
Emergent properties with repeated examples

Anonymous Author(s)
Affiliation
Address
email

Abstract

We study the performance of transformers as a function of the number of repetitions1

of training examples with algorithmically generated datasets. On three problems2

of mathematics: the greatest common divisor, modular multiplication, and matrix3

eigenvalues, we show that for a fixed number of training steps, models trained4

on smaller sets of repeated examples outperform models trained on larger sets of5

single-use examples. We also demonstrate that two-set training - repeated use of a6

small random subset of examples, along normal sampling on the rest of the training7

set - provides for faster learning and better performance. This highlights that the8

benefits of repetition can outweigh those of data diversity. These datasets and9

problems provide a controlled setting to shed light on the still poorly understood10

interplay between generalization and memorization in deep learning.11

1 Description of Contributions and Background12

When training neural networks, it has become customary to use the largest and most diverse datasets13

available, and to limit example reuse as much as possible. This tendency is manifest in recent large14

language models: most examples in the pre-training corpus are seen only once, and a few specialized15

datasets are iterated 2 or 3 times.Data budgets are on the increase: Chinchilla [Hoffmann et al., 2022]16

was trained on 1.4 trillion, Llama2 [Touvron and et al., 2023] on 2 trillion, and Llama3 [Dubey and17

et al., 2024] on 15.6 trillion tokens. Whereas the use of large train sets is grounded in theory [Vapnik18

and Kotz, 2006], the practice of not repeating training examples is less motivated. It reflects the belief19

that fresh data is superior to repeated use of a corpus (“One epoch is all you need" Komatsuzaki20

[2019]), when availability permits. Another explanation is that models memorize repeated examples,21

and that memorization hinders generalization [Zhang et al., 2017]. From a human learner point of22

view, this is counter-intuitive. When faced with a situation we never experienced, we recall similar23

instances [Proust, 1919], and use them as anchors to navigate the unknown. If memorization benefits24

human learners [Ambridge et al., 2015], why should it hinder machines?25

In this paper we challenge the view that the repetition of training examples is undesirable, when it can26

be avoided. We explore the impact of repeated samples in three controlled settings using generated27

data: computing the greatest common divisor (GCD) of two integers [Charton, 2024], modular28

multiplication of two integers, and calculating the eigenvalues of symmetric real matrices [Charton,29

2022]. These settings allow for perfect control over the distribution of repeated examples, unlike30

natural datasets (e.g. text from the web) which may feature unintended duplication and redundancy.31

Our experiments uncover two striking phenomena:32

1. Repetition Helps: For fixed number of training examples (300M to 1B), models trained from33

small datasets (25 to 50M examples) with repetition outperform models trained on large ones,34

often significantly. This sometimes gives rise to “emergent” phenomena: properties only learned35

by models trained on small datasets.36

Submitted to Workshop on Scientific Methods for Understanding Deep Learning, NeurIPS 2024.

2. Two-Set Training: For fixed data set size, learning speed and performance are significantly37

enhanced by randomly selecting a subset of training examples, and repeating them more often38

during training. The “two-set effect" is all the more surprising as the repeated examples are not39

curated, and only differ from the rest of the training data by their frequency of use.40

In ablation experiments (in Appendix H), we show that the performance of two-set training cannot be41

improved by curating the set of repeated examples, or refreshing it as training proceeds. This sets42

us apart from curriculum learning, and strengthen the observation that repetition of a few random43

examples is really all we need. We also show that mixing repeated and non-repeated examples in44

the same mini-batches is required for two-set training to work -if we use “mono-batches" coming45

entirely from either one of the subsets with the correct relative frequency, we do not observe the46

learning improvement. We also show that our observations are robust across a variety of optimization47

algorithms (Adam, AdamW, weight decay). Finally, we propose a smooth extension of two-set48

training, by introducing a probability distribution on the training set.49

Our work isolates an interesting phenomenon in a clean setting. The three tasks we study (see50

Appendix B) each feature idiosyncratic structure that allows to test a variety of hypotheses. For51

instance, the GCD dataset exhibits an inverse polynomial distribution of results, reminiscent of Zipf’s52

law in natural language [Zipf, 1935]. This allows us to test whether amplification of the tail of the53

distribution can benefit learning, by incorporating it into two-sample training (while an attractive54

hypothesis, our ablations show that this is not the case). In contrast, the modular multiplication task55

has almost uniform results, indicating that our observed conclusion do not depend on the existence of56

a power-law. Finally, the eigenvalue problem features non-linear, approximate calculations on reals.57

In all three cases, the benefits of repetition are significant, but come in different flavors, from58

improving performance and accelerating learning (GCD), to allowing a new task to be learned59

(modular multiplication), or be accessible to smaller models (eigenvalue calculation). Alternatively,60

small random subsets of the data repeated at high frequency can elicit similar effects. Our findings61

indicate that repetition, and possibly memorization, fosters learning. They suggest that models62

should be trained on datasets of repeated, but not necessarily curated examples, and that amplifying a63

randomly chosen subset of the training data may bring additional learning benefits. Two-set training64

is easy to implement, and applicable to a large variety of situations. The fact that the repeated set65

can be chosen at random, and that curating repeated examples bring little to no improvement in66

performance suggest that what matters, here, is seeing the exact same example several times. The67

particulars of the example, its informational value, interest, whether it is typical or exceptional, seem68

to have little impact. These findings have profound implications and should lead to a paradigm shift69

where the training set size becomes a mere hyper-parameter, not solely governed by the availability of70

data and the belief that more is always better. We believe our findings point to a number of interesting71

questions about memorization in transformers. See Appendix A for related context.72

We can contemplate how our observations carry over to large language models (LLM) trained on73

natural data. An important factor is the presence of repetition in the training data. We believe that74

pre-training corpora – text scraped from the internet, public code repositories – feature many repeated75

examples (quotes, copied passages, duplicated functions), and that the phenomena we describe are76

already at work in LLM during the pre-training stage. Fine-tuning corpora, on the other hand, are77

often curated and feature less repetition. We believe two-set training, and associated methods, may78

prove beneficial for fine-tuning LLM.79

2 Repetition Helps80

To perform our systematic study of the impact of data budget (DB, the number of distinct training81

examples) on performance, for various training budgets (TB, the total number of training examples),82

we train models on datasets with a fixed number of examples, for increasing amounts of time (training83

budget). An extended evaluation of our experiments can be found in Appendix C.84

On the GCD problem, we consider 6 limited data budgets, of 1, 5, 10, 25, 50 and 100M examples,85

and an unlimited (“infinite") data budget where new examples are generated on the fly, and DB≈86

TB. For each data budget, we train 5 models with a training budget of up to 1.05 billion examples,87

and report their average performance (number of correctly predicted test GCD), as the TB increases88

(Figure 1 Left).89

2

Figure 1: GCD problem: (Left) GCD accuracy for different data and training budgets (average of 5 models).
(Right) Two-set training: Number of correctly predicted GCD as a function of S and p. Each measurement is
the average of 6 models. Data budget 100M, training budget 600M. Note the high performance for very small
sets S of sizes 50, 75, 100, 150 and 200 thousand, with p = 0.25 and p = 0.5.

We observe that unlimited data never gives the best performance, for any training budget. Rather, the90

best performance is achieved by smaller data budgets, repeated more frequently during training. For91

modest training budgets of 30M, small datasets of 1M and 5M do best; as the TB increases, these92

models saturate; while the performance of larger datasets continues to improve. For the larger training93

budgets between 450M and 1B, data budgets of 25M to 50M do best and achieve more than double94

the accuracy of models trained on unlimited data seen once. Summarizing, smaller data budgets95

and more frequent repetition allow for faster learning, but also for much better performance.96

For modular multiplication we fix a TB of 600 million, and train 5 models for small DB, and 2597

or 30 for larger DB, to zoom on this interesting region (Table 1). Models trained on an unlimited98

data budget perform at “chance level”: they always predict 0 and achieve about 3% accuracy. Models99

trained on data budgets of 100 million examples fare little better, and models trained on 10 million100

examples or less overfit and do not learn.

Table 1: Multiplication modulo 67. Accuracy of models with training budget of 600 million.

Data budget (millions) 1 5 10 25 50 100 unlimited

Average accuracy (%) 1.6 3.8 4.4 40.4 59.5 5.4 3.0
Number of models trained 5 5 5 25 25 30 30

101

For DB of 25M and 50M (training examples repeated 24 and 12 times on average), a new phenomenon102

emerges: average accuracy increases by orders of magnitude! In fact, about 25% of the trained103

models learn to predict modular multiplication to 99% accuracy, and a majority of them to over 50%104

accuracy. On this task, learning emerges through repetition. Models trained on smaller data budgets105

can perform tasks that models trained from large or unlimited data budget cannot learn.106

Finally, on the eigenvalue problem, Charton [2022] trained models with unlimited data budgets107

(DB≈TB) and observed that whereas 4-layer transformers can learn to compute the eigenvalues of108

5× 5 matrices, deeper models are required for larger problems: 6-layers for 8× 8 matrices, 8 for109

10× 10 and 12 layers for 12× 12 matrices. Even with large training budgets, 4-layer models where110

unable to learn the eigenvalues of 10 or 12 dimensional matrices.111

In our experiments, we wanted to study whether smaller DB could induce small models to learn large112

problems. We trained 4-layer transformers to predict the eigenvalues of 10× 10 matrices. We trained113

5 models for each data budget of 1, 5, 10, 25, 50 and 100M, and 5 for an unlimited DB (one pass over114

the training data), with TB up to 500 million. As expected, none of the models trained on unlimited115

DB did learn: all test accuracy remained close to 0. However, 4 of the 30 models trained on smaller116

DB achieved 99% accuracy: 3 models trained on 50 million examples (repeated 10 times), and one117

model trained on 10 million (repeated 50 times). Scaling even further, to 12× 12 matrices, still using118

4-layer transformers, with a TB of 420 millions, 2 models (out of 35) begin learning: a 10M model119

achieved 21% accuracy, and a 5M 3.5%. As in previous experiments, for a given training budget,120

smaller data budgets and repeated training examples prove beneficial, but on this task, small datasets121

improve model scaling. With small DB, problems that required 8-layer or 12-layer transformers can122

be learned by 4-layer models. This first series of experiments clearly indicates that repetition helps123

learning. On three different tasks, for a fixed training budget, models trained on a small data budget,124

i.e. fewer distinct examples, repeated several times, achieve much better performance than models125

3

trained from single-use examples, or repeated very few times, as is customary in most recent works126

on language models [Muennighoff et al., 2023].127

This phenomenon applies in different ways for different problems. On the GCD task, small DB128

allow for faster learning and higher accuracy. For modular multiplication, we observe emergence:129

a task inaccessible to models trained with large or unlimited DB is learned with small DB. Finally,130

for eigenvalues, small DB allow for better model scaling: tasks that normally require 8 or 12-layer131

transformers are learned by 4-layer models. But in all cases, the repetition achieved by small DB132

prove beneficial: smaller data budgets with repetition can elicit “emergent learning”.133

3 Two-set Training134

The previous experiments demonstrate that for a fixed training budget, the optimal data budget is135

not the largest possible, as commonly practiced. We now turn to a different but related problem:136

how to best use a given data budget? As we have seen, repeated examples help the model learn.137

Therefore, training for a small subset of available data, could be beneficial, since it would increase138

repetition. However, models trained from very small datasets will eventually overfit their data, and139

their accuracy will saturate. This can be prevented by working with a larger training set. To address140

these two contradictory requirements (small train set for repetition, more examples to avoid overfit),141

we propose two-set training. We randomly split the training sample into a small set of size S that will142

be repeated many times (selected with probability p during training), and a larger set of examples143

that will be seen just a few times. By doing so, we hope that the small set fosters learning, while the144

large set prevents overfit.145

On the GCD problem, we experiment with a data budget of 100 million examples, a training budget146

of 600 million, and several values of S and p. In this setting, models trained on a single set predict 27147

GCD on average (Figure 1 (Left)). With two-set training (Figure 1 (Right)), models using a repeated148

set of 250, 000 or less, and a probability p of 0.25 or 0.5, predict more than 62 GCD on average,149

a much better performance than their one-set counterparts. Models trained with S = 50, 000 and150

p = 0.25 predict 69 GCD on average, a better performance than the best results achieved by one set151

models, on a larger training budget of 1 billion examples. On a 100M data budget, two-set training152

clearly outperforms single set training. More details and experiments are presented in Appendix D.153

For modular multiplication we experiment with small set size S between 250, 000 and 25 millions154

and p between 0.1 and 0.9, and report average accuracies over 6 seeds at training budget of 600155

million examples in Figure 2 for a data budget of 100M (Left) and for unlimited data budget (Right).156

Recall that none of the 100M-models or ∞-models achieved any notable accuracy for this training157

budget with standard “single-set" training. Strikingly, with two-set training, specific combinations of158

p and size of S enable the models to learn. When the data budget is infinite (single usage examples),159

two-set training again elicits learning. See Appendix D for many more details.160

Overall, our experiments indicate that, for a given data budget, two-set training – repeating a small161

set of randomly selected during training – greatly improves model performance.162

250 500 1000 2500 5000 10000 25000
small set size (thousands)

0.9

0.75

0.5

0.25

0.1

sm
al

l s
et

 p
ro

ba
bi

lit
y

3 3 2 2 4 4 52

3 3 3 4 4 4 68

4 4 4 4 4 76 14

4 4 4 92 76 13 4

20 68 64 19 13 14 13

250 500 1000 2500 5000 10000 25000
small set size (thousands)

0.9

0.75

0.5

0.25

0.1

sm
al

l s
et

 p
ro

ba
bi

lit
y

3 3 2 2 4 4 76

3 3 3 4 4 20 92

4 4 4 4 20 68 4

4 4 4 68 27 3 3

4 59 4 3 3 3 3

Figure 2: Two-set training for Modular Multiplication: Accuracy as a function of small set size S and p,
each averaged over 6 models. Data budget 100M (left) and unlimited (right), training budget 600M.

4

References163

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza164

Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom165

Hennigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy,166

Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent Sifre.167

Training compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.168

Hugo Touvron and et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint169

arXiv:2307.09288, 2023.170

Abhimanyu Dubey and et al. The llama 3 herd of models. arXiv preprint arXiv:2407.21783, 2024.171

Vladimir Vapnik and S. Kotz. Estimation of Dependences Based on Empirical Data: Empirical172

Inference Science (Information Science and Statistics). Springer-Verlag, Berlin, Heidelberg, 2006.173

ISBN 0387308652.174

Aran Komatsuzaki. One epoch is all you need. ArXiv preprint, arXiv:1906.06669, 2019.175

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understand-176

ing deep learning requires rethinking generalization. In International Conference on Learning177

Representations, 2017. URL https://openreview.net/forum?id=Sy8gdB9xx.178

Marcel Proust. A la recherche du temps perdu: Du côté de chez Swann. Gallimard, 1919.179

Ben Ambridge, Evan Kidd, Caroline F. Rowland, and Anna L. Theakston. The ubiquity of frequency180

effects in first language acquisition. J Child Lang, 42(2):239–273, 2015.181

François Charton. Learning the greatest common divisor: explaining transformer predictions.182

In The Twelfth International Conference on Learning Representations, 2024. URL https:183

//openreview.net/forum?id=cmcD05NPKa.184

François Charton. Linear algebra with transformers. Transactions on Machine Learning Research,185

2022. ISSN 2835-8856. URL https://openreview.net/forum?id=Hp4g7FAXXG.186

GK Zipf. The psycho-biology of language: an introduction to dynamic philology. 1935.187

Niklas Muennighoff, Alexander M Rush, Boaz Barak, Teven Le Scao, Nouamane Tazi, Aleksandra188

Piktus, Sampo Pyysalo, Thomas Wolf, and Colin Raffel. Scaling data-constrained language189

models. In Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL190

https://openreview.net/forum?id=j5BuTrEj35.191

Alethea Power, Yuri Burda, Harrison Edwards, Igor Babuschkin, and Vedant Misra. Grokking:192

Generalization beyond overfitting on small algorithmic datasets. ArXiv, abs/2201.02177, 2022.193

URL https://api.semanticscholar.org/CorpusID:245769834.194

Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can trans-195

formers learn in-context? a case study of simple function classes. In S. Koyejo,196

S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors, Advances in Neu-197

ral Information Processing Systems, volume 35, pages 30583–30598. Curran Associates,198

Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/199

c529dba08a146ea8d6cf715ae8930cbe-Paper-Conference.pdf.200

Elvis Dohmatob, Yunzhen Feng, Pu Yang, François Charton, and Julia Kempe. A tale of tails: Model201

collapse as a change of scaling laws. In Forty-first International Conference on Machine Learning,202

2024. URL https://openreview.net/forum?id=KVvku47shW.203

Ziming Liu, Ouail Kitouni, Niklas S Nolte, Eric Michaud, Max Tegmark, and Mike Williams. To-204

wards understanding grokking: An effective theory of representation learning. In S. Koyejo,205

S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors, Advances in Neu-206

ral Information Processing Systems, volume 35, pages 34651–34663. Curran Associates,207

Inc., 2022a. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/208

dfc310e81992d2e4cedc09ac47eff13e-Paper-Conference.pdf.209

5

https://openreview.net/forum?id=Sy8gdB9xx
https://openreview.net/forum?id=cmcD05NPKa
https://openreview.net/forum?id=cmcD05NPKa
https://openreview.net/forum?id=cmcD05NPKa
https://openreview.net/forum?id=Hp4g7FAXXG
https://openreview.net/forum?id=j5BuTrEj35
https://api.semanticscholar.org/CorpusID:245769834
https://proceedings.neurips.cc/paper_files/paper/2022/file/c529dba08a146ea8d6cf715ae8930cbe-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/c529dba08a146ea8d6cf715ae8930cbe-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/c529dba08a146ea8d6cf715ae8930cbe-Paper-Conference.pdf
https://openreview.net/forum?id=KVvku47shW
https://proceedings.neurips.cc/paper_files/paper/2022/file/dfc310e81992d2e4cedc09ac47eff13e-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/dfc310e81992d2e4cedc09ac47eff13e-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/dfc310e81992d2e4cedc09ac47eff13e-Paper-Conference.pdf

Ziming Liu, Eric J Michaud, and Max Tegmark. Omnigrok: Grokking beyond algorithmic data.210

In The Eleventh International Conference on Learning Representations, 2023. URL https:211

//openreview.net/forum?id=zDiHoIWa0q1.212

Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of Machine Learning.213

MIT Press, 2018.214

Peter L. Bartlett, Philip M. Long, Gábor Lugosi, and Alexander Tsigler. Benign overfitting in215

linear regression. Proceedings of the National Academy of Sciences, 117(48):30063–30070,216

2020. doi: 10.1073/pnas.1907378117. URL https://www.pnas.org/doi/abs/10.1073/217

pnas.1907378117.218

Mikhail Belkin. Fit without fear: remarkable mathematical phenomena of deep learning through the219

prism of interpolation. Acta Numerica, 30:203–248, 2021.220

Peter L. Bartlett, Andrea Montanari, and Alexander Rakhlin. Deep learning: a statistical viewpoint.221

Acta Numerica, 30:87–201, 2021.222

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning.223

In Proceedings of the 26th Annual International Conference on Machine Learning, ICML ’09,224

page 41–48, New York, NY, USA, 2009. Association for Computing Machinery. URL https:225

//doi.org/10.1145/1553374.1553380.226

Xin Wang, Yudong Chen, and Wenwu Zhu. A survey on curriculum learning. IEEE Transactions on227

Pattern Analysis and Machine Intelligence, 44(9):4555–4576, 2022.228

Ishaan Gulrajani and David Lopez-Paz. In search of lost domain generalization. In International229

Conference on Learning Representations, 2021. URL https://openreview.net/forum?id=230

lQdXeXDoWtI.231

David Lopez-Paz. The Invariance Principle. MIT Press, 2025.232

Yunzhen Feng, Elvis Dohmatob, Pu Yang, François Charton, and Julia Kempe. Beyond model233

collapse: Scaling up with synthesized data requires reinforcement. In ICML 2024 Workshop on234

Theoretical Foundations of Foundation Models, 2024. URL https://openreview.net/forum?235

id=iqoqtNyVta.236

Whitfield Diffie and Martin Hellman. New directions in cryptography. IEEE transactions on237

Information Theory, 1976.238

Oded Regev. On Lattices, Learning with Errors, Random Linear Codes, and Cryptography. In Proc.239

of the ACM Symposium on Theory of Computing, 2005.240

Theodoros Palamas. Investigating the ability of neural networks to learn simple modular arithmetic.241

2017.242

Ziming Liu, Ouail Kitouni, Niklas Nolte, Eric J Michaud, Max Tegmark, and Mike Williams.243

Towards understanding grokking: An effective theory of representation learning. In Alice H. Oh,244

Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho, editors, Advances in Neural Information245

Processing Systems, 2022b. URL https://openreview.net/forum?id=6at6rB3IZm.246

Ziqian Zhong, Ziming Liu, Max Tegmark, and Jacob Andreas. The clock and the pizza: Two stories in247

mechanistic explanation of neural networks. In Thirty-seventh Conference on Neural Information248

Processing Systems, 2023. URL https://openreview.net/forum?id=S5wmbQc1We.249

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz250

Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information251

processing systems, pages 5998–6008, 2017.252

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint253

arXiv:1412.6980, 2014.254

6

https://openreview.net/forum?id=zDiHoIWa0q1
https://openreview.net/forum?id=zDiHoIWa0q1
https://openreview.net/forum?id=zDiHoIWa0q1
https://www.pnas.org/doi/abs/10.1073/pnas.1907378117
https://www.pnas.org/doi/abs/10.1073/pnas.1907378117
https://www.pnas.org/doi/abs/10.1073/pnas.1907378117
https://doi.org/10.1145/1553374.1553380
https://doi.org/10.1145/1553374.1553380
https://doi.org/10.1145/1553374.1553380
https://openreview.net/forum?id=lQdXeXDoWtI
https://openreview.net/forum?id=lQdXeXDoWtI
https://openreview.net/forum?id=lQdXeXDoWtI
https://openreview.net/forum?id=iqoqtNyVta
https://openreview.net/forum?id=iqoqtNyVta
https://openreview.net/forum?id=iqoqtNyVta
https://openreview.net/forum?id=6at6rB3IZm
https://openreview.net/forum?id=S5wmbQc1We

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-255

wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,256

Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.257

Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,258

Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,259

Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. arXiv preprint260

arXiv:2005.14165, 2020.261

Danny Hernandez, Tom Brown, Tom Conerly, Nova DasSarma, Dawn Drain, Sheer El-Showk, Nelson262

Elhage, Zac Hatfield-Dodds, Tom Henighan, Tristan Hume, Scott Johnston, Ben Mann, Chris Olah,263

Catherine Olsson, Dario Amodei, Nicholas Joseph, Jared Kaplan, and Sam McCandlish. Scaling264

laws and interpretability of learning from repeated data, 2022. URL https://arxiv.org/abs/265

2205.10487.266

A Related Work267

In this paper, we focus on relatively small transformer models performing mathematical tasks, placing268

it into a long established corpus of works that study interesting phenomena in a controlled setting,269

and advance our understanding of the underlying mechanisms in larger models in the wild, see e.g.270

Power et al. [2022], Garg et al. [2022], Charton [2024], Dohmatob et al. [2024].271

One such example is the study of “grokking", first observed with modular arithmetic - a phenomenon272

where models generalize long after achieving 100% accuracy on their (small) training set [Power273

et al., 2022, Liu et al., 2022a, 2023]. On the surface, grokking shares similarities with our work: a274

small training dataset is iterated for many epochs, the phenomenon is isolated in clean experiments275

on synthetic data, and it contradicts traditional wisdom regarding overfitting [Mohri et al., 2018].276

But there are important differences: in grokking, delayed learning occurs, we observe no such277

delay; grokking occurs for “tiny” training samples (hundreds or thousands of examples), our models278

use millions (even for modular multiplication); grokking is very sensitive to the optimizer used,279

our findings are robust across optimizers (Appendix H.5), and, of course, no two-set approach is280

documented in the grokking setting.281

Another related setting is “benign overfitting" [Bartlett et al., 2020, Belkin, 2021, Bartlett et al., 2021],282

where an over-parametrized model perfectly fits noisy data, without harming prediction accuracy.283

One could argue that our work presents a quantitative manifestation of benign overfitting, inasmuch284

as decreasing the data budget increases model over-parametrization. However, this would not account285

for the decrease in performance once the data budget falls below a certain number (one could argue286

that overfitting is no longer benign, then), nor for the possibility of two-set training.287

Our work is related to, but different from, curriculum learning (CL) [Bengio et al., 2009, Wang et al.,288

2022], where training data is presented in a meaningful order, usually from “easy" to “hard" samples.289

Two-set training, differs from curriculum learning in at least two important ways: in CL, datasets are290

curated, our subsets are completely random; in CL, the training distribution shifts over time, while291

our subsets are static. Our ablations show that curating the repeated set, or changing it over time, as292

in CL, brings no improvement on performance (and may even have an adverse effect).293

Lastly, our work touches upon the expansive area of out-of-distribution (OOD) generalization294

[Gulrajani and Lopez-Paz, 2021, Lopez-Paz, 2025], which studies generalization when train and test295

distributions differ. Curiously, while our two-set approach increases the frequency of some training296

examples, because the repeated set is chosen at random, the training set remains distributionally297

equivalent to the test set. Thus, our study falls outside the usual framework of OOD studies.298

B Experimental settings and baselines299

We focus on three problems of mathematics: computing the greatest common divisor, multiplication300

modulo 67, and computing the eigenvalues of real symmetric matrices. The GCD and eigenvalues301

were studied in prior work [Charton, 2022, 2024, Dohmatob et al., 2024, Feng et al., 2024].302

Greatest common divisor. The model is tasked to predict the GCD of two integers uniformly303

distributed between 1 and 1 million, encoded in base 1000. Following Charton, who observes that304

7

https://arxiv.org/abs/2205.10487
https://arxiv.org/abs/2205.10487
https://arxiv.org/abs/2205.10487

throughout training almost all pairs of integers with the same GCD are predicted the same, we305

evaluate model performance by the number of GCD below 100 predicted correctly, measured on306

a random test sample of 100, 000 pairs: 1000 pairs for each GCD from 1 to 100. Charton [2024]307

reports a best performance of 22 correct GCD for a model trained on uniformly distributed inputs.308

Note: we prefer this test metric over a more standard accuracy on random input pairs, because the309

GCD are distributed according to an inverse square law, in particular the probability of GCD= 1 is310

about 62%. As a result, the accuracy metric would result in overly optimistic model performances.311

Modular multiplication. Modular arithmetic plays an important role in many public key cryptogra-312

phy algorithms [Diffie and Hellman, 1976, Regev, 2005], and is known to be a hard problem for neural313

networks [Palamas, 2017]. Modular addition was studied in several previous works, in the context of314

grokking [Power et al., 2022, Liu et al., 2022b] and mechanistic interpretability [Zhong et al., 2023]1.315

While modular multiplication over Z/pZ× is mathematically is equivalent to modular addition mod316

p− 1, these problems differ computationally, due to the hardness of the discrete logarithm [Diffie317

and Hellman, 1976]. In most previous works on arithmetic modulo p, model inputs are sampled318

from integers between 0 and p, which results in a very small problem space for small p. In this work,319

we study the multiplication modulo 67 of two integers from 1 to 1 million. This allows for a much320

larger problem space, and training sets. Model accuracy is evaluated by the percentage of correct321

predictions of a× b mod 67, on a test set of 10, 000 examples (a new test set is generated at every322

evaluation). In this problem, all outcomes from 1 to 66 are uniformly distributed, while 0 appears323

nearly twice as often.324

Eigenvalue calculation. This problem was introduced to deep learning by Charton [2022], who325

showed that transformers can learn to predict the eigenvalues of real symmetric matrices with326

independent and identically distributed entries, rounded to three significant digits. The eigenvalue327

problem is arguably a harder problem than the previous two, non-linear and typically solved by328

iterative algorithms. Note also that because matrix entries and eigenvalues are rounded, this problem329

features noisy inputs and outputs. Model accuracy is evaluated as the percentage of model predictions330

that predict the correct eigenvalues of a test matrix with less than 5% relative error (in ℓ1 distance). It331

is measured on a test set of 10, 000 samples, generated afresh at every evaluation.332

Models and tokenizers. In all experiments, we use sequence-to-sequence transformers [Vaswani333

et al., 2017] with 4 layers in the encoder and decoder (4 layers in the encoder and 1 in the decoder for334

eigenvalues), an embedding dimension of 512, and 8 attention heads. Models have between 10 and335

100 million parameters, depending on the vocabulary size (larger for eigenvalues). They are trained to336

minimize a cross-entropy loss, using the Adam optimizer [Kingma and Ba, 2014], with a learning rate337

of 10−5, over batches of 64. The integer inputs and outputs of the GCD and multiplication problems338

are tokenized as sequences of digits in base 1000, preceded by a separator token. The real numbers in339

the eigenvalue problem are encoded as floating point numbers, rounded to three significant digits, and340

tokenized as a triplet (s,m, e) – sign, mantissa in base 1000, and (base 10) exponent – so we have341

f = s ·m · 10e (P1000 encoding from Charton [2022]). All experiments are run on one NVIDIA342

V100 GPU with 32 GB of memory.343

C Repetition Helps: Detailed evaluation of experiments344

Here we provide more details, omitted in the main body of the paper for brevity.345

On the GCD problem, we consider 6 limited data budgets, of 1, 5, 10, 25, 50 and 100M examples,346

and an unlimited data budget where new examples are generated on the fly, and DB≈ TB2. For each347

data budget, we train 5 models with a training budget of over 1 billion examples, and report their348

average performance (number of correctly predicted GCD), as the TB increases (Figure 1 Left).349

For a modest training budget of 30 million, the models with the smallest DB (1 and 5 million, 1M350

and 5M-models henceforth) achieve the best performance (20 GCD vs 13 for all other DB). As TB351

increases, the 1M-models start overfitting, as shown by the increasing test losses in Figure 3, and352

their performance saturates at 21 correct GCD. The performance of the 5M models keeps improving353

1Power et al. [2022] also study modular division, equivalent to modular multiplication.
2For GCD and modular multiplication, input pairs are uniformly sampled integers from 1 to 1 million. This

gives rise to infrequent repetitions: over ∼ 1 billion input pairs, our largest data budget, no elements are repeated
3 or more times, and about 500 thousand are repeated twice.

8

Figure 3: GCD problem: Test loss of various models as a function of training budget, for a fixed data budget.

to 36 GCD, for a TB of 150 million examples, then begin overfitting, and saturate around 38. For TB354

of 150 and 300 million examples, the best performing models are the 10M. As training proceeds, they355

are outperformed by the 25M models, which achieve the best performance for TB from 450 million356

to 1.05 billion examples (with the 50M-model a close second at 1 billion). Throughout training, the357

models trained on small data budgets learn faster. However, past a certain TB, they overfit their358

training data, and their performance saturates.359

Note. Overfitting is an overloaded term. In this paper, we define it by its empirical consequences: a360

model overfits when its test loss starts increasing, while the train loss continues to decrease. The361

relation between learning and overfitting is further studied in Appendix E.362

Conversely, models trained with large or unlimited DB perform the worst. For a TB of one billion363

examples, the 25M-models predict 62 GCD on average, and the 50M-models 60. The 100M-models364

only predict 37 GCD and models trained on an unlimited data budget, where all training examples are365

seen only once, predict 27 GCD, way worse than models trained on 25M distinct examples, repeated366

42 times on average. Summarizing, smaller data budgets and more frequent repetition allow for367

faster learning, but also for much better performance.368

Table 2: Multiplication modulo 67. Accuracy of models trained on a budget of 600 million data points.

Data budget (millions)
1 5 10 25 50 100 unlimited

Average accuracy (%) 1.6 3.8 4.4 40.4 59.5 5.4 3.0
Number of models achieving 99% accuracy 0/5 0/5 0/5 6/25 7/25 0/30 0/30
Number of models achieving 50%+ accuracy 0/5 0/5 0/5 13/25 22/25 0/30 0/30
Number of models trained 5 5 5 25 25 30 30

9

We observe a similar behavior for modular multiplication. For a TB of 600 million, we train 5369

models for small DB, and 25 or 30 for larger DB, to zoom on this interesting region (Table 2). Models370

trained on an unlimited data budget perform at “chance level”: they always predict 0 and achieve371

about 3% accuracy. Models trained on data budgets of 100 million examples fare little better, and372

models trained on 10 million examples or less overfit and do not learn.373

For DB of 25M and 50M (training examples repeated 24 and 12 times on average), a new phenomenon374

emerges: about 25% of the trained models learn to predict modular multiplication to 99% accuracy,375

and a majority of them to over 50% accuracy. For modular multiplication, learning proceeds in steps376

followed by plateaus (see the empirical learning curves in Figure 7 in Appendix F), where the last377

plateau (before jumping to near perfect accuracy) has a little more than 50% accuracy. To reflect378

this process, we report the number of models achieving 99% accuracy (learned the task) and 50%379

accuracy (one learning step away).380

D Two-set Training: Detailed evaluation of experiments381

In two-set training, for a data budget of N distinct examples, we define S < N and 0 < p < 1.382

We randomly select S examples (out of N), that will form the repeated set – in practice, we shuffle383

the training set, and assign the S first examples to the repeated set. During training, examples are384

selected from the repeated set with probability p, and from the N − S others with probability (1− p).385

As a result, a model trained on a training budget of T examples will use pT examples from the386

repeated set, repeated pT/S times on average, and the N − S remaining examples will be repeated387

(1 − p)T/(N − S) times on average. The repetition levels in both samples can be adjusted by388

choosing the values of S and p. Note that the limiting cases p = 0 and p = 1 correspond to one-set389

training, with a data budget of N − S and S examples respectively.390

On the GCD problem, we experiment with a data budget of 100 million examples, a training budget391

of 600 million, and several values of S and p. In this setting, models trained on a single set predict 27392

GCD on average (Figure 1 (Left)). With two-set training, models using a repeated set of 250, 000393

or less, and a probability p of 0.25 or 0.5, predict more than 62 GCD on average (Figure 1 (Right)),394

a much better performance than their one-set counterparts. Models trained with S = 50, 000 and395

p = 0.25 predict 69 GCD on average, a better performance than the best results achieved by one set396

models, on a larger training budget of 1 billion examples. For these parameters, the 50k examples in397

the small set are seen 150 million times, and repeated 3, 000 times on average, while the rest of the398

training examples are repeated 4.5 times on average. On a 100M data budget, two-set training clearly399

outperforms single set training.400

These results can be extended to unlimited training sets, by creating a fixed set of S examples,401

selected with probability p, and generating (unlimited) random examples with probability 1− p. The402

best choices of p and S are roughly the same as with a DB of 100M (Figure 4). In particular, with403

p = 0.25 and S = 50, 000, two-set training on unlimited data achieves an average performance of404

67 GCD on 6 models, a spectacular improvement over model trained on unlimited (single) datasets,405

which predict 25 GCD on average.406

For large and unlimited data budgets, frequent repetition of a tiny number of random examples, lost407

in a sea of single-use examples, unlocks surprising performance gains. Note the synergistic nature of408

this effect: training on the tiny sample alone (with large repetition), or one-set training on the same409

data budget, result in much lower performance than what two-set training provides by mixing them410

together.411

We observe similar behavior for smaller data budgets. Figure 5 compares learning curves for data412

budgets of 10, 25 and 50 million examples, and training budgets up to 600M, for single and two-set413

training (p = 0.25 and |S| = 50, 000). For a given training budget, two-set training always achieves414

significantly better performance than single-set training. In fact, these curves demonstrate that two-set415

training accelerates learning. With increased training budget, single-set models sometimes catch up416

with the performance of their two-set counterparts: after more than a billion examples, 25M single417

set models predict 62 GCD, the same performance as two-set models (see Figure 8, Appendix F. Still,418

most two-set models retain a marginal advantage3.419

3and note that S and p might no longer be optimal for this larger training budget

10

50 75 100 150 200 250 500 1000 2500 5000 10000 25000
small set size (thousands)

0.9

0.75

0.5

0.25

0.1

sm
al

l s
et

 p
ro

ba
bi

lit
y

31 32 32 33 34 39 38 40 46 55 55 56

43 48 51 54 54 55 54 53 54 58 59 47

57 62 65 65 61 60 56 58 61 61 49 28

67 62 56 56 56 57 57 57 47 31 25 24

54 56 56 56 55 55 40 27 25 25 21 24

Figure 4: Two-sample training for the GCD problem for ∞-models: Number of correctly predicted GCD
as a function of small set size S and p, each averaged over 6 models. Data budget and training budget equal
600M (∞-models). Note the high performance for very small sets S of sizes between 50 and 200 thousand,
with p = 0.25 and p = 0.5 compared to “standard" training with the same data budget, predicting 25 GCD
correctly (see Section 2).

0 250 500 750 1000 1250 1500 1750 2000

10

20

30

40

50

0 250 500 750 1000 1250 1500 1750 2000

10

20

30

40

50

60

0 250 500 750 1000 1250 1500 1750 2000

10

20

30

40

50

60

70

Figure 5: Two-set versus single-set training for the GCD problem: Number of correctly predicted (test)
GCD as a function of training budget (up to 600M) for data budgets of 10M (left), 25M (center), and 50M
(right). Two-set training with p = 0.25 and |S| = 50, 000 (top 6 curves) versus single-set training (lower 6
curves). See Figure 8 in Appendix F for extended TB with DB of 25M (center).

For modular multiplication, experiments with large and infinite data budget, for a training budget420

of 600M (Figure 2), indicate that larger repeated samples, and smaller repetition, are needed. With421

a DB of 100M, S should be selected between 2.5 and 10 million examples, and a p be 0.25 or 0.5,422

for a small set repetition between 30 and 60 (vs 3000 for the GCD experiments). For unlimited DB,423

S = 25M and 0.75 ≤ p ≤ 0.9, a repetition between 18 and 22, seems optimal. Note also that in424

this problem, the choice of parameters S and p is more sentitive: only a few combinations allow425

for good performance (empirically, constant ratio between repetition on the small and large sample426

(p(N−S)
(1−p)S ≈ 10).427

However, with a careful choice of p and S, two-set training achieves better performance than single428

set training for all data budgets from 25M to unlimited. Table 3 presents the proportion of models,429

trained on single and two sets, that learn to compute multiplication modulo 67, after a training budget430

of 600M. With two set training, 50 to 58% of the models learn multiplication with 99% accuracy.431

With single set training, about 24 to 28% learn for DB 25 and 50M, and none for larger DB. In these432

experiments, two-set training improves accuracy for all data budgets, its impact on learning speed433

(observed for GCD) is less conclusive (Table 5 in Appendix F).434

Finally, on the eigenvalue problem for 10× 10 matrices, we train models with an unlimited data435

budget and a training budget of 300M. With these parameters, models trained on single sets do not436

learn, but two-set training achieves significant accuracy. For S = 480, 000 and p = 0.25, 5% of437

models learn to predict with 99% accuracy, and 15% with 60% accuracy.438

11

Table 3: Two-set training on modular multiplication. Percentage of models (different random initializations)
learning to compute modular multiplication with 50 and 99% accuracy. Training budget: 600M. For DB 25M
and 50M, 10 models with two-set training, and 25 with single set training. For DB 100M and unlimited, 26
models with two-set training, and 30 with single set training.

Two sets Single set
Data budget p / S > 50% > 99% > 50% > 99%

25M 0.1 / 1M 50 50 52 24
50M 0.25 / 2.5M 90 50 88 28
100M 0.5 / 10M 88 54 0 0
Unlimited 0.25 / 2.5M 92 58 0 0

Overall, our experiments indicate that, for a given data budget, two-set training – repeating a small set439

of randomly selected during training – greatly improves model performance, either by accelerating440

learning (GCD), or increasing model accuracy (modular multiplication, eigenvalues). The size of the441

repeated set appears to be problem dependent: small for GCD, larger for modular multiplication.442

E Learning dynamics and overfitting in math transformers443

To gain some understanding on the relation between repetition and overfitting, we delve deeper into444

the typical training dynamics in our mathematics problems with transformers. We study learning445

curves to shed light on the interplay between overfitting and relative size of data versus training446

budget. We focus on learning to compute the eigenvalues of 5 × 5 symmetric matrices [Charton,447

2022] for illustrative purposes, but the observed dynamics are common to all our problems (e.g. see448

Figure 3). Figure 6 illustrates training of 10 models on a data budget of 200, 000 samples, with449

increasing training budget (up to 30 million) resulting in increased repetition. Learning curves exhibit450

a step shape, which gives rise to three phases:451

• Initial phase: training and test loss decrease (up to TB of about 2M), accuracy remains low.452

• Learning phase: training and test loss drop suddenly, accuracy increases steeply from a few453

percents to 90% (for the next 1-3M of TB). This phase is absent for those models that overfit454

too early (dark curves in Figure 6).455

• Saturation phase: the model learns the remaining accuracy.456

0 5 10 15 20 25 30
Examples (M)

0

20

40

60

80

100
Accuracy

0 5 10 15 20 25 30
Examples (M)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00 Train loss

0 5 10 15 20 25 30
Examples (M)

20

30

40

50

60

70

80

90
Test loss

Figure 6: Learning curves for eigenvalue computation of 5x5 matrices: Accuracy, train and test loss, for
10 models trained on a data budget of 200, 000, as a function of training budget (TB). The curves represent
different seeds. Note the initial phase, common to all curves, up to a sharp transition of test loss at ∼ 2M TB. At
this point the dark curves begin to overfit (test loss increases) while the light curves undergo another drop in test
loss that initiates the learning phase.

Recall that we say that overfitting occurs when the test loss starts increasing while training loss457

continues decreasing. Here we see that for all models there is an initial flattening of test loss458

12

after ∼ 2M training examples (about 10 repetitions of the data budget4). Then, some models start459

overfitting already during the initial phase (the 6 dark colored curves in Figure 6), and for those the460

learning phase never happens and accuracy plateaus at about 2%. On the other hand, for the other461

4 models the learning phase begins before overfitting sets in (the pale colored curves in Figure 6),462

the task is learned in full (to over 95% accuracy), and overfitting is delayed until after that point.463

Eventually, these four models start to overfit at training budgets of about 10 million examples, and a464

slight drop in accuracy is observed in some models (but not all), after 15 million examples (75 epochs465

on the training set). We observe similar effects for different data budgets.466

These experiments illustrate the relation between overfitting and learning. Once a model overfits, it467

stops learning, accuracy saturates, and eventually sometimes decreases. On the other hand, once a468

model trained on limited data starts learning, overfitting is delayed by many more epochs.469

F Additional figures470

Figure 7 provides learning curves (test error) for modular multiplication, illustrating step-like learning,471

which motivates us to use the number of models achieving 50 + % resp. 99% accuracy as our472

performance metric.473

Figure 4 as well as Tables 4 and 5 provide additional results for modular multiplication in the two-set474

setting.475

Figure 7: Learning curves for modular multiplication: Test error for various initializations. We see a clear
step-like learning curve with a plateau just above 50% accuracy before jumping to near perfect accuracy.

4Our runs on a range of small data budgets (up to 250 thousand) show similar initial step shape of test loss at
10-12 repetitions.

13

0 500 1000 1500 2000 2500 3000 3500

10

20

30

40

50

60

Figure 8: Two-set versus single-set training for the GCD problem: Number of correctly predicted (test)
GCD as a function of training budget (up to 1B) and data budget of 25M Two-set training with p = 0.25 and
|S| = 50, 000 (top 6 curves) versus single-set training (lower 6 curves).

Table 4: Two-set training on modular multiplication. For a training budget of 600M we show the number of
models (random initializations) that achieve 50 + % and 90% accuracy for several data budgets and sizes of the
more frequent sets S, and probabilities p. The baseline of single-set traning from Section 2 is given in the last
line. Similar results for training budgets of 300M and 450M are given in Table 5.

(p, S)/ Data budget 25M 50M 100M ∞
> 50% 99% > 50% 99% > 50% 99% > 50% 99%

(0.1, 500K) 2/10 1/10 6/10 3/10 20/26 10/26 25/26 8/26
(0.1, 1M) 5/10 5/10 8/10 4/10 22/26 6/26 0/26 0/26

(0.25, 2.5M) 2/10 1/10 9/10 5/10 20/26 9/26 24/26 15/26
(0.25, 5M) 3/10 1/10 9/10 4/10 24/26 10/26 5/26 0/26
(0.5, 10M) 3/10 3/10 8/10 5/10 23/26 14/26 23/26 12/26

(0.75, 25M) - - - - 23/26 10/26 20/26 14/26

Single set 13/25 6/25 22/25 7/25 0/30 0/30 0/30 0/30

G Ablations and variations476

In this section, we experiment with additional improvements to two-set training. Detailed ablation477

results can be found in AppendixH.478

Curating the repeated sample. In two-set training, repeated examples are randomly sampled from479

the available training data. We now experiment with a possible improvement: selecting the repeated480

examples. Perhaps what really matters is the repetition of a particular class of “informative” examples,481

as in curriculum learning. The GCD problem is particularly well suited for this type of investigation.482

Charton [2024] showed that increasing the proportion of small integers, or oversampling the tails483

14

Table 5: Two-set training on modular multiplication. For training budgets of 300M, 450M and 600M we
show the number of models out of 10 (random initializations) that achieve 50 + % and 90% accuracy for data
budgets 25M and 50M, and sizes of the more frequent sets S, and probabilities p. The baseline of single-set
training is given in the last line, out of 25 models. The next to last line renormalizes this to out of 10.

Data budget 25M Data budget 50M
> 50% 99% > 50% 99%

300M 450M 600M 300M 450M 600M 300M 450M 600M 300M 450M 600M

(0.1, 500K) 1 2 2 0 1 1 4 5 6 0 1 3
(0.1, 1M) 1 5 5 0 3 5 3 6 8 0 1 4

(0.25, 2.5M) 2 2 2 0 1 1 5 9 9 0 1 5
(0.25, 5M) 3 3 3 0 0 1 4 9 9 0 1 4
(0.5, 10M) 2 3 3 0 2 3 7 7 8 0 2 5

Single set (/10) 3.6 4.8 5.2 0.4 1.2 2.4 2.4 7.6 8.8 0 0.8 2.8
Single set (/25) 9/25 12/25 13/25 1/25 3/25 6/25 6/25 19/25 22/25 0/25 2/25 7/25

of the distribution of GCD in the training set (Prob(GCD = k) ∼ 1
k2), greatly improved model484

performance.485

We experimented with three curation strategies for the repeated set: log-uniform and uniform486

distributions of operands and input, shown to be beneficial by Charton, “easy sets” featuring small487

input and outcomes, and “heavy tail sets” featuring large GCD. For each setting, we trained 5 models488

with four “good choices” of S and p (Table 6), a data budget of 100M and training budget of 600M.489

Table 6: GCD problem: cherry-picking the repeated set. Number of GCD predicted, average of 5 models (3
for baseline), training budget 600M. bold: more than 65 GCD predicted.

S / p 50k / 0.25 150k / 0.25 150k / 0.5 500K / 0.5

Log-uniform inputs 55.9 59.4 57.9 62.0
Uniform GCD 55.9 54.5 41.9 54.9
Log-uniform inputs and GCD 62.2 71.7 66.5 72.6

Small inputs (1-1000) 61.2 67.5 62.6 62.9
GCD 1- 10 59.9 63.8 55.8 62.3
GCD products of 2 and 5 54.2 39.8 40.7 30.1

All GCD but 1 65.4 63.7 56.7 58.1
All GCD but 1,2,3 66.7 58.4 62.8 58.2
All GCD but 1,2,3,4,5 66.5 60.6 64.9 56.3

Baseline (two-set training from random examples) 69.4 61.9 65.9 59.4

These strategies do not achieve better results than the baseline two-set training with a random repeated490

set. A slight improvement is observed when repeated samples are selected from a log-uniform input491

and GCD (for which Charton [2024] reports 91 correct GCD for single-set training). Overall, we find492

that repeated set curation has, at best, a marginal impact on performance. This is a counter-intuitive493

but significant result.494

Shifting the repeated sample. In the GCD experiments, with p = 0.25 and S = 50, 000, repeated495

examples are seen 3000 times for a training budget of 600M. Since this large repetition may lead496

to overfit, we experimented with “shifting samples”: replacing the repeated examples after a k497

repetitions. In Appendix H.3, we experiment with k from 10 to 100, and observe that this has no498

impact on model performance.499

Batching matters. All models in this paper are trained on mini-batches of 64 examples. In two-set500

training, batches mix examples from the repeated and the large set. We experimented with batches501

that only use samples from one set at a time. For instance, when training with p = 0.25, 25% of502

batches would use repeated examples only. For both GCD and mdoluar multiplication, we observe503

that models trained on batches from one sample only fail to learn. This indicates that mixing repeated504

and non-repeated examples is required for two-set training to happen (see also Appendix H.2).505

From two to many-set training. Two-set training effectively makes the training sample non506

identically-distributed: examples from the repeated sample occur with a larger probability. We can507

generalize this method by introducing a probability distribution P on the training examples, such508

15

that for any i ≤ N , P (i) is the probability that the i-th example is selected during training. In509

two-set training, P is a step function distribution with two values: p/S and (1−p)/(N −S), we now510

replace it with a discrete exponential distribution P (i) ∼ βe−βi/N , with β > 0, suitably normalized.511

Table 7 presents the performance of models trained on the GCD problem with such “continuous”512

data distributions, indicating that our observations on two-set training do generalize to such data513

sampling techniques. Addition information, and results on modular multiplication, can be found in514

Appendix H.4.515

Table 7: GCD for different exponential distributions. Correctly predicted GCD, best of 5 models, trained on
600 million examples.

|Seff| 25k 50k 100k 250k 500k 1M 1.5M 2M 2.5M 3M 3.5M 4M 5M
β 1152 576 288 115 58 29 19 14 11.5 9.6 8.2 7.2 5.8

GCD 19 21 29 38 46 55 56 57 61 65 63 62 56

These results suggests that our observations on two-set training can be extended to a wider class of516

methods, that use non-uniform sampling over a randomly ordered training set.517

H Ablation results518

H.1 Cherry-picking the small sample519

In two-set training, the examples in the small set are chosen at random from the overall training set.520

In this section, we experiment with curating the small set, by selecting the examples that will be521

repeated during training. As in curriculum learning, selecting easier or more informative examples522

may help improve performance. Perhaps when increasing the frequency of our small random set,523

what really matters is the repetition of some particular examples, rather than all? The GCD problem524

is particularly well suited for this type of investigation, due to the inverse polynomial distribution of525

outcomes (Prob(GCD = k) ∼ 1
k2). On this problem, we leverage the findings of Charton [2024],526

who observes that ∞-models trained from log-uniform distributions of inputs and/or outcomes527

(Prob(GCD = k) ∼ 1
k) learn better.528

We experiment with four settings of |S| and p, which correspond to the best results in our previous529

experiments (Section 3): 50, 000 and 150, 000 with p = 0.25 and 150, 000 and 500, 000 with p = 0.5,530

for a data budget of 100 million and training budget of 600M. For every setting, we train 5 models531

with the following three choices for S: log-uniform inputs, uniform GCD or both log-uniform inputs532

and GCD. We use two-sample training with a random small set S as our baseline. Table 8 shows533

that the performance of models using log-uniform inputs, or uniform GCD, is slightly lower than the534

baseline. Models trained on log-uniform inputs and GCD achieve slightly better performance, but we535

note that models trained on the small set distribution only (p = 1) would predict 91 GCD . On these536

three distributions, curating the small set proves disappointing.537

In curriculum learning fashion, we also experiment with small sets S of a few “easier cases”: small538

inputs (from 1 to 1000), GCD that are products of 2 and 5, the easiest to learn in base 1000 [Charton,539

2024], and GCD between 1 and 10 (the most common outcomes). We observe that while models540

trained with small inputs in S perform on par with the baseline, models trained on “easy GCD”541

perform slightly worse.542

Finally, inspired by arguments that rare tail outcomes might require particular attention for learning543

[Dohmatob et al., 2024], we experiment with small sets composed of examples from the tail of the544

training distribution, namely, large GCD. Charton [2024] observes that these are both harder to learn,545

and less common in the training set. Specifically, we create S with examples with GCD larger than k546

(for k ranging from 1 to 5). While experiments achieve the best accuracies compared to the other547

curation schemes we proposed, and values of k equal to 2 and 3 train slightly faster, they remain a548

little below the baseline both in accuracy and learning speed.549

Overall, these experiments suggest that in two-set training, random selection of the small set may be550

optimal. Selecting a small set of easy cases (GCD multiple of 2 and 5), and examples that are known551

to help training (log-uniform inputs) does not help, and limiting the small set to edge cases from the552

16

Table 8: GCD problem: cherry-picking the small set. (Left) Number of (test) GCD predicted for training
budget of 600 million examples, average of 5 models (3 models for baseline). bold: more than 65 GCD predicted.
(Right) Training budget needed to predict 60 GCD, fastest of 20 models (of 12 models for baseline).

Training budget
50k / 0.25 150k / 0.25 150k / 0.5 500K / 0.5 for 60 GCD (M)

Log-uniform inputs 55.9 59.4 57.9 62.0 332
Uniform GCD 55.9 54.5 41.9 54.9 -
Log-uniform inputs and GCD 62.2 71.7 66.5 72.6 88

Small inputs (1-1000) 61.2 67.5 62.6 62.9 247
GCD 1- 10 59.9 63.8 55.8 62.3 401
GCD products of 2 and 5 54.2 39.8 40.7 30.1 548

All GCD but 1 65.4 63.7 56.7 58.1 405
All GCD but 1,2 66.8 60.0 62.8 56.9 326
All GCD but 1,2,3 66.7 58.4 62.8 58.2 327
All GCD but 1,2,3,4 65.5 60.3 62.8 56.9 379
All GCD but 1,2,3,4,5 66.5 60.6 64.9 56.3 376

GCD product of 2, 3, and 5 66.1 59.4 59.8 47.3 359
Prime GCD 64.9 62.5 58.8 64.7 422
GCD divisible by primes ≥ 11 60.1 54.4 35.7 42.7 569

Baseline (two-set training) 69.4 61.9 65.9 59.4 373

tail of the outcome distribution brings no improvement to performance. This is a counter-intuitive,553

but significant result.554

H.2 Batching in two-set training: mixed batches are needed555

In all experiments, during training, the model computes gradients over minibatches of 64 examples.556

In two-set training, minibatches mix examples from the small and large set. We experimented with557

using “mono-batches" that use samples from one set at a time. For instance, when training with558

p = 0.25, 25% of minibatches would use examples from S only, and 75% would only use those from559

S.560

On the GCD problem, we rerun the most successful two-set experiments (Section 3) with “mono-561

batches" for S = 50K, 100K and 250K, and p = 0.25 and 0.5. For training budgets of 600M and data562

budget of 100M examples, the models trained on mixed batches predicted 62 to 69 GCD (Section 3).563

With “mono-batches", the number of correctly predicted GCD never rises above 15. For modular564

multiplication, we experimented with the following (S, p) pairs (S in millions): (0.5, 0.1), (2.5, 0.25)565

and (10, 0.5) with data budget 100M and training budget 600M. With these settings, mixed-batch566

models achieve an average accuracy of 67% or more (Section 3). With “mono-batches", none of the567

models manages to learn (accuracy around 4%). This indicates that mixed batching of samples568

from each of the two sets plays a central role for the two-set effect.569

H.3 Shifting the small set570

In these experiments, we study, in two-set training, the possible impact of overfitting on the small571

set, by refreshing the small set with fresh examples periodically. This mimics certain aspects of572

curriculum learning, where the training set is changed over time. On the GCD experiments, with573

a data budget of 100 million, a training budget of 600 million, we shift the small set as training574

proceeds, so that examples in the small set are seen k times on average. At the beginning of training,575

the small set is the S first elements in the train set. After training on kS/p examples, examples in the576

small set have been seen k times, and the small set is shifted to elements S + 1 to 2S of the training577

set.578

Table 9 provides performances for two-set training with shift, for different values of p, S and k, for a579

data budget of 100 million, and a training budget of 600 million. It is interesting to note that shifting580

brings no improvement to 2-set training.581

17

Table 9: Shifted two-set training. GCD predicted, average of 3 models, trained on a budget of 600 millions,
and a data budget of 100 million, for different values of S, p and k.

S 250,000 500,000 1,000,000
k 10 25 50 100 10 25 50 100 10 25 50 100

p = 1.0 37 22 21 22 37 38 30 31 55 45 37 30
p = 0.9 47 38 38 38 55 47 43 39 55 48 47 47
p = 0.75 56 38 54 48 56 55 49 55 60 56 55 56
p = 0.5 61 56 56 58 61 60 56 58 64 63 63 61
p = 0.25 56 62 61 63 49 63 63 61 49 63 62 63

H.4 From two-set to many-set training582

Two-set training with a small randomly selected subset S amounts to assigning different probabilities583

to elements in the training set. For a randomly shuffled training set of size N , two-set training584

amounts to selecting the first S elements with probability p/S (with replacement) and the N − S last585

with probability (1− p)/(N − S), a step-function distribution over {1, . . . , N}. We now generalize586

this approach by introducing a probability law P such that P (i) is the probability of selecting the587

i-th example in the training set. Our motivation is to obtain a smooth, possibly more principled,588

distribution than the step-function induced by the two-set approach. Pragmatically, a one-parameter589

family of smooth distributions eliminates the need to tune both S and p. Lastly, we can study whether590

a smooth decay in frequency might be even more beneficial than a non-continuous two-set partition.591

In this section, we consider a discrete exponential distribution:

P (i) ∼ βe−βi/N ,

with β > 0, suitably normalized5. If β tends to 0, P tends to the uniform distribution, and implements592

the single-set strategy of Section 2. As β becomes large, a small fraction of the full training set593

is sampled (99% of the probability mass lies on the 4.6N/β first elements, 99.99% on the first594

9.2N/β). For intermediate values of β, the model oversamples the first elements in the training595

set, and undersamples the last: we have a continuous version of two-sample training. To allow for596

comparison with two-sample training, we define Seff such that the first Seff examples in the training597

set jointly are sampled with probability 25%. In this setting, 10% of the probability mass is on the598

0.37Seff first training examples, and 99% on the first 16Seff.599

For GCD, we experiment with values of β ranging from 5.8 to 1152 (Seff from 25,000 to 5 million)6.600

Table 7 shows that for our training budget of 600 million examples, the best model (Seff = 3M)601

predicts 65 correct GCD, slightly less than what was achieved with two-set training (Section 3).602

For modular multiplication, we need lower β (i.e larger Seff) for our training budget of 600M. We603

report the number of models (out of 25 for each setting) that learn to accuracy above 50% and 95%604

respectively (Table 10). Again we see that these results are comparable to two-set training (Section605

3).606

Table 10: Modular multiplication with different exponential distributions. 25 models trained on 600 million
examples.

Seff 2.5M 5M 6M 8M 10M 12M 14M
β 11.5 5.8 4.8 3.6 2.9 2.4 2.1

Models with 95% accuracy 2 9 11 13 7 4 3
Models with 50% accuracy 4 16 25 22 17 13 6

5The normalization factor is (1 − e−β)−1. In our calculations we will approximate it by 1 to simplify
computing Seff. For the range of β we consider, the resulting approximation error is negligible. In general,
for fixed p, to compute the size of the set S(p) of first elements that carry probability mass p, we can use
β ≈ − ln (1− p)N/|S(p)|.

6Note that for these values of β the distinction between DB 100M and unlimited DB becomes essentially
meaningless, as the tails of the training set are sampled exceedingly rarely.

18

We conclude that the benefits observed in two-set training do not pertain to the specific two-set607

partition of the training set; rather, it seems that the core of the effect lies in the non-uniform sampling608

frequency distribution over the (randomly ordered) training set, with a range of frequencies.609

H.5 Varying the optimizer610

Table 11: Modular multiplication with different optimizers. Correctly predicted GCD of the best (of 5)
models for various optimizers. The effects we observe are robust under change of optimizer, with a very small
degradation for dropout for both the unlimited (single-epoch) and limited DB.

One-set Two-set
Unlimited 50M 25M Unlimited 50M 25M

Adam 28 49 61 70 72 63
Adam wd=0.01 30 56 61 70 70 66
AdamW wd=0.01 29 50 58 69 72 67
Adam dropout=0.1 24 40 49 66 66 66

Some effects observed in deep learning depend on the optimizer, with grokking being a prominent611

example [Power et al., 2022]. Here we provide experimental evidence to show that our findings hold612

for a variety of optimizers and are thus robust and universal. We rerun models used for the GCD613

problem with different optimizers. Specifically, we trained models to predict GCD, with a training614

budget of 600 million examples, single and two-set training (with |S| = 50, 000 and p = 0.25), and615

data budgets of 25 million, 50 million and unlimited. We considered four optimizer settings:616

• Adam without dropout or weight decay,617

• Adam with weight decay 0.01,618

• Adam with dropout (0.1) in the feed-forward networks of the transformer,619

• AdamW with weight decay 0.01.620

Table 11 presents the best performance of 5 models for each configuration. On average, dropout has621

an adverse effect on learning, but there is no clear benefit of using weight decay, or AdamW over622

Adam. Importantly, the separation in performance between single-epoch unlimited training, training623

on smaller data budgets with more repetitions and two-set training persists across optimizers: the624

effects we present are robust.625

19

I Debunking Challenge Submission626

I.1 What commonly-held position or belief are you challenging?627

Provide a short summary of the body of work challenged by your results. Good summaries should628

outline the state of the literature and be reasonable, e.g. the people working in this area will agree629

with your overview. You can cite sources beside published work (e.g., blogs, talks, etc).630

Recent work on compute-optimal language models [Hoffmann et al., 2022] shows that many pre-631

viously trained large language models could have attained better performance for a given compute632

budget by training a smaller model on more data. Most prior large language models have been trained633

for a single epoch [Komatsuzaki, 2019, Brown et al., 2020] and some work explicitly advocates634

against reusing data [Hernandez et al., 2022]. Muennighoff et al. [2023] undertake an extensive study635

of multi-epoch training for LLMs on natural data. They find that, while models trained for a single636

epoch consistently have the best validation loss per compute, differences tend to be insignificant637

among models trained for up to 4 epochs and do not lead to differences in downstream task perfor-638

mance (but surely not to any improvements). There is thus a deep-rooted belief in the transformer639

community that single-epoch training yields the best performance, and only when data is constrained640

some studies show that for a limited number of epochs (up to 4) can still yield some benefits (though641

not comparable to training on more data). Multi-epoch training is viewed as a poor proxy in attempts642

to attain the performance of single-epoch training if data was abundant. Repetition of training sets for643

transformers is viewed as a bug, not a feature, only to be employed when data is scarce.644

I.2 How are your results in tension with this commonly-held position?645

Detail how your submission challenges the belief described in (1). You may cite or synthesize results646

(e.g. figures, derivations, etc) from the main body of your submission and/or the literature.647

In controlled transformer experiments we challenge the single-epoch paradigm: not only is repeated648

training on smaller data budgets powerful competition to single epoch-training (for the same number649

of training steps); in several cases repeated training on a smaller set allows to unlock capacities that650

are unattainable with single epoch training on a much larger dataset (see Figure 1 (Left) and Table 1).651

In some cases, increased repetition of a smaller set leads to emergent phenomena of learning.652

Moreover, we show that randomly selecting a small subset of the training data, and repeating them653

more often can significantly enhance performance or even overcome learning bottle necks (Figure 2).654

We discover a synergistic effect: neither training on the small set alone, nor training with unlimited655

data budget in one epoch would allow any learning at all - it is the combination of both that makes656

two-set training powerful! The fact that the repeated set can be chosen at random, and that curating657

repeated examples brings no improvement in performance sets it aside from curriculum learning and658

suggest that what matters, here, is seeing the exact same example several times.659

I.3 How do you expect your submission to affect future work?660

Perhaps the new understanding you are proposing calls for new experiments or theory in the area, or661

maybe it casts doubt on a line of research.662

In our study, the benefits of repetition are significant, but come in different flavors, from improving663

performance and accelerating learning, to allowing a new task to be learned, or be accessible to664

smaller models. Alternatively, small random subsets of the data repeated at high frequency can elicit665

similar effects. These findings have profound implications and should lead to a paradigm shift where666

the training set size becomes a mere hyper-parameter, not solely governed by the availability of data667

and the belief that more is always better.668

We can contemplate how our observations carry over to LLMs trained on natural data, and how they669

translate to actionable insights. While they seem at odds with the current practice of seeing training670

data only once, they might indicate that under the hood duplication in the training corpora mimics671

our two-set approach. If this is the case, intentional scrutiny of the training corpus to identify how672

to deliberately enact our observations could be beneficial for learning efficiency. And fine-tuning673

corpora, are often curated and feature less repetition. We believe two-set training, and associated674

methods, may directly prove beneficial for fine-tuning LLMs.675

20

	Description of Contributions and Background
	Repetition Helps
	Two-set Training
	Related Work
	Experimental settings and baselines
	Repetition Helps: Detailed evaluation of experiments
	Two-set Training: Detailed evaluation of experiments
	Learning dynamics and overfitting in math transformers
	Additional figures
	Ablations and variations
	Ablation results
	Cherry-picking the small sample
	Batching in two-set training: mixed batches are needed
	Shifting the small set
	From two-set to many-set training
	Varying the optimizer

	Debunking Challenge Submission
	What commonly-held position or belief are you challenging?
	How are your results in tension with this commonly-held position?
	How do you expect your submission to affect future work?

