ode
T−t

d
= Xt, 0 ≤ t ≤ T.

The deterministic nature of this approach often enables faster sampling. It has been
shown that this family of deterministic samplers is closely related to the DDIM sam-
pler (Karras et al., 2022; Song et al., 2021b).

2To see its connection with (4), it suffices to derive from (4) thatXt−Xt−dt =
√
1− βtXt−dt−Xt−dt+√

βtWt ≈ − 1
2
βtXt−dt +

√
βtWt.
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– In view of the classical results Anderson (1982); Haussmann & Pardoux (1986), one
can also construct a “reverse-time” SDE

dY sde
t =

(
− f

(
Y sde
t , T − t

)
+ g(T − t)2∇ log qT−t

(
Y sde
t

))
dt+ g(T − t)dZsde

t

(16)

for 0 ≤ t ≤ T , with Y sde
0 ∼ qT and Zsde

t being a standard Brownian motion. Strik-
ingly, this process also satisfies

Y sde
T−t

d
= Xt, 0 ≤ t ≤ T.

The popular DDPM sampler (Ho et al., 2020) falls under this category.

Interestingly, in addition to the functions f and g that define the forward process, construction of
both (15) and (16) relies only upon the knowledge of the gradient of the log density∇ log qt(·) of the
intermediate steps of the forward diffusion process — often referred to as the (Stein) score function.
Consequently, a key enabler of the above paradigms lies in reliable learning of the score function,
and hence the name score-based generative modeling.

3 ALGORITHMS AND MAIN RESULTS

In this section, we analyze a couple of diffusion generative models, including both deterministic and
stochastic samplers. While the proofs for our main theory are all postponed to the appendix, it is
worth emphasizing upfront that our analysis framework directly tackles the discrete-time processes
without resorting to any toolbox of SDEs and ODEs tailored to the continuous-time limits. This
elementary approach might potentially be versatile for analyzing a broad class of variations of these
samplers. For instance, prior ODE-based theory (e.g., Chen et al. (2023b;c)) encountered certain
technical challenges when analyzing the deterministic sampler directly, and our elementary approach
is able to shed new light on the convergence of this important sampler.

3.1 ASSUMPTIONS AND LEARNING RATES

Before proceeding, we impose some assumptions on the score estimates and the target data distri-
butions, and specify the hypter-parameters {αt}, which shall be adopted throughout all cases.

Score estimates. Given that the score functions are an essential component in score-based gen-
erative modeling, we assume access to faithful estimates of the score functions ∇ log qt(·) across
all intermediate steps t, thus disentangling the score learning phase and the data generation phase.
Towards this end, let us first formally introduce the true score function as follows.
Definition 1 (Score function). The score function, denoted by s?t : Rd → Rd, is defined as

s?t (X) := ∇ log qt(X), 1 ≤ t ≤ T. (17)

As has been pointed out by previous works concerning score matching (e.g., Hyvärinen (2005);
Vincent (2011); Chen et al. (2022b)), the score function s?t admits an alternative form as follows
(owing to properties of Gaussian distributions):

s?t := arg min
s:Rd→Rd

E
W∼N (0,Id),X0∼pdata

[∥∥∥∥s(√αtX0 +
√

1− αtW
)

+
1√

1− αt
W

∥∥∥∥2
2

]
, (18)

which takes the form of the minimum mean square error estimator for − 1√
1−αt

W given
√
αtX0 +

√
1− αtW and is often more amenable to training.

With Definition 1 in place, we can readily introduce the following assumptions that capture the
quality of the score estimate {st}1≤t≤T we have available.
Assumption 1. Suppose that the score function estimate {st}1≤t≤T obeys

1

T

T∑
t=1

E
X∼qt

[∥∥st(X)− s?t (X)
∥∥2
2

]
≤ ε2score. (19)
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Assumption 2. For each 1 ≤ t ≤ T , assume that st(·) is continuously differentiable, and denote
by Js?t =

∂s?t
∂x and Jst = ∂st

∂x the Jacobian matrices of s?t (·) and st(·), respectively. Assume that the
score function estimate {st}1≤t≤T obeys

1

T

T∑
t=1

E
X∼qt

[∥∥Jst(X)− Js?t (X)
∥∥] ≤ εJacobi. (20)

In a nutshell, Assumption 1 reflects the `2 score estimation error, whereas Assumption 2 concerns
the estimation error in terms of the corresponding Jacobian matrix. Both assumptions consider the
average estimation errors over all T steps. Our theory for the deterministic sampler relies on both
Assumptions 1 and 2, while the theory for the stochastic sampler requires only Assumption 1. We
shall discuss in Section 3.2 the insufficiency of Assumption 1 alone for the deterministic sampler.

Target data distributions. Our goal is to uncover the effectiveness of diffusion models in gener-
ating a broad family of data distributions. Throughout this paper, the only assumptions we need to
impose on the target data distribution pdata are the following:

• X0 is an absolutely continuous random vector, and

P
(
‖X0‖2 ≤ T cR | X0 ∼ pdata

)
= 1 (21)

for some arbitrarily large constant cR > 0.

This assumption allows the radius of the support of pdata to be exceedingly large (given that the
exponent cR can be arbitrarily large).

Learning rate schedule. Let us also take a moment to specify the learning rates to be used for
our theory and analyses. For some large enough numerical constants c0, c1 > 0, we set

β1 = 1− α1 =
1

T c0
; (22a)

βt = 1− αt =
c1 log T

T
min

{
β1

(
1 +

c1 log T

T

)t
, 1

}
. (22b)

Remark 1. As we shall see in our analysis, the discretization error depends crucially upon the
quantity 1−αt

1−αt
, whereas the initialization error relies heavily upon α1 and αT . Based on these

observations, our learning rate schedule (22) is designed to make 1−αt

1−αt
as small as possible, while

making sure α1 (resp. αT ) is close to 1 (resp. 0). These properties will be shown in (43). Moreover,
it is worth noting that our analysis can be easily extended to accommodate a much broader class of
learning rates, although the resulting convergence rates might vary.

3.2 AN ODE-BASED DETERMINISTIC SAMPLER

We begin by analyzing a deterministic sampler: a discrete-time version of the probability flow ODE.

Armed with the score estimates {st}1≤t≤T , a discrete-time version of the probability flow ODE
approach (cf. (15)) adopts the following update rule:

YT ∼ N (0, Id), Yt−1 = Φt
(
Yt
)

for t = T, · · · , 1, (23a)

where Φt(·) is taken to be

Φt(x) :=
1
√
αt

(
x+

1− αt
2

st(x)

)
. (23b)

This approach, based on the probability flow ODE (15), often achieves faster sampling compared
to the stochastic counterpart (Song et al., 2021b). Despite the empirical advances, however, the
theoretical understanding of this type of deterministic samplers remained far from mature.

We first derive non-asymptotic convergence guarantees — measured by the total variation distance
between the forward and the reverse processes — for the above deterministic sampler (23). The
proof of this result can be found in Li et al. (2023, Section 5.2).
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Theorem 1. Suppose that (21) holds true. Assume that the score estimates st(·) (1 ≤ t ≤ T ) satisfy
Assumptions 1 and 2. Then the sampling process (23) with the learning rate schedule (22) satisfies

TV
(
q1, p1

)
≤ C1

d2 log4 T

T
+ C1

d6 log6 T

T 2
+ C1

√
d log3 Tεscore + C1d(log T )εJacobi (24)

for some universal constantsC1 > 0, where p1 (resp. q1) represents the distribution of Y1 (resp.X1).

Implications. Let us highlight the main implications of Theorem 1. Before proceeding, note that
our theory is concerned with convergence to q1. Given thatX1 ∼ q1 andX0 ∼ q0 are very close due
to the choice of α1, focusing on the convergence w.r.t. q1 instead of q0 remains practically relevant.

(a) Iteration complexity. Consider first the scenario that has access to perfect score estimates (i.e.,
εscore = 0). In order to achieve ε-accuracy (in the sense that TV(q1, p1) ≤ ε), the number of steps
T only needs to exceed

Õ
(
d2/ε+ d3/

√
ε
)
. (25)

(b) Stability. Turning to the more general case with imperfect score estimates (i.e., εscore > 0), the
deterministic sampler (23) yields a distribution whose distance to the target distribution (measured
again by the TV distance) scales proportionally with εscore and εJacobi. It is noteworthy that in
addition to the score estimation errors, we are in need of an assumption on the stability of the
associated Jacobian matrices, which plays a pivotal in ensuring that the reverse-time deterministic
process does not deviate considerably from the desired process.

(c) Insufficiency of the score estimation error assumption alone. The careful reader might wonder
why we are in need of additional assumptions beyond the `2 score error stated in Assumption 1. To
answer this question, we find it helpful to look at a simple example below.

• Example. Consider the case where X0 ∼ N (0, 1), and hence X1 ∼ N (0, 1). Suppose
that the reverse process for time t = 2 can lead to the desired distribution if exact score
function is employed, namely,

Y ?1 :=
1
√
α2

(
Y2 −

1− α2

2
s?2(Y2)

)
∼ N (0, 1).

Now, suppose that the score estimate s2(·) we have available obeys

s2(y2) = s?2(y2) +
2
√
α2

1− α2

{
y?1 − L

⌊
y?1
L

⌋}
with y?1 :=

1
√
α2

(
y2 −

1− α2

2
s?2(y2)

)
for L > 0, where bzc is the greatest integer not exceeding z. It follows that

Y1 = Y ?1 +
1− α2

2
√
α2

[
s?2(Y2)− s2(Y2)

]
= L

⌊
Y ?1
L

⌋
.

Clearly, the score error EX2∼N (0,1)

[
|s2(X2)− s?2(X2)|2

]
can be made arbitrarily small by

taking L→ 0. However, the discrete nature of Y1 forces TV(Y1, X1) = 1.

This example demonstrates that, for the deterministic sampler, the TV distance between Y1 and X1

might not improve as the score error decreases. If we wish to relax Assumption 2, one potential way
is to resort to other metrics (e.g., Wasserstein distance) instead of TV distance between Y1 and X1.

(d) Relaxing the boundedness assumption on X0. As it turns out, the assumption (21) can also be
relaxed. Supposing that P

(
‖X0‖2 ≤ B | X0 ∼ pdata

)
= 1 for some quantity B > 0 (which is

allowed to grow faster than a polynomial in T ), we can readily extend our analysis to obtain

TV
(
q1, p1

)
≤ C1

d2 log4 T log2B

T
+ C1

d6 log6 T log3B

T 2
+ C1

√
d log3 T logBεscore + C1d(log T )εJacobi.

Importantly, the convergence rate depends only logarithmically in B.

Comparisons with past works. To the best of our knowledge, the only non-asymptotic analysis for
the discretized probability flow ODE approach in prior literature was derived by a very recent work
Chen et al. (2023c), which established the first non-asymptotic convergence guarantees that exhibit
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polynomial dependency in both d and 1/ε (see, e.g., Chen et al. (2023c, Theorem 4.1)). However,
it fell short of providing concrete polynomial dependency in d and 1/ε, suffered from exponential
dependency in the Lipschitz constant of the score function, and relied on exact score estimates. In
contrast, our result in Theorem 1 uncovers a concrete d2/ε scaling (ignoring lower-order and log-
arithmic terms) without imposing any smoothness assumption on the target data distribution, and
makes explicit the effect of score estimation errors, both which were previously unavailable for such
discrete-time deterministic samplers. Another recent work Benton et al. (2023b) studied the conver-
gence of the probability flow ODE approach without accounting for the discretization error; the re-
sult therein also exhibited exponential dependency on the Lipschitz constant. Finally, while we were
wrapping up the current paper, we became aware of the independent work Chen et al. (2023b) estab-
lishing improved polynomial dependency for two variants of the probability flow ODE. By inserting
an additional stochastic corrector step — based on overdamped (resp. underdamped) Langevin dif-
fusion — in each iteration of the probability flow ODE (so strictly speaking, these variations are
no longer deterministic samplers), Chen et al. (2023b) showed that Õ(L3d/ε2) (resp. Õ(L2

√
d/ε))

steps are sufficient, where L denotes the Lipschitz constant of the score function. In comparison,
our result demonstrates for the first time that the plain probability flow ODE already achieves the
1/ε scaling without requiring either a corrector step; one limitation of our result, however, is the
sub-optimal d-dependency compared to the variants studied in Chen et al. (2023b).

3.3 A DDPM-TYPE STOCHASTIC SAMPLER

Armed with the score estimates {st}, we can readily introduce the following stochastic sampler that
operates in discrete time, motivated by the reverse-time SDE (16):

YT ∼ N (0, Id), Yt−1 = Ψt(Yt, Zt) for t = T, · · · , 1 (26a)

where Zt
i.i.d.∼ N (0, Id), and

Ψt(y, z) =
1
√
αt

(
y + (1− αt)st(y)

)
+ σtz with σ2

t =
1

αt
− 1. (26b)

The key difference between this sampler and the deterministic sampler (23) is that: (i) there exists
an additional pre-factor of 1/2 on st in the deterministic sampler; and (ii) the stochastic sampler
injects additional noise Zt in each step.

In contrast to deterministic samplers, the stochastic samplers have received more theoretical atten-
tion, with the state-of-the-art results established by Chen et al. (2022b;a) as well as a very recent
paper Benton et al. (2023a). The elementary approach developed in the current paper is also appli-
cable towards understanding this type of samplers, leading to the following non-asymptotic theory.
Theorem 2. Suppose (21) holds true. Equipped with the estimates in Assumption 1 and the learning
rate schedule (22), the stochastic sampler (26) achieves, for some universal constants C1 > 0,

TV
(
q1, p1

)
≤
√

1

2
KL
(
q1 ‖ p1) ≤ C1

d2 log3 T√
T

+ C1

√
dεscore log2 T. (27)

Theorem 2 establishes non-asymptotic convergence guarantees for the stochastic sampler (26). As
asserted by the theorem, if we have access to perfect score estimates, then the number of steps
needed to attain ε-accuracy (measured by the TV distance between p1 and q1) is proportional to
1/ε2, matching the state-of-the-art ε-dependency derived in Chen et al. (2022a), albeit exhibiting
a worse dimensional dependency. In addition, in the presence of score estimation error, the sam-
pler achieves a TV distance proportional to εscore, again consistent with prior results. Our analysis
follows a completely different path compared with the SDE-based approach in Chen et al. (2022a),
thus offering complementary interpretations for this important sampler.

4 OTHER RELATED WORKS

Theory for SGMs. Early theoretical efforts in understanding the convergence of score-based
stochastic samplers suffered from being either not quantitative (De Bortoli et al., 2021; Liu et al.,
2022; Pidstrigach, 2022), or the curse of dimensionality (e.g., exponential dependencies in the con-
vergence guarantees) (Block et al., 2020; De Bortoli, 2022). Lee et al. (2022) provided the first
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polynomial convergence guarantees with L2-accurate score estimates, for any smooth distribution
satisfying the log-Sobelev inequality. Chen et al. (2022b); Lee et al. (2023); Chen et al. (2022a) sub-
sequently lifted such a stringent data distribution assumption. More concretely, Chen et al. (2022b)
accommodated a broad family of data distributions under the premise that the score functions over
the entire trajectory of the forward process are Lipschitz; Lee et al. (2023) only required certain
smoothness assumptions but came with worse dependence on the problem parameters; and more
recent results in Chen et al. (2022a) applied to literally any data distribution with bounded second-
order moment. In addition, Wibisono & Yang (2022) also established a convergence theory for
score-based generative models, assuming that the error of the score estimator has a bounded mo-
ment generating function and that the data distribution satisfies the log-Sobelev inequality. Turning
attention to samplers based on the probability flow ODE, Chen et al. (2023c) derived the first non-
asymptotic bounds for this type of samplers. Improved convergence guarantees have recently been
provided by a concurrent work Chen et al. (2023b), with the assistance of additional corrector steps
inerspersed in each iteration of the probability flow ODE. It is worth noting that the corrector steps
proposed therein are based on Langevin-type diffusion and inject additive noise, and hence the re-
sulting sampling processes are not deterministic. Additionally, theoretical justifications for DDPM
in the context of image in-painting have been developed by Rout et al. (2023). Moreover, conver-
gence results based on the Wasserstein distance have recently been derived as well (Tang, 2023;
Benton et al., 2023b), although these results typically exhibit exponential dependency on the Lip-
schitz constants of the score functions. Theoretical guarantees are also extended to accommodate
popular methods like consistency models and diffusion guidance (Li et al., 2024b; Wu et al., 2024).

Score matching. Hyvärinen (2005) showed that the score function can be estimated via integration
by parts, a result that was further extended in Hyvärinen (2007). Song et al. (2020b) proposed sliced
score matching to tame the computational complexity in high dimension. The consistency of the
score matching estimator was studied in Hyvärinen (2005), with asymptotic normality established
in Forbes & Lauritzen (2015). Optimizing the score matching loss has been shown to be intimately
connected to minimizing upper bounds on the Kullback-Leibler divergence (Song et al., 2021a) and
Wasserstein distance (Kwon et al., 2022) between the generated distribution and the target data dis-
tribution. From a non-asymptotic perspective, Koehler et al. (2023) studied the statistical efficiency
of score matching by connecting it with the isoperimetric properties of the distribution.

Other theory for diffusion models. Oko et al. (2023) studied the approximation and generalization
capabilities of diffusion modeling for distribution estimation. Assuming that the data are supported
on a low-dimensional linear subspace, Chen et al. (2023a) developed a sample complexity bound for
diffusion models. Moreover, Ghimire et al. (2023) adopted a geometric perspective and showed that
the forward and backward processes of diffusion models are essentially Wasserstein gradient flows.
Recently, the idea of stochastic localization, which is closely related to diffusion models, is adopted
to sample from posterior distributions (Montanari & Wu, 2023; El Alaoui et al., 2022), which has
been implemented using approximate message passing (Donoho et al., 2009; Li & Wei, 2022).

5 DISCUSSION

In this paper, we have developed a new suite of non-asymptotic theory for establishing the con-
vergence and faithfulness of diffusion generative modeling, assuming access to reliable estimates
of the (Stein) score functions. Our analysis framework seeks to track the dynamics of the reverse
process directly using elementary tools, which eliminates the need to look at the continuous-time
limit and invoke the SDE and ODE toolboxes. Only the very minimal assumptions on the target data
distribution are imposed. The analysis framework laid out in the current paper might shed light on
how to analyze other variants of score-based generative models as well. Moving forward, there are
plenty of questions that require in-depth theoretical understanding. For instance, the dimension de-
pendency in our convergence results remains sub-optimal; can we further refine our theory in order
to reveal tight dependency in this regard? Can we establish sharp convergence results in terms of
the Wasserstein distance, which could sometimes be “closer” to how humans differentiate pictures
and might potentially help relax Assumption 2 in the case of deterministic samplers? It would also
be of paramount interest to establish end-to-end performance guarantees that take into account both
the score learning phase and the sampling phase.
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