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Figure 1: TTC system could instantly respond to missed objects via human feedback, detecting and
tracking these targets in subsequent frames consistently. As depicted on the left, human feedback
might come from any views of target objects, including missed objects in the current and/or previous
frames, as well as diverse viewpoints across scenes, styles, and poses. Such a system improves
offline-trained 3D detectors by rectifying online driving behavior immediately, reducing safety risks
via test-time correction. TTC enables a reliable and adaptive online autonomous driving system.

ABSTRACT

This paper introduces Test-time Correction (TTC) system, a novel online 3D detec-
tion system designated for online correction of test-time errors via human feedback,
to guarantee the safety of deployed autonomous driving systems. Unlike well stud-
ied offline 3D detectors frozen at inference, TTC explores the capability of instant
online error rectification. By leveraging user feedback with interactive prompts at a
frame, e.g., a simple click or draw of boxes, TTC could immediately update the cor-
responding detection results for future streaming inputs, even though the model is
deployed with fixed parameters. This enables autonomous driving systems to adapt
to new scenarios flexibly and decrease deployment risks reliably without additional
expensive training. To achieve such TTC system, we equip existing 3D detectors
with OA module, an online adapter with prompt-driven design for online correction.
At the core of OA module are visual prompts, images of missed object-of-interest
for guiding the corresponding detection and subsequent tracking. Those visual
prompts, belonging to missed objects through online inference, are maintained by
the visual prompt buffer for continuous error correction in subsequent frames. By
doing so, TTC consistently detects online missed objects and immediately lowers
down driving risks. It achieves reliable, versatile, and adaptive driving autonomy.
Extensive experiments demonstrate significant gain on instant error rectification
over pre-trained 3D detectors, even in challenging scenarios with limited labels,
zero-shot detection, and adverse conditions. We hope this work would inspire
the community to investigate online rectification systems for autonomous driving
post-deployment. Code would be publicly shared.
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1 INTRODUCTION
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Figure 2: Comparison of Error Correction between the con-
ventional offline loop (left) and the new proposed online TTC
System (right). Offline error correction pipeline improves model
capability during the development stage, which typically requires
expensive workloads and computational overhead over days or
weeks for model updates. While TTC system additionally enables
deployed 3D detectors with on-the-fly error rectification ability.

Visual-based 3D object detec-
tion, which localizes and classi-
fies 3D objects from visual im-
agery, plays a crucial role in au-
tonomous driving systems. Vi-
sual autonomous driving frame-
works (Hu et al., 2023; 2022b;
Casas et al., 2021; Cui et al.,
2021) rely heavily on accurate
3D detection outcomes to pre-
dict future driving behaviors and
plan the trajectory of the ego ve-
hicle. Existing 3D object detec-
tors (Li et al., 2022; Yang et al.,
2023a; Liu et al., 2022; Read-
ing et al., 2021; Huang et al.,
2021) typically follow an offline
training and deployment pipeline.
Once the model is trained and de-
ployed on self-driving cars, it is
expensive to update new behav-
iors, e.g., another turn of offline
re-training or fine-tuning. That
is, when the system fails to perceive important objects or fails in novel scenarios due to a domain
shift, these offline solutions cannot update themselves online to rectify mistakes immediately and
detect missed objects. Such a caveat poses significant safety risks to reliable driving systems, e.g.,
dangerous driving behaviors such as improper lane changing, turning, or even collisions.

To guarantee safety, we argue that 3D detectors deployed on autonomous driving systems can rectify
missed detection on the fly during test time. As depicted in Figure 2 (left), for error rectification,
existing 3D detectors rely on offline pipelines, encompassing a full-suite procedure of data collection,
annotation, training, and deployment. This requires significant human workloads and resources for
labeling and re-training, days or even weeks to fulfill. Other than the offline pipeline to improve
models, we desire deployed 3D detectors also capable of test-time correction since such delays in
offline updating are unacceptable when facing risks on the road, where safety is of the utmost priority.

In this work, we explore a new 3D detection system capable of Test-Time error Correction based
on human feedback online, namely TTC, akin to how human drivers respond, as shown in Figure 2
(right). It is designed to enable existing 3D detectors with immediate error correction ability through
online human warnings. Inspired by the principles of In-context Learning Customization (Wei et al.,
2022; Peng et al., 2023) in large language models (LLMs) (OpenAI, 2023; Team, 2023), we achieve
the TTC system by leveraging images of missed objects collected from human feedback as context
prompts. Without extra training, these prompts assist deployed 3D detectors in identifying and
localizing previously unrecognized objects in later streaming input frames.

The proposed TTC includes two components: Online Adapter (OA) that enables 3D detectors with
visual promotable ability, and a visual prompt buffer that records missing objects. The core design is
“visual prompts”, the visual object representation derived from human feedback. Existing promptable
3D detection methods typically utilize text, boxes, or clicks as prompts. However, text prompts can
be ambiguous and may not describe the target objects effectively. Meanwhile, box and point prompts
struggle to handle streaming data. These limitations indicate that such prompts are inadequate for
real-time autonomous driving tasks. Visual prompts cover arbitrary imagery views of target objects,
i.e., views in different zones, styles, and timestamps (Figure 3), indicating the identity of target
objects. With visual prompts, OA module generates corresponding queries, locates corresponding
objects within streaming inputs, and facilitates 3D detectors to output 3D boxes.

To enable consecutive error rectification for video streaming, we design a dynamic visual prompt
buffer to maintain visual prompts of all past unrecognized objects. In each iteration, we use all
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visual prompts in this buffer as inputs of the TTC system. This enables the continuous detection
and tracking of all previously missed objects, redressing online errors for streaming input effectively.
Further, to refrain the buffer from undesirable expansion, we introduce a “dequeue” operation to
ensure its bounded size, allowing for consecutive rectification without excessive overhead.

Figure 3: Visual prompts could be arbitrary views
of objects, across zones, styles, timestamps, etc.

We conduct experiments on the nuScenes
dataset (Caesar et al., 2020). Given the novel set-
ting of our TTC system, the assessment focuses
on its abilities for instant online error correction.
To this end, we design extensive experiments to
verify the key aspects of the overall system: the
effects of TTC system in rectifying errors over
the online video stream; and the effects of TTC
when encountering challenging, extreme scenar-
ios with large amounts of missed detections.

Remarkably, the TTC system significantly im-
proves the offline 3D detectors for test-time per-
formance. Specifically, with test-time rectifica-
tion, TTC system improves offline monocular
(Zhang et al., 2022a), multi-view (Wang et al., 2023c), and BEV detectors (Yang et al., 2023a) by
5.0%, 12.7%, and 12.1% EDS 1 , respectively, without requiring any training. Second, when evaluated
on challenging scenarios, the TTC system exhibits even more substantial gains, with improvements of
14.4%, 21.6%, 13.6%, and 4.7% EDS on tasks like distant 3D detection and vehicle-focused detection
with limited annotations, zero-shot extensions, as well as scenarios with domain shifts, respectively.

This comprehensive evaluation highlights the versatility and adaptability of TTC, which can effectively
rectify online errors and maintain robust 3D detection capabilities even under limited data, category
shifts, and environmental changes. We hope the introduction of TTC system will inspire the research
community to further explore the online rectification approach in autonomous driving systems, a
crucial technology that can enhance the safety and reliability of safety-critical applications.

2 RELATED WORK

Interactive Vision Models. Interactive vision models are designed for tasks based on user inputs.
As one of the fundamental tasks in computer vision, they are extensively researched with numerous
breakthroughs (Li et al., 2004; Chen et al., 2022; Liu et al., 2023c; Xu et al., 2016; Grady, 2006).
Particularly, the advent of the Segment Anything Model (SAM) (Kirillov et al., 2023) has sparked a
surge of progress, with applications spanning reconstruction (Shen et al., 2023), detection (Ren et al.,
2024; Yang et al., 2023b), segmentation (Zou et al., 2023), image editing (Gao et al., 2023), and more.
Compared to existing models, which typically rely on prompts such as clicks, boxes, or scribbles,
in this work, we study visual prompts, a new prompt referring to the actual images of objects with
arbitrary poses and styles. Visual prompts enable continuous detection and tracking of target objects,
facilitating the immediate correction of failed detections at test time. This represents a departure from
traditional prompt types, offering more natural and dynamic interactions with the visual content.

In-context Learning in LLMs. In-context learning (ICL) (Zhang et al., 2023; Alayrac et al., 2022;
Chen et al., 2019), popularized by GPT (Brown et al., 2020), enables LLM for customized interactions
with humans. This is then studied for chain-of-thought (Wei et al., 2023) to ensure an informative
dialogue system (OpenAI, 2023; Team, 2023; Taori et al., 2023; Chiang et al., 2023; Liu et al.,
2023b;a). Existing research demonstrates ICL as an effective mechanism for test-time response,
serving as an efficient zero-shot output learner. Inspired by the principles of ICL, we introduce a novel
concept called visual prompts, which are zero-shot learners for online 3D detection rectification.

Online 3D Detection System. In this paper, we introduce online 3D detection, a new task of instant
error rectification for the online testing phase of 3D detectors. The key goal is to enable the continuous
detection of objects missed by the offline-trained 3D detectors without additional training. This
relates to several areas, such as 3D detection, tracking, continual learning, and open-world active

1EDS is a class-agnostic version of nuScenes Detection Score (NDS) (Caesar et al., 2020), treating all objects
as class-agnostic entities and ignoring the velocity and attribute to evaluate out-of-distribution 3D detection.

3
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Figure 4: Overall Framework. (Left:) The TTC system centers on a TTC-3D Detector which
utilizes visual prompts Pv from the visual prompt buffer for test-time error rectification. (Right:)
The TTC-3D Detector can be based on any traditional detector (BEV or monocular). It supports 3D
detection from any combination of four prompts, i.e., object Po, box Pb, point Pp, and novel visual
prompts Pv , arbitrary views of target objects across scenarios and timestamps.

learning. In contrast to traditional 3D detectors that focus on the performance of trained models (Shi
et al., 2020; Lang et al., 2019; Yin et al., 2021; Philion & Fidler, 2020; Li et al., 2022), online 3D
detection places greater emphasis on correcting errors during testing. Compared to tracking (Liang
et al., 2020; Pang et al., 2021; Park et al., 2008; Zhang et al., 2022b; Hu et al., 2022a), TTC system
can track objects across scenes and zones via visual prompts. Different from continual learning
(Singh et al., 2021; Ghosh, 2021; Wang et al., 2023a) or active learning for 3D detection (Luo et al.,
2023; Chen et al., 2023; Yuan et al., 2023), this task prioritizes the “timeliness” of error rectification,
aiming to enhance the test-time performance instantly without any model update or training.

3 TEST-TIME CORRECTION WITH HUMAN FEEDBACK

In this section, we elaborate on our TTC, an online test-time error rectification system for 3D detection
to detect and track previously missed objects during on-road inference with the guidance of human
feedback. We start with an overview of TTC system in Section 3.1, then delve into OA module and
the visual prompt buffer in Section 3.2, and Section 3.3, respectively.

3.1 OVERVIEW

We convert online human feedback, i.e., clicks, boxes, or uploaded images, into a uniform represen-
tation called “visual prompts”, which are image descriptions of target objects. Such image-based
descriptions can cover arbitrary views of objects, including pictures taken from diverse zones,
weather, timestamps, or even from out-of-domain sources such as stylized Internet images. Upon
visual prompts, the TTC system, a recurrent framework, is designed to engage in sustained interaction
with human users, continuously learning to detect and track new objects. As Figure 4 shows, it
comprises two key components: 1) TTC-3D Detector, any 3D detector equipped with OA module for
in-context 3D detection and tracking via visual prompts, and 2) an extendable visual prompt buffer
storing visual prompts of all previously missed objects, enabling continuous online error rectification.

During online inference after being deployed on cars, whenever an error occurs, i.e., miss an object,
users can add the unrecognized object to visual prompt buffer by clicking on it in the image. The
model then detects the corresponding 2D and 3D boxes based on the user-provided clicking prompt
and updates the visual prompt buffer with the associated image patch. In subsequent frames, TTC-3D
Detector leverages the stored visual prompts to detect and track previously missed 3D objects. This
enables instant error correction and continuous improvement of 3D detection during online operation.

3.2 ONLINE ADAPTER (OA)

OA module is conceived as a bridge between prompts and offline-trained 3D detectors. It receives
human prompts and transforms them into queries that can be seamlessly used in traditional detectors.
It is flexible to handle four prompts in different forms: object query prompts for traditional offline 3D
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detection, box and point prompts for collecting test-time feedback, and visual prompts for consistently
correcting errors with streaming video. Specifically, these prompts are processed as follows:

• For object prompts Po, the OA module generates a set of learnable embeddings as queries,
akin to traditional 3D detectors, which are updated during training as demonstrated in
previous works (Li et al., 2022; Wang et al., 2021; Zhang et al., 2022a).

• For box Pb and point Pp prompts, the OA module encodes them with their location and
shape, representing them as Fourier features (Tancik et al., 2020).

• For visual prompts Pv , the OA module first extracts their visual features Zv by an encoder
(He et al., 2016), then localizes their corresponding objects within the input images Xv , and
finally adds their features with the Fourier positional encoding as subsequent inputs:

Pv = FourierPE(Align(Zv,Z)) + Zv, (1)

where Z means image features of image input, FourierPE(·) is the Fourier positional en-
coding (Tancik et al., 2020) and the Align(·) operation means “Visual Prompt Alignment”,
the process of inferring the 2D position in the current frame of the visual prompt.

Visual Prompt Alignment. We perform the Align operation to localize target objects in the input
images, by visual prompts. To handle flexible visual prompts, which can be image descriptions of
objects in any view, scene, style, or timestamp, we employ contrastive mechanisms (Wu et al., 2018;
He et al., 2020) as the key design to retrieve target objects at different styles. This allows the module
to detect the target objects effectively, even when they exhibit diverse visual styles and appearances.

Specifically, we use two multi-layer perceptrons (MLPs) to first align the channels of image features
Z and visual prompt features Zv . We then compute the dot product between the aligned feature maps
to obtain a similarity map. To further retrieve the coordinates of target objects from the similarity
map, we multiply it with the original image features Z , and finally apply another MLP with two
output channels to regress the spatial positions Xv of target objects.

Instance Ambiguity & Loss. Sometimes, visual prompts might exhibit instance ambiguity, where
multiple objects in the image match the visual descriptions of prompts. For example, suppose the
visual prompt describes a traffic cone and several similar-looking traffic cones present in the input
images. It can be challenging to uniquely identify the specific object-of-interest (See Fig. 9).

For such cases, we design to retrieve all objects with similar identities to the visual prompt. Specif-
ically, we modify the align operation to predict multiple spatial coordinates Xv = {X (i)

v }, i ∈
{1, 2, ..., N} for each visual prompt, and add the Fourier features of those N coordinates to the visual
prompt features to indicate visual prompts in different positions. N is set to 4 in our implementation.

For similarity supervision, we generate binary segmentation labels based on the ground-truth 2D
boxes. Focal loss (Lin et al., 2017) and Dice loss (Milletari et al., 2016) are used for optimization. To
supervise the visual prompt localization Xv, we use the Smooth-l1 loss with the target as the center
coordinates of ground-truth 2D bounding boxes. For dealing with instance ambiguity, we refer to
SAM (Kirillov et al., 2023) and only backpropagate the sample with the minimum localization loss
during each training iteration. For more details, please refer to the appendix.

Model Design. The overall mechanism of TTC-3D Detector is depicted in Figure 4 (right). Based on
any traditional offline-trained 3D detector, BEV detector, or monocular detector, we integrate OA
module and train it to be promptable. Specifically, OA module takes features extracted by the image
encoder of the corresponding 3D detector, along with various forms of prompts as inputs. It encodes
these prompts and generates a series of queries, represented as P = {Po;< Pb,Pp,Pv >}, where
< ... > denotes an arbitrary combination of different prompts. These queries are then fed into the
transformer decoder of the 3D detector to output 3D boxes following human feedback.

3.3 VISUAL PROMPT BUFFER

Visual prompt buffer is a queue that stores user-provided visual prompts of missed objects during
online inference. The flexibility of the TTC system lies in allowing users to freely select and define
visual prompts, which can be either image contents from the current scene or customized objects
from the Internet. This versatility makes the TTC system applicable to a wide spectrum of scenarios.

5
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Dequeue. To prevent the buffer from growing indefinitely, we design a “dequeue” mechanism. We
filter out visual prompts with low confidence, as they likely no longer appear in the scene. We also
use the intersection-over-union (IoU) between predictions to identify and remove redundant visual
prompts. This dynamic update and maintenance is the key of TTC system, ensuring a balance between
latency and accuracy by adaptively incorporating and pruning feedback during online inference.

4 EXPERIMENTS

We now proceed to evaluate our TTC system. Compared to traditional 3D detection approaches, the
evaluation of TTC system should consider more on its capabilities in instant online error correction
over offline-trained 3D detectors. Thus, we assess the system from two key aspects:

• How does the TTC system perform with various adapted offline 3D detectors for instant
online error rectification?

• How does the TTC system enhance offline-trained 3D detectors when faced with out-of-
training-distribution scenarios?

4.1 EXPERIMENTAL SETUP

Dataset. Experiments are done on nuScenes dataset (Caesar et al., 2020) with 1,000 autonomous
driving sequences, one of the most popular datasets for autonomous driving research.

Tasks. Due to the new setting, experiments are conducted in two aspects to answer the questions
above. The first experiment aims to test the TTC system in boosting the performance of offline-
trained 3D detectors without re-training via online error rectification. We conduct this verification
by applying TTC system to various established offline 3D detectors (Zhang et al., 2022a; Li et al.,
2022; Yang et al., 2023a; Liu et al., 2024; Wang et al., 2023b; Lin et al., 2023; Wang et al., 2023c)
We mimic user intervention during inference. Specifically, we simulate the user’s online missing
feedback by comparing the distance between ground truth and detected 3D boxes. Ground-truths
without any detection within 2m are considered missed and added into the prompt buffer.

Then, we validate the TTC system to correct detection errors in out-of-training-distribution scenarios.
To conduct a thorough quantitative analysis of this aspect, we established four tasks under different
settings: (a.) discarding 80% 3D bounding box labels of distant objects farther than 30m during
training, and test the error corrections for detecting distant objects; (b.) discarding 80% 3D bounding
box labels of instances labeled as vehicle, including “car”, “truck”, “C.V.”, “bus”, and “trailer”, and
test the error correction in vehicle objects; (c.) discarding all 3D bounding box annotations of class
“truck” and “bus”, and test the zero-shot ability of TTC on those discarded classes; (d.) discarding
all training data of the scenario of “Nighttime” and “Rainy”, and test the improvements of TTC
on scenarios with domain gap. For these tasks, we base TTC system on the monocular algorithm,
MonoDETR (Zhang et al., 2022a), and test it under each set separately, as the monocular setting
demonstrates the most general applicability. Based on TTC-MonoDETR, we also present qualitative
results to show the potential of our system to address corner cases in challenging real-world scenarios
through human feedback during test time. Through these experiments, we demonstrate TTC as an
effective system to adapt offline 3D detectors to challenging scenarios, without training.

Entity Detection Score. As we focus on enabling existing 3D detectors to rectify missing detections
instantly in an online manner, we set our priority on the model’s ability to zero-shot localize and
detect new objects during the testing phase, rather than its classification capability. Therefore, we
remove all class annotations of 3D objects during training and simply treat all objects as entities
(Kirillov et al., 2023; Qi et al., 2022). For evaluation, we use the Entity Detection Score (EDS), the
class-agnostic version of the nuScenes Detection Score (NDS), to assess the performance, which
emphasizes the localization quality of target objects. More details can be found in Appendix B.3.

Implementation Details. We implement our method based on mmDet3D codebase (Contributors,
2020), and conduct all experiments on a server with 8× A100 GPUs. In OA module, we use a
ResNet18 (He et al., 2016) to extract visual prompt features. All visual prompts are resized to
224 × 224 before being sent to OA module. For training, we use AdamW (Kingma & Ba, 2015;
Loshchilov & Hutter, 2019) optimizer with a batch size of 16, equally distributed to 8 GPUs. We

6
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Table 1: Effect of TTC system on various 3D detectors. TTC system effectively improves the
test-time performance of offline-trained detectors during online inference without any extra training.

Method Backbone Type mAP (%) ↑ EDS (%) ↑

MonoDETR (Zhang et al., 2022a) R101 Monocular 37.9 38.2
TTC-MonoDETR 42.6 (+5.7) 43.2 (+5.0)

MV2D (Wang et al., 2023c) R50 Multiview 38.9 38.3
TTC-MV2D 51.0 (+12.1) 51.0 (+12.7)

Sparse4Dv2 (Lin et al., 2023) R50 Multiview + Temporal 38.8 37.6
TTC-Sparse4Dv2 53.5 (+14.7) 52.1 (+14.5)

BEVFormer (Li et al., 2022) R101 BEV + Temporal 36.5 35.8
TTC-BEVFormer 47.8 (+11.3) 47.2 (+11.4)

BEVFormerV2-t8 (Yang et al., 2023a) R50 BEV +Temporal 39.6 38.9
TTC-BEVFormerV2-t8 51.6 (+12.0) 51.0 (+12.1)

RayDN (Liu et al., 2024) R50 BEV + Temporal 39.6 38.7
TTC-RayDN 51.7 (+12.1) 50.8 (+12.1)

StreamPETR (Wang et al., 2023b) V2-99 BEV + Temporal 39.7 39.1
TTC-StreamPETR 52.3 (+12.6) 51.5 (+12.4)

Table 2: Experiments on out-of-training-distribution scenarios. TTC system achieves substantial
gains with limited or even no labels under different challenging test cases.
(a) Long-range rectification. Effect of TTC system
in detecting distant objects with 20% annotations.

Model
Setting

All (0m-Inf) Dist. (30m-Inf)
mAP (%) EDS (%) mAP (%) EDS (%)

Point 41.6 40.8 17.8 19.4
Box 44.3 43.7 19.2 21.7
Visual 42.6 42.0 18.3 21.6

MonoDETR 31.4 31.6 0.0 0.0
TTC-MonoDETR 40.2 40.1 11.0 14.4

∆ +8.8 +8.5 +11.0 +14.4

(b) Vehicle-focused rectification. Effect of TTC sys-
tem on vehicle objects with 20% annotations.

Model
Setting

All Vehicle
mAP (%) EDS (%) mAP (%) EDS (%)

Point 38.0 36.9 33.5 36.6
Box 41.2 40.0 36.7 39.6
Visual 39.2 38.4 34.6 38.5

MonoDETR 17.6 16.1 2.4 7.3
TTC-MonoDETR 29.0 27.2 23.2 28.9

∆ +11.4 +11.1 +20.8 +21.6

(c) Novel object rectification. Effect of TTC system
on objects of novel classes unseen in the training set.

Model
Setting

All Unseen
mAP (%) EDS (%) mAP (%) EDS (%)

Point 35.2 35.6 11.9 15.0
Box 38.5 38.8 14.7 16.9
Visual 35.4 36.0 11.2 15.6

MonoDETR 28.3 29.6 0.0 0.0
TTC-MonoDETR 34.8 36.1 8.5 13.6

∆ +6.5 +6.5 +8.5 +13.6

(d) Domain shift rectification. Effect of TTC system
on objects in scenarios with domain gap.

Model
Setting

All Rain & Night
mAP (%) EDS (%) mAP (%) EDS (%)

Point 39.0 38.2 30.5 30.7
Box 42.6 41.5 33.4 33.6
Visual 39.8 39.4 29.4 30.8

MonoDETR 34.5 34.7 25.2 26.6
TTC-MonoDETR 39.9 40.0 29.7 31.3

∆ +5.4 +5.3 +4.5 +4.7

initialize the learning rate as 2e-4, adjusted by the cosine annealing policy. When training point and
box prompts, we simulate user inputs with noise by adding perturbations to the ground truth. To
ensure the visual prompts are robust across multiple scenes, timestamps, and styles, we choose visual
prompts of target objects not only from the image patches of the current frame but also randomly
from previous and future frames within a range of ±5 when training. Flip operations are used as data
augmentations. During testing, we remove redundant predictions by non-max-suppression (NMS)
with IoU and classification confidence thresholds as 0.5 and 0.3, respectively.

4.2 MAIN RESULT

Effectiveness of TTC System in Test-time Error Correction. Test-time error correction ability
without re-training is the core capability of TTC system. We verify this by incorporating traditional
offline-trained 3D detectors into TTC system and compare the performance without re-training. For
thorough verification, we select various offline-trained 3D detectors, including monocular (Zhang
et al., 2022a), multi-view (Wang et al., 2023c; Lin et al., 2023), and BEV ones (Li et al., 2022; Yang
et al., 2023a; Wang et al., 2023b; Liu et al., 2024). As shown in Table 1, the TTC system substantially
improves the test-time performance of offline-trained 3D detectors, e.g., 11.4% and 12.4% EDS
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Visual Prompt

Figure 5: Qualitative visualization of real-world scenes (collected from YouTube). We visualize
the zero-shot 3D detection results in a real-world scenario. In this case, the prompt buffer contains
a visual prompt of a deer. Higher responses from the visual prompt alignment are highlighted by
brighter colors. As shown, although trained solely on nuScenes, TTC system can still accurately
localize “unseen” objects in the input image. Best viewed in color.

improvements on BEVFormer and StreamPETR, without requiring any training. These demonstrate
the effectiveness of the TTC system in instantly correcting test-time errors during online inference.

Effectiveness of TTC System in Out-of-Training Scenarios. Table 2 presents results to validate
the TTC system in challenging and extreme scenarios. In these experiments, we base TTC system
on MonoDETR for its simple monocular setting. “Point”, “Box”, and “Visual” in Table 2 are TTC-
MonoDETR using point, box, or image patch of target objects in the input image as input prompts.
These serve as performance upper bounds as they receive human feedback in every frame.

Table 2a evaluates the effectiveness of TTC system in rectifying detection errors on distant objects
(beyond 30m). During training, 80% of the far-away annotations are removed, resulting in a 3D
detector with poor long-range performance (0.0% mAP and EDS). Powered by the TTC system, the
performance on these distant objects is instantly improved to 11.0% mAP and 14.4% EDS, without
any training. The experiment is then extended to all vehicles in the nuScenes dataset, as shown in
Table 2b. The TTC system achieves impressive performance gains of 20.8% mAP and 21.6% EDS.

Furthermore, in Table 2c and Table 2d, we evaluate the TTC system in two challenging scenarios:
encountering unseen objects not present in the training data; handling domain shifts, such as transi-
tioning from sunny to rainy or nighttime conditions. In Table 2c, the TTC system shows effectiveness
in successfully detecting novel objects not labeled in the training set, achieving 8.5% mAP and 13.6%
EDS on these novel objects, significantly improving the offline-trained baseline with 0.0% mAP
and EDS. In Table 2d, we find TTC also works well for online error rectification when driving into
scenarios with domain shifts, providing 4.5% mAP and 4.7% EDS improvements.

Regarding qualitative results, Figure 5 further illustrates a case of the zero-shot capability in real-world
scenarios. Despite being trained solely on the nuScenes dataset, TTC-MonoDETR can detect a Deer
using a visual prompt of another deer from a different viewpoint, which is extremely challenging for
traditional offline detectors. More qualitative examples can be found in Appendix D.4.

These experiments demonstrate TTC as an effective and versatile system for instant error correction,
excelling at handling missing distant objects, unseen object categories, and domain shifts, without
requiring any training. The superior performance of TTC system in these challenging real-world
scenarios highlights its potential to enable robust and adaptable 3D object detection systems.

4.3 ROBUSTNESS OF VISUAL PROMPTS

As a crucial component of the continuous test-time error correction system, we conduct a series of
ablation studies on visual prompts in this section. We base TTC system on MonoDETR and validate
its robustness concerning prompts obtained from the Internet or those from different moments.

Robustness over Web-derived Visual Prompts. Visual prompts can be arbitrary imagery views of
target objects and can be from any image source. For example, we can use images sourced from the
Internet as visual prompts. We fix the prompt buffer with visual prompts from the Internet during
inference, and assess the effectiveness of handling visual prompts with diverse styles. We employ the
model from Table 2b (TTC-MonoDETR trained with 20% labels of vehicles), and select 12 car and 6
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Figure 6: Visual prompt examples derived
from the Internet. We select 12 cars and 6 buses
with different views and colors from websites to
cover the distribution of object appearances in
the nuScenes dataset comprehensively.

Table 3: Results with web-derived visual
prompts. TTC-MonoDETR† indicates the
model with frozen prompt buffer containing pre-
assigned visual prompts derived from the Inter-
net. TTC system can still significantly improve
traditional 3D detectors even using web prompts
in scenarios with very limited labeled data.

Category Method mAP (%) ↑ EDS (%) ↑

Car MonoDETR 3.2 9.1
TTC-MonoDETR† 20.9 (+17.7) 27.5 (+18.4)

Bus MonoDETR 0.4 4.4
TTC-MonoDETR† 17.4 (+17.0) 20.6 (+16.2)

0.691 0.688 0.686 0.683 0.681 0.675 0.673 0.667 0.665 0.664 0.660 0.659 0.655 0.651 0.650 0.650 

0.600

0.660

0.720

0.780

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Frame Index

Recall

Figure 7: Experiments on visual prompts from arbitrary temporal frames. TTC-3D Detectors
can effectively locate and detect target objects in future frames, using its image patch at Frame #0.

bus images from the Internet, which resemble those in nuScenes dataset, as visual prompts for online
correction. We show them in Figure 6. As listed in Table 3, TTC system demonstrates strong online
correction capabilities though with limited annotations. Even with prompts sourced from the Internet
with various styles and poses, TTC system still improves the offline-trained baseline by 18.4% EDS
on “Car” objects under this extremely challenging setting. This further underscores the robustness of
TTC system and highlights its potential to address the long-tail challenges in real-world scenarios.

Robustness over Arbitrary Visual Prompt Views. We also investigate the capability of TTC system
in handling visual prompts of target objects across scenes and times. In Figure 7, we study whether our
system can successfully associate objects with its visual prompts from arbitrary frames. Specifically,
for each video clip of the nuScenes validation set, we use the image patch of target objects in the
first frame as visual prompts, then detect and track target objects in subsequent frames, and compute
the recall rate for evaluation with arbitrary views. Figure 7 presents the results of TTC-MonoDETR,
showing that despite significant differences in viewpoints and object poses between frames, the recall
rate does not drop dramatically as the ego vehicle moves. This highlights the robustness of the TTC
detectors in handling visual prompts with arbitrary views across scenes and times, indicating that the
TTC system can effectively process human feedback that may involve temporal delays.

5 CONCLUSION

In this paper, we introduce the TTC system. It equips existing 3D detectors with the ability of
test-time error correction. The core component is the OA module, which enables offline-trained
3D detectors with the ability to leverage visual prompts for continuously detecting and tracking
previously missing 3D objects. By updating the visual prompt buffer, TTC system enables continuous
error rectification online without any training. To conclude, TTC provides a more reliable online 3D
perception system, allowing seamless transfer of offline-trained 3D detectors to new autonomous
driving deployments. We hope this work will inspire the development of online correction systems.

Limitations and Future Work. The current system is limited in scale, including both model and
data scale. For future work, we would focus on improving the generalization capabilities of visual
promptable online 3D detectors at scale. We plan to combine large-scale 2D detection datasets with
limited 3D detection datasets, together with the design of large-scale vision models, to develop a
general, versatile, and robust 3D detection system leveraging visual prompts. This proposed research
direction aims to advance the state-of-the-art in prompt-based 3D object detection, enabling highly
generalizable and reliable systems for automated real-world applications.
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A DISCUSSIONS

For better understanding of our work, we supplement intuitive questions that one might raise. Note
that the following list does not indicate whether the manuscript was submitted to a previous venue.

Q1: What is the relationship between the online 3D detection and the offline data-loop progress?

We emphasize, in this paper, we do not propose the online system to replace the traditional offline
data loop. As illustrated in Figure 2 of the main paper, these two systems address different aspects of
autonomous driving. The offline system remains crucial for enhancing the capabilities of the base
perception model through development; while our online TTC system further enables the deployed
frozen model in vehicles to promptly rectify dangerous driving behaviors caused by unrecognized
objects on the road. With improved offline-trained detectors, the TTC can effectively correct more
online errors during test-time inference without re-training, as detailed in Table 1.

Q2: What are the main technical novelty and advantages of the proposed TTC system over previous
instruction-based 3D detectors?

The advantages lie in the design of visual prompts, the visual descriptions of target objects with
diverse sources, styles, poses, and timestamps. While existing instruction-based 3D detection methods
typically utilize text, boxes, or clicks as prompts.
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Compared to text prompts, visual prompts provide a more natural and accurate description of the
target object. In contrast, verbal descriptions can be ambiguous to convey instance-level features,
leading to an inaccurate understanding of the missing objects. Second, text promptable models
are often combined with LLMs with high latency and are thus unavailable for autonomous driving
deployment, as discussed in Appendix C.6.

Box and point prompts are less convenient than visual prompts when dealing with stream data. If
missing occurs, these single-frame prompts require users to provide feedback at every frame, which is
unfeasible in real-world applications. Compared to box and point prompts, visual prompts are robust
across different scenes and timestamps, one single-frame visual prompt is enough for detecting and
tracking in later frames. Furthermore, visual prompts enable 3D detection with pre-defined visual
descriptions of target objects, regardless of the sources, styles, poses, etc, as discussed in Section 4.3.

The introduction of novel visual prompts enables real-time, accurate, and continuous error correction
of streaming inputs with ”one-click” feedback.

Q3: What is the relationship between the TTC system and existing 3D perception tasks?

The TTC system relates to several 3D perception tasks, including 3D object detection, zero/few-shot
detection, domain adaptation, single object tracking, and continual learning.

Compared to standard 3D object detection, the primary focus of the TTC system is on enabling
instant online error correction rather than optimizing the offline detection performance of the base
3D detector. In contrast to traditional few-shot, one-shot, or domain adaptation approaches, the
TTC system does not require 3D annotations for new objects or any model retraining, yet can still
provide reasonable 3D bounding box estimates for out-of-distribution objects. Relative to single
object tracking, the TTC system does not rely on bounding boxes of the target objects in the first
frame. Instead, it can perform tracking using the visual descriptions of the target objects from any
scene or timestamp, leveraging the diverse set of visual prompts.

In summary, the TTC system represents a more flexible and comprehensive 3D object detection
framework, combining the strengths of zero-shot detection, handling out-of-distribution objects, and
utilizing diverse visual prompts beyond the current scene context.

Q4: Why choose 3D detection as the experimental scenarios of TTC? Could the proposed framework
be extended to 2D detection or other vision tasks?

TTC represents a general idea to equip deployed systems with the capability of online error rectifica-
tion, making them more versatile, adaptive, and reliable. This idea can be readily extended to other
vision tasks, such as 2D detection, for rapid adaptation of pre-trained models to novel scenarios.

The choice of 3D detection for autonomous driving as the experimental scenario is motivated by
the paramount importance of safety for deployed self-driving systems. Without an online correction
method, mistakes made by the offline model pose significant safety risks for on-road autonomy.

Therefore, we select the autonomous driving domain as the testbed for the TTC framework, given the
critical need for a robust, adaptive online error correction system to ensure the reliability of these
safety-critical applications. We mark the extension of TTC to other vision tasks as future works.

Q5: What are potential applications and future directions of TTC?

We believe that, visual prompts, as the core design element of the TTC system, represent a more
natural and intuitive query modality for the image domain. This approach has significant research
potential and application prospects in the field of 3D perception and beyond.

For example, visual prompts enable rapid customization of the tracking targets, beyond the pre-defined
object classes. Second, the visual prompt-based framework facilitates online continual learning for
3D perception systems, adapting to evolving environments. Then, visual prompts can be applied
in the V2X domain to enable swift error rectification across diverse operational scenarios. Visual
prompts can also be deployed to assist in the auto-labeling process of target objects. Furthermore, by
combining visual prompts with natural language prompts, we can obtain more precise descriptions
and behavioral control for online perception systems.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

The diverse applications outlined above demonstrate the promise of visual prompts as a versatile
approach. As showcased in this work, the visual prompt-based framework opens up new possibilities
for online perception systems, not only in autonomous driving but also in a broader range of domains.

B IMPLEMENTATION DETAILS

B.1 DETAILS OF TTC SYSTEM

TTC System

TTC-3D
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Frame i

Frame i+1

Visual Prompt Buffer

Human
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Figure 8: Details of the TTC system.

This section elaborates on the detailed
workflow of the TTC system. As
shown in Figure 8, during online in-
ference, once the TTC-3D Detector
fails to recognize an object, users can
click on the missing object within the
image. Based on the user-provided
click, the TTC-3D Detector identifies
the corresponding 2D and 3D boxes,
crops the relevant areas to obtain vi-
sual prompt patches, and subsequently
updates the visual prompt buffer. In
later frames of inference, the TTC-3D
Detector applies these stored visual
prompts to continuously detect and
track previously missing 3D objects,
achieving instant error correction dur-
ing test-time and constantly enhancing the offline-trained 3D detectors after being deployed.

B.2 VISUAL PROMPT ALIGNMENT

Visual Prompt �

Image Feature 

Similarity Map 

Position 풗
(ퟏ)

Position ��
�

…

Visual Prompt 
Feature �

Input Image  

Minimum Localization Loss

Visual Prompt 
Alignment

Backward

MLP

MLP

.

MLP

Ambiguous Similar Instances

Figure 9: Concrete mechanism of visual prompt
alignment. This figure illustrates monocular input.
When multi-view images are employed, this align-
ment operation flattens the different views and still
generates N peak candidate positions.

We now delve into the implementation details
of visual prompt alignment. As described in
Figure 9, given the visual prompt Pv, we first
extract the visual prompt features Zv using a
lightweight encoder, e.g., ResNet18 (He et al.,
2016) in our implementation. Then, we use
two separate 2-layer perceptrons, each with 128
and 64 output channels, to align the channel di-
mensions of the prompt features and the input
image features. This results in the aligned fea-
ture maps Ẑv ∈ RM×64 and Ẑ ∈ RKHW×64,
where M is the number of visual prompts, K is
the number of image views, H and W are the
spatial dimensions of image features. Finally,
we compute the cosine similarity (⊙ in Figure 9)
between Ẑv and Ẑ to obtain the similarity map
S ∈ RM×KHW , which encodes the alignments
between the visual prompts and image features.

To solve the instance ambiguity issue, we propose to predict multiple spatial coordinates of different
peak responses in the similarity map (highlighted by “orange box” in Figure 9). Specifically, we
first multiply the image features Z with similarity map S (

⊗
in Figure 9), and then use a 2-layer

perceptron with N ×2 output channels to regress spatial coordinates of the N peak responses. During
training, we only backpropagate the localization loss for the positions that have the minimum loss
with respect to the ground truth. In our implementation, N equals 4. This multi-instance retrieval
approach allows the TTC to handle cases where the visual prompt matches multiple candidate objects
in the input image, improving the robustness of the online error correction.
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B.3 DETAILS OF ENTITY DETECTION SCORE (EDS)

Table 4: Feasibility Analysis of the EDS Metric.

Method mAP (%) w.o. Rec (%) + Rec (%)

BEVFormer 36.5 49.1 35.8
TTC-BEVFormer 47.8 54.6 47.2

BEVFormer-V2 39.6 49.2 38.9
TTC-BEVFormer-V2 51.6 58.5 51.0

EDS is a class-agnostic version of
nuScenes Detection Score (NDS),
but further prioritizes the localiza-
tion quality of target objects. In-
spired by (Yang et al., 2024), we
improve the original NDS compu-
tation by multiplying the recall rate
and the mean True Positive metrics,
TP, as well, as illustrated below:

EDS=
1

6
[3mAP+Recall×

∑
mTP∈TP

(1− min(1,mTP))], (2)

The intuition behind this is simple. The larger the recall rate is, the more predictions are involved
in the statistics of mTP. Compared to simply setting a recall threshold (Caesar et al., 2020), the
multiplication adjusts the weight of mTP to EDS according to its comprehensiveness and thus brings
a more informative quantitative result. In Table 4, we analyze the effectiveness of this metric. The
comparisons between multiplying recall rate or not on various TTC-3D Detectors show that EDS,
incorporating recall into its calculation, does not alter the original overall trend. Furthermore, it
effectively highlights the superiority of detecting missed objects, demonstrating its validity.

C ABLATION STUDIES

In this section, we conduct a series of ablation studies. We base our TTC system on MonoDETR for
its simple and efficient monocular setting except for experiments in Appendix C.7.

C.1 EFFECT OF COMPONENTS IN VISUAL PROMPT ALIGNMENT.

Table 5: Effect of visual prompt alignment.

Sim.
Loss

Loc.
Loss mAP (%) EDS (%)

- - 32.6 31.9√
- 39.4 38.5√ √

43.3 42.8

Visual prompt alignment aims to localize objects via
visual prompts in input images. We now evaluate its
components. Table 5 presents experiments to verify the
core components of this alignment, including similarity
loss (Focal and Dice loss) and localization loss (supervis-
ing visual prompt localization, Xv). While the alignment
can be implicitly learned by attention mechanisms in the
transformer decoder, incorporating explicit similarity su-
pervision brings improvements of 6.8% mAP and 6.6%
EDS. Further utilizing the position loss and one-to-N mapping (to address instance ambiguity) boosts
the performance to 43.3% mAP and 42.8% EDS. These results prove this alignment operation is a
critical component enabling the TTC detectors to effectively detect target objects via visual prompts.

C.2 INSTANCE AMBIGUITY IN VISUAL PROMPT ALIGNMENT

Table 6: Effect of the number of predicted posi-
tions N of visual prompt alignment.

No. of Position
Predictions mAP (%) ↑ Recall (%) ↑

1 39.9 62.1
4 43.3 69.1
8 43.0 69.4

To solve the instance ambiguity issue, we pro-
pose to regress N positions of each visual
prompt when performing the visual prompt
alignment. This retrieves all objects with similar
visual contents. In this study, we validate the
effectiveness of this design by conducting abla-
tion studies on the number of N . As listed in
Table 6, when the number of position prediction
N equals 1, which means a one-to-one mapping
for each visual prompt, the mAP and recall rate
are 39.9% and 62.1%, respectively. Then, if we increase the N to 4, effectively a one-to-four mapping,
we obtain an mAP of 43.3% and a recall rate of 69.1%. This represents a 7% improvement in the
recall rate, demonstrating that instance ambiguity is an important challenge in visual prompt-based
detection, and the proposed one-to-N mapping solution effectively addresses this issue.
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Figure 10: Size of visual prompt buffer during the video stream. Visual prompt buffer stores the
missed objects during online inference to rectify test-time errors of deployed 3D detectors. It can
adaptively manage the stored prompts and thus maintain the balance between latency and accuracy.

C.3 EFFECT OF VISUAL PROMPT ALIGNMENT ON INSTANCE AWARENESS

a.

b.

Figure 11: Visual prompt showcase for Table 7.

Table 7: Effect of visual prompt
alignment on instance aware-
ness. Group (a.) resembles “car”
objects in nuScenes validation
set with diverse types and colors;
while group (b.) maintains black
sedans only. The performance
gap demonstrates that alignment
learns the instance awareness.

Group mAP (%) ↑ EDS (%) ↑

a. 20.9 27.5
b. 13.8 18.9

Despite demonstrating that visual prompt alignment can enhance system performance, we remain
uncertain whether the alignment can distinguish different objects based on visual prompts for instance-
level matching. To investigate, we conduct an additional experiment, based on a similar setting with
Table 32, but fix the visual prompt buffer with images of black sedans solely (Figure 11). As shown in
Table 7, as “Car” objects in nuScenes contain various types and colors, solely using black sedans as
visual prompts leads to an 8.6% EDS drop. This underscores that the alignment operation effectively
differentiates objects based on visual prompts, achieving instance-level matching and detection.

C.4 STATISTICS OF VISUAL PROMPT BUFFER DURING ONLINE INFERENCE.

We design the visual prompt buffer to store missed objects during inference with video stream and
introduce a “dequeue” mechanism to prevent the buffer from growing indefinitely. In this ablation
study, we analyze the dynamic buffer size, as well as the number of enqueued and dequeued in each
frame, to illustrate the behavior of visual prompt buffer during the online operation of TTC.

As shown in Figure 10, the visual prompt buffer exhibits three distinct behaviors during online
inference in each nuScenes video clip: increasing, steady, and decreasing. In initial frames, many
traffic cones are queued into the buffer due to the poor performance of deployed offline 3D detectors
on cone objects. The buffer size thus grows quickly in initial frames to store visual prompts of missed
objects for online rectification (Frames #0 to #4). The buffer size then stabilizes as the online detector
consistently detects and tracks all objects of interest (Frames #4 to #20). Further, as the ego vehicle
drives out of the scene, many previously enqueued objects no longer exist and are thus removed from
the buffer automatically (Frames #20 to #40). The buffer finally becomes empty as the scene changes.

2For reference, we employ the TTC-MonoDETR trained on 20% vehicle annotations and freeze the prompt
buffer with predefined web prompts when inference.
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This demonstrates the effectiveness of visual prompt buffer, which consistently stores missed objects
during online inference and corrects online errors. This dynamic behavior, exhibiting increasing,
steady, and decreasing phases, highlights itself to manage stored visual prompts for robust 3D object
detection performance throughout the online inference with the balance between latency and accuracy.

C.5 VISUAL PROMPTS WITH USER PERTUBATIONS

43.3 42.9 42.3 41.1 39.7

10
15
20
25
30
35
40
45

0 10 20 30 40
Translation Ratio (%)

mAP

EDS

Figure 12: Robustness against feedback noise.

In Section 4.3, we have demonstrated the ro-
bustness of our system on visual prompts from
diverse sources, styles, poses, scenes, and times-
tamps. Considering visual prompts during on-
line inference are derived from user clicking,
this will have positional deviations to the perfect
2D center of the target object. Thus, we design
experiments with positional perturbations during
test-time inference to analyze the impact. Ex-
pressly, we set the maximum translation ratios
at 0%, 10%, 20%, 30%, and 40% to the ground-
truth 2D centers, and input them to TTC system
to evaluate the robustness against such disturbances. Figure 12 shows that the TTC-MonoDETR
exhibits minor performance drops under increasing positional perturbations, demonstrating strong
robustness to these disturbances and highlighting significant potential for real-world applications.

C.6 ANALYSIS OF MODEL SIZE AND LATENCY

Table 8: Parameters and latency comparisons be-
tween LLM based 3D detectors, traditional 3D
detectors, and related TTC 3D detectors.

Method LL3DA MonoDETR TTC-MonoDETR

#Params 118M 68M 80M
FPS (Hz) 0.42 11.1 9.1

We further analyze the model size and latency of
TTC system, primarily comparing them with re-
cent LLM-based promptable 3D detection meth-
ods (Chen et al., 2024; Huang et al., 2023). We
argue that, for online promptable systems that
are developed for real-world applications, la-
tency can come from into two parts. The first
one is the unavoidable delay caused by humans
from observing the error to reacting to provide prompts. This is inherent to any online prompt-based
approach. The other one is the delay associated with the inference speed of the system itself. As the
first one cannot be controlled by the system design, we focus on the latter here.

As shown in Table 8, LLM-based promtable methods, like LL3DA (Chen et al., 2024) exhibit
high latency that is inadequate for autonomous driving deployments. In contrast, our TTC system
introduces only a little extra latency compared to its base detector, which meets the real-time inference
requirements and thus can be applicable for online autonomous driving systems.

C.7 COMPARISON WITH OFFLINE FINE-TUNING USING USER FEEDBACK

Table 9: Comparisons between the TTC-MV2D and MV2D
fine-tuned with feedback 2D annotations. “N=0” means hav-
ing 2D feedbacks at every frame; “N=2” means less 2D feed-
backs collected every 2 frames. TTC system, though without
any extra training, still outperforms the offline fine-tuned
MV2D, especially when annotations are limited (N=10).

Exp. on Human Feedback collected
with different frame interval N .

N

0 2 4 6 8 10

MV2D + Offline fine-tune 44.6 42.7 41.4 40.7 39.8 39.0
TTC-MV2D 50.7 50.5 50.5 50.4 50.1 50.0

In this section, we compare our TTC
method with the approach that collects
missing objects during inference and
subsequently fine-tunes with the col-
lected test-time 2D ground truth. This
is another approach for utilizing test-
time human feedback, though with de-
lays in further model fine-tuning.

We select MV2D (Wang et al., 2023c)
as the baseline since it relies on 2D de-
tection results for 3D object detection,
thus allowing it to utilize 2D human
feedback annotations to fine-tune. Additionally, we collect 2D feedback from various frame intervals,
as users cannot provide feedback at every frame. For MV2D, we use all the 2D box annotations
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collected at specified intervals for fine-tuning. For the TTC-MV2D, we update the prompt buffer at
these specified intervals.

As shown in Table 9, TTC-MV2D outperforms the MV2D model fine-tuned with 2D feedback.
Notably, the performance of MV2D fine-tuned with human feedback from larger frame intervals,
which means less frequent human feedback, declines significantly compared to models fine-tuned
with feedback from every frame. In contrast, the TTC system allows the MV2D to perform effectively
even when prompts are sourced from frames that are substantially different from the target frame.
This finding highlights the practicality of the TTC design in utilizing a single corresponding visual
prompt for streaming data, as it is impractical for users to provide 2D prompts at each frame.

D QUALITATIVE RESULTS

We provide extensive visualizations to demonstrate the versatility of the TTC system across diverse
scenarios:

• In Appendix D.1 and Appendix D.2, we fix the prompt buffer with visual prompts of either
labeled or novel, unlabeled 3D objects from the nuScenes dataset to detect targets in the
nuScenes images.

• In Appendix D.3, we test the performance with prompt buffer containing visual prompts in
styles differing from the training distribution, such as Lego.

• In Appendix D.4, we visualize the similarity maps on out-of-domain images, including
YouTube driving videos and Internet-sourced visual prompts, demonstrating the generaliza-
tion of the visual prompt alignment and the effectiveness of our TTC in reducing driving
risks in non-standard scenarios.

For all visualizations, the fixed prompt buffer is shown in the first row. These comprehensive
evaluations highlight the versatility of the TTC system in leveraging diverse visual prompts for 3D
detection. All results are conducted with TTC-MonoDETR.

D.1 IN-DOMAIN VISUAL PROMPTS ON NUSCENES “SEEN” OBJECTS

This visualization focuses on the in-domain detection performance of the TTC system on the nuScenes
dataset. We utilize visual prompts from labeled objects in the nuScenes dataset, and demonstrate the
system’s ability to effectively detect and track these target objects across different frames, as shown in
Figure 13 and Figure 14. The results illustrate that our TTC can accurately localize and consistently
track the target objects of interest within the nuScenes scenarios, showcasing its effectiveness in
handling in-domain visual prompts.

D.2 IN-DOMAIN VISUAL PROMPTS ON NUSCENES “UNSEEN” OBJECTS

This visualization focuses on the TTC’s ability to handle visual prompts of objects not labeled in the
nuScenes dataset. As shown in Figure 15, Figure 16, and Figure 17, our method demonstrates its
potential to detect and track novel, out-of-distribution objects with these unseen visual prompts.

The results illustrate the TTC system’s capability to go beyond the training distribution and effectively
localize and track objects that were not part of the original labeled dataset. This showcases the
versatility and generalization ability of the visual prompt-based framework, enabling the detection of
previously unseen objects. These findings highlight the potential of the TTC system to continuously
expand its object detection capabilities by incorporating user-provided visual prompts, even for
objects that were not included in the initial training data.

D.3 OUT-DOMAIN VISUAL PROMPTS ON NUSCENES “SEEN” OBJECTS

This visualization focuses on the TTC’s performance with visual prompts in styles different from the
training distribution. As shown in Figure 18 and Figure 19, the model can effectively detect target
objects using visual prompts in various views and styles that diverge from the original training data.
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These results demonstrate the potential of the TTC system to be extended to customized online
3D detection scenarios, where users can provide arbitrary visual prompts to guide the detection of
objects of interest. The model’s ability to handle prompts across diverse style domains highlights
its flexibility and versatility, a key advantage for enabling user-centric, interactive 3D perception
systems.

D.4 OUT-DOMAIN VISUAL PROMPTS ON REAL-WORLD EXAMPLES

This visualization examines the generalization and robustness of TTC detectors in aligning visual
prompts with the corresponding target objects in the input video stream. We select challenging driving
scenarios involving unexpected animals running into the path of the ego vehicle. This is aimed at
demonstrating the TTC system’s capability in reducing online driving risks in such non-standard
situations.

As shown in Figure 20 and Figure 21, our method can effectively localize non-expected animals
with higher responses in the regions where animals located, even though it was trained solely on the
nuScenes dataset. Figure 22, Figure 23, Figure 24, Figure 25 further present examples of detection in
a real-world scenario containing both vehicles and animals. Our method can detect all objects with
their visual prompts simultaneously.

This further exemplifies the strong generalization capability of our TTC system, underscoring its
potential for effectively handling challenging, edge-case scenarios on roads. The ability to accurately
detect and localize unexpected objects beyond the training distribution highlights the robustness of
the proposed approach, a key requirement for reliable autonomous driving systems.

E LICENSE OF ASSETS

The adopted nuScenes dataset (Caesar et al., 2020) is distributed under a CC BY-NC-SA 4.0 license.
We implement the model based on mmDet3D codebase (Contributors, 2020), which is released under
the Apache 2.0 license.

We will publicly share our code and models upon acceptance under Apache License 2.0.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Figure 13: Visualizations on nuScenes scenarios with in-domain visual prompts of labeled
objects. TTC system enables continuous 3D detection and tracking based on visual prompts. The
images in the first row indicate the visual prompts in prompt buffer, and images in other rows represent
3D detection results prompted by the corresponding visual prompts. Different identities are indicated
with different colors.
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Figure 14: Visualizations on nuScenes scenarios with in-domain visual prompts of labeled
objects. TTC system enables continuous 3D detection and tracking based on visual prompts. The
images in the first row indicate the visual prompts in prompt buffer, and images in other rows represent
3D detection results prompted by the corresponding visual prompts. Different identities are indicated
with different colors.
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Figure 15: Visualizations on nuScenes scenarios with in-domain visual prompts of un-labeled
objects. TTC system enables 3D detection and tracking of “novel” objects unseen during training.
The image in the first row indicates the visual prompt in the prompt buffer, and images in other rows
represent 3D detection results prompted by the corresponding visual prompts. Interestingly, with
the one-to-N mapping mechanism of the visual prompt alignment, TTC system can detect multiple
objects with similar visual descriptions to the visual prompt simultaneously.
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Figure 16: Visualizations on nuScenes scenarios with in-domain visual prompts of un-labeled
objects. TTC system enables 3D detection and tracking of “novel” objects unseen during training.
The image in the first row indicates the visual prompt in the prompt buffer, and images in other rows
represent 3D detection results prompted by the corresponding visual prompts.
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Figure 17: Visualizations on nuScenes scenarios with in-domain visual prompts of un-labeled
objects. TTC system enables 3D detection and tracking of “novel” objects unseen during training.
The image in the first row indicates the visual prompt in the prompt buffer, and images in other rows
represent 3D detection results prompted by the corresponding visual prompts. Interestingly, with
the one-to-N mapping mechanism of the visual prompt alignment, TTC system can detect multiple
objects with similar visual descriptions to the visual prompt simultaneously.
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Figure 18: Visualizations on nuScenes scenarios with out-domain visual prompts of labeled
objects. TTC system can perform 3D detection and tracking via visual prompts with arbitrary styles
(imagery style). The image in the first row indicates the visual prompt in the prompt buffer, and
images in other rows represent 3D detection results prompted by the corresponding visual prompts.
With the one-to-N mapping mechanism of the visual prompt alignment, TTC detectors can detect
multiple objects with similar visual descriptions to the visual prompt at the same time.
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Figure 19: Visualizations on nuScenes scenarios with out-domain visual prompts of labeled
objects. TTC system can perform 3D detection and tracking via visual prompts with arbitrary styles
(Lego style). The image in the first row indicates the visual prompt in the prompt buffer, and images
in other rows represent 3D detection results prompted by the corresponding visual prompts. With the
one-to-N mapping mechanism of the visual prompt alignment, TTC detectors can detect multiple
objects with similar visual descriptions to the visual prompt at the same time.
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Figure 20: Visualizations on real world scenarios with out-of-domain visual prompts. At here,
we show the similarity map from visual prompt alignment with visual prompts of arbitrary objects
unseen during training. Brighter colors highlight higher responses. As illustrated, our method works
well in novel scenarios with visual prompts of arbitrary object-of-interests. Best viewed in color.
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Figure 21: Visualizations on real world scenarios with out-of-domain visual prompts. At here,
we show the similarity map from visual prompt alignment with visual prompts of arbitrary objects
unseen during training. Brighter colors highlight higher responses. As illustrated, our method works
well in novel scenarios with visual prompts of arbitrary object-of-interests. Best viewed in color.
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Figure 22: Visualizations on real world scenarios with out-of-domain visual prompts. This
figure demonstrates the TTC’s effectiveness in real-world 3D detection, even with visual prompts of
unseen objects. demonstrate a case of real-world detection As illustrated, our method works well in
real-world scenarios with visual prompts of unseen objects. Different object identities are indicated
by distinct colors.
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Figure 23: Visualizations on real world scenarios with out-of-domain visual prompts. This figure
demonstrates a case of real-world 3D object detection. We provide the visual prompt from the same
scene as the target object, though it is unseen during training, and our TTC system then detects the
target objects in the subsequent video frames.
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Figure 24: Visualizations on real world scenarios with out-of-domain visual prompts. This figure
demonstrates a case of real-world 3D object detection. We provide a visual prompt from a separate
image as the pre-defined prompt and visualize it at the beginning of the sequence. As described,
our TTC system can successfully detect the ”Deer” object using this stylized deer prompt sourced
from the internet. This example highlights the TTC’s capability to effectively leverage diverse,
user-supplied visual prompts to accurately identify target objects, even when the prompts are not
directly from the same scene.
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Figure 25: Visualizations on real world scenarios with out-of-domain visual prompts. Another
case demonstrates the use of an internet-sourced ”Deer” visual prompt to detect the deer in a different
real-world scenario. As shown, our TTC system effectively detects the deer even when it is partially
obscured by snow. This example further illustrates the robust performance of the TTC framework
in accurately localizing target objects, even in challenging environmental conditions, by leveraging
flexible visual prompts provided by users.
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