
Published as a conference paper at ICLR 2024

STABLE NEURAL STOCHASTIC DIFFERENTIAL EQUA-
TIONS IN ANALYZING IRREGULAR TIME SERIES DATA

YongKyung Oh∗, Dong-Young Lim∗, & Sungil Kim†

Ulsan National Institute of Science and Technology, Republic of Korea
{yongkyungoh, dlim, sungil.kim}@unist.ac.kr

ABSTRACT

Irregular sampling intervals and missing values in real-world time series data
present challenges for conventional methods that assume consistent intervals and
complete data. Neural Ordinary Differential Equations (Neural ODEs) offer an
alternative approach, utilizing neural networks combined with ODE solvers to
learn continuous latent representations through parameterized vector fields. Neural
Stochastic Differential Equations (Neural SDEs) extend Neural ODEs by incor-
porating a diffusion term, although this addition is not trivial, particularly when
addressing irregular intervals and missing values. Consequently, careful design
of drift and diffusion functions is crucial for maintaining stability and enhancing
performance, while incautious choices can result in adverse properties such as the
absence of strong solutions, stochastic destabilization, or unstable Euler discretiza-
tions, significantly affecting Neural SDEs’ performance. In this study, we propose
three stable classes of Neural SDEs: Langevin-type SDE, Linear Noise SDE, and
Geometric SDE. Then, we rigorously demonstrate their robustness in maintaining
excellent performance under distribution shift, while effectively preventing overfit-
ting. To assess the effectiveness of our approach, we conduct extensive experiments
on four benchmark datasets for interpolation, forecasting, and classification tasks,
and analyze the robustness of our methods with 30 public datasets under different
missing rates. Our results demonstrate the efficacy of the proposed method in
handling real-world irregular time series data.

1 INTRODUCTION

Conventional deep learning models, such as Recurrent Neural Network (RNN) (Rumelhart et al., 1986;
Medsker & Jain, 1999), Long Short-term Memory (LSTM) (Hochreiter & Schmidhuber, 1997) and
Gated Recurrent Unit (GRU) (Chung et al., 2014), consider time series data as consecutive discrete
subsets, struggling with irregularly-sampled or partially-observed data (Mozer et al., 2017). To
better reflect the underlying continuous process of the time series, researchers have proposed Neural
Differential Equation (NDE)-based methods that enable deep learning models to learn continuous-
time dynamics and the underlying temporal structure (Chen et al., 2018; Tzen & Raginsky, 2019; Jia
& Benson, 2019; Liu et al., 2019; Kidger et al., 2020; 2021a;b; Ansari et al., 2023).

Unlike discrete representations from the conventional methods, neural ordinary differential equations
(Neural ODEs) (Chen et al., 2018) directly learn continuous latent representation (or latent state)
based on a vector field parameterized by a neural network. Kidger et al. (2020) introduced neural
controlled differential equations (Neural CDEs), which are continuous-time analogs of RNNs that
employ controlled paths to represent irregular time series.

As an extension of Neural ODEs, neural stochastic differential equations (Neural SDEs) have been
introduced with a focus on aspects such as gradient computation, variational inference for latent
spaces, and uncertainty quantification. For example, Tzen & Raginsky (2019) considers a variation
inference for the diffusion limit in deep latent Gaussian models. Li et al. (2020) develops reverse-mode
automatic differentiation for solutions of SDEs. Neural SDEs that incorporate various regularization

∗These two authors are equal contributors to this work and designated as co-first authors.
†Corresponding Author

1

Published as a conference paper at ICLR 2024

mechanisms such as dropout and noise injection were introduced in Liu et al. (2019). Kong et al.
(2020) utilized a framework of Neural SDEs to quantify uncertainties in deep neural networks.

Despite advancements in the literature, there still exist unresolved issues and a lack of understanding
in the modeling and robustness of Neural SDEs under distribution shift, motivating us to extend
Neural SDE approaches into two directions. Firstly, as illustrated in our motivating example, the
naïve implementation of Neural SDEs often fails to train. This is due to the fact that the behavior of
the solution to SDEs can vary significantly depending on drift and diffusion functions, emphasizing
the need for a study on an optimal selection of drift and diffusion functions. Secondly, irregular time
series data, due to the nature of time variables, irregularity, and missingness, is prone to experiencing
distribution shifts, which requires a substantial demand on model robustness (Li et al., 2021; Zhou
et al., 2023).

The performance of deep learning models often deteriorates when applied to data distributions that
are different from the original training distributions (Ovadia et al., 2019). This vulnerability under
distribution shift1 has been widely observed across various domains including healthcare, computer
vision, and NLP (Leek et al., 2010; Bandi et al., 2018; Lazaridou et al., 2021; Miller et al., 2020;
2021). Therefore, theoretical guarantees to maintain robustness against distribution shift is a critical
concern within modern deep learning communities. However, to the best of our knowledge, it has yet
been explored to address this specific issue in the context of Neural SDEs.

To address these research gaps, this study introduces three classes of Neural SDEs to capture complex
dynamics and improve robustness under distribution shift in time series data. While the drift and
diffusion terms in the existing Neural SDEs are directly approximated by neural networks, the
proposed Neural SDEs are trained based on theoretically well-defined SDEs. As a result, the new
framework achieves state-of-the-art results in extensive experiments.

The main contributions of this study are summarized as follows. Firstly, we present three stable classes
of Neural SDEs based on Langevin-type SDE, Linear Noise SDE, and Geometric SDE, and then
combine the concept of controlled paths into the drift term of the proposed Neural SDEs to effectively
capture sequential observations. Secondly, we show the existence and uniqueness of the solutions of
these SDEs. In particular, we show that the Neural Geometric SDE shares properties with deep ReLU
networks. Thirdly, we theoretically demonstrate that our proposed Neural SDEs maintain excellent
performance under distribution shift due to missing data, while effectively preventing overfitting.
Lastly, we conduct extensive experiments on four benchmark datasets for interpolation, forecasting,
and classification tasks, and analyze the robustness of our methods with 30 public datasets under
different missing rates. The proposed Neural SDEs show not only powerful empirical performance in
terms of various measures but also remain robust to missing data.

2 RELATED WORK & PRELIMINARIES

Notations. Let (Ω,F , P) be a probability space. Fix integer d ≥ 1. For an Rd-valued random
variable X , its law is denoted by L(X). | · | is the Euclidean norm where the dimension of the space
may vary depending on the context. We denote by Lp(Ω) the set of X with (E[|X|p])1/p < ∞. Let
P(Rd) denote the set of probability measures on B(Rd). For two probability measures µ, ν ∈ P(Rd),
let C(µ, ν) denote the set of probability measures Π on B(R2d) such that its respective marginals are
µ and ν. Then, the Wasserstein distance of order p ≥ 1 is defined as

Wp(µ, ν) = inf
Π∈C(µ,ν)

(∫
Rd

∫
Rd

|x− x′|pΠ(dx, dx′)

)1/p

.

2.1 NEURAL DIFFERENTIAL EQUATION METHODS

Neural ODEs. Let x ∈ Rdx denote the input data where dx is its dimension. Consider a latent
representation z(t) ∈ Rdz at time t, which is given by

z(t) = z(0) +

∫ t

0

f(s,z(s); θf)ds with z(0) = h(x; θh), (1)

1This phenomenon occurs when the statistical properties of the target distribution that the model aims to
predict shift over time, leading to discrepancies between the distributions of training data and test data.

2

Published as a conference paper at ICLR 2024

where h : Rdx → Rdz is an affine function with parameter θh. In Neural ODEs, f(t, z(t); θf)
is a neural network parameterized by θf to approximate dz(t)

dt . To solve the integral problem in
Equation (1), Neural ODEs rely on ODE solvers, such as the explicit Euler method (Chen et al.,
2018). Since we can freely choose the upper limit t of the integration, we can predict z at any time
t. That is, once h(·; θh) and f(·, ·; θf) have been learned, then we are able to compute z(t) for any
t ≥ 0. Note that the extracted features z(t) are used for various tasks such as classification and
regression. However, the solution to a Neural ODE is determined by its initial condition, making it
inadequate for incorporating incoming information into a differential equation.

Neural CDEs. To address this issue, Kidger et al. (2020) proposed Neural CDEs as a continuous
analogue of RNNs by combining a controlled path X(t) of the underlying time-series data with
Neural ODEs. Specifically, given the sequential data x = (x0, x1, . . . , xn), z(t) is determined by

z(t) = z(0) +

∫ t

0

f(s,z(s); θf)dX(s) with z(0) = h(x0; θh), (2)

where the integral is the Riemann–Stieltjes integral and X(t) is chosen as a natural cubic spline
path (Kidger et al., 2020) or hermite cubic splines with backward differences (Morrill et al., 2022) of
the underlying time-series data. Differently from Neural ODEs, f(t, z(t); θf), called CDE function,
is a neural network parameterized by θf to approximate dz(t)

dX(t) . The integral problem in Equation (2)

can be solved by using existing ODE solvers since dz(t)
dt = f(t, z(t); θf)

dX(t)
dt .

Neural SDEs. Neural SDEs are an extension of Neural ODEs, which allows for describing the
stochastic evolution of sample paths, rather than the deterministic evolution (Han et al., 2017; Tzen &
Raginsky, 2019; Jia & Benson, 2019; Liu et al., 2019; Kidger et al., 2021a;b; Park et al., 2021). The
latent representation z(t) of Neural SDEs is governed by the following SDE:

z(t) = z(0) +

∫ t

0

f(s,z(s); θf)ds+

∫ t

0

g(s,z(s); θg)dW (s) with z(0) = h(x; θh), (3)

where {Wt}t≥0 is a dz-dimensional Brownian motion, f(·, ·; θf) is the drift function, g(·, ·; θg) is
the diffusion function and the second integral on the right-hand side is the Itô integral. Neural SDEs
assume that drift and diffusion functions are represented by neural networks.

2.2 LIMITATIONS OF NAÏVE NEURAL SDES

0 20 40 60 80 100
Epoch

0.8

1.2

1.6

Lo
ss

(i) z(t)1/2

(ii) z(t)3

(iii)
(iv) (t)
(v) (t)z(t)
(vi) g (t, z(t); g)

Figure 1: Comparison of test losses for Neural
SDEs with six different diffusion functions on the

‘BasicMotions’ dataset at a 50% missing rate

The naïve implementation of Neural SDEs with-
out sufficient consideration can lead to adverse
results such as the absence of a unique strong
solution (Mao, 2007; Øksendal & Øksendal,
2003), stochastic destabilization (Mao, 1994;
Appleby et al., 2008), and/or unstable Euler dis-
cretization2 (Hutzenthaler et al., 2011; Roberts
& Tweedie, 1996). Therefore, careful design
of the diffusion term is essential to improve the
stability and efficacy of Neural SDEs.

The significance of a well-defined diffusion term becomes evident in the following illustrative
example. Figure 1 displays a comparison of test losses for Neural SDEs employing six distinct
diffusion functions g(t, z(t); θg): (i)

√
z(t) (Hölder continuity with the exponent 1/2), (ii) |z(t)|3

(non-Lipschitz continuity), (iii) σθ (constant), (iv) time-dependent function σ(t; θσ) (additive noise),
(v) time-dependent function σ(t; θσ)z(t) (multiplicative noise), and (vi) neural network gθ(t, z(t); θg)
(naïve Neural SDE). As depicted in the figure, the performance of Neural SDEs can vary significantly
depending on the choice of diffusion functions. In particular, we observe that the non-Lipschitz
continuous diffusion function |z(t)|3 and the naïve diffusion function are inadequate for stabilizing
Neural SDEs. However, surprisingly, the influence of drift function and diffusion function design on
the performance of Neural SDEs has been underexplored and remains poorly understood.

2The numerical approximation of Euler discretization for SDEs may explode in a finite time.

3

Published as a conference paper at ICLR 2024

3 METHODOLOGY

In this section, our objective is to explore the characteristics of well-designed Neural SDEs. To
achieve this, we propose three distinct classes of Neural SDEs, each with unique drift and diffusion
functions, and conduct a comprehensive investigation of their theoretical properties. These three
classes of Neural SDEs include Neural Langevin-type SDE (LSDE), Neural Linear Noise SDE
(LNSDE), and Neural Geometric SDE (GSDE).

3.1 THE PROPOSED NEURAL SDES

Langevin-type SDE. Neural LSDE, motivated by a class of Langevin SDEs, is defined by

dz(t) = γ(z(t); θγ)dt+ σ(t; θσ)dW (t) with z(0) = h(x; θh), (4)

where the initial condition h(·; θh) is an affine function with parameter θh, the drift function γ(·; θγ)
is a neural network with parameter θγ and the diffusion function σ(·; θσ) is a neural network with
parameter θσ . Note that the drift function of Neural LSDE is not explicitly dependent on time. While
the Langevin SDE is a popular tool in recent years for Markov Chain Monte Carlo (MCMC) and
stochastic optimization, it has been never explored in the context of Neural SDEs.

Assume that there exists U such that ∇U(x) = γ(x; θγ) for all x ∈ Rdz and limt→∞ σ(t; θσ) = σ0

for some positive constant σ0. Then, it is well known that, under mild conditions3, the Langevin
SDE in Equation (4) admits a unique invariant measure π, which is indeed the Gibbs measure
π(x) ∝ exp

(
2U(x)
σ2
0

)
(T.-S. Chiang & Sheu, 1987; Raginsky et al., 2017). The existence of a unique

invariant measure of the Langevin SDEs may be suitable for illustrating the phenomenon where the
distributions of latent state values become invariant as the depth of the layers increases.

Linear Noise SDE. Neural LNSDE is governed by the following SDE with linear multiplicative
noise:

dz(t) = γ(t, z(t); θγ)dt+ σ(t; θσ)z(t)dW (t) with z(0) = h(x; θh), (5)

where the initial condition h(·; θh) is an affine function with parameter θh, the drift function γ(·, ·; θγ)
is a neural network with parameter θγ and the diffusion function σ(·; θσ) is a neural network with
parameter θσ. The form of Neural LNSDE was also proposed in Liu et al. (2019), which merely
reiterates the well-known results for stability such as exponential stability. In contrast, our work
provides a novel theoretical analysis on the robustness of the trained model under drift shift, a crucial
topic in recent deep learning research.

Geometric SDE. Neural GSDE considers the following SDE:

dz(t)

z(t)
= γ(t, z(t); θγ)dt+ σ(t; θσ)dW (t) with z(0) = h(x; θh), (6)

where the initial condition h(·; θh) is an affine function with parameter θh, the drift function γ(·, ·; θγ)
is a neural network with parameter θγ and the diffusion function σ(·; θσ) is a neural network with
parameter θσ . Due to its exponential form, Neural GSDE has distinct characteristics associated with
deep ReLU networks such as a unique positive solution and an absorbing state of 0, which are not
observed in Neural LSDE and Neural LNSDE (see Proposition 3.4 (ii)).

3.2 PROPERTIES OF THE PROPOSED NEURAL SDES

We impose some assumptions on neural networks used in Neural SDEs as follows.

Assumption 3.1. For any neural network s(t, x; θs) : R+ × Rd1 → Rd2 with parameter θs, there
exists a positive constant Ls > 0 such that for all t ≥ 0 and x, x′ ∈ Rd1

|s(t, x; θs)− s(t, x′; θs)| ≤ Ls|x− x′|.
3For example, U can be nonconvex and have superlinear gradients (Raginsky et al., 2017; Lim et al., 2023a).

4

Published as a conference paper at ICLR 2024

Neural networks with activation functions such as tanh, ReLU, and sigmoid functions generally
satisfy the Lipschitz continuity condition in Assumption 3.1 (Chen et al., 2018; Liu et al., 2019;
Virmaux & Scaman, 2018; Fazlyab et al., 2019; Latorre et al., 2020).
Assumption 3.2. For any neural network s(t, x; θs) : R+ × Rd1 → Rd2 with parameter θs where
the last layer is the ReLU or linear function, there exists a positive constant Ks > 0 such that

|s(t, x; θs)| ≤ Ks(1 + |x|), for all t ≥ 0, x ∈ Rd1 .
On the other hand, when tanh function or sigmoid function is applied at the last layer, we have

|s(t, x; θs)| ≤ Ks, for all t ≥ 0, x ∈ Rd1 . (7)

Assumption 3.2 implies that neural networks satisfy the linear growth condition. Assumptions 3.1
and 3.2 are commonly imposed in the literature on NDE-based methods to ensure the existence and
uniqueness of solutions for SDEs (Chen et al., 2018; Liu et al., 2019; Kong et al., 2020).
Assumption 3.3. For any neural network s(t, x; θs) : R+ × Rd1 → Rd2 with parameter θs, there
exist positive constants m, b > 0 such that for all t ≥ 0, x ∈ Rd1

⟨s(t, x; θs), x⟩ ≤ −m|x|2 + b.

The condition in Assumption 3.3 is a typical assumption necessary for ensuring the uniform bounded-
ness of the solutions to SDEs and diffusion approximation (Mattingly et al., 2002; Raginsky et al.,
2017; Xu et al., 2018; Zhang et al., 2017). We emphasize that we do not impose convexity on the
drift and diffusion functions.

Under Assumptions 3.1 and 3.2, we show that SDEs in Equations (4), (5), and (6) have their unique
strong solutions. In particular, the geometric SDE has interesting properties that are suitable for
modeling deep ReLU networks.
Proposition 3.4. Let Assumptions 3.1 and 3.2 hold. Then, we have

(i) The SDEs in Equation (4) and Equation (5) have their unique strong solutions.

(ii) Assume that the activation function in γ is either a tanh or sigmoid function. Then, the
SDE in Equation (6) has a unique strong solution z(t), which is nonnegative almost surely,
i.e., P (z(t) ≥ 0 for all t ≥ 0) = 1 a.s. Furthermore, state 0 is an absorbing state.

The proof for Proposition 3.4 can be found in Appendix A. Intuitively, Proposition 3.4 (ii) implies
that the latent representation z(t) of the Neural GSDE has always nonnegative values. Furthermore,
once the one of values of the latent representation reaches 0, it remains there forever. This property is
consistent with that of ReLU networks which have positive values for activated neurons and zeros for
deactivated neurons. In particular, the fact that deactivated neurons never turn to activated neurons
corresponds to the property of state 0 being an absorbing state.

3.3 ROBUSTNESS UNDER DISTRIBUTION SHIFT

This subsection provides insight into why the proposed Neural SDEs remain robust to input pertur-
bations, such as missing data, and prevent overfitting caused by differences between training and
test datasets. To obtain our main results, we heavily rely on the analysis of stochastic stability. An
overview of stochastic stability and relevant results are summarized in Appendix B.1.

Let x denote the input data, and its law be represented by L(x), i.e., x is a Rdx-valued random
variable. Consider x̃ to be a perturbed version of the input data, with the law L(x̃), such that√

E[|x− x̃|2] ≤ ρ, (8)
where ρ > 0 represents the degree of distribution shift. Suppose that we consider the task of
classification or regression for time series data and use a feed-forward neural network F composed
of two fully connected layers as follows:

y = F (z(T); θF), ỹ = F (z̃(T); θF), (9)
where y, ỹ represent the predictions from the extracted feature z(T) and its perturbed version
z̃(T), respectively. Note that z(T) and z̃(T) are outputs of Neural SDEs with input data x and x̃,
respectively. For our stability analysis, we assume σ(t; θσ) to be either a constant σθ or to have a
limit such that limt→∞ σ(t; θσ) =: σθ.

5

Published as a conference paper at ICLR 2024

Theorem 3.5. (Robustness of Neural LSDE) Let Assumptions 3.1, 3.2 and 3.3 hold. Let x ∈ L4(Ω)
and x̃ ∈ L4(Ω) denote the input data and its perturbed version satisfying Equation (8). For the
outputs y, ỹ of Neural LSDEs in Equation (9), we have

W1(L(y),L(ỹ)) ≤
√
3LFLhc1e

−c2T
√
(5 + 2E[|x|4] + 2E[|x̃|4]])ρ,

W2(L(y),L(ỹ)) ≤
√
2
√
3Lhc1LF e

−c2T/2
(
5 + 2E[|x|4] + 2E[|x̃|4]]

)1/4 √
ρ,

where LF is the Lipschitz constant of the neural network F defined in Equation (9), Lh is the Lipschitz
constant of the initial condition h in Equation (4) and positive constants c1, c2 are independent of T .
Theorem 3.6. (Robustness of Neural LNSDE and Neural GSDE) Let Assumptions 3.1, 3.2 and 3.3
hold. Let x ∈ L2(Ω) and x̃ ∈ L2(Ω) denote the input data and its perturbed version satisfying
Equation (8), and y and ỹ denote their outputs defined in Equation (9).

(i) (Neural LNSDE) For |σθ|2 > 2Lγ where Lγ is the Lipschitz constant of the neural network
γ and for sufficiently large T , we have

W1(L(y),L(ỹ)) ≤ LF exp{−(|σθ|2 − 2Lγ)T/2}(1 + ρ).

(ii) (Neural GSDE) For |σθ|2 > 2Kγ where Kγ is the upper bound of the neural network γ
defined in Equation (7), and for sufficiently large T , we have

W1(L(y),L(ỹ)) ≤ LF exp{−(|σθ|2 − 2Kγ)T/2}(1 + ρ).

The proofs for Theorem 3.5 and Theorem 3.6 can be found in Appendix B.2 and B.3, respectively.
Theorem 3.5 and Theorem 3.6 provide non-asymptotic upper bounds for the differences between
the output distributions of the original input data and its perturbed version, influenced by the degree
of distribution shift ρ and the depth of the Neural SDEs T . Smaller perturbations and larger depths
yield smaller differences. Thus, the proposed Neural SDEs do not undergo abrupt changes with
respect to ρ, exhibiting robust performance even if the input distribution shifts. In contrast, the lack
of such stability in other Neural SDEs can yield dramatically different solutions from small changes
in the input data, causing dramatic performance degradation or overfitting. The experimental findings
presented in Section 4 and Appendix D.4 provide empirical support for our theoretical results.

3.4 INCORPORATING A CONTROLLED PATH TO NEURAL SDES

To further improve empirical performance and effectively capture sequential observations like time-
series data, we propose z(t) that incorporates a controlled path in a nonlinear way as follows:

z(t) = ζ(t, z(t), X(t); θζ), (10)

where X(t) is the controlled path and ζ is a neural network parameterized by θζ . Then, we replace
z(t) in the drift functions of the proposed Neural SDEs with z(t) as presented in Equation (10). The
effectiveness of utilizing z(t) is confirmed through an ablation study in Section 4.3.
Remark 3.7. When combined with z(t), the proposed Neural SDEs, including Neural LSDE, Neural
LNSDE, and Neural GSDE, have their unique strong solutions. We refer to Appendix A.1 for a
detailed discussion and verification.

4 EXPERIMENTS

4.1 SUPERIOR PERFORMANCE WITH REGULAR AND IRREGULAR TIME SERIES DATA

In this section, we conducted interpolation and classification experiments and evaluated the proposed
Neural SDEs using three real-world datasets: PhysioNet Mortality (Silva et al., 2012), PhysioNet
Sepsis (Reyna et al., 2019), and Speech Commands (Warden, 2018). For forecasting experiments, we
utilized the MuJoCo (Tassa et al., 2018) dataset, and the results are detailed in Appendix E.

Datasets. The PhysioNet Mortality dataset contains multivariate time series data from 37 variables
of Intensive Care Unit (ICU) records, with irregular measurements taken within the first 48 hours of
admission. For our interpolation experiments, we use all 4,000 labeled and 4,000 unlabeled instances.

6

Published as a conference paper at ICLR 2024

The PhysioNet Sepsis dataset includes 40,335 ICU patient cases and 34 time-dependent variables,
aiming to classify each case according to the sepsis-3 criteria. This dataset represents irregular time
series data, as only 10% of the values are sampled with their respective timestamps for each patient.
We considered two scenarios: one with observational intensity (OI) and one without. In the scenario
with OI, the observation index is attached to every value in the time series.

The Speech Commands dataset is a one-second-long audio data recorded with 35 distinct spoken
words with the background noise. To create a balanced classification problem, ten labels4 were
selected from 34,975 time-series samples. Each preprocessed sample, utilizing Mel-frequency
cepstral coefficients, has a time-series length of 161 and a 20-dimensional input size.

Experimental Protocols. We followed the recommended pipeline for interpolation experiments
with the PhysioNet Mortality dataset, as outlined in Shukla & Marlin (2021) and its corresponding
GitHub repository5. For classification experiments involving the PhysioNet Sepsis and Speech
Commands datasets, we adhered to the experimental protocols described in Kidger et al. (2020)
and its GitHub repository6. Our experiments were performed using a server on Ubuntu 22.04 LTS,
equipped with an Intel(R) Xeon(R) Gold 6242 CPU and six NVIDIA A100 40GB GPUs. The source
code can be accessed at https://github.com/yongkyung-oh/Stable-Neural-SDEs.

Models. We considered a range of models, including state-of-the-art models for both interpolation
and classification tasks. These are RNN-based models (RNN (Rumelhart et al., 1986; Medsker
& Jain, 1999), LSTM (Hochreiter & Schmidhuber, 1997), GRU (Chung et al., 2014), GRU-∆t,
and GRU-D (Che et al., 2018)), Attention-based models (MTAN Shukla & Marlin (2021), and
MIAM Lee et al. (2022)), Neural ODEs: Neural ODEs (Chen et al., 2018), GRU-ODE (De Brouwer
et al., 2019), ODE-RNN (Rubanova et al., 2019), ODE-LSTM (Lechner & Hasani, 2020), Latent-
ODE (Rubanova et al., 2019), Augmented-ODE (Dupont et al., 2019), and ACE-NODE (Jhin
et al., 2021))), Neural CDEs (Neural CDE Kidger et al. (2020), Neural RDE (Morrill et al., 2021),
ANCDE (Jhin et al., 2023b), EXIT (Jhin et al., 2022), and LEAP (Jhin et al., 2023a)), and Neural
SDEs (Neural SDEs (Tzen & Raginsky, 2019), and Latent SDE Li et al. (2020)).

Results. The results of the interpolation and classification experiments are summarized in the
following tables. We have highlighted the best and the second best methods in the result tables.

Table 1 compares interpolation performance from 50% to 90% observed values in the test dataset. The
proposed Neural SDEs consistently outperform all benchmark models, including the state-of-the-art
method mTAND-Full (MTAN encoder–MTAN decoder model), at all observed time point settings.

Table 1: Interpolation performance versus percent observed time points on PhysioNet Mortality

Methods Mean Squared Error (×10−3)

RNN-VAE 13.418 ± 0.008 12.594 ± 0.004 11.887 ± 0.005 11.133 ± 0.007 11.470 ± 0.006
L-ODE-RNN 8.132 ± 0.020 8.140 ± 0.018 8.171 ± 0.030 8.143 ± 0.025 8.402 ± 0.022
L-ODE-ODE 6.721 ± 0.109 6.816 ± 0.045 6.798 ± 0.143 6.850 ± 0.066 7.142 ± 0.066
mTAND-Full 4.139 ± 0.029 4.018 ± 0.048 4.157 ± 0.053 4.410 ± 0.149 4.798 ± 0.036
LatentSDE 8.862 ± 0.036 8.864 ± 0.058 8.686 ± 0.122 8.716 ± 0.032 8.435 ± 0.077

Neural SDE 8.592 ± 0.055 8.591 ± 0.052 8.540 ± 0.051 8.318 ± 0.010 8.252 ± 0.023

Neural LSDE 3.799 ± 0.055 3.584 ± 0.055 3.457 ± 0.078 3.262 ± 0.032 3.111 ± 0.076
Neural LNSDE 3.808 ± 0.078 3.617 ± 0.129 3.405 ± 0.089 3.269 ± 0.057 3.154 ± 0.084
Neural GSDE 3.824 ± 0.088 3.667 ± 0.079 3.493 ± 0.024 3.287 ± 0.070 3.118 ± 0.065

Observed % 50% 60% 70% 80% 90%

Tables 2 and 3 demonstrate that the proposed Neural SDEs consistently outperform all other methods
in classification tasks. For PhysioNet Sepsis, we report AUROC rather than accuracy due to dataset
imbalance. While CDE-based methods typically benefit from OI (Kidger et al., 2020), our models
perform well even without OI. This indicates that the proposed Neural SDEs leverage the advantages
of incorporating a controlled path in the drift function and introducing stochasticity through the
diffusion function. In Table 3, we do not report the performance of the naïve Nerual SDE due to

4They include ‘yes’, ‘no’, ‘up’, ‘down’, ‘left’, ‘right’, ‘on’, ‘off’, ‘stop’, and ‘go’.
5https://github.com/reml-lab/mTAN
6https://github.com/patrick-kidger/NeuralCDE

7

https://github.com/yongkyung-oh/Stable-Neural-SDEs
https://github.com/reml-lab/mTAN
https://github.com/patrick-kidger/NeuralCDE

Published as a conference paper at ICLR 2024

training instability. Note that the proposed methods are less memory-efficient compared to CDE-based
methods, and we leave memory usage improvement for future research.

Table 2: AUROC and memory usage (in MB) on
PhysioNet Sepsis

Methods
Test AUROC Memory

OI No OI OI No OI

GRU-∆t 0.878 ± 0.006 0.840 ± 0.007 837 826
GRU-D 0.871 ± 0.022 0.850 ± 0.013 889 878
GRU-ODE 0.852 ± 0.010 0.771 ± 0.024 454 273
ODE-RNN 0.874 ± 0.016 0.833 ± 0.020 696 686
Latent-ODE 0.787 ± 0.011 0.495 ± 0.002 133 126
ACE-NODE 0.804 ± 0.010 0.514 ± 0.003 194 218
Neural CDE 0.880 ± 0.006 0.776 ± 0.009 244 122
ANCDE 0.900 ± 0.002 0.823 ± 0.003 285 129

Neural SDE 0.799 ± 0.007 0.796 ± 0.006 368 240

Neural LSDE 0.909 ± 0.004 0.879 ± 0.008 373 436
Neural LNSDE 0.911 ± 0.002 0.881 ± 0.002 341 445
Neural GSDE 0.909 ± 0.001 0.884 ± 0.002 588 280

Table 3: Accuracy and memory usage (in MB)
on Speech Commands

Methods Test Accuracy Memory

R
N

N
-b

as
ed

RNN 0.197 ± 0.006 1905
LSTM 0.684 ± 0.034 4080
GRU 0.747 ± 0.050 4609
GRU-∆t 0.453 ± 0.313 1612
GRU-D 0.346 ± 0.286 1717

N
D

E
-b

as
ed

GRU-ODE 0.487 ± 0.018 171
ODE-RNN 0.678 ± 0.276 1472
Latent-ODE 0.912 ± 0.006 2668
Augmented-ODE 0.911 ± 0.008 2626
ACE-NODE 0.911 ± 0.003 3046
Neural CDE 0.898 ± 0.025 175
ANCDE 0.807 ± 0.075 180
LEAP 0.922 ± 0.002 391

Neural LSDE 0.927 ± 0.004 1187
Neural LNSDE 0.923 ± 0.001 1164
Neural GSDE 0.913 ± 0.001 1565

4.2 ROBUSTNESS TO MISSING DATA

We evaluated the performance of the proposed Neural SDEs on 30 datasets, including 15 univariate
and 15 multivariate datasets, from the University of East Anglia (UEA) and the University of
California Riverside (UCR) Time Series Classification Repository (Bagnall et al., 2018). We assess
our models under regular (0% missing rate) and three missing rate conditions (30%, 50%, and 70%),
adhering to the protocol by Kidger et al. (2020). Details on datasets and protocols along with the
implementation of benchmark methods are summarized in Appendices C and D. We compare the
average classification performance of each method using average accuracy and average rank.

Table 4: Classification performance on 30 datasets with regular and three missing rates
(The values within the parentheses indicate the average of 30 individual standard deviations.)

Methods
Regular datasets Missing datasets (30%) Missing datasets (50%) Missing datasets (70%)

Accuracy Rank Accuracy Rank Accuracy Rank Accuracy Rank

RNN 0.582 (0.064) 13.9 0.513 (0.087) 15.3 0.485 (0.088) 16.6 0.472 (0.072) 15.6
LSTM 0.633 (0.053) 11.2 0.595 (0.060) 12.1 0.567 (0.061) 12.9 0.558 (0.058) 12.5
GRU 0.672 (0.059) 8.3 0.621 (0.063) 10.2 0.610 (0.055) 10.3 0.597 (0.062) 10.3
GRU-∆t 0.641 (0.070) 10.3 0.636 (0.066) 8.9 0.634 (0.056) 8.7 0.618 (0.065) 10.2
GRU-D 0.648 (0.071) 10.3 0.624 (0.075) 10.4 0.611 (0.073) 11.1 0.604 (0.067) 10.8
MTAN 0.648 (0.080) 12.0 0.618 (0.099) 10.7 0.618 (0.091) 10.1 0.607 (0.078) 9.8
MIAM 0.623 (0.048) 11.0 0.603 (0.066) 11.1 0.589 (0.063) 12.2 0.569 (0.056) 12.3
GRU-ODE 0.671 (0.067) 9.8 0.663 (0.064) 9.5 0.666 (0.059) 8.3 0.655 (0.062) 7.8
ODE-RNN 0.658 (0.063) 9.1 0.635 (0.064) 9.3 0.636 (0.067) 8.2 0.630 (0.055) 8.5
ODE-LSTM 0.619 (0.063) 11.4 0.584 (0.064) 12.1 0.561 (0.065) 13.3 0.530 (0.085) 12.9
Neural CDE 0.709 (0.061) 8.2 0.706 (0.073) 6.4 0.696 (0.064) 6.5 0.665 (0.072) 7.6
Neural RDE 0.607 (0.071) 13.9 0.514 (0.064) 14.9 0.468 (0.068) 15.2 0.415 (0.077) 16.3
ANCDE 0.693 (0.067) 7.8 0.687 (0.068) 7.2 0.683 (0.078) 6.9 0.655 (0.067) 7.1
EXIT 0.636 (0.073) 11.1 0.633 (0.078) 10.2 0.616 (0.075) 10.6 0.599 (0.075) 11.1
LEAP 0.444 (0.068) 15.2 0.401 (0.078) 16.3 0.425 (0.073) 14.9 0.414 (0.070) 14.7
Latent SDE 0.456 (0.073) 16.6 0.455 (0.073) 15.4 0.455 (0.069) 15.0 0.446 (0.066) 15.1

Neural SDE 0.526 (0.068) 13.4 0.508 (0.066) 13.1 0.517 (0.058) 13.2 0.512 (0.066) 12.9

Neural LSDE 0.717 (0.056) 5.6 0.690 (0.050) 6.4 0.686 (0.051) 6.1 0.682 (0.067) 5.2
Neural LNSDE 0.727 (0.047) 5.4 0.723 (0.050) 5.0 0.717 (0.054) 4.3 0.703 (0.054) 4.2
Neural GSDE 0.716 (0.065) 5.7 0.707 (0.069) 5.3 0.698 (0.063) 6.1 0.689 (0.056) 5.3

Table 4 shows that the proposed Neural SDEs consistently achieve top-tier performance in accuracy
and rank across different missing rates, maintaining stable accuracy even with increased missing rates.
Conversely, traditional RNN-based methods, such as RNN, LSTM, and GRU, experience noticeable
performance drops as the missing rate increases. Furthermore, the proposed methods converge
more rapidly and achieve lower loss values than the naïve Neural SDE, as depicted in Figure 2.
Particularly, when comparing Figure 2(a) with Figure 1, it becomes evident that the proposed methods
are overcoming the stability limitations of the naïve Neural SDE.

8

Published as a conference paper at ICLR 2024

0 20 40 60 80 100
Epoch

0.0
0.5
1.0
1.5
2.0

Lo
ss

RNN
GRU-D
ODE-LSTM
Neural CDE

Neural SDE
Neural LSDE
Neural LNSDE
Neural GSDE

(a) BasicMotions

0 20 40 60 80 100
Epoch

0.0
0.5
1.0
1.5
2.0
2.5
3.0

Lo
ss

RNN
GRU-D
ODE-LSTM
Neural CDE

Neural SDE
Neural LSDE
Neural LNSDE
Neural GSDE

(b) CharacterTrajectories

0 20 40 60 80 100
Epoch

0.0

0.5

1.0

1.5

Lo
ss

RNN
GRU-D
ODE-LSTM
Neural CDE

Neural SDE
Neural LSDE
Neural LNSDE
Neural GSDE

(c) SpokenArabicDigits

0 20 40 60 80 100
Epoch

0.5

1.0

1.5

Lo
ss

RNN
GRU-D
ODE-LSTM
Neural CDE

Neural SDE
Neural LSDE
Neural LNSDE
Neural GSDE

(d) Trace

Figure 2: Comparing stability of test loss during model training with the four datasets at a 50%
missing rate with the selected methods (Training 100 epochs without early-stopping.)

4.3 ABLATION STUDY

We conduct ablation experiments to show the performance impact of incorporating a controlled
path into the drift function and using a nonlinear neural network for the diffusion function. Table 5
illustrates the effectiveness of a nonlinear neural network compared to an affine function in the
diffusion function. The results reveal a fundamental performance difference between the three
proposed Neural SDEs and the naïve Neural SDE, with the latter unable to bridge the gap by adopting
a controlled path and a nonlinear diffusion function. The superior and consistent performance
of our models across 15 univariate and 15 multivariate datasets underscores their robustness and
generality. Ablation studies for the controlled path design and solver for Neural SDEs are described
in Appendix D. Additionally, detailed results for each individual dataset are provided in Appendix F.

Table 5: Comparison of average accuracy and average cross-entropy loss from the ablation study
(ζ indicates whether the drift function incorporates the controlled path or not. ‘N’ or ‘L’ denote the

architecture of diffusion function σ with an affine function or a nonlinear neural network.)

Methods ζ σ
Univariate datasets (15) Multivariate datasets (15) All datasets (30)

Accuracy Loss Accuracy Loss Accuracy Loss

Neural SDE
O N 0.615 (0.090) 0.736 (0.089) 0.760 (0.036) 0.618 (0.092) 0.688 (0.063) 0.677 (0.091)

L 0.535 (0.095) 0.838 (0.094) 0.752 (0.040) 0.633 (0.087) 0.643 (0.068) 0.736 (0.090)

X N 0.516 (0.084) 0.914 (0.069) 0.515 (0.045) 1.248 (0.085) 0.516 (0.064) 1.081 (0.077)
L 0.498 (0.087) 0.929 (0.078) 0.514 (0.050) 1.255 (0.081) 0.506 (0.068) 1.092 (0.080)

Neural LSDE
O N 0.604 (0.081) 0.752 (0.084) 0.783 (0.031) 0.572 (0.080) 0.694 (0.056) 0.662 (0.082)

L 0.533 (0.089) 0.877 (0.086) 0.745 (0.038) 0.668 (0.085) 0.639 (0.064) 0.772 (0.085)

X N 0.530 (0.069) 0.856 (0.060) 0.527 (0.054) 1.177 (0.082) 0.528 (0.060) 1.039 (0.074)
L 0.505 (0.064) 0.912 (0.061) 0.518 (0.057) 1.210 (0.101) 0.512 (0.059) 1.083 (0.088)

Neural LNSDE
O N 0.654 (0.073) 0.701 (0.091) 0.780 (0.029) 0.577 (0.070) 0.717 (0.051) 0.639 (0.080)

L 0.586 (0.087) 0.765 (0.083) 0.764 (0.044) 0.617 (0.108) 0.675 (0.066) 0.691 (0.096)

X N 0.532 (0.077) 0.878 (0.060) 0.502 (0.051) 1.254 (0.082) 0.517 (0.064) 1.066 (0.071)
L 0.528 (0.085) 0.890 (0.069) 0.510 (0.047) 1.257 (0.089) 0.519 (0.066) 1.074 (0.079)

Neural GSDE
O N 0.633 (0.091) 0.742 (0.086) 0.772 (0.036) 0.598 (0.077) 0.703 (0.063) 0.670 (0.081)

L 0.572 (0.083) 0.796 (0.084) 0.748 (0.039) 0.653 (0.094) 0.660 (0.061) 0.724 (0.089)

X N 0.531 (0.074) 0.868 (0.052) 0.510 (0.045) 1.261 (0.093) 0.520 (0.060) 1.064 (0.072)
L 0.525 (0.078) 0.893 (0.072) 0.509 (0.052) 1.261 (0.093) 0.517 (0.065) 1.077 (0.083)

5 CONCLUSION

In this study, we proposed three stable classes of Neural SDEs - Langevin-type SDE, Linear Noise
SDE, and Geometric SDE - with the aim of capturing complex dynamics and improving stability
in time series data. While the drift and diffusion terms in the existing Neural SDEs are directly
approximated by neural networks, the proposed Neural SDEs are trained based on theoretically
well-defined SDEs. We investigated the theoretical properties of the proposed Neural SDE classes,
particularly their robustness under distribution shift, and corroborated their effectiveness in handling
real-world irregular time series data through extensive experiments. As a result, the proposed Neural
SDEs achieved state-of-the-art results in a wide range of experiments. However, it is important to
acknowledge that our methods require more computational resources compared to Neural CDE-based
models. Despite this, we found that our methods significantly enhance the stability of Neural SDE
training and improve classification performance under challenging circumstances.

9

Published as a conference paper at ICLR 2024

ETHIC STATEMENT

We commit to conducting our research with integrity, ensuring ethical practices and responsible use
of technology in alignment with established academic and scientific standards.

REPRODUCIBILITY STATEMENT

We make our code and implementation details publicly accessible for reproducibility purposes. Code
is available at https://github.com/yongkyung-oh/Stable-Neural-SDEs.

ACKNOWLEDGEMENT

We thank the teams and individuals for their efforts in dataset preparation and curation for our
research, especially the UEA & UCR repository for the 30 datasets we extensively analyzed.

This work was partly supported by the Korea Health Technology R&D Project through the Korea
Health Industry Development Institute (KHIDI), funded by the Ministry of Health and Welfare,
Republic of Korea (Grant number: HI19C1095), the National Research Foundation of Korea (NRF)
grant funded by the Korea government (MSIT)(No.RS-2023-00253002), the National Research
Foundation of Korea (NRF) grant funded by the Korea government (MSIT)(No.RS-2023-00218913),
and the Institute of Information & communications Technology Planning & Evaluation (IITP) grant
funded by the Korea government (MSIT) (No.2020-0-01336, Artificial Intelligence Graduate School
Program (UNIST)).

REFERENCES

Abdul Fatir Ansari, Alvin Heng, Andre Lim, and Harold Soh. Neural continuous-discrete state space models for
irregularly-sampled time series. arXiv preprint arXiv:2301.11308, 2023.

J. A. D. Appleby, X. Mao, and A. Rodkina. Stabilization and destabilization of nonlinear differential equations
by noise. IEEE Transactions on Automatic Control, 53:683–691, 2008.

Anthony Bagnall, Hoang Anh Dau, Jason Lines, Michael Flynn, James Large, Aaron Bostrom, Paul Southam,
and Eamonn Keogh. The uea multivariate time series classification archive, 2018. arXiv preprint
arXiv:1811.00075, 2018.

P. Bandi, O. Geesink, M. Manson, Q. Van Dijk, M. Balkenhol, M. Hermsen, B. E. Bejnordi, K. Lee, B. Paeng,
and A. Zhong. From detection of individual metastases to classification of lymph node status at the patient
level: the camelyon17 challenge. IEEE transactions on medical imaging, 38(2), 2018.

N. H. Chau, E. Moulines, M. Rasonyi, S. Sotirios, and Y. Zhang. On stochastic gradient Langevin dynamics
with dependent data streams: The fully nonconvex case. SIAM Journal on Mathematics of Data Science, 3(3):
959–986, 2021.

Zhengping Che, Sanjay Purushotham, Kyunghyun Cho, David Sontag, and Yan Liu. Recurrent neural networks
for multivariate time series with missing values. Scientific Reports, 8(1):6085, 2018.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary differential
equations. Advances in neural information processing systems, 31, 2018.

Edward Choi, Mohammad Taha Bahadori, Andy Schuetz, Walter F Stewart, and Jimeng Sun. Doctor ai:
Predicting clinical events via recurrent neural networks. In Machine learning for healthcare conference, pp.
301–318. PMLR, 2016.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of gated
recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

Edward De Brouwer, Jaak Simm, Adam Arany, and Yves Moreau. Gru-ode-bayes: Continuous modeling of
sporadically-observed time series. Advances in neural information processing systems, 32, 2019.

Emilien Dupont, Arnaud Doucet, and Yee Whye Teh. Augmented neural odes. Advances in Neural Information
Processing Systems, 32, 2019.

Mahyar Fazlyab, Alexander Robey, Hamed Hassani, Manfred Morari, and George Pappas. Efficient and accurate
estimation of lipschitz constants for deep neural networks. Advances in Neural Information Processing
Systems, 32, 2019.

10

https://github.com/yongkyung-oh/Stable-Neural-SDEs

Published as a conference paper at ICLR 2024

Yifeng Gao and Jessica Lin. Efficient discovery of variable-length time series motifs with large length range in
million scale time series. arXiv preprint arXiv:1802.04883, 2018.

Jiequn Han, Arnulf Jentzen, et al. Deep learning-based numerical methods for high-dimensional parabolic partial
differential equations and backward stochastic differential equations. Communications in mathematics and
statistics, 5(4):349–380, 2017.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–1780,
1997.

M. Hutzenthaler, A. Jentzen, and P. E. Kloeden. Strong and weak divergence in finite time of euler’s method for
stochastic differential equations with non-globally lipschitz continuous coefficients. Proceedings of the Royal
Society A: Mathematical, Physical and Engineering Sciences, 467:1563–1576, 2011.

Sheo Yon Jhin, Minju Jo, Taeyong Kong, Jinsung Jeon, and Noseong Park. Ace-node: Attentive co-evolving
neural ordinary differential equations. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining, pp. 736–745, 2021.

Sheo Yon Jhin, Jaehoon Lee, Minju Jo, Seungji Kook, Jinsung Jeon, Jihyeon Hyeong, Jayoung Kim, and Noseong
Park. Exit: Extrapolation and interpolation-based neural controlled differential equations for time-series
classification and forecasting. In Proceedings of the ACM Web Conference 2022, pp. 3102–3112, 2022.

Sheo Yon Jhin, Minju Jo, Seungji Kook, Noseong Park, Sungpil Woo, and Sunhwan Lim. Learnable path in
neural controlled differential equations. arXiv preprint arXiv:2301.04333, 2023a.

Sheo Yon Jhin, Heejoo Shin, Sujie Kim, Seoyoung Hong, Minju Jo, Solhee Park, Noseong Park, Seungbeom
Lee, Hwiyoung Maeng, and Seungmin Jeon. Attentive neural controlled differential equations for time-series
classification and forecasting. Knowledge and Information Systems, pp. 1–31, 2023b.

Junteng Jia and Austin R Benson. Neural jump stochastic differential equations. Advances in Neural Information
Processing Systems, 32, 2019.

Eamonn Keogh. Efficiently finding arbitrarily scaled patterns in massive time series databases. In European
Conference on Principles of Data Mining and Knowledge Discovery, pp. 253–265. Springer, 2003.

Rafail Khasminskii. Stochastic Stability of Differential Equations. Springer, 2011.

Patrick Kidger, James Morrill, James Foster, and Terry Lyons. Neural controlled differential equations for
irregular time series. Advances in Neural Information Processing Systems, 33:6696–6707, 2020.

Patrick Kidger, James Foster, Xuechen Li, and Terry J Lyons. Neural sdes as infinite-dimensional gans. In
International Conference on Machine Learning, pp. 5453–5463. PMLR, 2021a.

Patrick Kidger, James Foster, Xuechen Chen Li, and Terry Lyons. Efficient and accurate gradients for neural
sdes. Advances in Neural Information Processing Systems, 34:18747–18761, 2021b.

Peter E Kloeden and Andreas Neuenkirch. The pathwise convergence of approximation schemes for stochastic
differential equations. LMS journal of Computation and Mathematics, 10:235–253, 2007.

L. Kong, J. Sun, and C. Zhang. Sde-net: Equipping deep neural networks with uncertainty estimates. Interna-
tional Conference on Machine Learning, 37, 2020.

Fabian Latorre, Paul Rolland, and Volkan Cevher. Lipschitz constant estimation of neural networks via sparse
polynomial optimization. arXiv preprint arXiv:2004.08688, 2020.

A. Lazaridou, A. Kuncoro, E. Gribovskaya, D. Agrawal, A. Liska, T. Terzi, T. Gimenez, M. Kocisky, S. Ruder,
K. Yogatama, S. Cao, S. Young, and P. Blunsom. Mind the gap: Assessing temporal generalization in neural
language models. Advances in neural information processing systems, 2021.

Mathias Lechner and Ramin Hasani. Learning long-term dependencies in irregularly-sampled time series. arXiv
preprint arXiv:2006.04418, 2020.

Yurim Lee, Eunji Jun, Jaehun Choi, and Heung-Il Suk. Multi-view integrative attention-based deep representation
learning for irregular clinical time-series data. IEEE Journal of Biomedical and Health Informatics, 2022.

J. T. Leek, R. B. Scharpf, H. C. Bravo, D. Simcha, B. Langmead, W. E. Johnson, D. Geman, K. Baggerly, and
R. A. Irizarry. Tackling the widespread and critical impact of batch effects in high-throughput data. Nature
Reviews Genetics, 11(10), 2010.

11

Published as a conference paper at ICLR 2024

A. Li, A. Boyd, P. Smyth, and S. Mandt. Detecting and adapting to irregular distribution shifts in bayesian online
learning. Advances in neural information processing systems, 2021.

Xuechen Li, Ting-Kam Leonard Wong, Ricky TQ Chen, and David Duvenaud. Scalable gradients for stochastic
differential equations. In International Conference on Artificial Intelligence and Statistics, pp. 3870–3882.
PMLR, 2020.

Richard Liaw, Eric Liang, Robert Nishihara, Philipp Moritz, Joseph E Gonzalez, and Ion Stoica. Tune: A
research platform for distributed model selection and training. arXiv preprint arXiv:1807.05118, 2018.

Dong-Young Lim and Sotirios Sabanis. Polygonal unadjusted langevin algorithms: Creating stable and efficient
adaptive algorithms for neural networks. arXiv preprint arXiv:2105.13937, 2021.

Dong-Young Lim, Neufeld Ariel, Sotirios Sabanis, and Ying Zhang. Non-asymptotic estimates for tusla
algorithm for non-convex learning with applications to neural networks with relu activation function. IMA
Journal of numerical analysis, 2023a.

Dong-Young Lim, Ariel Neufeld, Sotirios Sabanis, and Ying Zhang. Langevin dynamics based algorithm
e-thεo poula for stochastic optimization problems with discontinuous stochastic gradient. arXiv preprint
arXiv:2210.13193, 2023b.

Xuanqing Liu, Tesi Xiao, Si Si, Qin Cao, Sanjiv Kumar, and Cho-Jui Hsieh. Neural sde: Stabilizing neural ode
networks with stochastic noise. arXiv preprint arXiv:1906.02355, 2019.

Markus Löning, Anthony Bagnall, Sajaysurya Ganesh, Viktor Kazakov, Jason Lines, and Franz J Király. sktime:
A unified interface for machine learning with time series. arXiv preprint arXiv:1909.07872, 2019.

X. Mao. Stochastic stabilisation and destabilisation. Systems and Control Letters, 23:279–290, 1994.

Xuerong Mao. Stochastic differential equations and applications. Elsevier, 2007.

J. C. Mattingly, A. M. Stuart, and D. J. Higham. Ergodicity for sdes and approximations: locally lipschitz vector
fields and degenerate noise. Stochastic Processes and Their Applications, 101(2):185–232, 2002.

Larry Medsker and Lakhmi C Jain. Recurrent neural networks: design and applications. CRC press, 1999.

J. Miller, K. Krauth, B. Recht, and L. Schmidt. The effect of natural distribution shift on question answering
models. International Conference on Machine Learning, 2020.

J. Miller, R. Taori, A. Raghunathan, S. Sagawa, P. W. Koh, V. Shankar, and L. Schmidt. Accuracy on the line: on
the strong correlation between out-of-distribution and in-distribution generalization. International Conference
on Machine Learning, 2021.

Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard Liaw, Eric Liang, Melih Elibol,
Zongheng Yang, William Paul, Michael I Jordan, et al. Ray: A distributed framework for emerging {AI}
applications. In 13th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 18),
pp. 561–577, 2018.

James Morrill, Cristopher Salvi, Patrick Kidger, and James Foster. Neural rough differential equations for long
time series. In International Conference on Machine Learning, pp. 7829–7838. PMLR, 2021.

James Morrill, Patrick Kidger, Lingyi Yang, and Terry Lyons. On the choice of interpolation scheme for neural
cdes. Transactions on Machine Learning Research, 2022(9), 2022.

Michael C Mozer, Denis Kazakov, and Robert V Lindsey. Discrete event, continuous time rnns. arXiv preprint
arXiv:1710.04110, 2017.

Bernt Øksendal and Bernt Øksendal. Stochastic differential equations. Springer, 2003.

Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, D Sculley, Sebastian Nowozin, Joshua V. Dillon, Balaji
Lakshminarayanan, and Jasper Snoek. Can you trust your model’s uncertainty? evaluating predictive
uncertainty under dataset shift. Advances in neural information processing systems, 33, 2019.

Sung Woo Park, Kyungjae Lee, and Junseok Kwon. Neural markov controlled sde: Stochastic optimization for
continuous-time data. In International Conference on Learning Representations, 2021.

M. Raginsky, A. Rakhlin, and M. Telgarsky. Non-convex learning via stochastic gradient Langevin dynamics: a
nonasymptotic analysis. In In Conference on Learning Theory, pp. 1674–1703. PMLR, 2017.

12

Published as a conference paper at ICLR 2024

Matthew A Reyna, Chris Josef, Salman Seyedi, Russell Jeter, Supreeth P Shashikumar, M Brandon Westover,
Ashish Sharma, Shamim Nemati, and Gari D Clifford. Early prediction of sepsis from clinical data: the
physionet/computing in cardiology challenge 2019. In 2019 Computing in Cardiology (CinC), pp. Page–1.
IEEE, 2019.

G. O. Roberts and R. L. Tweedie. Exponential convergence of langevin distributions and their discrete approxi-
mations. Bernoulli, 2(4):341–363, 1996.

Andreas Rößler. Runge–kutta methods for stratonovich stochastic differential equation systems with commutative
noise. Journal of computational and applied mathematics, 164:613–627, 2004.

Yulia Rubanova, Ricky TQ Chen, and David K Duvenaud. Latent ordinary differential equations for irregularly-
sampled time series. Advances in neural information processing systems, 32, 2019.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by back-propagating
errors. nature, 323(6088):533–536, 1986.

Satya Narayan Shukla and Benjamin M Marlin. Multi-time attention networks for irregularly sampled time
series. arXiv preprint arXiv:2101.10318, 2021.

Ikaro Silva, George Moody, Daniel J Scott, Leo A Celi, and Roger G Mark. Predicting in-hospital mortality of
icu patients: The physionet/computing in cardiology challenge 2012. In 2012 Computing in Cardiology, pp.
245–248. IEEE, 2012.

C.-R. Hwang T.-S. Chiang and S.-J. Sheu. Diffusion for global optimization in rn. SIAM Journal on Control
and Optimization, 25(3):737–753, 1987.

Chang Wei Tan, François Petitjean, Eamonn Keogh, and Geoffrey I Webb. Time series classification for varying
length series. arXiv preprint arXiv:1910.04341, 2019.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Budden, Abbas
Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite. arXiv preprint arXiv:1801.00690,
2018.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control. In 2012
IEEE/RSJ international conference on intelligent robots and systems, pp. 5026–5033. IEEE, 2012.

Belinda Tzen and Maxim Raginsky. Neural stochastic differential equations: Deep latent gaussian models in the
diffusion limit. arXiv preprint arXiv:1905.09883, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems, 30, 2017.

Aladin Virmaux and Kevin Scaman. Lipschitz regularity of deep neural networks: analysis and efficient
estimation. Advances in Neural Information Processing Systems, 31, 2018.

Pete Warden. Speech commands: A dataset for limited-vocabulary speech recognition. arXiv preprint
arXiv:1804.03209, 2018.

P. Xu, J. Chen, D. Zou, and Q. Gu. Global convergence of Langevin dynamics based algorithms for nonconvex
optimization. Advances in Neural Information Processing Systems, 32, 2018.

Dragomir Yankov, Eamonn Keogh, Jose Medina, Bill Chiu, and Victor Zordan. Detecting time series motifs
under uniform scaling. In Proceedings of the 13th ACM SIGKDD international conference on Knowledge
discovery and data mining, pp. 844–853, 2007.

Y. Zhang, P. Liang, and M. Charikar. A hitting time analysis of stochastic gradient langevin dynamics. In In
Conference on Learning Theory, pp. 1980–2022. PMLR, 2017.

Helen Zhou, Sivaraman Balakrishnan, and Zachary Lipton. Domain adaptation under missingness shift.
International Conference on Artificial Intelligence and Statistics, 2023.

13

Published as a conference paper at ICLR 2024

A PROOFS FOR SECTION 3.2

It is a classical result that SDE has a unique strong solution when the drift and diffusion functions are
Lipschitz continuous and at most linearly growing as stated in the following Theorem.

Theorem A.1. (Mao (2007)) Consider the following d-dimensional stochastic differential equation

dX(t) = f(t,X(t))dt+ g(t,X(t))dW (t)

where W (t) is the d-dimensional Brownian motion. Assume that f(t, x), g(t, x) are Lipschitz
continuous in (t, x) and satisfy the linear growth condition for every finite subinterval [0, T], i.e.,
there exist constants KT , LT > 0 such that for all t ∈ [0, T] and x, x′ ∈ Rd,

|f(t, x)− f(t, x′)|+ |g(t, x)− (t, x′)| ≤ LT |x− x′|,

and
|f(t, x)|+ |g(t, x)| ≤ KT (1 + |x|).

Then, there exists a unique strong (global) solution {X(t)}t≥0 satisfying

E
[∫ ∞

0

|X(t)|2dt
]
< ∞.

Proof of Proposition 3.4. (i) For the Langevin SDE and linear noise SDE, from Assumptions 3.1
and 3.2, the drift and diffusion coefficients are Lipschitz continuous and at most linearly growing for
every finite subinterval t ∈ [0, T]. Thus, they have their unique strong solutions by Theorem A.1.

(ii) Recall that we consider tanh or sigmoid functions as activation functions for the GSDE.
Hence, the drift and diffusion coefficients in Equation (6) satisfy the conditions stated in Theorem A.1.
Therefore, Equation (6) has a unique strong global solution.

To prove the nonnegativity of the solution, consider a stochastic process {y(t)}t≥0 defined on the
same probability space, which is governed by the following SDE:

dy(t) =

(
γ(t, ey(t); θγ)−

1

2
diag(σ(t; θσ)σ(t; θσ)

⊤)

)
dt+ σ(t; θσ)dW (t). (11)

where diag(A) is the vector of the diagonal elements of matrix A. Since the diffusion term of Equa-
tion (11) is Lipschitz continuous and is at most linearly growing, from Theorem A.1, Equation (11)
has a unique strong solution, so {y(t)}t≥0 is well-defined.

Let z(t) = exp(y(t)), i.e. zi(t) = exp(yi(t)) for i = 1, 2, . . . , dz where zi and yi are the i-th
components of z and y, respectively. For all i = 1, 2, . . . , dz , we note that zi(t) is nonnegative
almost surely for all t ≥ 0 by its construction. Also, using Ito’s formula we have

dzi(t) = eyi(t)dyi(t) +
1

2
eyi(t)d[yi(t),yi(t)]

= zi(t)γi(t, z(t); θf)dt+ zi(t)

dz∑
j=1

(σ(t; θσ))i,jdWj(t).

where γi is the i-th element of γ and (σ(t; θσ))ij represents the (i, j)-th element of σ(t; θσ), and
[yi(t),yi(t)] is the quadratic variation of yi(t) up to t for i = 1, 2, . . . , dz . In the matrix form, z(t)
satisfies

dz(t)

z(t)
= γ(t, z(t); θf)dt+ σ(t; θσ)dW (t).

Therefore, z(t) is the solution of Equation (6). Let T i
0 = inf{t > 0|zi(t) = 0} be the first hitting

time to state 0 with zi(0) > 0 for i = 1, 2, . . . , dz where zi(t) is the i-th component of z(t). Since
dzi(t) = 0 for t ≥ T i

0, then zi(t) = 0 for all t ≥ T i
0. This implies that once zi(t) reaches 0, it

remains there forever. Therefore, 0 is an absorbing state.

14

Published as a conference paper at ICLR 2024

A.1 DETAILS TO REMARK 3.7

To incorporate a controlled path of the underlying time-series data, we replace z(t) in the drift
functions of the proposed Neural SDEs with z(t) defined in Equation (10). More specifically, when
combined with z(t), the proposed Neural SDEs are given by

(Neural LSDE) dz(t) = γ1(z(t); θγ , θζ)dt+ σ(t; θσ)dW (t), (12)
(Neural LNSDE) dz(t) = γ2(t, z(t); θγ , θζ)dt+ σ(t; θσ)z(t)dW (t), (13)

(Neural GSDE)
dz(t)

z(t)
= γ2(t, z(t); θγ , θζ)dt+ σ(t; θσ)dW (t). (14)

where γ1(z(t); θγ , θζ) := γ (z(t); θγ) = γ(ζ(t, z(t), X(t); θζ); θγ) and γ2(t, z(t); θγ , θζ) :=
γ (t, z(t); θγ) = γ(t, ζ(t, z(t), X(t); θζ); θγ) for given {X(t)}t≥0, and ζ is a neural network with
parameter θζ .

We highlight that the proposed Neural SDEs defined in Equations 12, 13, and 14 have their unique
strong solutions. To show this, it is enough to show that γ1(·; θγ , θζ) and γ2(·, ·; θγ , θζ) are Lipschitz
continuous and at most linearly growing (or bounded for GSDE).

First of all, one can show that γ1(·; θγ , θζ) is Lipschitz continuous for x, y ∈ Rd since

|γ1(x; θγ , θζ)− γ1(y; θγ , θζ)| ≤ |γ(ζ(t, x,X(t); θζ); θγ)− γ(ζ(t, y,X(t); θζ); θγ)|
≤ Lγ |ζ(t, x,X(t); θζ)− ζ(t, y,X(t); θζ)|
≤ LγLζ |x− y|,

where Lγ and Lζ are Lipschitz constants for the neural networks γ and ζ, respectively. In addition,
γ1(·; θγ , θζ) is at most linearly growing since for all x ∈ Rd,

|γ1(x; θγ , θζ)| = |γ (ζ(x; θζ); θγ) |
≤ Kγ(1 + |ζ(x; θζ)|)
= Kγ +KγKζ(1 + |x|)
≤ Kγ(1 +Kζ)(1 + |x|).

Therefore, due to Theorem A.1, Neural LSDE combined with z(t) defined in Equation (12) has a
unique strong solution. The proofs for Neural LNSDE and Neural can be shown in the same manner.

B STOCHASTIC STABILITY AND PROOFS FOR SECTION 3.3

B.1 BACKGROUND ON STABILITY OF SDES

Stability is an important concept that describes the behavior of a solution in a given differential
equation with respect to changes in the initial conditions. It is well-known that stability of ODEs
can be determined without solving the equation by using the Lyapunov direct method. Fortunately,
it turns out that the Lyapunov technique for analyzing stability of ODEs can be applied to study
stability of SDEs with slight modifications. This is significantly useful since explicit solutions for
SDEs cannot be obtained except in special cases. In this Appendix, we provide a brief overview of
stochastic stability. We refer to Mao (2007); Khasminskii (2011) for more details.

Consider the d-dimensional SDE:

dX(t) = f(t,X(t))dt+ g(t,X(t))dW (t), (15)

with the initial value x0 ∈ Rd. We assume that Equation (15) has a unique global solution denoted by
X(t;x0) for all t ≥ 0 with the initial value x0 = 0. Furthermore, assume that

f(t, 0) = 0 and g(t, 0) = 0

for t ≥ 0. Then, X(t;x0) ≡ 0 is the solution of Equation (15) and is called the trivial solution. For
V ∈ C1,2(R+ × Rd), we define the infinitesimal generator G of z(t):

GV (t, x) = Vt(t, x) + Vx(t, x)
⊤f(t, x) +

1

2
Tr[g(t, x)g(t, x)⊤Vxx(t, x)]

15

Published as a conference paper at ICLR 2024

where Vx is the gradient of V with respect to x and Vxx is the Hessian of V with respect to x.

In a stochastic system driven by a SDE, stability can be defined in several ways such as stability in
probability, almost sure exponential stability, and moment exponential stability. For our purpose, we
focus on almost sure exponential stability.
Definition B.1. The trivial solution of Equation (15) is almost surely exponential stable if for all
x0 ∈ Rd

lim sup
t→∞

1

t
log |X(t;x0)| < 0 a.s.

The almost surely exponential stability implies that almost all sample paths of the solution will
converge to x = 0 exponentially fast. We record a criterion (sufficient condition) for the almost surely
exponential stability.
Theorem B.2. (Mao (2007)) Assume that there is a function V (t, x) ∈ C1,2(R+×Rd), and constants
p > 0, c1, c2 ∈ R, c3 ≥ 0 such that

(i) c1|x|p ≤ V (t, x),

(ii) GV (t, x) ≤ c2V (t, x),

(iii) |Vx(t, x)g(t, x)|2 ≥ c3V
2(t, x),

for all (t, x) ∈ R+ × Rd. Then,

lim sup
t→∞

1

t
log |X(t;x0)| ≤ −c3 − 2c2

2p
a.s.

for all x0 ∈ Rd. In particular, if c3 > 2c2, the given SDE is almost surely exponentially stable.

A function V (t, x) that satisfies the stability conditions of Theorem B.2 is called a Lyapunov function.
Theorem B.2 states that one can determine stability of given SDEs by specifying a suitable Lyapunov
function without solving the solution explicitly.

B.2 LANGEVIN SDE.

The Langevin SDE has been extensively studied in the field of stochastic optimization and MCMC
algorithms because it admits a unique invariant measure, which is indeed a Gibbs measure. For more
detailed discussions, we refer to Raginsky et al. (2017); Chau et al. (2021); Lim & Sabanis (2021);
Lim et al. (2023a;b).

Recall that we consider the following SDE:

dz(t) = γ(z(t))dt+ σθdW (t), (16)

where σθ ∈ R, which admits the unique invariant measure π.

For p ≥ 1, we define a Lyapunov function Vp by

Vp(x) := (1 + |x|2)p/2, (17)

for x ∈ Rdz . Let PVp
(Rd) be the set of µ ∈ P(Rd) satisfying

∫
Rd Vp(x)µ(dx). We then introduce a

functional which shows geometric ergodicity of the Langevin SDE. For p ≥ 1, µ, ν ∈ PVp , define

w1,p(µ, ν) := inf
Π∈C(µ,ν)

(∫
Rd

∫
Rd

[1 ∧ |x− x′|] (1 + Vp(x) + Vp(x
′))Π(dx, dx′)

)
.

Notice that one can easily show that W1(µ, ν) ≤ w1,p(µ, ν). The key to analyzing stability of the
Neural SDE based on the Langevin SDE is a contraction property of w1,2.
Proposition B.3. (Chau et al. (2021)) Let Assumptions 3.1, 3.2 and 3.3 hold. Let z(t), z′(t) be the
solutions of Equation (16) with the initial values z(0), z′(0) ∈ L4, respectively. Then, there exists
positive constants c1, c2 > 0 such that

w1,2(L(z(t),L(z′(t)) ≤ c1e
−c2tw1,2(L(z(0))),L(z′(0)))

for all t > 0.

16

Published as a conference paper at ICLR 2024

Now we derive our main result using the contraction property stated in Proposition B.3.

Proof of Theorem 3.5. Fix T > 0. Recall that y, ỹ represent the outputs of the Neural LSDE with
the inputs x, x̃, respectively. Assume that

√
E[|x− x̃|2] ≤ ρ. For notational convenience, we drop

the dependence on θF in Equation (9). Due to Assumption 3.1, there exists LF > 0 such that for all
x, x′ ∈ Rdz

|F (x)− F (x′)| ≤ LF |x− x′|.
Then, we observe that

W1(L(y),L(ỹ)) = W1 (L(F (z(T))),L(F (z̃(T)))

= inf
Π∈C

(∫
Rd

∫
Rd

|F (z)− F (z̃)|Π(dz,dz̃)

)
≤ LFW1 (L(z(T)),L(z̃(T)))

where C is the set of probability measures such that its respective marginals are L(z(T)) and L(z̃(T)).
Furthermore, one can obtain the bound for W1 (L(z(T)),L(z̃(T))) using Proposition B.3, Cauchy-
Schwartz inequality, Jensen’s inequality and the definition of V2(·)

W1 (L(z(T)),L(z̃(T))) ≤ w1,2 (L(z(T)),L(z̃(T)))
≤ c1e

−c2Tw1,2 (L(z(0))),L(z̃(0)))
≤ Lhc1e

−c2Tw1,2(L(x),L(x̃))
≤ Lhc1e

−c2TE [(1 ∧ |x− x̃|) (1 + V2(x) + V2(x̃))]

≤ Lhc1e
−c2T

√
E[|x− x̃|2]

√
E[(1 + V2(x) + V2(x̃))

2
]

≤
√
3Lhc1e

−c2T
√

E[|x− x̃|2]
√
E[(1 + V 2

2 (x) + V 2
2 (x̃))]

≤
√
3Lhc1e

−c2T ρ
√

1 + E[V 2
2 (x)] + E[V 2

2 (x̃)]

≤
√
3Lhc1e

−c2T
√

(5 + 2E[|x|4] + 2E[|x̃|4]])ρ
where Lh is the Lipschitz constant of the initial condition h defined in Equation (4).

Combining the two inequalities above, it follows that

W1(L(y),L(ỹ)) ≤
√
3LFLhc1e

−c2T
√
(5 + 2E[|x|2] + 2E[|x̃|2]])ρ.

Now focus on deriving the upper bound for W2(L(y),L(ỹ)). Observe that

W2
2 (L(y),L(ỹ)) = W2

2 (L(F (z(T))),L(F (z̃(T)))

= inf
Π∈C

(∫
Rd

∫
Rd

|F (z)− F (z̃)|2Π(dz,dz̃)

)
≤ L2

FW2
2 (L(z(T)),L(z̃(T))) . (18)

From the definition of the Wassersten-2 distance, we write for µ, ν ∈ PV2(Rd)

W2(µ, ν)
2 ≤

∫
Rd

∫
Rd

|x− x′|2Π(dx, dx′)

≤
∫
Rd

∫
Rd

|x− x′|21|x−x′|≥1Π(dx, dx′) +

∫
Rd

∫
Rd

|x− x′|21|x−x′|<1Π(dx,dx′)

≤ 2

∫
Rd

∫
Rd

(|x|2 + |x′|2)1|x−x′|≥1Π(dx, dx′) + 2

∫
Rd

∫
Rd

|x− x′|(|x|+ |x′|)1|x−x′|<1Π(dx, dx
′)

≤ 2

∫
Rd

∫
Rd

[1 ∧ |x− x′|](1 + V2(x) + V2(x
′))Π(dx, dx′).

Taking infimum over Π ∈ C(µ, ν), we have

W2(µ, ν) ≤
√
2w1,2(µ, ν).

17

Published as a conference paper at ICLR 2024

Therefore, one further calculates that from Proposition B.3, Cauchy-Schwartz inequality and Jensen’s
inequality

W2
2 (L(z(T)),L(z̃(T))) ≤ 2w1,2 (L(z(T)),L(z̃(T)))

≤ 2c1e
−c2Tw1,2 (L(z(0))),L(z̃(0)))

≤ 2Lhc1e
−c2Tw1,2(L(x),L(x̃))

≤ 2Lhc1e
−c2TE [(1 ∧ |x− x̃|) (1 + V2(x) + V2(x̃))]

≤ 2
√
3Lhc1e

−c2T
√
E[|x− x̃|2]

√
E[(1 + V 2

2 (x) + V 2
2 (x̃))]

≤ 2
√
3Lhc1e

−c2T
√
(5 + 2E[|x|4] + 2E[|x̃|4]])ρ (19)

From Equation (18) and Equation (19), we derive

W2
2 (L(y),L(ỹ)) ≤ 2

√
3L2

FLhc1e
−c2T

√
(5 + 2E[|x|4] + 2E[|x̃|4]])ρ.

B.3 LINEAR NOISE SDE AND GEOMETRIC SDE

Lemma B.4. Consider the following d-dimensional SDE:

dX(t) = f(t,X(t))dt+ σθX(t)dW (t)

with the initial condition X(0) ∈ L2. Assume that f satisfies the conditions in Assumptions 3.1 and
3.2. Furthermore, the drift function f satisfies the condition in Assumption 3.3. That is, there exists
positive constants m > 0 and b ≥ 0 such that

⟨f(t, x), x⟩ ≤ −m|x|2 + b. (20)

for all x ∈ Rd. Then,

sup
t≥0

E[|X(t)|2] ≤
(
E[|X(0)|2] + b

m

)
exp

{
dσ2

θ

2m

}
.

and

sup
t≥0

E[|X(t)|] ≤

√(
E[|X(0)|2] + b

m

)
exp

{
dσ2

θ

2m

}
.

Proof of Lemma B.4. Let Y (t) := |X(t)|2 for all t ≥ 0. Then, Itô’s formula gives for

d
(
e2mtY (t)

)
= 2me2mtY (t)dt+ 2e2mt⟨f(t,X(t)), X(t)⟩dt
+ e2mtdσ2

θ Tr(X(t)X(t)⊤)dt+ 2⟨σθX(t), X(t)⟩dWt, (21)

which yields

Y (t) = e−2mtY (0) + 2m

∫ t

0

e2m(s−t)Y (s)ds+ 2

∫ t

0

e2m(s−t)⟨f(s,X(s)), X(s)⟩ds

+ dσ2
θ

∫ t

0

e2m(s−t)Y (s)ds+ 2σθe
−2mt

∫ t

0

Y (s)dWs. (22)

Due to Equation (20), we have∫ t

0

e2m(s−t)⟨f(s,X(s)), X(s)⟩ds ≤ −m

∫ t

0

e2m(s−t)|X(s)|2ds+ b

∫ t

0

e2m(s−t)ds

= −m

∫ t

0

e2m(s−t)Y (s)ds+
b

2m
(1− e−2mt). (23)

18

Published as a conference paper at ICLR 2024

Substituting Equation (23) into Equation (22), we have

Y (t) ≤ e−2mtY (0) +
b

m
(1− e−2mt)

+ dσ2
θ

∫ t

0

e2m(s−t)Y (s)ds+ 2σθe
−2mt

∫ t

0

Y (s)dWs,

and then taking expectations yields

E[Y (t)] ≤ e−2mtE[Y (0)] +
b

m
(1− e−2mt) + dσ2

θ

∫ t

0

e2m(s−t)E[Y (s)]ds.

Using Gronwall’s inequality leads to

E[Y (t)] ≤
(
E[Y (0)] +

b

m
(1− e−2mt)

)
exp

{
dσ2

θ

∫ t

0

e2m(s−t)ds

}
≤

(
E[Y (0)] +

b

m
(1− e−2mt)

)
exp

{
dσ2

θ

2m
(1− e−2mt)

}
≤

(
E[Y (0)] +

b

m

)
exp

{
dσ2

θ

2m

}
.

Lastly, we have

E[|X(t)|] ≤
√

E[|X(t)|2] ≤

√(
E[Y (0)] +

b

m

)
exp

{
dσ2

θ

2m

}
.

Proof of Theorem 3.6. (i) Linear Noise SDE. Using the same argument in the Proof of Theorem 3.5,
we have

W1(L(y),L(ỹ)) = W1 (L(F (z(T))),L(F (z̃(T)))

= inf
Π∈C

(∫
Rd

∫
Rd

|F (z)− F (z̃)|Π(dz,dz̃)

)
(24)

≤ LFW1 (L(z(T)),L(z̃(T))) (25)

where C is the set of probability measures such that its respective marginals are L(z(T)) and L(z̃(T)).
Now, we show that the solution of Equation (5) is almost surely moment exponential stable defined in
Definition B.1. Let z(t), z̃(t) be the solutions of Equation (5) with the initial conditions z(0), z̃(0),
respectively. Define ε(t) = z(t)− z̃(t) for all t ≥ 0. Then, ε(t) is the solution of the following SDE:

dε(t) = (γ(t, z(t); θγ)− γ(t, z̃(t); θγ)) dt+ σθ (z(t)− z̃(t)) dW (t)

= γ∆(t, ε(t))dt+ σ∆(t, ε(t))dWt, (26)

where

γ∆(t, ε(t)) := γ(t, z̃(t) + ε(t); θγ)− γ(t, z̃(t); θγ) = γ(t, z(t); θγ)− γ(t, z̃(t); θγ),

and
σ∆(t, ε(t)) := σθε(t).

Note that γ∆(t, 0) = 0 and σ∆(t, 0) = 0 for all t. Hence, Equation (26) has the trivial solution
ε(t) = 0 when ε(0) = 0 is given. Then, due to Assumptions 3.1 and 3.2, one can show that for all
x, x′ ∈ Rd

|γ∆(t, x)− γ∆(t, x
′)| ≤ Lγ |x− x′|,

|σ∆(t, x)− σ∆(t, x
′)| ≤ σθ|x− x′|

|γ∆(t, x)| ≤ Lγ |x|,
|σ∆(t, x)| = σθ|x|,

19

Published as a conference paper at ICLR 2024

yielding that the Equation (26) has a unique strong solution from Theorem A.1.

We introduce a Lyapunov function V (t, x) = |x|2. Then, we have

GV (t, x) = Vx(t, x)
⊤γ∆(t, x) +

1

2
Tr[σ∆(t, x)σ∆(t, x)

⊤Vxx(t, x)]

≤ (2Lγ + |σθ|2)|x|2 = (2Lγ + |σθ|2)V (t, x),

|Vx(t, x)σ∆(t, x)|2 = 4|σθ|2|x|4 = 4|σθ|2V (t, x)2.

Using Theorem B.2, we obtain

lim sup
t→∞

1

t
log |ε(t; ε(0))| ≤ −|σθ|2 − 2Lγ

2
a.s.

In other words, for |σθ|2 > 2Lγ , Equation (26) is almost surely exponential stable. Observe that

sup
t≥0

E[|ε(t; ε(0))] ≤ sup
t≥0

E[(|z(t)|+ |z̃(t)|)] < ∞,

due to Lemma B.4. Thus, by Egorov’s theorem, there exists T ∗ > 0 and E ∈ F such that

1

T
log |ε(T ; ε(0))| ≤ −|σθ|2 − 2Lγ

2
, ω ∈ E,

with P (E) ≥ 1− δ, and

1

T
log |ε(T ; ε(0))| > −|σθ|2 − 2Lγ

2
, ω ∈ Ec,

with P (Ec) ≤ δ for T ≥ T ∗. Therefore, we can write

E[|ε(T ; ε(0))|] = E[|ε(T ; ε(0))1E] + E[|ε(T ; ε(0))|1Ec]

≤ exp

{
−|σθ|2 − 2Lγ

2

}
+

√
E[|ε(T ; ε(0))]E[1Ec]

≤ exp

{
−|σθ|2 − 2Lγ

2

}
+

√
sup
t≥0

E[|ε(t; ε(0))]
√
δ (27)

Hence, for any ϵ > 0, we can choose sufficiently large T satisfying

E[|ε(T ; ε(0))|] ≤ exp{−(|σθ|2 − 2Lγ)T/2}+ ϵ, (28)

which leads to

E[|ε(T ; ε(0))|] ≤ exp{−(|σθ|2 − 2Lγ)T/2}(1 + ρ), (29)

Combining Equation (25) and Equation (29), we have the desired result

W1(L(y),L(ỹ)) ≤ LF exp{−(|σθ|2 − 2Lγ)T/2}(1 + ρ),

for sufficiently large T .

(ii) Geometric SDE. We take the same argument as in the case of Linear Noise SDEs and adopt the
same notations. The only difference is that the drift term γ∆(t, ε(t)) for ε(t) is given by

γ∆(t, ε(t)) := γ(t, z̃(t) + ε(t); θγ)(z̃(t) + ε(t))− γ(t, z̃(t); θγ)z̃(t)

satisfying that
|γ∆(t, x)− γ∆(t, x

′)| ≤ Kγ |x− x′|.
due to the use of the bounded activation functions. The remaining part can be proved in the same way
of the case of Linear Noise SDEs.

20

Published as a conference paper at ICLR 2024

C DESCRIPTION OF DATASETS

PhysioNet Mortality. The 2012 PhysioNet Mortality dataset (Silva et al., 2012) is a compilation
of multivariate time series data, encompassing 37 distinct variables derived from Intensive Care
Unit (ICU) records. Each dataset entry comprises irregular and infrequent measurements taken
during the initial 48-hour period post ICU admission. Adhering to the methodologies proposed by
Rubanova et al. (2019), we’ve adjusted the observation timestamps, rounding them to the closest
minute, resulting in a potential 2880 distinct measurement instances for each time series.

For our interpolation experiments, we utilized all 8000 instances with the experiment pipeline, which
is suggested by Shukla & Marlin (2021). We base our predictions on a selected subset of data points
and aim to determine values for the remaining time intervals. This interpolation is executed with an
observation range that spans from 50% to 90% of the total data points. During testing, the models
are conditioned on the observed values and tasked with deducing the values for the remaining time
intervals within the test set. The efficacy of the models is evaluated using the Mean Squared Error
(MSE) with five random initializations of model parameters.

MuJoCo. The MuJoCo dataset, which stands for Multi-Joint dynamics with Contact (Todorov
et al., 2012), employed in this study utilizes the Hopper model from the DeepMind control suite, as
detailed in Tassa et al. (2018). The dataset comprises 10,000 simulations of the Hopper model, each
forming a 14-dimensional time series with 100 regularly sampled data points.

In our experimental setup, the standard training and testing horizon involves analyzing the first 50
observations in a sequence to forecast the subsequent 10 observations. To simulate more complex
scenarios, we introduce variability by randomly omitting 30%, 50%, and 70% of the values in
each sequence, as Jhin et al. (2023b). This approach creates a range of challenging environments,
particularly focusing on irregular time-series forecasting. The MSE metric is utilized for evaluation.

PhysioNet Sepsis. The 2019 PhysioNet / Computing in Cardiology (CinC) challenge on Sepsis
prediction serves as the foundation for time-series classification experiments (Reyna et al., 2019).
Sepsis, a life-threatening condition triggered by bacteria or toxins in the blood, is responsible for a
significant number of deaths in the United States of America. The dataset used in these experiments
contains 40,335 cases of patients admitted to intensive care units, with 34 time-dependent variables
such as heart rate, oxygen saturation, and body temperature. The primary objective is to classify
whether each patient has sepsis or not according to the sepsis-3 definition.

The PhysioNet dataset is an irregular time series dataset, as only 10% of the values are sampled with
their respective timestamps for each patient. To address this irregularity, two types of time-series
classification are performed: (i) classification using observation intensity (OI), and (ii) classification
without using observation intensity (no OI). Observation intensity is a measure of the degree of
illness, and when incorporated, an index number is appended to each value in the time series. Due
to the imbalanced nature of the data, the Area Under the Receiver Operating Characteristic curve
(AUROC) score is employed to evaluate the performance.

Speech Commands. The Speech Commands dataset is an extensive collection of one-second audio
recordings that encompass spoken words and background noise (Warden, 2018). This dataset is
comprised of 34,975 time-series samples, representing 35 distinct spoken words. To create a balanced
classification problem, ten labels (including ‘yes’, ‘no’, ‘up’, ‘down’, ‘left’, ‘right’, ‘on’, ‘off’, ‘stop’,
and ‘go’) were selected from the dataset. The dataset is preprocessed by calculating Mel-frequency
cepstral coefficients, which are used as features to better represent the characteristics of the audio
recordings and improve the performance of machine learning algorithms applied to the dataset. Each
sample in the dataset has a time-series length of 161 and an input size of 20 dimensions.

Robustness to missing data. We examined the performance of the proposed Neural SDEs on
30 datasets from the University of East Anglia (UEA) and the University of California Riverside
(UCR) Time Series Classification Repository 7 (Bagnall et al., 2018) using the python library
sktime (Löning et al., 2019). The archive was comprised of univariate and multivariate time series
datasets from various real-world applications.

7http://www.timeseriesclassification.com/

21

http://www.timeseriesclassification.com/

Published as a conference paper at ICLR 2024

Table 6: Data description for ‘Robustness to missing data’ experiments

Dataset Total number of samples Number of classes Dimension of time series Length of time series

ArrowHead 211 3 1 251
Car 120 4 1 577
Coffee 56 2 1 286
GunPoint 200 2 1 150
Herring 128 2 1 512
Lightning2 121 2 1 637
Lightning7 143 7 1 319
Meat 120 3 1 448
OliveOil 60 4 1 570
Rock 70 4 1 2844
SmoothSubspace 300 3 1 15
ToeSegmentation1 268 2 1 277
ToeSegmentation2 166 2 1 343
Trace 200 4 1 275
Wine 111 2 1 234

ArticularyWordRecognition 575 25 9 144
BasicMotions 80 4 6 100
CharacterTrajectories 2858 20 3 60-180
Cricket 180 12 6 1197
Epilepsy 275 4 3 206
ERing 300 6 4 65
EthanolConcentration 524 4 3 1751
EyesOpenShut 98 2 14 128
FingerMovements 416 2 28 50
Handwriting 1000 26 3 152
JapaneseVowels 640 9 12 7-26
Libras 360 15 2 45
NATOPS 360 6 24 51
RacketSports 303 4 6 30
SpokenArabicDigits 8798 10 13 4-93

According to Table 6, the datasets have distinct sample sizes, dimensions, lengths, and the number of
classes. Some datasets contain variable-length samples. To tackle the issue of varying time series
lengths, we applied uniform scaling (Keogh, 2003; Yankov et al., 2007; Gao & Lin, 2018; Tan et al.,
2019) to match all series to the length of the longest one. Subsequently, we generated random missing
observations for each time series and then combined the modified series. The data was divided into
train, validation, and test sets in a 0.70/0.15/0.15 ratio. This was done after aggregating the original
split as the training and testing splits provided by Bagnall et al. (2018) had inconsistent ratios across
different datasets. After that, random missing observations for each variable were generated, and the
modified variables were combined. In each set of cross validation, we used different random seed to
investigate the robustness of the methods.

D DETAILS OF EXPERIMENTAL SETTINGS

All experiments were performed using a server on Ubuntu 22.04 LTS, equipped with an Intel(R)
Xeon(R) Gold 6242 CPU and six NVIDIA A100 40GB GPUs. The source code for our experiments
can be accessed at https://github.com/yongkyung-oh/Stable-Neural-SDEs.

D.1 BENCHMARK METHODS

• RNN-based methods: Conventional recurrent neural networks including RNN (Rumel-
hart et al., 1986; Medsker & Jain, 1999), LSTM (Hochreiter & Schmidhuber, 1997) and
GRU (Chung et al., 2014). When dealing with irregularly-sampled or missing data, we
apply mean imputation for the missing values. Furthermore, Choi et al. (2016) proposed
a model that incorporates lapses in time between observations, alongside the observations
themselves. In Che et al. (2018), GRU-D uses a sequence of observed values, missing data
indicators, and elapsed times between observations as inputs and learns exponential decay
between observations.

• Attention-based methods: Shukla & Marlin (2021) proposed a technique known as Multi-
Time Attention Networks (MTAN), which involves learning an embedding of continuous
time values and utilizing an attention mechanism. Similarly, Lee et al. (2022) introduced

22

https://github.com/yongkyung-oh/Stable-Neural-SDEs

Published as a conference paper at ICLR 2024

a method named the Multi-Integration Attention Module (MIAM) for extracting intricate
information from irregular time series data with additional attention mechanism.

• Neural ODEs: Neural ODEs (Chen et al., 2018), which are widely utilized for learning
continuous latent representations, come in various forms including GRU-ODE (De Brouwer
et al., 2019), ODE-RNN (Rubanova et al., 2019), ODE-LSTM (Lechner & Hasani, 2020),
Latent-ODE (Rubanova et al., 2019), Augmented-ODE (Dupont et al., 2019), and Attentive
co-evolving neural ordinary differential equations (ACE-NODE) (Jhin et al., 2021).

• Neural CDEs: Kidger et al. (2020) introduced the Neural CDE to consider a continuous
change of the entire input over time. Neural Rough Differential Equation (Neural RDE) (Mor-
rill et al., 2021), make use of log-signature transformations to directly incorporate time
series into the path space. We used depth 2 with mean imputation for the Neural RDE.
Attentive Neural Controlled Differential Equation (ANCDE) (Jhin et al., 2023b), employ
dual Neural CDEs to compute attention scores. EXtrapolation and InTerpolation-based
model (EXIT) (Jhin et al., 2022) and LEArnable Path-based model (LEAP) (Jhin et al.,
2023a) utilize an explicit encoder-decoder structure to create the latent control path.

• Neural SDEs: Neural SDEs have been proposed to model genuine random phenomena.
SDEs, which represent a logical progression from ODEs, can be applied to the analysis
of continuously evolving systems and accommodate uncertainty using drift and diffusion
terms (Tzen & Raginsky, 2019; Jia & Benson, 2019; Liu et al., 2019). On the other hand, Li
et al. (2020) introduced a method called Latent SDE that uses an adjoint method, which can
be considered as an instantaneous analog of the chain rule for solving Neural SDEs. We
incorporate Kullback–Leibler (KL) divergence loss for training Latent SDE.

D.2 NETWORK ARCHITECTURE

There are multiple neural networks in the proposed method, as shown in Equations (12), (13),
and (14): γ1(z(t); θγ , θζ), γ2(t, z(t); θγ , θζ), and σ(t; θσ). The drift terms with control include the
mapping function ζ : R+ ×Rdz ×Rdx → Rdz , which uses the concatenated value of the latent value
z(t) and the controlled path X(t) as input. Both the drift functions γ1 and γ2 are implemented as
Multi-layer Perceptrons (MLPs) with ReLU activation. The diffusion function σ has two options:
linear affine and a nonlinear neural network. Our approach involves constraining the SDEs to exhibit
diagonal noise, a decision aimed at satisfying the commutativity property as delineated by Rößler
(2004). Consequently, our designated networks under Itô -Taylor schemes ensure the pathwise
convergence from any given fixed starting point (Kloeden & Neuenkirch, 2007; Li et al., 2020).

In practice, we implemented several design choices to optimize the model’s performance and stability.
Firstly, we utilized the idea of sinusoidal positional encoding, as proposed by Vaswani et al. (2017),
for the time variable, ensuring that each time step possesses a unique encoding. Secondly, we opted for
the tanh nonlinearity as the final operation for drift, diffusion, and all other vector fields, following
the recommendation by Kidger et al. (2020). This choice is intended to prevent the model from
experiencing issues related to excessively large values or gradients. Lastly, we employed layer-wise
learning rates for the model’s final layer (e.g. ×100), facilitating more precise and adaptive learning
for the classification task. This approach can result in improved classification outcomes, as each layer
can adjust its learning rate according to the complexity of the features it aims to capture.

D.3 TRAINING STRATEGY

In addressing datasets characterized by irregular sampling or missing values, the initial value of the
process is established based on available observations. The initial value, denoted as x0, is interpolated
from the observed data x and subsequently used to define the mapping for z(0). This methodology is
consistent with the approaches outlined by Kidger et al. (2020) and subsequent research.

Subsequently, the latent trajectory value at z(T) is specifically utilized for designated tasks. This
approach ensures that both the estimation of the SDE and the model’s output are co-optimized. In
our task of classifying time series data, we utilize the cross-entropy loss function, taking the final
value of the latent representation z(T) as input. We employ an MLP, comprising two fully connected
layers with ReLU activation, to process the extracted feature z : [0, T], as follows:

ŷ = MLP(z(T); θMLP), (30)

23

Published as a conference paper at ICLR 2024

where ŷ is the predicted label of the given time series sample. To mitigate the risk of overfitting and
regularize the model, we incorporate a dropout rate of 10%. Also, we employed an early-stopping
mechanism, ceasing the training when the validation loss didn’t improve for 10 successive epochs.
The training approach for our proposed Neural SDEs for classification is outlined in Algorithm 1. The
adjoint sensitivity method’s gradient computation facilitates the integration of mini-batch algorithms
in solving Neural SDEs. For this purpose, python library torchsde8 (Li et al., 2020) is employed,
which is adept at handling both naïve Neural SDEs and the proposed Neural SDEs in our research.

Algorithm 1 Train procedure for classification task
1: Divide training data into a train set Dtrain and a validation set Dval. Set the maximum iteration epochmax.
2: Initialize the parameters for the control neural network θζ , the drift term θγ , and the diffusion term θσ .
3: Initialize the parameters for the MLP classifier θMLP.
4: for i = 1 to epochmax do
5: Train parameters θ = [θζ , θγ , θσ, θMLP] using Dtrain and classification loss L(y, ŷ).

argmin
θ

L(y, ŷ).

6: Validate using Dval and update parameters.
7: Find the best parameters θ∗ to minimize validation loss.
8: end for
9: Return θ∗ζ , θ∗γ , θ∗σ , θ∗MLP.

D.4 EMPIRICAL STUDY

Table 7: Analysis of sensitivity for Neural SDEs’ depth T and Classification performance utilizing
the ‘BasicMotions’ dataset under each scenario (* denoting the final value)

(a) Neural SDE

Depth Regular datasets Missing datasets (30%) Missing datasets (50%) Missing datasets (70%)

10 0.417 ± 0.132 0.433 ± 0.070 0.467 ± 0.095 0.417 ± 0.132
50 0.383 ± 0.112 0.417 ± 0.144 0.417 ± 0.118 0.383 ± 0.162
90 0.483 ± 0.124 0.383 ± 0.095 0.483 ± 0.091 0.383 ± 0.151

100* 0.417 ± 0.000 0.333 ± 0.059 0.500 ± 0.059 0.467 ± 0.095

(b) Neural LSDE

Depth Regular datasets Missing datasets (30%) Missing datasets (50%) Missing datasets (70%)

10 0.433 ± 0.137 0.417 ± 0.118 0.300 ± 0.095 0.450 ± 0.173
50 1.000 ± 0.000 0.967 ± 0.046 0.950 ± 0.075 0.867 ± 0.046
90 1.000 ± 0.000 0.967 ± 0.046 0.967 ± 0.046 0.917 ± 0.000

100* 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 0.983 ± 0.037

(c) Neural LNSDE

Depth Regular datasets Missing datasets (30%) Missing datasets (50%) Missing datasets (70%)

10 0.333 ± 0.102 0.400 ± 0.109 0.450 ± 0.139 0.367 ± 0.139
50 1.000 ± 0.000 0.967 ± 0.046 0.933 ± 0.070 0.900 ± 0.070
90 1.000 ± 0.000 0.983 ± 0.037 0.983 ± 0.037 0.933 ± 0.070

100* 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 0.983 ± 0.037

(d) Neural GSDE

Depth Regular datasets Missing datasets (30%) Missing datasets (50%) Missing datasets (70%)

10 0.483 ± 0.124 0.417 ± 0.102 0.400 ± 0.070 0.417 ± 0.144
50 0.983 ± 0.037 0.950 ± 0.046 0.933 ± 0.070 0.883 ± 0.095
90 1.000 ± 0.000 0.967 ± 0.046 0.983 ± 0.037 0.917 ± 0.059

100* 1.000 ± 0.000 0.983 ± 0.037 0.983 ± 0.037 0.983 ± 0.037

8https://github.com/google-research/torchsde

24

https://github.com/google-research/torchsde

Published as a conference paper at ICLR 2024

Impact of the Neural SDEs’ depth T . Theorems 3.5 and 3.6 establish non-asymptotic upper
bounds on the variance between output distributions of original and perturbed input data. To
empirically verify this hypothesis, the impact of varying T on Neural SDEs’ performance is examined.

Table 7 illustrates the classification results obtained from the ‘BasicMotions’ dataset at various
depth levels. In alignment with our theoretical expectations, it is observed that the model’s efficacy
consolidates and its robustness intensifies as the depth parameter T is increased, substantiating the
durability of the proposed methods in scenarios of varying depths.

Table 8: Classification performance on the
‘BasicMotions’ dataset at a 50% missing rate
using different solvers: the explicit Euler, the

Milstein, and the Stochastic Runge-Kutta (SRK)
(Average taken over five iterations. Runtime, in
seconds, for 100 epochs without early-stopping.)

Methods Solvers Accuracy Runtime

Neural SDE
Euler 0.500 ± 0.059 87.4 ± 0.3
Milstein 0.483 ± 0.091 156.9 ± 0.9
SRK 0.500 ± 0.059 749.4 ± 3.4

Neural LSDE
Euler 1.000 ± 0.000 89.4 ± 0.5
Milstein 0.983 ± 0.037 112.6 ± 1.0
SRK 1.000 ± 0.000 748.5 ± 2.4

Neural LNSDE
Euler 1.000 ± 0.000 95.0 ± 0.4
Milstein 0.983 ± 0.037 135.3 ± 0.8
SRK 0.983 ± 0.037 822.5 ± 2.2

Neural GSDE
Euler 0.983 ± 0.037 96.4 ± 0.6
Milstein 0.983 ± 0.037 135.7 ± 1.1
SRK 0.967 ± 0.046 839.1 ± 4.1

Table 9: Classification performance on the
‘BasicMotions’ dataset at a 50% missing rate

(Average taken over five iterations. Runtime, in
seconds, for 100 epochs without early-stopping.)

Methods Accuracy Runtime

RNN 0.600 ± 0.070 2.3 ± 0.1
LSTM 0.700 ± 0.095 2.8 ± 0.9
GRU 0.900 ± 0.091 3.0 ± 0.0
GRU-∆t 0.967 ± 0.046 34.4 ± 0.3
GRU-D 0.933 ± 0.070 42.4 ± 0.3
MTAN 0.717 ± 0.247 6.2 ± 0.4
MIAM 0.933 ± 0.109 41.7 ± 0.6
GRU-ODE 0.983 ± 0.037 519.8 ± 0.3
ODE-RNN 1.000 ± 0.000 113.3 ± 0.2
ODE-LSTM 0.717 ± 0.126 73.0 ± 0.7
Neural CDE 0.983 ± 0.037 102.5 ± 0.3
Neural RDE 0.717 ± 0.046 93.8 ± 0.4
ANCDE 0.983 ± 0.037 360.5 ± 0.5
EXIT 0.417 ± 0.102 334.5 ± 0.3
LEAP 0.317 ± 0.124 163.0 ± 0.6
Latent SDE 0.350 ± 0.109 238.5 ± 0.6

Neural SDE 0.500 ± 0.059 87.4 ± 0.3

Neural LSDE 1.000 ± 0.000 89.4 ± 0.5
Neural LNSDE 1.000 ± 0.000 95.0 ± 0.4
Neural GSDE 0.983 ± 0.037 96.4 ± 0.6

Choice of solver. We considered three distinct numerical solvers for Neural SDEs: the explicit
Euler-Maruyama method, the Milstein method, and the Stochastic Runge-Kutta (SRK) method. Each
solver presents varying degrees of convergence and computational efficiency: the Euler method
demonstrates a convergence order of 0.5, while the Milstein and SRK methods exhibit higher orders
of 1.0 and 1.5, respectively, indicating progressively enhanced accuracy.

For our study involving high-dimensional SDEs, the explicit Euler method was selected due to its
superior computational efficiency, despite its lower accuracy, in comparison to the more computation-
ally intensive Milstein and SRK methods. This choice was motivated by the necessity to manage the
computational demands of high-dimensional data effectively. As shown in Table 8, this selection is
further validated by the average runtimes observed using the ‘BasicMotions’ dataset.

Recognizing the potential concerns about numerical stability in explicit numerical solutions, our
Neural SDE models were carefully crafted to ensure robust performance. This design forethought is
crucial in maintaining numerical stability throughout the computations utilizing the explicit Euler
method. Table 9 provides an investigation into both the classification accuracy and the average
runtime, reflecting the efficiency and effectiveness of our chosen methodology versus benchmarks.

E DETAILED RESULTS OF THE BENCHMARK DATASETS

For the interpolation task, we employed the dataset pipeline recommended for PhysioNet Mortal-
ity (Silva et al., 2012), as outlined by Shukla & Marlin (2021), with additional resources available
in its GitHub repository9. The forecasting task utilized the MuJoCo dataset (Tassa et al., 2018),
following the experimental procedures and resources found in Jhin et al. (2023b) and its corre-
sponding GitHub repository10. For the datasets PhysioNet Sepsis (Reyna et al., 2019), and Speech

9https://github.com/reml-lab/mTAN
10https://github.com/sheoyon-jhin/ANCDE

25

https://github.com/reml-lab/mTAN
https://github.com/sheoyon-jhin/ANCDE

Published as a conference paper at ICLR 2024

Commands (Warden, 2018), we adopted the preprocessing and experimental protocols detailed
in Kidger et al. (2020) and its corresponding Github repository11. We recommend referring to the
original paper for further details regarding the data and experiment protocols.

PhysioNet Mortality. We compare the proposed techniques with the benchmark method delineated
in Shukla & Marlin (2021). The following models are considered: RNN-VAE model (Chen et al.,
2018), employs a Variational AutoEncoder (VAE) framework wherein both the encoder and decoder
are instantiated as conventional RNN architectures. L-ODE-RNN model (Chen et al., 2018), is a
Latent ODE variant that utilizes an RNN encoder and a Neural ODE decoder. L-ODE-ODE (Rubanova
et al., 2019), is another Latent ODE variant, but both its encoder and decoder are based on ODE-RNN
and Neural ODE respectively. MTAN (Shukla & Marlin, 2021), integrates a time attention mechanism
alongside Bidirectional RNNs to encapsulate temporal features and interpolate data.

Table 10: Results of hyperparameter tuning for ‘PhysioNet Mortality’: Mean Squared Error (MSE,
scaled by 10−3) for interpolation tasks across various observation levels

(a) Neural SDE

nl nh

Observed %

50% 60% 70% 80% 90%

1

16 8.900 8.892 8.666 8.593 8.359
32 8.953 8.785 8.719 8.603 8.377
64 8.739 8.718 8.613 8.392 8.374
128 8.770 8.686 8.560 8.464 8.296

2

16 8.901 8.835 8.706 8.624 8.445
32 8.861 8.858 8.669 8.550 8.446
64 8.842 8.829 8.668 8.518 8.362
128 8.826 8.705 8.526 8.430 8.305

3

16 8.899 8.782 8.652 8.517 8.427
32 8.812 8.829 8.607 8.470 8.314
64 8.687 8.481 8.471 8.325 8.147
128 8.696 8.652 8.533 8.412 8.312

4

16 8.902 8.690 8.715 8.521 8.473
32 8.854 8.657 8.571 8.398 8.367
64 8.788 8.658 8.592 8.459 8.263
128 8.592 8.591 8.540 8.318 8.252

(b) Neural LSDE

nl nh

Observed %

50% 60% 70% 80% 90%

1

16 5.315 5.017 4.765 4.654 4.446
32 5.081 5.039 4.596 4.632 3.732
64 4.623 4.521 4.437 4.364 3.347

128 3.822 3.658 3.516 3.355 3.098

2

16 5.399 5.286 5.153 5.104 4.336
32 4.711 4.520 4.332 4.097 4.000
64 4.200 4.066 3.827 3.632 3.351

128 4.310 4.167 4.130 4.057 3.106

3

16 5.585 5.367 5.295 5.242 4.683
32 4.806 4.567 4.220 3.988 3.789
64 4.123 4.015 3.631 3.441 3.340

128 3.793 3.645 3.350 3.209 3.089

4

16 5.223 5.296 4.964 4.811 4.665
32 4.682 4.751 4.107 4.046 3.848
64 4.139 3.861 3.756 3.456 3.380

128 3.799 3.584 3.457 3.262 3.111

(c) Neural LNSDE

nl nh

Observed %

50% 60% 70% 80% 90%

1

16 5.367 5.362 4.914 4.516 4.224
32 4.980 4.309 4.674 4.616 3.766
64 4.490 4.591 4.356 4.531 3.503
128 3.800 3.763 3.492 3.293 3.060

2

16 5.297 5.374 4.842 5.030 4.703
32 4.645 4.628 4.531 4.197 4.060
64 4.171 4.043 3.838 3.705 3.303
128 4.309 4.199 4.130 3.535 3.162

3

16 5.455 5.411 5.074 5.152 4.766
32 4.726 4.383 4.052 3.963 4.040
64 4.082 3.905 3.656 3.457 3.395
128 3.829 3.600 3.353 3.193 3.040

4

16 5.365 5.119 4.809 4.760 4.608
32 4.674 4.180 4.260 3.945 4.064
64 4.114 3.823 3.689 3.458 3.398
128 3.808 3.617 3.405 3.269 3.154

(d) Neural GSDE

nl nh

Observed %

50% 60% 70% 80% 90%

1

16 5.408 5.245 5.159 5.090 4.499
32 5.093 4.961 4.320 4.888 3.968
64 4.699 4.191 4.470 4.464 3.477

128 4.149 3.882 4.219 4.072 3.195

2

16 5.508 5.491 5.090 4.650 4.541
32 4.832 4.766 4.595 4.196 4.094
64 4.215 4.078 3.936 3.702 3.427

128 4.369 4.274 4.222 3.952 3.158

3

16 5.591 5.498 5.311 4.896 4.754
32 4.684 4.345 4.224 4.098 3.869
64 4.273 4.046 3.760 3.663 3.486

128 3.863 3.661 3.453 3.296 3.089

4

16 5.449 4.918 4.911 4.780 4.649
32 4.672 4.496 4.377 4.145 3.902
64 4.242 3.966 3.753 3.555 3.497

128 3.824 3.667 3.493 3.287 3.118

For the proposed methodology, the training process spans 300 epochs, employing a batch size of 64
and a learning rate of 0.001. To train our models on a dataset comprising irregularly sampled time
series, we adopt a strategy from Shukla & Marlin (2021). This involves the modified VAE training
method, where we optimize a normalized variational lower bound of the log marginal likelihood,

11https://github.com/patrick-kidger/NeuralCDE

26

https://github.com/patrick-kidger/NeuralCDE

Published as a conference paper at ICLR 2024

grounded on the evidence lower bound (ELBO). Hyperparameter optimization is conducted through
a grid search, focusing on the number of layers in vector field nl of {16, 32, 64, 128} and hidden
vector dimensions nh of {16, 32, 64, 128}. The optimal hyperparameters for the proposed methods
are remarked in bold within Table 10, encompassing observed data ranging from 50% to 90%.

MuJoCo. We evaluate the proposed model against the performance provided on Jhin et al. (2023b).
The methods we compared include GRU-∆t (Choi et al., 2016), GRU-D (Che et al., 2018), GRU-
ODE (De Brouwer et al., 2019), ODE-RNN (Rubanova et al., 2019), Latent-ODE (Rubanova et al.,
2019), Augmented-ODE (Dupont et al., 2019), ACE-NODE (Jhin et al., 2021), Neural CDE (Kidger
et al., 2020), ANCDE (Jhin et al., 2023b), EXIT (Jhin et al., 2022), and LEAP (Jhin et al., 2023a).

Table 11: Results of hyperparameter tuning for ‘MuJoCo’ with regular dataset

nl nh

Neural SDE Neural LSDE Neural LNSDE Neural GSDE

Test MSE Memory Test MSE Memory Test MSE Memory Test MSE Memory

1

16 0.057 ± 0.009 66 0.031 ± 0.001 72 0.032 ± 0.001 78 0.031 ± 0.004 87
32 0.040 ± 0.001 118 0.022 ± 0.001 127 0.021 ± 0.002 139 0.019 ± 0.001 157
64 0.041 ± 0.008 218 0.018 ± 0.001 237 0.016 ± 0.001 261 0.016 ± 0.001 298

128 0.046 ± 0.002 432 0.017 ± 0.001 460 0.016 ± 0.001 508 0.013 ± 0.001 582

2

16 0.054 ± 0.011 69 0.041 ± 0.001 75 0.033 ± 0.002 81 0.034 ± 0.000 90
32 0.038 ± 0.003 124 0.024 ± 0.002 133 0.024 ± 0.002 141 0.025 ± 0.001 160
64 0.032 ± 0.000 234 0.017 ± 0.001 249 0.017 ± 0.001 273 0.018 ± 0.001 306

128 0.031 ± 0.002 449 0.013 ± 0.000 485 0.012 ± 0.000 533 0.015 ± 0.001 607

3

16 0.054 ± 0.012 72 0.043 ± 0.000 78 0.036 ± 0.003 84 0.039 ± 0.003 89
32 0.061 ± 0.012 130 0.030 ± 0.000 139 0.029 ± 0.000 151 0.029 ± 0.001 162
64 0.031 ± 0.001 246 0.023 ± 0.000 261 0.023 ± 0.002 286 0.022 ± 0.003 310

128 0.028 ± 0.001 474 0.018 ± 0.001 509 0.017 ± 0.001 558 0.018 ± 0.001 615

4

16 0.065 ± 0.004 75 0.046 ± 0.000 81 0.044 ± 0.005 86 0.036 ± 0.001 92
32 0.061 ± 0.010 136 0.035 ± 0.002 145 0.037 ± 0.001 157 0.031 ± 0.000 169
64 0.031 ± 0.003 259 0.027 ± 0.000 274 0.028 ± 0.000 298 0.027 ± 0.000 322

128 0.031 ± 0.004 507 0.023 ± 0.002 534 0.023 ± 0.001 583 0.023 ± 0.001 632

For the proposed methodology, we spanned 500 epochs with a batch size of 1024 and a learning rate
set at 0.001. We performed hyperparameter optimization using a grid search, focusing specifically
on the number of layers in vector field nl of {16, 32, 64, 128} and hidden vector dimensions nh of
{16, 32, 64, 128}. The optimal hyperparameters, as identified for our methods, are highlighted in
bold in Table 11 for regular datasets. For scenarios with 30%, 50%, and 70% missing data, we applied
the same hyperparameters.

Table 12: Forecasting performance versus percent observed time points on MuJoCo

Methods
Test MSE Memory Usage

(MB)Regular 30% dropped 50% dropped 70% dropped

GRU-∆t 0.223 ± 0.020 0.198 ± 0.036 0.193 ± 0.015 0.196 ± 0.028 533
GRU-D 0.578 ± 0.042 0.608 ± 0.032 0.587 ± 0.039 0.579 ± 0.052 569
GRU-ODE 0.856 ± 0.016 0.857 ± 0.015 0.852 ± 0.015 0.861 ± 0.015 146
ODE-RNN 0.328 ± 0.225 0.274 ± 0.213 0.237 ± 0.110 0.267 ± 0.217 115
Latent-ODE 0.029 ± 0.011 0.056 ± 0.001 0.055 ± 0.004 0.058 ± 0.003 314
Augmented-ODE 0.055 ± 0.004 0.056 ± 0.004 0.057 ± 0.005 0.057 ± 0.005 286
ACE-NODE 0.039 ± 0.003 0.053 ± 0.007 0.053 ± 0.005 0.052 ± 0.006 423
NCDE 0.028 ± 0.002 0.027 ± 0.000 0.027 ± 0.001 0.026 ± 0.001 52
ANCDE 0.026 ± 0.001 0.025 ± 0.001 0.025 ± 0.001 0.024 ± 0.001 79
EXIT 0.026 ± 0.000 0.025 ± 0.004 0.026 ± 0.000 0.026 ± 0.001 127
LEAP 0.022 ± 0.002 0.022 ± 0.001 0.022 ± 0.002 0.022 ± 0.001 144

Neural SDE 0.028 ± 0.004 0.029 ± 0.001 0.029 ± 0.001 0.027 ± 0.000 234

Neural LSDE 0.013 ± 0.000 0.014 ± 0.001 0.014 ± 0.000 0.013 ± 0.001 249
Neural LNSDE 0.012 ± 0.001 0.014 ± 0.001 0.014 ± 0.001 0.014 ± 0.000 273
Neural GSDE 0.013 ± 0.001 0.013 ± 0.001 0.013 ± 0.000 0.014 ± 0.000 306

Table 12 presents the forecasting performance across varying data drop ratios. Our methods consis-
tently demonstrate lower MSE scores, indicating their superior forecasting capabilities. However, the
proposed methods demand higher computational resources due to the complex architecture.

27

Published as a conference paper at ICLR 2024

PhysioNet Sepsis. We evaluate the proposed model against the performance provided on Jhin et al.
(2023b). The methods we compared include GRU-∆t (Choi et al., 2016), GRU-D (Che et al., 2018),
GRU-ODE (De Brouwer et al., 2019), ODE-RNN (Rubanova et al., 2019), Latent-ODE (Rubanova
et al., 2019), ACE-NODE (Jhin et al., 2021), Neural CDE (Kidger et al., 2020), and ANCDE (Jhin
et al., 2023b). We examine the results both with and without the observational intensity (OI), which
is determined by attaching a mask indicating whether an observation was made or not to each input.

Table 13: Results of hyperparameter tuning for ‘PhysioNet Sepsis’ with observation intensity

nl nh

Neural SDE Neural LSDE Neural LNSDE Neural GSDE

Test AUROC Memory Test AUROC Memory Test AUROC Memory Test AUROC Memory

1

16 0.792 ± 0.008 304 0.907 ± 0.003 314 0.910 ± 0.002 340 0.909 ± 0.002 338
32 0.780 ± 0.006 369 0.904 ± 0.002 353 0.899 ± 0.003 366 0.902 ± 0.004 369
64 0.790 ± 0.006 442 0.895 ± 0.002 421 0.881 ± 0.007 485 0.894 ± 0.007 509

128 0.769 ± 0.008 736 0.890 ± 0.010 747 0.870 ± 0.015 758 0.883 ± 0.007 924

2

16 0.793 ± 0.004 338 0.903 ± 0.005 344 0.911 ± 0.002 341 0.907 ± 0.001 298
32 0.786 ± 0.010 379 0.909 ± 0.004 373 0.903 ± 0.005 351 0.903 ± 0.002 332
64 0.763 ± 0.005 486 0.907 ± 0.003 489 0.898 ± 0.006 522 0.900 ± 0.007 536

128 0.769 ± 0.010 802 0.906 ± 0.004 818 0.867 ± 0.007 860 0.882 ± 0.009 965

3

16 0.793 ± 0.003 346 0.905 ± 0.001 341 0.909 ± 0.002 338 0.904 ± 0.006 281
32 0.799 ± 0.007 368 0.908 ± 0.004 359 0.908 ± 0.003 341 0.906 ± 0.002 347
64 0.776 ± 0.006 491 0.901 ± 0.006 481 0.902 ± 0.007 495 0.901 ± 0.002 511

128 0.776 ± 0.006 774 0.902 ± 0.005 822 0.895 ± 0.004 863 0.895 ± 0.003 936

4

16 0.782 ± 0.011 333 0.902 ± 0.007 299 0.906 ± 0.005 341 0.893 ± 0.007 297
32 0.784 ± 0.012 376 0.902 ± 0.001 355 0.908 ± 0.003 345 0.906 ± 0.004 362
64 0.780 ± 0.005 488 0.907 ± 0.004 476 0.899 ± 0.005 541 0.909 ± 0.001 588

128 0.764 ± 0.013 844 0.900 ± 0.002 785 0.900 ± 0.004 896 0.905 ± 0.001 962

Table 14: Results of hyperparameter tuning for ‘PhysioNet Sepsis’ without observation intensity

nl nh

Neural SDE Neural LSDE Neural LNSDE Neural GSDE

Test AUROC Memory Test AUROC Memory Test AUROC Memory Test AUROC Memory

1

16 0.782 ± 0.008 171 0.867 ± 0.004 183 0.873 ± 0.006 173 0.875 ± 0.002 181
32 0.787 ± 0.008 216 0.869 ± 0.006 256 0.868 ± 0.010 248 0.873 ± 0.003 267
64 0.790 ± 0.003 353 0.870 ± 0.004 353 0.832 ± 0.012 388 0.852 ± 0.011 402

128 0.773 ± 0.005 659 0.829 ± 0.010 712 0.775 ± 0.020 783 0.809 ± 0.009 868

2

16 0.795 ± 0.009 191 0.872 ± 0.007 181 0.874 ± 0.004 188 0.880 ± 0.002 184
32 0.776 ± 0.007 233 0.867 ± 0.002 245 0.877 ± 0.006 245 0.880 ± 0.005 260
64 0.782 ± 0.012 394 0.866 ± 0.004 447 0.865 ± 0.007 395 0.870 ± 0.006 467

128 0.775 ± 0.006 592 0.867 ± 0.006 761 0.815 ± 0.011 772 0.854 ± 0.007 833

3

16 0.787 ± 0.009 198 0.865 ± 0.001 181 0.869 ± 0.006 191 0.872 ± 0.006 164
32 0.797 ± 0.006 240 0.867 ± 0.006 248 0.878 ± 0.006 261 0.884 ± 0.002 280
64 0.783 ± 0.007 386 0.868 ± 0.004 420 0.863 ± 0.005 443 0.878 ± 0.001 500

128 0.764 ± 0.004 704 0.837 ± 0.015 802 0.846 ± 0.011 780 0.870 ± 0.004 968

4

16 0.762 ± 0.005 184 0.859 ± 0.007 189 0.865 ± 0.003 178 0.868 ± 0.007 186
32 0.781 ± 0.006 254 0.862 ± 0.009 266 0.872 ± 0.002 284 0.877 ± 0.004 304
64 0.777 ± 0.005 396 0.879 ± 0.008 436 0.881 ± 0.002 445 0.878 ± 0.003 461

128 0.752 ± 0.017 789 0.866 ± 0.006 747 0.859 ± 0.005 850 0.875 ± 0.003 994

In the proposed method, we train for 200 epochs with a batch size of 1024 and a learning rate of
0.001. The hyperparameters are optimized by grid search in the number of layers in vector field nl of
{16, 32, 64, 128} and hidden vector dimensions nh of {16, 32, 64, 128}. The best hyperparameters
are highlighted with bold font in Table 13 and 14. Due to varying input channel counts in each
scenario, the best hyperparameters might differ. The interplay between hyperparameters and data
traits is vital for model efficacy and adaptability.

Speech Commands. We evaluate the proposed model against the performance provided on Jhin
et al. (2023a). The methods we compared include RNN (Medsker & Jain, 1999), LSTM (Hochreiter
& Schmidhuber, 1997), GRU (Chung et al., 2014), GRU-∆t (Choi et al., 2016), GRU-D (Che
et al., 2018), GRU-ODE (De Brouwer et al., 2019), ODE-RNN (Rubanova et al., 2019), Latent-
ODE (Rubanova et al., 2019), Augmented-ODE (Dupont et al., 2019), ACE-NODE (Jhin et al., 2021),
Neural CDE (Kidger et al., 2020), ANCDE (Jhin et al., 2023b), and LEAP (Jhin et al., 2023a)

28

Published as a conference paper at ICLR 2024

Table 15: Results of hyperparameter tuning for ‘Speech Commands’

nl nh

Neural SDE Neural LSDE Neural LNSDE Neural GSDE

Test Accuracy Memory Test Accuracy Memory Test Accuracy Memory Test Accuracy Memory

1

16 0.105 ± 0.001 238 0.732 ± 0.013 246 0.749 ± 0.009 250 0.739 ± 0.009 261
32 0.110 ± 0.005 309 0.837 ± 0.011 347 0.846 ± 0.004 352 0.837 ± 0.005 436
64 0.105 ± 0.001 521 0.866 ± 0.008 543 0.892 ± 0.005 656 0.876 ± 0.005 698
128 0.104 ± 0.002 880 0.866 ± 0.037 982 0.924 ± 0.000 1164 0.913 ± 0.003 1399

2

16 0.106 ± 0.003 213 0.839 ± 0.016 259 0.757 ± 0.007 198 0.746 ± 0.002 252
32 0.105 ± 0.002 315 0.886 ± 0.009 353 0.859 ± 0.003 377 0.848 ± 0.002 476
64 0.109 ± 0.005 535 0.900 ± 0.006 599 0.903 ± 0.003 649 0.895 ± 0.002 734
128 0.109 ± 0.004 995 0.910 ± 0.005 1142 0.915 ± 0.003 1211 0.909 ± 0.003 1431

3

16 0.108 ± 0.004 215 0.847 ± 0.009 237 0.700 ± 0.020 240 0.711 ± 0.005 263
32 0.107 ± 0.002 343 0.904 ± 0.001 398 0.838 ± 0.007 456 0.844 ± 0.003 467
64 0.103 ± 0.002 577 0.919 ± 0.003 557 0.898 ± 0.006 731 0.895 ± 0.004 843
128 0.107 ± 0.002 1097 0.927 ± 0.004 1187 0.922 ± 0.001 1277 0.913 ± 0.001 1565

4

16 0.108 ± 0.004 233 0.847 ± 0.013 243 0.383 ± 0.069 267 0.632 ± 0.019 276
32 0.107 ± 0.001 363 0.900 ± 0.002 387 0.782 ± 0.031 423 0.800 ± 0.016 482
64 0.106 ± 0.001 573 0.916 ± 0.003 630 0.887 ± 0.009 692 0.872 ± 0.007 812
128 0.106 ± 0.002 1157 0.926 ± 0.005 1055 0.912 ± 0.004 1372 0.899 ± 0.005 1603

In the proposed method, we train for 200 epochs with a batch size of 1024 and a learning rate of
0.001. The hyperparameters are optimized by grid search in the number of layers in vector field nl of
{16, 32, 64, 128} and hidden vector dimensions nh of {16, 32, 64, 128}. The best hyperparameters
are highlighted with bold font in Table 15. Relative to the naïve Neural SDE, our suggested approaches
deliver enhanced results through a more intricate model framework.

Robustness to missing data. We utilized the Python library torchcde12 (Kidger et al., 2020;
Morrill et al., 2021) for the interpolation scheme and the Python library torchsde13 (Li et al., 2020)
to solve Neural SDEs for both the Neural SDE and the proposed methods. This study utilized the
original Neural CDE source code14 (Kidger et al., 2020) for benchmark methods including GRU-∆t,
GRU-D, GRU-ODE, ODE-RNN, and Neural CDE. Additionally, we employed ODE-LSTM using
its original source code15 (Lechner & Hasani, 2020), as well as Neural RDE16 (Morrill et al., 2021),
ANCDE17 (Jhin et al., 2023b), EXIT18 (Jhin et al., 2022), and LEAP19 (Jhin et al., 2023a), using their
original source code. For Latent SDE, we formulate adjoint SDE proposed by Li et al. (2020) and
train backpropagation incorporated with the original KL divergence.

To ensure a fair comparison, this study used the original architecture across all methods. However,
because the optimal hyperparameters vary between the methods and data, this study used the Python
library ray20 (Moritz et al., 2018; Liaw et al., 2018) for hyperparameter tuning. With the use of this
library, hyperparameters are optimally tuned to minimize validation loss automatically, contrasting
with previous research that required manual tuning for each dataset and model. In our experiments,
we identified the optimal hyperparameters for regular time series and applied them to irregular time
series. For all methods, we employed the (explicit) Euler method as the ODE solver.

In each model and dataset, the following hyperparameters are optimized to minimize validation loss:
hidden vector dimensions nh, and the number of layers nl. For RNN-based methods such as RNN,
LSTM, and GRU, the fully-connected layer employs hyperparameters. For NDE-based methods,
they are utilized to embed layer and vector fields. The hyperparameters are optimized as follows: the
learning rate lr from 10−4 to 10−1 using log-uniform search; nl from {1, 2, 3, 4} using grid search;
and nh from {16, 32, 64, 128} using grid search. The batch size was selected from {16, 32, 64, 128}
with respect to total data size. All models were trained for 100 epochs, and the best model was

12https://github.com/patrick-kidger/torchcde
13https://github.com/google-research/torchsde
14https://github.com/patrick-kidger/NeuralCDE
15https://github.com/mlech26l/ode-lstms
16https://github.com/jambo6/neuralRDEs
17https://github.com/sheoyon-jhin/ANCDE
18https://github.com/sheoyon-jhin/EXIT
19https://github.com/alflsowl12/LEAP
20https://github.com/ray-project/ray

29

https://github.com/patrick-kidger/torchcde
https://github.com/google-research/torchsde
https://github.com/patrick-kidger/NeuralCDE
https://github.com/mlech26l/ode-lstms
https://github.com/jambo6/neuralRDEs
https://github.com/sheoyon-jhin/ANCDE
https://github.com/sheoyon-jhin/EXIT
https://github.com/alflsowl12/LEAP
https://github.com/ray-project/ray

Published as a conference paper at ICLR 2024

selected based on the lowest validation loss, ensuring that the chosen model generalizes well to
unseen data. These design choices and training strategies aim to create a robust, well-performing
model that effectively addresses the given classification tasks.

F DETAILED RESULTS OF ‘ROBUSTNESS TO MISSING DATA’ EXPERIMENTS

Our analysis involved a thorough evaluation of 30 datasets, considering various scenarios such
as regular time series and time series with missing data rates of 30%, 50%, and 70%. Also, we
considered different characteristics of time series, such as univariate or multivariate.

We tested Neural CDE using various controlled paths in Table 16: linear, rectilinear, natural cubic
spline, and hermite cubic splines. Hermite cubic spline demonstrated superior performance compared
to the Neural CDE with other control paths, leading us to select it for our proposed methods.

Table 16 presents an ablation study conducted to assess the performance of the proposed methods:
Neural LSDE, Neural LNSDE, and Neural GSDE. It also compares the naïve Neural SDE with
various components. As expected, the careful design of Neural SDEs can improve the classification
performance. Also, we can observe that incorporating the control path into the model leads to a signif-
icant improvement in classification performance. Furthermore, employing a nonlinear neural network
for the diffusion term further enhances the performance compared to using an affine transformation.

Table 16: Comparison of average accuracy and average cross-entropy loss from the ablation study.
For Neural CDEs, different controlled paths were examined: (l)inear, (r)ectilinear, (n)atural cubic

spline, and (h)ermite cubic splines. For Neural SDEs, ζ indicates whether the drift function
incorporates the controlled path or not. ‘N’ or ‘L’ denote the architecture of diffusion function σ with

an affine function or a nonlinear neural network. The best and the second best are highlighted.)

Methods ζ σ
Univariate datasets (15) Multivariate datasets (15) All datasets (30)

Accuracy Loss Accuracy Loss Accuracy Loss

Neural CDE (l)

–

0.593 (0.094) 0.809 (0.107) 0.770 (0.037) 0.595 (0.086) 0.682 (0.065) 0.702 (0.097)
Neural CDE (r) 0.550 (0.096) 0.879 (0.090) 0.716 (0.045) 0.715 (0.105) 0.633 (0.071) 0.797 (0.098)
Neural CDE (n) 0.597 (0.083) 0.795 (0.084) 0.773 (0.042) 0.590 (0.095) 0.685 (0.063) 0.692 (0.089)
Neural CDE (h) 0.611 (0.092) 0.804 (0.119) 0.777 (0.044) 0.549 (0.101) 0.694 (0.068) 0.676 (0.110)

Neural SDE
O N 0.615 (0.090) 0.736 (0.089) 0.760 (0.036) 0.618 (0.092) 0.688 (0.063) 0.677 (0.091)

L 0.535 (0.095) 0.838 (0.094) 0.752 (0.040) 0.633 (0.087) 0.643 (0.068) 0.736 (0.090)

X N 0.516 (0.084) 0.914 (0.069) 0.515 (0.045) 1.248 (0.085) 0.516 (0.064) 1.081 (0.077)
L 0.498 (0.087) 0.929 (0.078) 0.514 (0.050) 1.255 (0.081) 0.506 (0.068) 1.092 (0.080)

Neural LSDE
O N 0.604 (0.081) 0.752 (0.084) 0.783 (0.031) 0.572 (0.080) 0.694 (0.056) 0.662 (0.082)

L 0.533 (0.089) 0.877 (0.086) 0.745 (0.038) 0.668 (0.085) 0.639 (0.064) 0.772 (0.085)

X N 0.530 (0.069) 0.856 (0.060) 0.527 (0.054) 1.177 (0.082) 0.528 (0.060) 1.039 (0.074)
L 0.505 (0.064) 0.912 (0.061) 0.518 (0.057) 1.210 (0.101) 0.512 (0.059) 1.083 (0.088)

Neural LNSDE
O N 0.654 (0.073) 0.701 (0.091) 0.780 (0.029) 0.577 (0.070) 0.717 (0.051) 0.639 (0.080)

L 0.586 (0.087) 0.765 (0.083) 0.764 (0.044) 0.617 (0.108) 0.675 (0.066) 0.691 (0.096)

X N 0.532 (0.077) 0.878 (0.060) 0.502 (0.051) 1.254 (0.082) 0.517 (0.064) 1.066 (0.071)
L 0.528 (0.085) 0.890 (0.069) 0.510 (0.047) 1.257 (0.089) 0.519 (0.066) 1.074 (0.079)

Neural GSDE
O N 0.633 (0.091) 0.742 (0.086) 0.772 (0.036) 0.598 (0.077) 0.703 (0.063) 0.670 (0.081)

L 0.572 (0.083) 0.796 (0.084) 0.748 (0.039) 0.653 (0.094) 0.660 (0.061) 0.724 (0.089)

X N 0.531 (0.074) 0.868 (0.052) 0.510 (0.045) 1.261 (0.093) 0.520 (0.060) 1.064 (0.072)
L 0.525 (0.078) 0.893 (0.072) 0.509 (0.052) 1.261 (0.093) 0.517 (0.065) 1.077 (0.083)

Figures 3 and 4 display the classification outcomes for all datasets over the four missing rate scenarios.
Each point in figure showcases the average classification score for every dataset and missing rate
per method. The results highlight the variability in performance based on the dataset and its specific
characteristics, emphasizing the importance of selecting an appropriate model that suits the specific
properties of the time series data. These characteristics may include the degree of missing data, the
presence of noise, the complexity of patterns, and the distribution of the data value.

In conclusion, it is vital to consider the inherent properties of the time series data when choosing the
most appropriate model for a given dataset. By doing so, we can develop robust and accurate models
that address the specific challenges of diverse time series datasets, resulting in better generalization
and performance across various applications and domains.

30

Published as a conference paper at ICLR 2024

regular(0%) 30% 50% 70%
Missing rate

0.00

0.20

0.40

0.60

0.80

1.00

Ac
cu

ra
cy

RNN
LSTM
GRU
GRU- t
GRU-D

MTAN
MIAM
GRU-ODE
ODE-RNN
ODE-LSTM

Neural CDE
Neural RDE
ANCDE
EXIT
LEAP

Latent SDE
Neural SDE
Neural LSDE
Neural LNSDE
Neural GSDE

ArrowHead

regular(0%) 30% 50% 70%
Missing rate

0.00

0.20

0.40

0.60

0.80

1.00

Ac
cu

ra
cy

RNN
LSTM
GRU
GRU- t
GRU-D

MTAN
MIAM
GRU-ODE
ODE-RNN
ODE-LSTM

Neural CDE
Neural RDE
ANCDE
EXIT
LEAP

Latent SDE
Neural SDE
Neural LSDE
Neural LNSDE
Neural GSDE

Car

regular(0%) 30% 50% 70%
Missing rate

0.00

0.20

0.40

0.60

0.80

1.00

Ac
cu

ra
cy

RNN
LSTM
GRU
GRU- t
GRU-D

MTAN
MIAM
GRU-ODE
ODE-RNN
ODE-LSTM

Neural CDE
Neural RDE
ANCDE
EXIT
LEAP

Latent SDE
Neural SDE
Neural LSDE
Neural LNSDE
Neural GSDE

Coffee

regular(0%) 30% 50% 70%
Missing rate

0.00

0.20

0.40

0.60

0.80

1.00

Ac
cu

ra
cy

RNN
LSTM
GRU
GRU- t
GRU-D

MTAN
MIAM
GRU-ODE
ODE-RNN
ODE-LSTM

Neural CDE
Neural RDE
ANCDE
EXIT
LEAP

Latent SDE
Neural SDE
Neural LSDE
Neural LNSDE
Neural GSDE

GunPoint

regular(0%) 30% 50% 70%
Missing rate

0.00

0.20

0.40

0.60

0.80

1.00

Ac
cu

ra
cy

RNN
LSTM
GRU
GRU- t
GRU-D

MTAN
MIAM
GRU-ODE
ODE-RNN
ODE-LSTM

Neural CDE
Neural RDE
ANCDE
EXIT
LEAP

Latent SDE
Neural SDE
Neural LSDE
Neural LNSDE
Neural GSDE

Herring

regular(0%) 30% 50% 70%
Missing rate

0.00

0.20

0.40

0.60

0.80

1.00

Ac
cu

ra
cy

RNN
LSTM
GRU
GRU- t
GRU-D

MTAN
MIAM
GRU-ODE
ODE-RNN
ODE-LSTM

Neural CDE
Neural RDE
ANCDE
EXIT
LEAP

Latent SDE
Neural SDE
Neural LSDE
Neural LNSDE
Neural GSDE

Lightning2

regular(0%) 30% 50% 70%
Missing rate

0.00

0.20

0.40

0.60

0.80

1.00

Ac
cu

ra
cy

RNN
LSTM
GRU
GRU- t
GRU-D

MTAN
MIAM
GRU-ODE
ODE-RNN
ODE-LSTM

Neural CDE
Neural RDE
ANCDE
EXIT
LEAP

Latent SDE
Neural SDE
Neural LSDE
Neural LNSDE
Neural GSDE

Lightning7

regular(0%) 30% 50% 70%
Missing rate

0.00

0.20

0.40

0.60

0.80

1.00

Ac
cu

ra
cy

RNN
LSTM
GRU
GRU- t
GRU-D

MTAN
MIAM
GRU-ODE
ODE-RNN
ODE-LSTM

Neural CDE
Neural RDE
ANCDE
EXIT
LEAP

Latent SDE
Neural SDE
Neural LSDE
Neural LNSDE
Neural GSDE

Meat

regular(0%) 30% 50% 70%
Missing rate

0.00

0.20

0.40

0.60

0.80

1.00

Ac
cu

ra
cy

RNN
LSTM
GRU
GRU- t
GRU-D

MTAN
MIAM
GRU-ODE
ODE-RNN
ODE-LSTM

Neural CDE
Neural RDE
ANCDE
EXIT
LEAP

Latent SDE
Neural SDE
Neural LSDE
Neural LNSDE
Neural GSDE

OliveOil

regular(0%) 30% 50% 70%
Missing rate

0.00

0.20

0.40

0.60

0.80

1.00

Ac
cu

ra
cy

RNN
LSTM
GRU
GRU- t
GRU-D

MTAN
MIAM
GRU-ODE
ODE-RNN
ODE-LSTM

Neural CDE
Neural RDE
ANCDE
EXIT
LEAP

Latent SDE
Neural SDE
Neural LSDE
Neural LNSDE
Neural GSDE

Rock

regular(0%) 30% 50% 70%
Missing rate

0.00

0.20

0.40

0.60

0.80

1.00

Ac
cu

ra
cy

RNN
LSTM
GRU
GRU- t
GRU-D

MTAN
MIAM
GRU-ODE
ODE-RNN
ODE-LSTM

Neural CDE
Neural RDE
ANCDE
EXIT
LEAP

Latent SDE
Neural SDE
Neural LSDE
Neural LNSDE
Neural GSDE

SmoothSubspace

regular(0%) 30% 50% 70%
Missing rate

0.00

0.20

0.40

0.60

0.80

1.00

Ac
cu

ra
cy

RNN
LSTM
GRU
GRU- t
GRU-D

MTAN
MIAM
GRU-ODE
ODE-RNN
ODE-LSTM

Neural CDE
Neural RDE
ANCDE
EXIT
LEAP

Latent SDE
Neural SDE
Neural LSDE
Neural LNSDE
Neural GSDE

ToeSegmentation1

regular(0%) 30% 50% 70%
Missing rate

0.00

0.20

0.40

0.60

0.80

1.00

Ac
cu

ra
cy

RNN
LSTM
GRU
GRU- t
GRU-D

MTAN
MIAM
GRU-ODE
ODE-RNN
ODE-LSTM

Neural CDE
Neural RDE
ANCDE
EXIT
LEAP

Latent SDE
Neural SDE
Neural LSDE
Neural LNSDE
Neural GSDE

ToeSegmentation2

regular(0%) 30% 50% 70%
Missing rate

0.00

0.20

0.40

0.60

0.80

1.00

Ac
cu

ra
cy

RNN
LSTM
GRU
GRU- t
GRU-D

MTAN
MIAM
GRU-ODE
ODE-RNN
ODE-LSTM

Neural CDE
Neural RDE
ANCDE
EXIT
LEAP

Latent SDE
Neural SDE
Neural LSDE
Neural LNSDE
Neural GSDE

Trace

regular(0%) 30% 50% 70%
Missing rate

0.00

0.20

0.40

0.60

0.80

1.00

Ac
cu

ra
cy

RNN
LSTM
GRU
GRU- t
GRU-D

MTAN
MIAM
GRU-ODE
ODE-RNN
ODE-LSTM

Neural CDE
Neural RDE
ANCDE
EXIT
LEAP

Latent SDE
Neural SDE
Neural LSDE
Neural LNSDE
Neural GSDE

Wine

Figure 3: Classification result of the 15 univariate datasets with all four settings

31

Published as a conference paper at ICLR 2024

regular(0%) 30% 50% 70%
Missing rate

0.00

0.20

0.40

0.60

0.80

1.00

Ac
cu

ra
cy

RNN
LSTM
GRU
GRU- t
GRU-D

MTAN
MIAM
GRU-ODE
ODE-RNN
ODE-LSTM

Neural CDE
Neural RDE
ANCDE
EXIT
LEAP

Latent SDE
Neural SDE
Neural LSDE
Neural LNSDE
Neural GSDE

ArticularyWordRecognition

regular(0%) 30% 50% 70%
Missing rate

0.00

0.20

0.40

0.60

0.80

1.00

Ac
cu

ra
cy

RNN
LSTM
GRU
GRU- t
GRU-D

MTAN
MIAM
GRU-ODE
ODE-RNN
ODE-LSTM

Neural CDE
Neural RDE
ANCDE
EXIT
LEAP

Latent SDE
Neural SDE
Neural LSDE
Neural LNSDE
Neural GSDE

BasicMotions

regular(0%) 30% 50% 70%
Missing rate

0.00

0.20

0.40

0.60

0.80

1.00

Ac
cu

ra
cy

RNN
LSTM
GRU
GRU- t
GRU-D

MTAN
MIAM
GRU-ODE
ODE-RNN
ODE-LSTM

Neural CDE
Neural RDE
ANCDE
EXIT
LEAP

Latent SDE
Neural SDE
Neural LSDE
Neural LNSDE
Neural GSDE

CharacterTrajectories

regular(0%) 30% 50% 70%
Missing rate

0.00

0.20

0.40

0.60

0.80

1.00

Ac
cu

ra
cy

RNN
LSTM
GRU
GRU- t
GRU-D

MTAN
MIAM
GRU-ODE
ODE-RNN
ODE-LSTM

Neural CDE
Neural RDE
ANCDE
EXIT
LEAP

Latent SDE
Neural SDE
Neural LSDE
Neural LNSDE
Neural GSDE

Cricket

regular(0%) 30% 50% 70%
Missing rate

0.00

0.20

0.40

0.60

0.80

1.00

Ac
cu

ra
cy

RNN
LSTM
GRU
GRU- t
GRU-D

MTAN
MIAM
GRU-ODE
ODE-RNN
ODE-LSTM

Neural CDE
Neural RDE
ANCDE
EXIT
LEAP

Latent SDE
Neural SDE
Neural LSDE
Neural LNSDE
Neural GSDE

Epilepsy

regular(0%) 30% 50% 70%
Missing rate

0.00

0.20

0.40

0.60

0.80

1.00

Ac
cu

ra
cy

RNN
LSTM
GRU
GRU- t
GRU-D

MTAN
MIAM
GRU-ODE
ODE-RNN
ODE-LSTM

Neural CDE
Neural RDE
ANCDE
EXIT
LEAP

Latent SDE
Neural SDE
Neural LSDE
Neural LNSDE
Neural GSDE

ERing

regular(0%) 30% 50% 70%
Missing rate

0.00

0.20

0.40

0.60

0.80

1.00

Ac
cu

ra
cy

RNN
LSTM
GRU
GRU- t
GRU-D

MTAN
MIAM
GRU-ODE
ODE-RNN
ODE-LSTM

Neural CDE
Neural RDE
ANCDE
EXIT
LEAP

Latent SDE
Neural SDE
Neural LSDE
Neural LNSDE
Neural GSDE

EthanolConcentration

regular(0%) 30% 50% 70%
Missing rate

0.00

0.20

0.40

0.60

0.80

1.00

Ac
cu

ra
cy

RNN
LSTM
GRU
GRU- t
GRU-D

MTAN
MIAM
GRU-ODE
ODE-RNN
ODE-LSTM

Neural CDE
Neural RDE
ANCDE
EXIT
LEAP

Latent SDE
Neural SDE
Neural LSDE
Neural LNSDE
Neural GSDE

EyesOpenShut

regular(0%) 30% 50% 70%
Missing rate

0.00

0.20

0.40

0.60

0.80

1.00

Ac
cu

ra
cy

RNN
LSTM
GRU
GRU- t
GRU-D

MTAN
MIAM
GRU-ODE
ODE-RNN
ODE-LSTM

Neural CDE
Neural RDE
ANCDE
EXIT
LEAP

Latent SDE
Neural SDE
Neural LSDE
Neural LNSDE
Neural GSDE

FingerMovements

regular(0%) 30% 50% 70%
Missing rate

0.00

0.20

0.40

0.60

0.80

1.00

Ac
cu

ra
cy

RNN
LSTM
GRU
GRU- t
GRU-D

MTAN
MIAM
GRU-ODE
ODE-RNN
ODE-LSTM

Neural CDE
Neural RDE
ANCDE
EXIT
LEAP

Latent SDE
Neural SDE
Neural LSDE
Neural LNSDE
Neural GSDE

Handwriting

regular(0%) 30% 50% 70%
Missing rate

0.00

0.20

0.40

0.60

0.80

1.00

Ac
cu

ra
cy

RNN
LSTM
GRU
GRU- t
GRU-D

MTAN
MIAM
GRU-ODE
ODE-RNN
ODE-LSTM

Neural CDE
Neural RDE
ANCDE
EXIT
LEAP

Latent SDE
Neural SDE
Neural LSDE
Neural LNSDE
Neural GSDE

JapaneseVowels

regular(0%) 30% 50% 70%
Missing rate

0.00

0.20

0.40

0.60

0.80

1.00

Ac
cu

ra
cy

RNN
LSTM
GRU
GRU- t
GRU-D

MTAN
MIAM
GRU-ODE
ODE-RNN
ODE-LSTM

Neural CDE
Neural RDE
ANCDE
EXIT
LEAP

Latent SDE
Neural SDE
Neural LSDE
Neural LNSDE
Neural GSDE

Libras

regular(0%) 30% 50% 70%
Missing rate

0.00

0.20

0.40

0.60

0.80

1.00

Ac
cu

ra
cy

RNN
LSTM
GRU
GRU- t
GRU-D

MTAN
MIAM
GRU-ODE
ODE-RNN
ODE-LSTM

Neural CDE
Neural RDE
ANCDE
EXIT
LEAP

Latent SDE
Neural SDE
Neural LSDE
Neural LNSDE
Neural GSDE

NATOPS

regular(0%) 30% 50% 70%
Missing rate

0.00

0.20

0.40

0.60

0.80

1.00

Ac
cu

ra
cy

RNN
LSTM
GRU
GRU- t
GRU-D

MTAN
MIAM
GRU-ODE
ODE-RNN
ODE-LSTM

Neural CDE
Neural RDE
ANCDE
EXIT
LEAP

Latent SDE
Neural SDE
Neural LSDE
Neural LNSDE
Neural GSDE

RacketSports

regular(0%) 30% 50% 70%
Missing rate

0.00

0.20

0.40

0.60

0.80

1.00

Ac
cu

ra
cy

RNN
LSTM
GRU
GRU- t
GRU-D

MTAN
MIAM
GRU-ODE
ODE-RNN
ODE-LSTM

Neural CDE
Neural RDE
ANCDE
EXIT
LEAP

Latent SDE
Neural SDE
Neural LSDE
Neural LNSDE
Neural GSDE

SpokenArabicDigits

Figure 4: Classification result of the 15 multivariate datasets with all four settings

32

	Introduction
	Related Work & Preliminaries
	Neural differential equation methods
	Limitations of naïve Neural SDEs

	Methodology
	The proposed Neural SDEs
	Properties of the proposed Neural SDEs
	Robustness under distribution shift
	Incorporating a controlled path to Neural SDEs

	Experiments
	Superior performance with regular and irregular time series data
	Robustness to missing data
	Ablation study

	Conclusion
	Proofs for Section 3.2
	Details to Remark 3.7

	Stochastic Stability and Proofs for Section 3.3
	Background on stability of SDEs
	Langevin SDE.
	Linear Noise SDE and Geometric SDE

	Description of datasets
	Details of experimental settings
	Benchmark methods
	Network Architecture
	Training strategy
	Empirical study

	Detailed results of the benchmark datasets
	Detailed results of `Robustness to missing data' experiments

