
AutoProtoNet: Interpretability for Prototypical
Networks

Anonymous Author(s)
Affiliation
Address
email

Abstract

In meta-learning approaches, it is difficult for a practitioner to make sense of1

what kind of representations the model employs. Without this ability, it can be2

difficult to both understand what the model knows as well as to make meaningful3

corrections. To address these challenges, we introduce AutoProtoNet, which builds4

interpretability into Prototypical Networks by training an embedding space suitable5

for reconstructing inputs, while remaining convenient for few-shot learning. We6

demonstrate how points in this embedding space can be visualized and used to7

understand class representations. We also devise a prototype refinement method,8

which allows a human to debug inadequate classification parameters. We use9

this debugging technique on a custom classification task and find that it leads to10

accuracy improvements on a validation set consisting of in-the-wild images. We11

advocate for interpretability in meta-learning approaches and show that there are12

interactive ways for a human to enhance meta-learning algorithms.13

1 Introduction14

It is expensive and time-consuming to collect data to train current state-of-the-art image classification15

systems [13]. When a classification algorithm is deployed, new classes or labels cannot be easily16

added without incurring new costs related to re-training the model [1][2]. Meta-learning approaches17

for few-shot learning solve both these problems by training networks that learn quickly from little18

data with computationally inexpensive fine-tuning [23][20][15]. Despite these methods performing19

well on benchmark few-shot image classification tasks, these methods are not interpretable; a human20

may have no way of knowing why a certain classification decision was made. Additionally, the lack21

of interpretability limits any kind of debugging of network representations. In this work, we take a22

step toward the development of a meta-learning algorithm which can learn in a few-shot setting, can23

handle new classes at test time, is interpretable enough for a human to understand how the model24

makes decisions, and which can be debugged in a simple way.25

We revisit Prototypical Networks (ProtoNets) [20] as the focus of our study. ProtoNets are based on a26

simple idea: there exists an embedding space where images cluster around a single “prototype” for27

each class. Given the simplicity of this few-shot learning approach, it makes sense to ask: what does28

a prototype look like? And, have we learned an adequate prototype representation?29

The outcomes of our study can be summarized as follows:30

• We introduce AutoProtoNet, which merges ideas from autoencoders and Prototypical Net-31

works, to perform few-shot image classification and prototype reconstruction.32

• We use AutoProtoNet to visualize prototypes and find that they are comparable in qual-33

ity to those of an autoencoder. AutoProtoNet also remains accurate on few-shot image34

classification benchmarks.35

Submitted to the 5th Workshop on Meta-Learning at NeurIPS 2021, Sydney, Australia. Do not distribute.

• We devise a prototype refinement method, which can be used to debug inadequate prototypes,36

and we validate the performance of the resulting model using a novel validation set of in-37

the-wild images.38

Our goal in this work is to elucidate the benefits of learning embeddings that can be visualized and39

interpreted by humans. To the best of our knowledge, there is no meta-learning approach that allows40

for a human to play a role in the fine-tuning of the base model.41

2 Related Work42

2.1 Meta-learning and Prototypical Networks43

Before meta-learning, transfer learning was used to handle few-shot problems. In transfer learning, a44

feature extractor is trained on a large dataset, then fine-tuned for new tasks [2]. However, transfer45

learning has some drawbacks. For example, adding a new class may require re-training the model46

and, in the few-shot setting, overfitting few example images is possible.47

Meta-learning algorithms aim to learn a “base” model that can be quickly fine-tuned for a new task.48

The base model is trained using a set of training tasks {Ti}, sampled from some task distribution.49

Each task consists of support data, T si , and query data, T qi . Support data is used to fine-tune the50

model, while query data is used to evaluate the resulting model. Practically speaking, each task is an51

image classification problem involving only a small number of classes. The number of examples per52

class in the support set is called the shot, and the number of classes is called the way. For example, in53

5-way 1-shot learning, we are given 1 example for each of the 5 classes to use for fine-tuning.54

Following the meta-learning framework presented in [8], Algorithm 1 can be used as a general way55

to understand both metric-learning methods [23] [20] and gradient-based methods like MAML [6].56

Algorithm 1 The meta-learning framework
Input: Base model, Fθ
Input: Fine-tuning algorithm, A
Input: Learning rate, γ
Input: Distribution over tasks, p(T)

1: Initialize θ, the weights of F
2: while not done do
3: Sample batch of tasks {Ti}ni=1, where Ti ∼ p(T) and Ti = (T si , T

q
i)

4: for i=1,...,n do
5: θi ← A(θ, T si) . Fine-tune model on T si (inner loop)
6: gi ← ∇θL(Fθi , T

q
i)

7: end for
8: θ ← θ − γ

n

∑
i gi . Update base model parameters (outer loop)

9: end while

For ProtoNets [20], the base model Fθ : RD → RM is an embedding network which takes an image57

x ∈ RD as input and outputs an embedding vector of dimension M . Suppose, for example, we have58

a K-way task Ti = (T si , T
q
i) where T si = {(xi,1, yi,1), (xi,2, yi,2), ..., (xi,N , yi,N)}, and where59

yi,j ∈ {1, ...,K}. Additionally, let Sk ⊂ T si denote the set of support examples of class k. Then, a60

prototypical network computes a prototype pk for each class k by computing a class-wise mean of61

embedded support examples:62

pk =
1

|Sk|
∑

(x,y)∈Sk

Fθ(x) (1)

Thus, in the case of ProtoNets, the fine-tuning algorithm A does not update model parameters θ, but63

instead it computes a set of prototypes which the base model will use to classify query data. We64

can think of A as a function taking both embedding network parameters θ and support data T si and65

returning a tuple θi consisting of a set of prototypes and an unchanged set of model parameters;66

i.e., A(θ, T si) = ({pk}ki=0, θ) = θi. In this way, Fθi in Algorithm 1 refers to using the base67

2

model parameters θ and the set of prototypes {pk}ki=0 during inference. Given a distance function68

d : RM × RM → [0,∞) and a query point x, a ProtoNet produces a distribution over classes based69

on a softmax over distances to the prototypes in embedding space:70

pθ(y = k|x) = exp(−d(Fθ(x), pk))∑
k′ exp(−d(Fθ(x), pk′))

(2)

Training proceeds by minimizing the negative log-likelihood L(θ) = − log pθ(y = k|x) of the true71

class k using SGD. Unfortunately, ProtoNet does not provide a way to understand the embedding72

space or visualize pk – a problem we directly address in this work.73

2.2 Understanding Meta-learning Approaches74

Investigating the ability of meta-learning methods to adapt to new tasks has been the subject of75

numerous studies. The success of meta-learning approaches certainly seems to suggest that the76

representations learned by meta-learning must be different than those learned through standard77

training [9]. Goldblum et al. [9] find that meta-learned feature extractors outperform classically78

trained models of the same architecture and suggest that meta-learned features are qualitatively79

different from conventional features. While work has been done to understand how the meta-learning80

networks train [10][7], there has been little to no focus on developing tools to interpret the meta-81

learned models.82

2.3 Interpretability in Convolutional Models83

In safety or security-critical applications, understanding why a classification system made a certain84

prediction is important. Just because a classification system is highly accurate, does not mean the85

network has learned the right kinds of features [11]. We believe that a system that can demonstrate86

its logic semantically or visually is more likely to be trusted and used. Being that a ProtoNet is87

primarily a convolutional neural network, it is appropriate to understand progress on interpretability88

of convolutional neural networks (CNN).89

There are many research branches within the umbrella of CNN interpretability including visualizations90

of intermediate network layers [25][16][19][21], diagnosis of CNN representations [27][26], and91

building explainable models [28]. In contrast to works which focus their attention on CNN layers92

and activations, we take a more specific approach in visualizing embedding space for ProtoNets.93

Zhang et al. [28] propose a compelling method of modifying convolutional layers so that each filter94

learns to represent a particular object part, thus allowing for each filter to correspond to a semantically95

meaningful image feature. We believe there could be interesting work incorporating this technique96

into meta-learning approaches, but is not appropriate for a shallow embedding network like the one97

we employ for ProtoNets.98

2.4 Generative Models99

Work on Variational Prototyping Encoder (VPE) [12] is most similar to ours in that a meta-task is100

used to learn an embedding space suitable for both few-shot learning and unseen data representation.101

In contrast, we do not focus on the image translation task from real images to prototypes and instead102

focus our attention on visualizing prototypes for interpretability and refinement.103

There are also a number of works which investigate connections between autoencoder architectures104

and meta-learning, but which are not directly applicable for interpretability of few-shot image classi-105

fication. For example, Wu et al. [24] propose the Meta-Learning Autoencoder (MeLA) framework106

which learns a recognition and generative model to transform a single-task model into one that can107

quickly adapt to new tasks using few examples. However, their framework is meant for the more108

general understanding of tasks like physical state estimation and video prediction, as opposed to the109

image classification tasks which we focus on. Similarly, Epstein et al. [5] develop a meta-learning110

framework consisting of joint autoencoders for the purpose of learning multiple tasks simultaneously,111

but this approach is tailored more for the field of multi-task learning.112

3

Figure 1: Visualization of the forward pass through AutoProtoNet.

3 Algorithm113

Our interpretability algorithm takes advantage of the simplicity of the ProtoNet classification method.114

In particular, a ProtoNet classifies query data according to the class of the prototype which the query115

data’s embedding is nearest to, typically in Euclidean space. This classification method raises an116

obvious question: what does a prototype look like? To answer this question, we extend ProtoNets117

with a decoder to reconstruct images from embeddings.118

3.1 Data119

The CIFAR-FS dataset [3] is a recent few-shot image classification benchmark consisting of all 100120

classes from CIFAR-100 [14]. Classes are randomly split into 64, 16, and 20 for meta-training,121

meta-validation, and meta-testing respectively. Every class contains 600 images of size 32× 32.122

The miniImageNet dataset [23] is another standard benchmark for few-shot image classification. It123

consists of 100 randomly chosen classes from ILSVRC 2012 [4], which are split into 64, 16, and 20124

classes for meta-training, meta-validation, and meta-testing respectively. For every class, there are125

600 images of size 84 × 84. We adopt the commonly-used Ravi and Larochelle split proposed in126

[18].127

3.2 Architecture128

AutoProtoNet consists of an encoder-decoder architecture which compresses the input to produce an129

embedding which must be reconstructed by the decoder. There 4 sequential convolution blocks for130

the encoder and 4 sequential transpose convolution blocks for the decoder. The details of these blocks131

can be found in Table 2 of Appendix B. A forward pass through the model is shown in Figure 1.132

Output padding is used in the second transpose convolution block of the decoder to ensure that133

the output size of the final transpose convolution block matches the input 84 × 84 dimensions of134

miniImageNet images, but no output padding modifications are necessary for CIFAR-FS images.135

Our architectural design choices imply that a 84 × 84 miniImageNet image is embedded as 1600-136

dimensional vector, while a 32× 32 CIFAR-FS image is embedded as 256-dimensional vector.137

3.3 Training138

Training AutoProtoNet is not much different from training a ProtoNet. The main difference is that139

we augment the meta-training loop with a reconstruction loss to regularize the embedding space and140

make it suitable for image reconstruction. We display the forward pass through AutoProtoNet in141

Figure 1 and adapt the meta-learning framwork from Section 2.1 to describe the meta-training of142

AutoProtoNet in Algorithm 2.143

Our “base” model now consists of parameters ψ which is a concatenation of encoder network144

parameters θ and decoder network parameters φ. In Line 5 of Algorithm 2, we pass both support145

and query data from the current task Ti through the encoder and decoder to produce a reconstruction146

T̂i. This reconstruction is then compared to the original data using mean squared error (MSE) loss.147

4

Algorithm 2 AutoProtoNet Meta-Learning
Input: Encoder and decoder networks, Fθ and Gφ, where ψ = [θ;φ]
Input: Fine-tuning algorithm, A
Input: Reconstruction loss weight, λ
Input: Learning rate, γ
Input: Distribution over tasks, p(T)

1: Initialize θ, φ, the weights of encoder and decoder
2: while not done do
3: Sample batch of tasks {Ti}ni=1, where Ti ∼ p(T) and Ti = (T si , T

q
i)

4: for i=1,...,n do
5: T̂i ← Gφ(Fθ(Ti)) . Reconstruct task data
6: LR ← MSE(Ti, T̂i) . Compute reconstruction loss
7: θi ← A(θ, T si) . Compute prototypes (inner loop)
8: LC ← NLL(Fθi , T

q
i) . Compute classification loss

9: L ← LC + λLR
10: gi ← ∇ψL
11: end for
12: ψ ← ψ − γ

n

∑
i gi . Update base model parameters (outer loop)

13: end while

The finetuning algorithm in Line 7 of Algorithm 2 is identical to the description in Section 2.1,148

where θi = ({pk}ki=0, θ) is a tuple consisting of a set of prototypes for every class and the encoder149

network’s model parameters. Both of these are used to compute the likelihood of the true labels150

of our query data as in Equation 2, which is maximized by minimizing the negative log-likelihood151

(NLL). Finally, the classification loss LC and the reconstruction loss LR are summed so they can be152

jointly optimized.153

We meta-train ProtoNet and AutoProtoNet on both miniImageNet and CIFAR-FS. To create a154

prototype reconstruction baseline, we also train two models which make use of ILSVRC 2012155

[4], which we refer to as ImageNet Autoencoder and ImageNet AutoProtoNet. Note that because156

miniImageNet is a subset of ILSVRC 2012, the ImageNet models also provide insight into whether157

more data during pretraining offers any benefit for meta-learning or prototype reconstructions. All158

training was performed on a single NVIDIA Quadro P6000 from our internal cluster. Training details159

for each model used in this work are described below.160

ProtoNet Using Algorithm 1, we meta-train a standard ProtoNet for 30 epochs using SGD. Our161

SGD optimizer uses Nesterov momentum of 0.9, weight decay of 5× 10−4, and a learning rate of162

0.1, which we decrease to 0.06 after 20 epochs.163

AutoProtoNet Using Algorithm 2, we meta-train an AutoProtoNet for 30 epochs using SGD. We164

use the same SGD settings as in ProtoNet training. We use a reconstruction loss weight λ = 1.165

Following [20], both ProtoNet and AutoProtoNet models were trained using 20-way 5-shot episodes,166

where each class contains 15 query points per episode, for 30 epochs.167

ImageNet Autoencoder We train an autoencoder of the same architecture as AutoProtoNet using168

only mean squared error (MSE) loss on ILSVRC 2012 [4] for 20 epochs. We use the SGD optimizer169

with Nesterov momentum of 0.9, weight decay of 5 × 10−4, and a learning rate of 0.1, which we170

decrease by a factor of 10 every 5 epochs. To evaluate this model’s performance on benchmark171

few-shot image classification datasets, we make use of the only the encoder to produce embeddings172

and produce classification labels using the standard ProtoNet classification rule.173

ImageNet AutoProtoNet We use the encoder and decoder weights from the ImageNet Autoencoder174

as a starting point for the weights of an AutoProtoNet. All other training details are identical to that175

of AutoProtoNet, which we meta-train using Algorithm 2.176

The 5-way 5-shot test set accuracies of all models used in this work are shown in Table 1. AutoPro-177

toNet is able to maintain the same level of few-shot image classification accuracy on benchmark178

datasets as a standard ProtoNet. While we expected AutoProtoNet to have an advantage due to179

5

Table 1: 5-way 5-shot test set accuracies with 95% confidence intervals.
Model miniImageNet CIFAR-FS

ImageNet Autoencoder 36.83± 0.48% 46.08± 0.58%
ImageNet AutoProtoNet 70.76± 0.51% 79.65± 0.52%

ProtoNet 70.20± 0.52% 80.31± 0.51%
AutoProtoNet 70.61± 0.52% 80.16± 0.52%

having to incorporate features useful for reconstruction into embeddings, our results suggest that180

these reconstruction features are not always useful. Given the additional ILSVRC 2012 [4] data181

during pretraining, we also expected that ImageNet AutoProtoNet would outperform all other models,182

but our test results demonstrate that representations learned for image reconstruction are not too183

helpful for few-shot image classification. Test set accuracies for ImageNet Autoencoder underscore184

the point that an embedding space trained for only reconstruction is by no means competitive for185

few-shot classification, though it does achieve better than chance accuracy.186

4 Experiments187

4.1 Prototype Visualization188

While a standard ProtoNet employs an intuitive nearest-neighbor classification rule for query points,189

there is no intuitive way for a user to understand what a prototype embedding represents. Prototypical190

embeddings are crucial to understanding the decision boundaries of ProtoNets. The idea is that a191

ProtoNet embeds similar images nearby in embedding space, but without a way to visualize these192

embeddings, we argue that a human practitioner would be unable to debug or improve their deployed193

model. AutoProtoNet addresses this issue by learning an embedding space that is suitable for image194

reconstruction.195

Figure 2 displays prototype visualizations given a validation support set from miniImageNet and196

CIFAR-FS. The ImageNet Autoencoder (IA) and ImageNet AutoProtoNet (IAP) were both pretrained197

on all of ILSVRC 2012 [4], and so classes present in this validation support set are not novel classes198

because miniImageNet is a subset of ILSVRC 2012. However, in the case of the AutoProtoNet199

(AP), the classes in this validation support set are novel and the synthesized prototype images200

remain qualitatively on-par with the models trained with more data (such as ImageNet Autoencoder),201

suggesting that meta-tasks during training were sufficient to regularize an embedding space suitable202

for image synthesis. Analyzing the prototype reconstructions from CIFAR-FS in Figure 2(b), we see203

that prototype visualizations are generally too blurry to help a human determine whether the model204

has learned a sufficient representation of a class. We believe part of the problem is the low resolution205

and size of CIFAR-FS images.206

4.2 Human-guided Prototype Refinement207

To highlight the benefits of an embedding space suitable for image reconstruction, we designed an208

experiement to demonstrate how a human can guide prototype selection at test-time using AutoPro-209

toNet. Assuming the user knows the kinds of images the model will encounter at inference time and210

given the ability to capture one more image, could we refine an initial prototype to achieve higher211

accuracy on the validation set?212

Data Collection Based on objects we had around the house, we chose to formulate a 5-way 1-shot213

classification problem between “door knob”, “frying pan”, “light switch”, “orange”, and “water214

bottle”. Note that “orange” and “frying pan” are classes in the miniImageNet training split, but all215

other classes are novel. Because we sought to demonstrate how one might use an AutoProtoNet in a216

real-world setting, all 55 images in this task are novel, in-the-wild images, captured using an iPhone217

12. Our support set consists of 5 images (1 image per class). Our validation set consists of 50 images218

(10 images per class) and can be found in Figure 4 of Appendix A.219

6

(a) miniImageNet (b) CIFAR-FS

Figure 2: Support sets for a 5-way 5-shot validation task of miniImageNet (a) and CIFAR-FS (b).
The embeddings of every image within a class are averaged to form a prototype embedding which is
then synthesized as an image by using the decoder of an ImageNet Autoencoder (IA), an ImageNet
AutoProtoNet (IAP), and an AutoProtoNet (AP).

Prototype Refinement Prototype refinement is a debugging technique meant for cases in which a220

human believes prototype visualization may not be representative of the class. To exaggerate the idea221

of prototype refinement, we purposefully choose the back-side of a frying pan as a support image for222

class 1 (“frying pan”) so that the prototype visualization has undesirable image features. Generally, a223

prototype for an arbitrary object of a novel class is likely to be visually ambiguous if the embedding224

network did not train on a suitable dataset, so this setup is conceivable in the real-world.225

For our classification model, we make use of the AutoProtoNet described in Section 3.3. To apply226

AutoProtoNet to this new classification task, we “fine-tine” AutoProtoNet by providing a support227

set shown in Figure 3(a). After meta-learning, an AutoProtoNet’s only changeable parameters are228

its prototypes which, by design, can be reconstructed into images using the decoder. By visually229

understanding an AutoProtoNet’s embedding space, a user can choose to change image features230

of a prototype reconstruction, thus changing the prototype itself. In contrast, a standard ProtoNet231

performs inference using its support data, which is visually inaccessible and uninterpretable.232

Using a newly captured image x ∈ Rd, we use the encoder Fθ to generate an embedding p = Fθ(x).233

Given an initial prototype pk for class k, we use the decoder Gφ to synthesize images x̂i ∈ Rd for234

interpolations between pk and p as follows:235

x̂i = Gφ((1− α)pk + αp) α ∈ [0, 1] (3)

Results Using the initial prototypes from Figure 3(a), AutoProtoNet achieves 80% accuracy on the236

validation set consisting of 50 images from all 5 classes. The 10 misclassified images are all of the237

7

(a) Support set and prototype visualizations (b) New image and corresponding embedding

(c) Interpolating 10 steps from initial prototype to new image embedding

(d) New set of prototypes

Figure 3: Steps for human-guided prototype selection in a 5-way 1-shot task. Step (a): a human
chooses an initial prototype to refine. Step (b): a human captures one additional image to guide
prototype refinement. Step (c): Interpolations between the initial prototype and the new image
embedding (index 9) are shown to the human and a new prototype selection is made. Step (d): A new
set of prototypes is set, with class 2 having been refined.

“frying pan” class. After debugging the “frying pan” prototype by capturing an additional image of238

a correctly-oriented frying pan and choosing an interpolation, the resulting embedding is used as239

the new support as shown in Figure 3(d). Under the new human-guided prototypes, AutoProtoNet240

achieves an accuracy of 98% on the validation set, where the single misclassified image is of the241

“door knob” class.242

The novelty of our method lies in the ability for a human to fine-tune the model in an interactive243

way, leading to a performance increase in validation set accuracy. In this example, AutoProtoNet’s244

decoder allowed for the visualization of the prototype embedding, which we found to be visually245

incorrect. Thus, we captured an additional, more representative image to designate the direction in246

which to move the initial prototype to fit a human-designated criteria.247

5 Conclusion248

With AutoProtoNet, we present a step toward meta-learning approaches capable of giving some249

insight into their learned parameters. We argue that if meta-learning approaches are to be useful in250

practice, there should be ways for a human to glean some insight into why a classification might have251

been made. Through prototype visualizations and a prototype refinement method, we highlight the252

benefits of AutoProtoNet and take steps to improve a simple few-shot classification algorithm by253

making it more interpretable while maintaining the same degree of accuracy as a standard ProtoNet.254

Our proposed method could likely be extended to Relation Networks [22], MetaOptNet [15], or255

R2D2 [3], with a decoder network to visualize embeddings. It may also be possible to meta-train a256

variational autoencoder to learn a latent space more suitable for detailed image synthesis. We believe257

generative models can play a larger role in interpretability of meta-learning algorithms.258

To confirm the effectiveness of our interpretability results, we intend to perform a human subjects259

study where a human determines whether prototype visualizations help in understanding classification260

results. We also recognize the limits of using a small dataset to evaluate the performance of our261

prototype refinement method. We leave the creation of a larger, more diverse validation set to future262

work.263

8

References264

[1] H. Altae-Tran, B. Ramsundar, A. S. Pappu, and V. S. Pande. Low data drug discovery with one-265

shot learning. CoRR, abs/1611.03199, 2016. URL http://arxiv.org/abs/1611.03199.266

[2] Y. Bengio. Deep learning of representations for unsupervised and transfer learning. In Proceed-267

ings of ICML workshop on unsupervised and transfer learning, pages 17–36. JMLR Workshop268

and Conference Proceedings, 2012.269

[3] L. Bertinetto, J. F. Henriques, P. H. S. Torr, and A. Vedaldi. Meta-learning with differentiable270

closed-form solvers. CoRR, abs/1805.08136, 2018. URL http://arxiv.org/abs/1805.271

08136.272

[4] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical273

image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition, pages274

248–255, 2009. doi: 10.1109/CVPR.2009.5206848.275

[5] B. Epstein, R. Meir, and T. Michaeli. Joint autoencoders: A flexible meta-learning framework.276

In M. Berlingerio, F. Bonchi, T. Gärtner, N. Hurley, and G. Ifrim, editors, Machine Learning277

and Knowledge Discovery in Databases, pages 494–509, Cham, 2019. Springer International278

Publishing. ISBN 978-3-030-10925-7.279

[6] C. Finn, P. Abbeel, and S. Levine. Model-agnostic meta-learning for fast adaptation of deep280

networks. CoRR, abs/1703.03400, 2017. URL http://arxiv.org/abs/1703.03400.281

[7] N. Frosst, N. Papernot, and G. Hinton. Analyzing and improving representations with the soft282

nearest neighbor loss, 2019.283

[8] M. Goldblum, L. Fowl, and T. Goldstein. Robust few-shot learning with adversarially queried284

meta-learners. CoRR, abs/1910.00982, 2019. URL http://arxiv.org/abs/1910.00982.285

[9] M. Goldblum, S. Reich, L. Fowl, R. Ni, V. Cherepanova, and T. Goldstein. Unraveling meta-286

learning: Understanding feature representations for few-shot tasks. CoRR, abs/2002.06753,287

2020. URL https://arxiv.org/abs/2002.06753.288

[10] W. R. Huang, Z. Emam, M. Goldblum, L. Fowl, J. K. Terry, F. Huang, and T. Goldstein.289

Understanding generalization through visualizations. CoRR, abs/1906.03291, 2019. URL290

http://arxiv.org/abs/1906.03291.291

[11] A. Ilyas, S. Santurkar, D. Tsipras, L. Engstrom, B. Tran, and A. Madry. Adversarial examples292

are not bugs, they are features, 2019.293

[12] J. Kim, T. Oh, S. Lee, F. Pan, and I. S. Kweon. Variational prototyping-encoder: One-shot294

learning with prototypical images. CoRR, abs/1904.08482, 2019. URL http://arxiv.org/295

abs/1904.08482.296

[13] A. Kolesnikov, L. Beyer, X. Zhai, J. Puigcerver, J. Yung, S. Gelly, and N. Houlsby. Large scale297

learning of general visual representations for transfer. CoRR, abs/1912.11370, 2019. URL298

http://arxiv.org/abs/1912.11370.299

[14] A. Krizhevsky. Learning multiple layers of features from tiny images. 2009.300

[15] K. Lee, S. Maji, A. Ravichandran, and S. Soatto. Meta-learning with differentiable convex301

optimization. CoRR, abs/1904.03758, 2019. URL http://arxiv.org/abs/1904.03758.302

[16] A. Mahendran and A. Vedaldi. Understanding deep image representations by inverting them.303

CoRR, abs/1412.0035, 2014. URL http://arxiv.org/abs/1412.0035.304

[17] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,305

N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani,306

S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. Pytorch: An imperative style, high-307

performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-308

Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems 32,309

pages 8024–8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/310

9015-pytorch-an-imperative-style-high-performance-deep-learning-library.311

pdf.312

9

http://arxiv.org/abs/1611.03199
http://arxiv.org/abs/1805.08136
http://arxiv.org/abs/1805.08136
http://arxiv.org/abs/1805.08136
http://arxiv.org/abs/1703.03400
http://arxiv.org/abs/1910.00982
https://arxiv.org/abs/2002.06753
http://arxiv.org/abs/1906.03291
http://arxiv.org/abs/1904.08482
http://arxiv.org/abs/1904.08482
http://arxiv.org/abs/1904.08482
http://arxiv.org/abs/1912.11370
http://arxiv.org/abs/1904.03758
http://arxiv.org/abs/1412.0035
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

[18] S. Ravi and H. Larochelle. Optimization as a model for few-shot learning. In ICLR, 2017.313

[19] K. Simonyan, A. Vedaldi, and A. Zisserman. Deep inside convolutional networks: Visualising314

image classification models and saliency maps, 2014.315

[20] J. Snell, K. Swersky, and R. S. Zemel. Prototypical networks for few-shot learning. CoRR,316

abs/1703.05175, 2017. URL http://arxiv.org/abs/1703.05175.317

[21] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller. Striving for simplicity: The all318

convolutional net, 2015.319

[22] F. Sung, Y. Yang, L. Zhang, T. Xiang, P. H. S. Torr, and T. M. Hospedales. Learning to320

compare: Relation network for few-shot learning. CoRR, abs/1711.06025, 2017. URL http:321

//arxiv.org/abs/1711.06025.322

[23] O. Vinyals, C. Blundell, T. P. Lillicrap, K. Kavukcuoglu, and D. Wierstra. Matching networks323

for one shot learning. CoRR, abs/1606.04080, 2016. URL http://arxiv.org/abs/1606.324

04080.325

[24] T. Wu, J. Peurifoy, I. L. Chuang, and M. Tegmark. Meta-learning autoencoders for few-shot326

prediction, 2018.327

[25] M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. CoRR,328

abs/1311.2901, 2013. URL http://arxiv.org/abs/1311.2901.329

[26] Q. Zhang, R. Cao, F. Shi, Y. N. Wu, and S.-C. Zhu. Interpreting cnn knowledge via an330

explanatory graph, 2017.331

[27] Q. Zhang, R. Cao, Y. N. Wu, and S.-C. Zhu. Growing interpretable part graphs on convnets via332

multi-shot learning, 2017.333

[28] Q. Zhang, Y. N. Wu, and S.-C. Zhu. Interpretable convolutional neural networks. In Proceedings334

of the IEEE Conference on Computer Vision and Pattern Recognition, pages 8827–8836, 2018.335

Checklist336

1. For all authors...337

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s338

contributions and scope? [Yes]339

(b) Did you describe the limitations of your work? [Yes] In Section 4.1 and in the340

conclusion Section 5.341

(c) Did you discuss any potential negative societal impacts of your work? [N/A] We342

believe there are no negative impacts since we use already publicly existing work.343

(d) Have you read the ethics review guidelines and ensured that your paper conforms to344

them? [Yes]345

2. If you are including theoretical results...346

(a) Did you state the full set of assumptions of all theoretical results? [N/A]347

(b) Did you include complete proofs of all theoretical results? [N/A]348

3. If you ran experiments...349

(a) Did you include the code, data, and instructions needed to reproduce the main experi-350

mental results (either in the supplemental material or as a URL)? [Yes] In Appendix C.351

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they352

were chosen)? [Yes] Training details outlined in Section 3.3.353

(c) Did you report error bars (e.g., with respect to the random seed after running experi-354

ments multiple times)? [Yes]355

(d) Did you include the total amount of compute and the type of resources used (e.g., type356

of GPUs, internal cluster, or cloud provider)? [Yes] Described in Section 3.3.357

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...358

10

http://arxiv.org/abs/1703.05175
http://arxiv.org/abs/1711.06025
http://arxiv.org/abs/1711.06025
http://arxiv.org/abs/1711.06025
http://arxiv.org/abs/1606.04080
http://arxiv.org/abs/1606.04080
http://arxiv.org/abs/1606.04080
http://arxiv.org/abs/1311.2901

(a) If your work uses existing assets, did you cite the creators? [Yes] In Appendix C.359

(b) Did you mention the license of the assets? [Yes] In Appendix C.360

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]361

In Appendix C.362

(d) Did you discuss whether and how consent was obtained from people whose data you’re363

using/curating? [Yes] In Appendix C.364

(e) Did you discuss whether the data you are using/curating contains personally identifiable365

information or offensive content? [N/A] Data does not contain identifiable information.366

5. If you used crowdsourcing or conducted research with human subjects...367

(a) Did you include the full text of instructions given to participants and screenshots, if368

applicable? [N/A]369

(b) Did you describe any potential participant risks, with links to Institutional Review370

Board (IRB) approvals, if applicable? [N/A]371

(c) Did you include the estimated hourly wage paid to participants and the total amount372

spent on participant compensation? [N/A]373

11

A Validation Set for Custom Classification Task374

In Figure 4, we display the 50 images of our custom 5-way validation set. The images from the “light375

switch” and “door knob” classes are diverse in terms of shape, pose, and lighting condition.376

Figure 4: Validation set for experiment described in Section 4.2

B Architecture Details377

In our description of the AutoProtoNet architecture in Table 2, we display output sizes for the first378

Conv Block of the encoder and the first Conv Transpose Block of the decoder, assuming an 84× 84379

miniImageNet image is used as input.380

Table 2: AutoProtoNet Architecture Components
Conv Block Conv Transpose Block

Layer Parameters Output Size Layer Parameters Output Size

Conv 3× 3, 64 64× 84× 84 Conv Transpose 2× 2, ∗2 64× 10× 10
Batch Norm Batch Norm
Max Pool 3× 3, /2 64× 42× 42 Conv 3× 3, 64 64× 10× 10

C Implementation Details381

We use PyTorch [17] and work on a fork of code used for [8], which uses the MIT License. Our fork382

can be used to reproduce experiments and is available here: REDACTED.383

12

	Introduction
	Related Work
	Meta-learning and Prototypical Networks
	Understanding Meta-learning Approaches
	Interpretability in Convolutional Models
	Generative Models

	Algorithm
	Data
	Architecture
	Training

	Experiments
	Prototype Visualization
	Human-guided Prototype Refinement

	Conclusion
	Validation Set for Custom Classification Task
	Architecture Details
	Implementation Details

