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ABSTRACT

Crowd localization plays a crucial role in visual scene understanding towards pre-
dicting each pedestrian location in a crowd, thus being applicable to various down-
stream tasks. However, existing approaches suffer from significant performance
degradation due to differences in head scale distributions (scale shift) between
training and testing data, a challenge known as domain generalization (DG). This
paper aims to comprehend the nature of scale shift within the context of domain
generalization for crowd localization models. To this end, we address three key
questions: (i) how to quantify the scale shift influence on DG task, (ii) why does
this influence occur, (iii) how to mitigate the influence. Specifically, we first es-
tablish a benchmark, ScaleBench, and reproduce 20 advanced DG algorithms, to
quantify the influence. Through extensive experiments, we demonstrate the limi-
tations of existing algorithms and highlight the under-explored nature of this issue.
To further understand its behind reason, we provide a rigorous theoretical analysis
on scale shift. Building on this analysis, we further propose a simple yet effec-
tive algorithm called Semantic Hook to mitigate the influence of scale shift on
DG, which also serves as a case study revealing three significant insights for fu-
ture research. Our results emphasize the importance of this novel and applicable
research direction, which we term Scale Shift Domain Generalization.

1 INTRODUCTION

Crowd localization (Liu et al., 2019; Gao et al., 2020; Song et al., 2021; Liang et al., 2022; Han et al.,
2023; Chen et al., 2024) aims to accurately identify the positions of individuals, particularly in dense
and diverse population scenarios. It provides quantity of applicable utilities for downstream tasks.
For example, pinpointing the exact location of each individual within a crowd can improve public
surveillance (Li et al., 2013), facilitate event management (Mundhenk et al., 2016), and assist in
urban planning (Marsden et al., 2018). Moreover, the frameworks for crowd localization are appli-
cable to dense cell (Morelli et al., 2021) and pathology detection (Lagogiannis et al., 2023), thereby
advancing clinical diagnosis. Hence, previous researchers have developed a variety of supervised
crowd localization algorithms.

However, the generalization performance of these fully-supervised models often fall short when
exposed to unseen data distributions, a challenge commonly referred to as domain shift (Wang et al.,
2022). Over the years, the community has made substantial efforts to address various forms of
domain shifts, such as dataset shifts (Du et al., 2023) (e.g., from SHHA (Zhang et al., 2016) to
QNRF (Idrees et al., 2018)), scene shifts (Wang et al., 2019; Gong et al., 2022) (e.g., from street
to stadium), and weather shifts (Peng & Chan, 2024) (e.g., from sunny to snowy). It is widely
accepted that such domain shifts between the training (source) and testing (target) domains can lead
to performance degradation in crowd analysis models. Recently, Ma et al. (2021) have identified
that the head scale distribution of crowd datasets significantly influences the performance of crowd
analysis models when crossing datasets evaluation. However, it is still unexplored how scale shift
affects the performance under domain generalization (Wang et al., 2022) scenario.

Hence, we conduct realistic experiments to reveal that the generalization performance of state-of-
the-art (sota) crowd locators degrade significantly when scale shift occurs across domain. Specifi-
cally, as shown by Table 1, we firstly divide existing datasets into two domains (like Tiny and Big)
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Table 1: Localization F1 score (%) results in the scale shift scenario, where A 7→ B indicates that
the model is trained and validated on domain A and tested on domain B. When A = B, this denotes
the in-distribution (InD) situation; otherwise, it indicates out-of-distribution (OOD). The Tiny and
Big represents the two domains, with head scale distribution difference. The values in the brackets
denote the performance degradation from InD to OOD. See Appendix D.5 for detailed setting.

Setting
Scale Distribution IIM P2PNet CLTR SteererNet PET

KL-Divergence (Gao et al., 2020) (Song et al., 2021) (Liang et al., 2022) (Han et al., 2023) (Liu et al., 2023)
Tiny 7→Tiny 0.02 62.05 58.15 70.90 78.52 62.32
Big 7→Tiny 18.36 11.25 (50.80↓) 12.00 (46.15↓) 9.71 (61.19↓) 47.59 (30.93↓) 10.42 (51.90↓)
Big 7→Big 0.45 83.46 73.17 80.77 93.27 79.96
Tiny 7→Big 17.35 62.20 (21.26↓) 41.72 (31.45↓) 49.12(31.65↓) 69.52 (23.75↓) 43.87 (36.09↓)

according to their average head scale1. And we independently train two crowd locators on the train-
ing set of Tiny and Big domains, and we test their corresponding localization performance on the
test set of Tiny or Big domains. Take the performance on the Tiny domain’ s test set as an example.
When PET (Liu et al., 2023) is trained on Tiny domain’ s train set, its F1 score is 62.32%, while
this metric decreases to 10.42% when training set is from Big domain, with a performance degrada-
tion of 51.9%. And we observe consistency phenomenon over other sota locators, which strongly
support the significance of scale shift for domain generalization.

Despite recognizing the impact of scale shifts on domain generalization, this issue has not been
sufficiently addressed in the literature. Previous work mainly concentrate on how to capture differ-
ent scales in a fully-supervised paradigm (Han et al., 2023; Wang et al., 2023a). As for the scale
shift under cross dataset evaluation, SDNet (Ma et al., 2021), it focuses on “domain adaptation”2,
in which the target domain is accessible during training. Our task “domain generalization” assumes
the whole target domain should be unseen during training, which is more pertinent to the deploy-
ment of crowd models in open-set environments. Furthermore, much of the existing research on
cross-domain crowd analysis (Du et al., 2023; Gong et al., 2022; Du et al., 2023; Peng & Chan,
2024) overlooks a crucial aspect: there is no assurance of performance retention on the source do-
main. In real applications where crowd locators may operate in open-set scenarios, the target scales
remain uncertain. Thus, it is essential to maintain performance on both out-of-distribution and in-
distribution data. Therefore, it is critical to answer: How can we effectively generalize crowd
localization models to unseen scales while preserving performance on seen scales?

In this paper, we present as far as we know the FIRST study on scale shift domain generalization in
crowd localization. Our research addresses three key questions: 1) Influence: How to quantify the
influence of scale shift on the domain generalization performance of crowd localization? 2) Analy-
sis: Why does this influence occur? 3) Mitigation: What strategies can be employed to mitigate this
influence? We provide a comprehensive analysis to answer these questions.

• Influence: ScaleBench as a benchmark to quantify scale shift and its influence. In Sec. 2,
we establish a scale benchmark dataset “ScaleBench” with 17,138 images to officially quantify
scale shift and its influence on domain generalization with crowd localization tasks. Specifically,
we manually annotate over 1.5 million bounding boxes for datasets (SHHA (Zhang et al., 2016),
SHHB (Zhang et al., 2016), and QNRF (Idrees et al., 2018)) and integrate with originally anno-
tated datasets (SHRGBD (Lian et al., 2019), JHU (Sindagi et al., 2020), and NWPU (Wang et al.,
2020b)). Furthermore, we propose an innovative domain partitioning method to categorize the
images in ScaleBench into four distinct domains based on progressive scale distributions. This
benchmark is then utilized to evaluate domain generalization ability under scale shift conditions.
Then, we designed a PyTorch codebase and conducted a comparative experiments of 20 state-of-
the-art domain generalization algorithms3, most of which exhibits even worse performance than
baseline, thus reveals the under-studied nature of this issue.

1See Sec. 2 for details.
2SDNet includes domain adaptation and test-time domain adaptation. See Sec.3.1 and 3.2 of Wang et al.

(2022) for detailed task difference with domain generalization.
3Codebase has been attached to the supplementary material, and will be open-sourced along with annotated

dataset after double-blind review.
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• Analysis: Scale Shift as Mixed Shifts in Diversity and Correlation. In Sec. 3.1, we investigate
the reasons behind the unsatisfactory performance of domain generalization models and find that
scale shift affects domain generalization by causing the model to learn a spurious association
between scale and target. By employing established definitions of domain shifts, which include
diversity and correlation shifts (Ye et al., 2022), we prove that scale shift embodies a combination
of both. This elucidates why existing domain generalization algorithms struggle with scale shifts.

• Mitigation: Semantic Hook as a novel solution and case study for future works. In Sec. 3.2,
we introduce an algorithm, Semantic Hook, designed to strengthen the association between se-
mantic features and task predictions. Using Semantic Hook as a case study, our extensive analysis
provides three key insights for future research on scale shift domain generalization: 1) Enhancing
the connection between final predictions and semantic features while minimizing scale feature
influence. 2) Traditional image interpolation methods, while useful, have limited efficacy. 3) In-
creasing training data yields marginal benefits if the data maintain a consistent scale distribution.

2 SCALE BENCH

2.1 PROBLEM FORMULATION OF SCALE SHIFT DOMAIN GENERALIZATION

Under the domain generalization scenario, given the source Dsrc and target Dtra domains, we
acknowledge that the object scale distributions differ between the source and target domains:
psrc(c|z) ̸= ptar(c|z), where z denotes the object and c represents the object scale. For instance,
the head scales in the source domain may be smaller compared to those in the target domain. With
this setting, defining domain distribution Dsrc/tra as the joint distribution of input X and target Y ,
domain generalization necessaries to train a model h : X 7−→ Y on source domain Dsrc, which
will perform well on target domain Dtar. In this paper, however, we go beyond the standard domain
generalization setting and aim for the learned model h to simultaneously maintain performance in
both the source domain and the target domain, which consist of data with diverse scale distributions.
Formally, we formulate this as a constrained optimization problem:

h∗ = argmin
h∈H

E(xs,ys)∼Dsrc
L(h(xs), ys), s.t. E(xt,yt)∼Dtar

L(h(xt), yt) < rood, (1)

where rood denotes the upper bound of out-of-distribution (OOD) generalization risk.

2.2 SCALE DETERMINED DOMAIN PARTITION

Although scale shift is critical for generalization and numerous crowd datasets have been released,
there is no existing dataset specifically related to scale shift that meets the strict requirements of our
setting (see Sec. 2.1) for an in-depth study of scale variance. Therefore, we establish the FIRST
dataset benchmark, specifically designed to address the scale shift problem by overcoming the fol-
lowing two non-trivial challenges. Figure 1 illustrates the pipeline in building the benchmark.

2.2.1 CHALLENGE 1: ABSENCE OF SCALE ANNOTATION IN MAINSTREAM DATASETS

To study the scale shift problem, it is crucial to have bounding box information for each human
head, as these bounding boxes include size information essential for exploring scale variance. How-
ever, we cannot always obtain such information from temporal mainstream datasets. Earlier but
still widely-used datasets such as SHHA (Zhang et al., 2016), SHHB (Zhang et al., 2016), and
QNRF (Idrees et al., 2018) primarily involve manual annotations marking a single point at the
center of each head. Fortunately, more recent datasets, including SHRGBD (Lian et al., 2019),
JHU (Sindagi et al., 2020), and NWPU (Wang et al., 2020b), provide bounding boxes for each head.
Nevertheless, despite the large number of images included in these more detailed datasets, they may
still fail to cover the full range of scale variations due to the inherent smoothness and continuity of
the scale attribute.

To address this limitation, we have conducted manual annotations for SHHA, SHHB, and QNRF,
adding bounding boxes to supplement our understanding of object scales. For further details regard-
ing the annotation process, please refer to the Appendix H.1. In total, we have provided bounding
box annotations for 1.5 million objects across 2,700 images. By combining these newly annotated
datasets with three existing datasets, we create a rich data resource with 17,138 images that forms
the foundation for our ScaleBench.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

…
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Coordinate: (𝑥! , 𝑦!)
Box Area    : (𝑎!)
For 𝑖"# object

If 𝝈 < 𝟑𝝁; then

(a) Image Distribution Regularization

SHHA, SHHB, SHRGBD, 
QNRF, JHU, NWPU

Discard

SHHA, SHHB, SHRGBD, 
QNRF, JHU, NWPU

Patch Scale 
Distribution

If 𝒑𝒂𝒕𝒄𝒉	𝒉𝒆𝒊𝒈𝒉𝒕 > 𝑯; then
and

Using Patch Mean Scale
Represent Corresponding Patch

(b) Domain Partition by Manipulating Scale     
Distribution.

Statistic 
Whole Set

Figure 1: Pipeline for generating domains for ScaleBench, along with the scale statistics of
ScaleBench. First, we regularize the image-level scale distribution as shown in (a) and filter out
unqualified samples. We then analyze the overall scale distribution, which is subsequently divided
into four distinct domains with inter-domain scale shifts, as illustrated in (b).

2.2.2 CHALLENGE 2: CONTINUAL SCALE DISTRIBUTION PARTITION

While we currently have access to a rich repository of data, the next challenge lies in effectively
partitioning this data into domains that accurately reflect scale shifts. The simplest approach is to
collate objects within a dataset, derive a scale distribution, and then apply various scale thresholds
for partitioning. However, this paradigm faces two significant challenges: 1) the presence of varying
scale ranges within a single image; and 2) the complexities involved in selecting appropriate scale
thresholds. Specifically, the original images in existing datasets often exhibit intrinsic scale varia-
tion, meaning that each image encompasses objects spanning multiple scale levels. Consequently,
assigning such images to different domains does not guarantee sufficient scale differentiation (Wang
et al., 2022) among them. Moreover, the choice of scale thresholds directly impacts the number of
samples in each domain, with improper selection leading to imbalances in domain representation.

To address these challenges, we propose a novel controllable domain scale partitioning module,
along with an evaluation pipeline designed to leverage it. We shall introduce these in details below.
Controllable Domain Scale Partition To achieve scale controllable domain partition, we first
propose an Image-Level Scale Distribution Regularization, that aims to eliminate intra-image scale
variance by dividing an image into intra-scale consistent patches. Then, we set these patches as
our new images, and propose a Domain Partition by Manipulating Scale Distribution to group those
patches into several domains. Let us elaborate on the processes within our proposed framework.

1) Image-Level Scale Distribution Regularization. As aforementioned, the significant scale variance
present within individual images complicates the assignment of these images to scale-aware do-
mains. We attribute this challenge to the high resolutions of original images collected from prior
research; for example, some images in the NWPU dataset are more than 10, 0002 pixels. To miti-
gate this, we propose segmenting images into patches according to scales. This reduces the extensive
image-level scale variation and enables better regularization of the sample-wise scale distribution.
Importantly, this patch division does not affect the subsequent training process, as temporal loca-
tors (Liang et al., 2022; Han et al., 2023) operate by cropping images into patches for training.

To this end, we utilize a mixed Gaussian model (Reynolds et al., 2009) to approximate the image-
level scale distribution p(c) following (Wang et al., 2023a):

p(c) =

K∑
k=1

ωk · N (ck|µk, σk),where
K∑

k=1

ωk = 1, (2)

4
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in which K is a pre-defined number of sub-Gaussian distribution N , and ωk denotes the learned
weight over k sub-distribution. With this Eq. 2, we can derive K scale distributions {pk(c)|pk(c) ∼
N (µk, σk)}Kk=1, where each individual one could be recognized as a Gaussian distribution. How-
ever, solely employing a one-dimensional mixed Gaussian model risks losing spatial information
about the objects, leading to sub-Gaussians that lack spatial compactness, complicating the identifi-
cation of each sub-Gaussian when splitting images. Thus, we opt for using a two-dimensional mixed
Gaussian model to fit the joint distribution over scale p(c) and spatial location p(l) simultaneously.

p(c, l) =

K∑
k=1

ϕk · N (ck, lk|µ⃗k,Σk),where
K∑

k=1

ϕk = 1, (3)

Following (Wang et al., 2023a), the spatial location distribution p(l) focuses on the vertical coordi-
nates of the objects.4 With this approach, we can derive the K instances of sub-joint distributions
{pk(c, l)}Kk=1, incorporating both scale and spatial information.

To partition the original images into K patches, we proceed using the boundaries of the sub-spatial
distributions (min lk,max lk). After splitting the images, we apply two filtering criteria to eliminate
unqualified patches: first, we discard any patch where the intra-patch scale distribution has a stan-
dard deviation exceeding three times the mean (3-σ criteria). Second, patches with minimal height
are also filtered out to ensure they are suitable for training locators. This process reduces scale
variance within each individual patch, allowing us to represent the entire patch by its mean
scale in generating scale distribution of whole dataset (see main distribution in Figure 1).

2) Domain Partition by Manipulating Scale Distribution. Then, with regularized patches as our new
images, we proceed to separate them into domains. Our framework commences from patch-set
scale distribution, which is derived by counting the frequency of patch mean scales, with f(c) as
its Probability Density Function (PDF). To obtain M domains to support the study of the domain
generalization, we split f(c) equally over the sample number, in case of sample imbalance among
domains. And the PDF of scale distribution in mth domain can be presented by:

fm(c) = f(c),where c ∈ [cm−1, cm],

∫ c

cm−1

f(c)dc =
1

M
. (4)

By splitting as Eq. 4, we can derive M domains with intra-domain compact scales. However, to
further study the domain generalization issue, enhancing the distance between any two domains
facilitates the alignment with the theoretical definition (Wang et al., 2022) to the issue. To that
effect, we further conduct a Gaussian sampling on each fm(c) as:

f ′
m(c) = G1(

cm + cm−1

2
, σm)⊙ fm(c),where σm = argmax

σ

∫ cm

cm−1

f ′
m(c)dc,

s.t.,∀m1,m2 ≤ M, |
∫ cm1

cm1−1

f ′
m1

(c)dc−
∫ cm2

cm2−1

f ′
m2

(c)dc| ≤ ϵ, (5)

in which the G1 denotes an one-dimensional Gaussian kernel, ⊙ denotes the dot product, and ϵ is
a very small error value. Empirically, we achieve M instances optimal variance σm by heuristic
search. By now, we derive M instances domains with f ′

m(c) as the PDFs of their scale distribution,
which is adopted as the dataset to support the ScaleBench.

ScaleBench Evaluation To better validate the scale shift domain generalization over different
scales, we divide the whole set into M = 4 domains. By this way, each domain is iteratively
isolated as the target domain, and the remaining three are merged as a training domain, ensuring that
the final results remain scale-unbiased.

During each iteration, the training process begins with the three source domains, which are further
split into training and validation sets. After completing the training, the best-performing model is
chosen based on its performance on the joint validation sets, representing its performance on in-
distribution (InD) scales. Subsequently, we assess the performance of the selected model on the
entire target domain, treating this result as its performance on out-of-distribution (OOD) scales. By

4This part will be further discussed in Appendix E.2.
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averaging the InD and OOD performance across all iterations where each of the four domains serves
as the target domain, we arrive at a final evaluation of generalization performance.

With above complete ScaleBench, we further developed a standard PyTorch-based codebase tailored
for scale shift domain generalization tasks. Additionally, we have reproduced 20 state-of-the-art do-
main generalization algorithms and integrated them with a robust crowd localization baseline (Gao
et al., 2020). Empirical results exhibited in Table 2 reveal a noteworthy trend: many domain gener-
alization methods perform even worse than the baseline algorithm, highlighting the under-explored
nature of the scale shift domain generalization issue. While we could not reproduce every algorithm,
we welcome contributions to enhance our algorithmic repository.

3 HOW FAR DID WE GO ON SCALE SHIFT: DEFINITION AND A SOLUTION

The unsatisfactory performance of extensive domain generalization algorithms compels us to deepen
our understanding of the domain scale shift issue. To that end, we provide theoretical analysis that
connect scale shifts with classic domain shifts in Sec. 3.1. Furthermore, we propose a straightfor-
ward framework in Sec. 3.2, aimed at mitigating the negative influence of scale shift on domain
generalization task, and offering guidance for future research in this area.

3.1 DOMAIN SCALE SHIFT

To better understand domain scale shift, we first need to answer:Why does domain scale shift affects
the generalization of crowd locators? Crowd images are composed of numerous independent indi-
viduals z, each defined by various attributes, including semantic features s (such as skin color), scale
c, and other characteristics. Therefore, when we feed training sample pairs (x, y) into a crowd lo-
cator, our learning process is modeled as the conditional distribution p(y|x). Additionally, the input
distribution p(x) can be decomposed into a joint distribution of these various attributes, represented
as p(s, c, . . . ). According to the chain rule, we can express this relationship as follows:

p(y|x) =
∫
z

p(y|z) =
∫
s,c,...

p(y|s, c, ...) =
∫
s,c,...

p(y, s, c, ...)

p(s, c, ...)
=

∫
s,c,...

p(c|y, s, ...)p(y, s, ...)
p(s, c, ...)

.

(6)
Let us elaborate on the derived term. The components p(c|y, s, ...) and p(s, c, ...) are related to scale
c and influencing the modeling of p(y|x). Consequently, when domain shift occurs, variations in
either p(c|y, s, ...) or p(s, c, ...) can lead to p1(y|x) ̸= p2(y|x). For the first term, p(c|y, s, ...) stands
for the same objects differing only in scale. We assert that this may not pose a significant problem,
as it can often be mitigated through image interpolation. 5 However, the second term p(s, c, ...), can
cause the model to learn a spurious association between the output y with scale c. As a result, when
a scale shift occurs across domains, the learned spurious association c 7→ y in the source domain
may fail to generalize to the target domain, leading to performance degradation.

According to the out-of-distribution (OOD) community, these spurious associations can lead to two
types of domain shifts: diversity shift and correlation shift (Ye et al., 2022). In this context, The-
orem 1 shows the spurious association of c 7→ y results in both two shifts simultaneously, whose
detailed proof can be found in Appendix A.

Theorem 1 (Scale Shift as A Mixed Domain Shift) For any two crowd domains, when scale dis-
tribution p1(c|z) ̸= p2(c|z), we have:

Divdiv(p1, p2) =
1

2

∫
Rc

|p1(c)− p2(c)| > 0 (Existence of Diversity Shift)

Divcor(p1, p2) =
1

2

∫
Rc

√
p1(c) · p2(c)

∑
y∈Y

|p1(y|c)− p2(y|c)|dc > 0,

(Existence of Correlation Shift)
(7)

where Div denotes the divergence between two distributions.

5This analysis highlights why image interpolation offers only limited help in our task.
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Hence, the joint shift incurred from the spurious association of c 7→ y leads to the poor domain
generalization performance over scale shift.

3.2 SEMANTIC HOOK: ENHANCING SEMANTIC FEATURE ASSOCIATION WITH TARGET

Based on Theorem 1, the coexistence of diversity and correlation shifts complicates the alignment
of scale shift. Rather than alleviating spurious association between c 7→ y, we focus on enhancing
the semantic association s 7→ y to facilitate the learning of a scale-generalized model.

Original 
Images 𝑥

Perturbed 
Images 𝑥 + 𝜖Encoder

𝑓!

𝑓!(𝑥) 𝑓!(𝑥 + 𝜖)

Decoder
𝑓"

ℒ(𝑦), 𝑦)+ ℒ(𝑦)′, 𝑦)

Hook

1 − 𝛾 𝑓! 𝑥 + 𝜖
−𝛾𝑓!(𝑥)Semantic 

Hook

Semantic Perturb

Figure 2: Training pipeline of our pro-
posed SemanticHook.

Our proposed method consists of two main components:
a baseline learning loss that ensures standard performance
on the source domain, and a semantic feature hook de-
signed to extract and strengthen semantic features from
image embeddings to improve the final prediction.

Specifically, given an image x, we utilize a standard
encoder-decoder architecture typical of crowd locators to
generate a prediction ŷ = fD(fE(x)). The initial ob-
jective is to minimize the standard loss L(ŷ, y). How-
ever, solely minimizing this loss can blur the learned im-
age embedding, which contains both semantic and scale-
related features. To enhance the semantic association,
we extract semantic features from the image embedding
while minimizing the impact of scale-related informa-
tion. We achieve this by applying domain-shared Gaus-
sian noise ϵ ∼ N (λ, I) on input x to perturb it, resulting
in a new embedding fE(x + ϵ). Next, we define a modi-
fied prediction ŷ′ as:

ŷ′ = fD[(1− γ)(fE(x+ ϵ)− γfE(x))], (8)

where γ is a coefficient that adjusts the weight of semantic features. With this new prediction, based
on above standard loss, we further reduce the L(ŷ′, y).
Intuitive Remark: The added perturbation ϵ affects only the pixel values, which primarily influ-
ences the semantic information of the original image. Thus, the term fE(x+ ϵ)−γfE(x) represents
the variation in the semantic representation due to the perturbation. This residual embedding tends
to contain less task-specific information. However, by boosting the association of the predictions ob-
tained from this residual embedding with the ground truth, we can potentially hook the task-relevant
features from fE(x + ϵ) to reduce the loss. Given that ϵ predominantly influences semantic infor-
mation, the hooked task-relevant features are likely to be drawn from the semantic representation.

4 EXPERIMENT

4.1 PRELIMINARY ON EXPERIMENT

Dataset As aforementioned, we gather all of the samples from SHHA, SHHB, SHRGBD, QNRF,
JHU, and NWPU. And we utilize the proposed pipeline to generate ScaleBench, where four scale
differing domains are included. According to the average scale of each domain, we name the four
domains as Tiny (T), Small (S), Normal (N), and Big (B), see Figure 1 for real scale distribution.

Experimental Setting By utilizing these four domains, we can evaluate performance by itera-
tively designating each domain as the target while treating the remaining three as the source domain
(Leave-One-Out setting). Following DomainBed (Gulrajani & Lopez-Paz, 2021), we further split
the training and validation set within each domain. When one domain is selected as the target do-
main (test set), its whole set will be utilized as testing samples. As for the baseline crowd localization
method, we utilize a simplified paradigm6 proposed in IIM (Gao et al., 2020), which is also widely
adopted in (Gao et al., 2022; Wang et al., 2023a; Gao et al., 2023; Zhang et al., 2023a; Wen et al.,
2024). And the detailed experimental setting is reported in the Appendix D.

6This will be discussed in Appendix B.
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Table 2: F1 score results on ScaleBench using the HRNetW-48 backbone model. The settings
follow a Leave-One-Out experimental approach (Gulrajani & Lopez-Paz, 2021), where each model
is trained on the training set of source domains, and tested on the target domain. Such as in the Tiny
column, the InD performance are the results on the test set of source domains (Small, Normal, and
Big), while the OOD performance indicates the results on the whole set of Tiny domain. The best
results among algorithms are highlighted in bold, while the second-best results are underlined.

Algorithm Tiny Small Normal Big Global AvgInD OOD InD OOD InD OOD InD OOD
ERM 87.32 58.05 75.08 85.30 77.87 87.90 79.26 81.57 79.04

CORAL 86.63 57.88 72.45 84.46 75.04 87.37 76.67 82.12 77.83
DANN 77.24 39.18 56.74 74.79 61.20 81.05 61.29 73.14 65.58
MMD 69.39 33.47 55.79 72.70 58.87 74.37 60.27 57.01 60.23
IRM 87.23 57.65 75.15 85.20 77.77 87.85 78.90 81.38 78.89

SagNet 86.80 57.70 73.97 85.30 76.66 87.49 77.59 79.03 78.07
VREx 87.14 58.77 75.07 85.24 76.91 87.63 78.82 82.56 79.02

Mixup-F 39.27 8.65 28.23 27.74 33.23 45.31 33.42 19.53 29.42
Mixup-I 86.18 56.05 72.78 84.64 75.38 87.71 77.36 78.69 77.35

SAM 86.77 57.36 73.14 85.75 75.63 87.96 77.43 75.51 77.44
EFDM-I 86.83 56.43 71.92 85.04 74.97 87.60 76.13 79.69 77.33
EFDM-F 86.97 56.55 71.78 85.13 75.48 87.44 76.19 80.22 77.47
InfoBot-E 85.91 55.56 72.04 84.72 75.32 87.20 76.37 78.03 76.89
InfoBot-I 85.92 55.50 71.43 84.52 74.60 87.02 75.82 77.54 76.54

GAM 85.22 50.36 68.77 84.55 72.43 86.96 73.21 69.81 73.91
SAGM 87.72 55.15 72.66 85.95 74.74 87.91 76.36 70.57 76.38

CausalIRL-M 76.67 41.16 59.30 77.24 63.00 79.24 65.91 67.81 66.29
CausalIRL-G 76.13 40.67 60.72 77.76 63.91 79.97 64.71 66.81 66.33

SD 86.12 55.40 72.62 84.21 75.56 87.22 76.87 79.98 77.25
DomainDrop 83.10 45.97 65.67 82.46 68.95 84.81 69.82 76.35 72.14

SemanticHook (Ours) 87.63 59.26 75.69 85.90 78.68 88.03 78.94 81.19 79.41

F 1
on

 R
es

N
et

18
 (%

)
F 1

on
 V

iT
-B

as
e 

(%
)

Figure 3: This stacked bar chart illustrates the F1 scores for both InD and OOD results on
ScaleBench. The height of each bar represents the average F1 score across InD and OOD. To
differentiate the contributions of each component, we use distinct colors for each section of the bars.

4.2 MAIN RESULTS

In Table 2 and Figure 3, we reproduce 20 out-of-distribution (OOD) algorithms on ScaleBench
using three backbones: ResNet18 (He et al., 2016), HRNetW-48 (Wang et al., 2020a), and ViT-
Base (Dosovitskiy et al., 2021). Given that the original architectures of ResNet18 and ViT-Base
are not designed for dense prediction tasks like crowd localization, we enhance these architectures
by incorporating a UNet (Ronneberger et al., 2015) module. The list of algorithms we evaluate
includes ERM (baseline), CORAL (Sun & Saenko, 2016), DANN (Ganin et al., 2016), MMD (Li
et al., 2018), IRM (Arjovsky et al., 2019), SagNet (Nam et al., 2021), VREx (Krueger et al., 2021),
Mixup (Zhang et al., 2018), SAM (Foret et al., 2021), EFDM (Zhang et al., 2022), InfoBot (Li et al.,
2022), GAM (Zhang et al., 2023b), SAGM (Wang et al., 2023b), CausalIRL (Chevalley et al., 2022),
SD (Pezeshki et al., 2021), and DomainDrop (Guo et al., 2023). We then present the results for our
proposed method, SemanticHook.
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Table 3: F1 scores from multi-source domain training. Columns represent test performance on
each domain’s test set, with the highest scores in bold. Underlined scores show the best results
within single-source domain groups and the best in two-source domain groups that exclude the
target domain from training. The Omni means all of domains are included in training.

Target
Domain

Source Domain(s)
Omni T S N B TS TN TB SN SB NB TSN TNB TSB SNB

T 61.26 62.05 58.26 40.10 11.25 62.80 61.86 61.70 56.71 56.62 40.55 62.02 61.80 61.92 56.15
S 80.48 74.69 79.40 70.30 42.95 78.57 77.92 75.09 79.70 70.70 70.82 80.71 77.94 79.95 79.22
N 84.09 71.32 80.39 82.60 66.89 80.48 83.28 78.51 83.80 82.29 82.40 84.16 83.30 82.44 83.62
B 85.48 62.20 71.00 81.57 83.46 72.36 82.40 84.20 82.27 84.70 85.90 82.34 84.60 84.63 85.57

Avg. 77.83 67.57 72.26 68.64 51.14 73.55 76.37 74.88 75.62 73.58 69.92 77.31 76.91 77.24 76.14

As shown in Table 2, ERM, despite being a baseline algorithm, performs competitively against more
advanced OOD methods, suggesting that existing approaches may not adequately address the chal-
lenges of scale shift generalization. To further investigate this issue from an empirical perspective,
we developed SemanticHook, which, while surpassing ERM, shows only marginal improvement.

However, our goal is not to achieve a state-of-the-art algorithm but to create an effective tool for
analyzing the scale shift issue. In the following section, we will extend our analysis by answering
the following questions:

• Q1: Can scale shift be alleviated by increasing in-distribution data?
• Q2: Can scale distribution be treated as a major attribute in representing crowd images?
• Q3: How does image interpolation influence the scale shift?
• Q4: What components are effective in addressing scale shift (ablation study for SemanticHook)?

4.3 EMPIRICAL ANALYSIS

Q1: Can scale shift be alleviated by increasing in-distribution data? To address this, we isolate
the train, validation, and test sets within each domain in Table 3. By considering all possible domain
combinations, we aim to obtain an impartial assessment of generalization. Our analysis begins with
single to single generalization, which serves as the baseline case. We find that larger average domain
scales correlate with poorer performance, indicating that greater scale shifts diminish generalization.
When we increase the in-distribution data through multi-source scenarios, we observe that domains
farther from the target domain exert less influence on performance. For instance, the performance
results for TN to S (77.92%) and TNB to S (77.94%) show that the improvement from adding the
additional domain B is minimal. A similar trend is evident in other cases as well. Thus, we conclude
that in-distribution data offers limited help in alleviating scale shift generalization.

Figure 4: Less is more.

Q2: Can scale distribution be treated as one of the major at-
tributes in representing crowd images? To address this ques-
tion, we design a novel experimental pipeline. When an attribute is
a primary factor in representing crowd images, we can select a small
core set by sampling identically and independently (IID) from the
corresponding attribute distribution. A model trained on this core
set should achieve comparable or even better performance than one
trained on the entire dataset.

To this end, we IID sample images according to the scale distribu-
tion and split them into training, validation, and test sets, ensuring
the in-distribution (In-D) property among them. As shown in Fig-
ure 4, we observe an intriguing phenomenon: when scale attributes
are In-D, we only need 30% of the original dataset to achieve com-
parable performance. This further emphasizes that increasing the
amount of In-D data provides limited benefits for generalization.

Q3: How does image interpolation influence the scale shift? Theoretically, as discussed in
Sec. 3.1, we show that image interpolation can mitigate the shift term of p(c|y, s, ...), but it does not
address the shift in p(s, c, ...), thus limiting its effectiveness in dealing with scale shifts. Empirically,
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we conduct experiments presented in Table 4 to support this theoretical analysis. Specifically, we
use the Big domain as our source and generalize it to domains with smaller scales. We implement
two strategies involving interpolation: Random Augmentation (RA), which randomly interpolates
training images; and Inference Augmentation (IA), where test images are modified during inference
as a form of adversarial attack to assess its impact on model predictions.

Table 4: F1 results for different interpolation aug-
mented experiments.

Interpolation Tiny Small Normal Big (InD) Avg
None 13.11 48.78 79.31 83.35 56.14
RA 18.72 51.38 80.73 81.00 57.96
IA 12.19 44.28 73.58 81.97 53.01

As shown in Table 4, the improvement intro-
duced by RA is marginal over Small, Normal,
and Big domains. While we assert the improve-
ment on Tiny domain is because its original
poor performance. When conducting IA as at-
tack, interpolation still cannot introduce signif-
icant influence. We thus derive while image in-
terpolation provides some relief from scale shift
issues, the benefits are modest and more helpful only when the scale shift is significant.

Q4: What kinds of components are effective to scale shift (ablation study for SemanticHook)?
Enhance Semantic or Scale Association. We firstly ablate the type of perturbation conducted in the
SemanticHook. Concretelly, we opt for two perturbations conducted on semantic concentrated fea-
ture, while another option is on scale concentrated feature. We compare the performance difference
in Table 5. As shown, when introducing scale perturbation, it renders model learn stronger scale as-
sociation, which should be the spurious association that we don’ t want. As a result, the performance
degrades a lot. In contrast, similar results occur between two semantic perturbations.

Table 5: F1 results for the ablation study of Se-
manticHook

Ablation Tiny Small Normal Big Avg

Enhance Semantic or Scale Association

Gaussian Perturb 59.26 85.90 88.03 81.19 78.60
ColorJitter 60.14 85.45 87.52 80.89 78.50
Interpolation 57.29 81.02 80.12 65.16 70.90

Semantic Hook or Global Feature

Semantic Hook 59.26 85.90 88.03 81.19 78.60
Global Feature 41.56 76.84 83.51 74.59 69.13

Annealing in Extracting Semantic Feature

w. Anneal 59.26 85.90 88.03 81.19 78.60
wo. Anneal 59.61 85.07 83.19 64.25 73.03

Semantic Hook or Global Feature Then, we
ablate the efficacy of semantic hook, by which
we compare the results obtained by enhancing
the hooked semantic feature with global fea-
ture. As shown, we notice semantic feature per-
forms much better than global feature, which
further supports that the extracted global fea-
ture contain scale associated feature, which hin-
ders the generalization across domain scales.

Annealing Factor in Extracting Semantic Feature
As aforementioned, there is a coefficient γ to
adjust the weight of hooked semantic feature.
Empirically, the value of γ is annealing along
the training. Here we conduct ablation on
the annealing process, and analyze the behind
intuition. Specifically, when γ starts from 0,
the representation of semantic feature totally depends on fE(x + ϵ), this is because at the begining
of training, model does not learn too much task information, which means we need a whole
representation to the image. As training goes by, the representation to the original image fE(x)
starts to learn more crowd knowledge, a bigger γ is helpful for substracting unwanted features.

5 CONCLUSION

We presented Scale Shift Domain Generalization with the realm of crowd localization, a new and
applicable research direction. In this paper, we built a benchmark on this task called ScaleBench.
Extensive experiments on ScaleBench revealed the limitations of existing domain generalization
algorithms in addressing scale shift. Through our analysis, we demonstrated scale shift as a joint
shift between diversity and correlation shift. Building upon this property, we proposed an algorithm
called Semantic Hook to mitigate the issue, and conducted extensive analysis to derive three sig-
nificant insights for future works. We believe this work serves as a catalyst for greater scholarly
attention toward the essential yet challenging task of crowd localization under scale shifts, and we
hope it inspires further investigations and advancements in this field.
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A THEORETICAL PROOF TO THEOREM 1

A.1 SCALE DISTRIBUTION AND OBJECT DISTRIBUTION

Firstly, we give the definition of scale and object distribution. An object z in an image is defined by
its spatial feature and semantic feature. Consequently, understanding the object probability distri-
bution p(z) requires consideration of both the semantic distribution p(s) and the scale distribution
p(c), as each influences the model performance.

To study the domain scale shift, we first give a rigorous definition to the scale distribution to crowd
localization in Definition 1.

Definition 1 (Scale Distribution) Let variable z represent the object. For one domain with intra-
domain scales independently and identically distributed (i.i.d.), the scale distribution can be written
as p(c|z), where c denotes the count of pixels occupied by object z.

Based on this definition, we can drive the formula to the object distribution, parameterized by a
variable z. To begin with the input (pixel value) variable X , it obeys a distribution of X ∼ p(x),
where p(x) is assumed as shared in our setting. Then, the object variable Z is to sample random
instances of pixels as Z = {X1, X2, ..., Xc}. Since the |Z| = c is uncertain, we cannot model it via
a classic random variable. Thus, we need to introduce the concept of Random Finite Sets (RFS) (Vo
et al., 2005) in Definition 2 to model its distribution.

Definition 2 (Random Finite Sets) Let X be the random variable with Probability Density Func-
tion (PDF) p(x) defined on a measurable space. The Random Finite Sets (RFS) Z =
{X1, X2, ..., Xc} is defined by the joint distribution of following:

p(z) = Γ(c+ 1) · U c · p(c) · fc(x1, x2, ..., xc), (9)

where U is the unit of the hypervolume, p(c) = Pr(|Z| = c) is the cardinality distribution, fc is the
joint distribution over c instances x.

With this definition, we can further simplify it by defining p(c) ∼ π(λ), where π(λ) denotes a
Poisson distribution parameterized by λ following (Vo et al., 2005):

p(z) = p(c) · Γ(c+ 1) · U c · fc(x1, x2, ..., xc)

=

∫
Rλ

e−λλc

Γ(c+ 1)
Γ(c+ 1) · U c ·

c∏
i=1

p(xi) · p(λ)dλ

= U c ·
c∏

i=1

p(xi)

∫
Rλ

e−λλcp(λ)dλ. (10)

With above derivation, we have the definition to the object distribution p(z).

A.2 SCALE SHIFT

Following the task setting of out-of-distribution (OOD), it is obvious that the scale shift between any
two domains can represented as p1(c|z) ̸= p2(c|z). With this scale shift, we are ready to show that
it is a kind of domain shift and how it influences the generalization across domains. To begin with,
let us make some formal analysis of the corresponding problem formulation of crowd localization.

Lemma 1 (Domain Shift (Ye et al., 2022)) Given scale variable c and output variable y, domain
shift hinders the generalization of deep model from two aspects:{

Diversity Shift: ∃c ∈ C : p1(c) · p2(c) = 0,

Correlation Shift: ∃y ∈ Y : p1(y|c) ̸= p2(y|c),
(11)

where the label shift is not considered here.

To better facilitate readers understanding to the difference among scale shift, diversity shift, and
correlation shift, we illustrate several toy examples in Figure 5. So let us analyze whether p1(c|z) ̸=
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Figure 5: Toy examples over different kinds of shift.

p2(c|z) makes influences on any one or more shifts among Eq. 11. Firstly, concentrating on diversity
shift, we need to derive a formulation of p(c) from the only known condition of p(c|z). Hence, we
make the following derivation:

p(c|z) = p(z|c)p(c)
p(z)

=

∏c
i=1 p(xi)p(c)

p(z)
(Bayes)

=
p(c)

U c ·
∫
Rλ e−λ · λc · p(λ)dλ

→ p(c) = p(c|z) · U c ·
∫
Rλ

e−λ · λc · p(λ)dλ. (12)

According to the last step in Eq. 12, when p1(c|z) ̸= p1(c|z), let us introduce the diversity shift (Ye
et al., 2022) (elaborated in Sec. A.3) formula expression as:

Divdiv(p1, p2) =
1

2

∫
Rc

|p1(c)− p2(c)|dc

=
1

2

∫
Rc

∫
Rλ

|p1(c|z)− p2(c|z)| · U c · e−λ · λc · p(λ)dλdc. (13)

It is obvious that when p1(c|z) ̸= p2(c|z), Divdiv(p1(z), p2(z)) > 0, which means the existence of
diversity shift.

Secondly, let us consider the correlation shift (Ye et al., 2022) (elaborated in Appendix A.3) issue,
formulated by:

Divcor(p1, p2) =
1

2

∫
Rc

√
p1(c) · p2(c)

∑
y∈Y

|p1(y|c)− p2(y|c)|dc

=
1

2

∫
Rc

√
p1(c) · p2(c)

∑
y∈Y

|p1(c|y) · p1(y)
p1(c)

− p2(c|y) · p2(y)
p2(c)

|dc. (14)

To verify whether Divcor(p1, p2) exists, we need some further assumptions based on the empirical
observation. Commencing from p(y), it can be viewed as the number of objects in each domain. In
a real scenario, we observe there is a high correlation between object number with object scale. And
this correlation is stable across the dataset. This is because of the fixed image resolution, where one
cannot contain many large-scale objects within an image. Therefore, we assume the fraction of p(y)

p(c)

is shared across domains. Hence, the Divcor(p1, p2) degenerates into the issue between p1(c|y) and
p2(c|y).

Proposition 1 (Linear Expression Among Object Scales) For different category objects, the rel-
ative scale distribution is fixed across variety of absolute scales. The object scale distributions can
be linearly expressed by each other:

∀m,n ≤ |Y|,∀i : pi(c|ym) = Kmn ∗ pi(c|yn), (15)

where Kmn is the linear kernel defined over mth along with nth class, and is shared among all of
domains.
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With Proposition 1, we can draw a generalized conclusion when only considering category human.
So when yhuman has p1(c|y) ̸= p2(c|y), it is clear that Eq. 14 cannot be zero, which proves the
existence of correlation shift.

A.3 SUPPLEMENTARY THEORETICAL DEFINITIONS FOR DOMAIN SHIFT

In summary, we first give a specific formulation to scale shift of p1(c|z) ̸= p2(c|z). Then, borrowing
the definition of the two kinds of generalized shift in Lemma 1, we derive that scale shift can incur
diversity shift and correlation shift.

Definition 3 (Feature Sets) To make a decision on y from x, there are two kinds of features in-
fluencing the process, which are direct cause and confusion, as shown in Fig. 6. For direct cause
factors, we have the following equation hold:

p(x) · q(x) ̸= 0 ∩ ∀y ∈ Y : p(y|x) = q(y|x), (16)

where the call these x composed set as Xinv . For confusing feature, the opposite property holds:

p(x) · q(x) = 0 ∪ ∃y ∈ Y : p(y|x) ̸= q(y|x), (17)

where the call these x composed set as Xvar.

𝐹!"#

𝐹#$%

Z Y

Figure 6: Causal influence
among variables.

In OOD issue, the features x ∈ Finv should be shared across do-
mains. For any two domains, if Finv = ∅, we can never successfully
make it generalize in these two domains. In a word, Finv ̸= ∅ is the
necessary prior to the success of OOD.

With these two kinds of feature sets, we can derive the definition
to the widely used diversity shift and correlation shift. To begin
with, the domain shift can only be shown up in the second feature
set Fvar. Coarsely, we can assign the diversity shift to the case
when first term in Eq. 17 holds, and the correlation shift to the case
when second term holds. Based on this coarse discrimination, we
can obtain the definition to diversity shift and correlation shift by
partitioning Xvar.

Definition 4 With variant term set Fvar, the diversity shift domi-
nants the scale shift when x ∈ S , where S is defined as Eq. 18, and the correlation shift dominants
the scale shift when x ∈ T , which is also defined in Eq. 18.

S ≜ {x ∈ Xvar|p(x) · q(x) = 0},D ≜ {x ∈ Xvar|p(x) · q(x) ̸= 0}. (18)

Remark 1 To understand the two kinds of shifts, let us elaborate them from intuition. Firstly, diver-
sity shift stems from the novel features not shared among domains. So when the p(x) ̸= q(x), we can
make sure there is novel features in one domain not existing in the other one. Secondly, correlation
shift is blamed to the spuriously correlated features with some class. So, given any feature x, the
object class distribution imbalance incurs the correlation shift, which is namely p(y|x) ̸= q(y|x).
But to make the formulation more symmetric, we can write it into the form in the second term of
Eq. 18.

Based on the above intuitive remark, we can derive the quantification formula to the diversity shift
and correlation shift.

Lemma 2 (Definition 1 in (Ye et al., 2022)) Given S and T defined in Eq. 18, the diversity shift
and correlation can be mathmetically expressed as:

Ddiv(p, q) ≜
1

2

∫
S
|p(x)− q(x)|dx (19)

Dcor(p, q) ≜
1

2

∫
T

√
p(x)q(x)

∑
y∈Y

|p(y|x)− q(y|x)|dx

18
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Lemma 3 (Proposition 1 in (Ye et al., 2022)) Given two probability distributions p(x) and q(x),
which are the corresponding feature distributions in two different domains, the diversity shift
Ddiv(p, q) and correlation shift Dcor(p, q) are always bounded between 0 and 1.

Proof 1 Commencing from the proof to the diversity shift, its upper bound can be easily derived by
the triangle inequality:

Ddiv(p, q) =
1

2

∫
S
|p(x)− q(x)|dx ≤ 1

2

∫
S
[p(x) + q(x)]dx ≤ 1. (20)

Furthermore, we can also prove that in correlation shit as:

Dcor(p, q) =
1

2

∫
T

√
p(x)q(x)

∑
y∈Y

|p(y|x)− q(y|x)|dx

≤ 1

2

∫
T

√
p(x)q(x)

∑
y∈Y

|p(y|x) + q(y|x)|dx

=
1

2

∫
T
2
√

p(x)q(x)dx

≤ 1

2

∫
T
[p(x) + q(x)]dx

≤ 1. (21)

As for the lower bound, it is obvious based on that the probability cannot be negative.

□

B DETAILS FOR BASELINE CROWD LOCALIZATION MODEL

We illustrate the pipeline of our baseline crowd localization method in Figure 7. Given an image
x ∈ RH×W×3, IIM (Gao et al., 2020), composed of an encoder fE , threshold learner fT and
decoder fD, first embeds x into a feature fE(x) ∈ RH

8 ×W
8 ×D with a feature dimension of D. Then,

fE(x) is fed with threshold learner fT and decoder fD. Later, the decoder firstly transfers this
image embedding into a sigmoid σ processed confidence map σ{fD[fE(x)]} ∈ [0, 1], where the
fD[fE(x)] has a resolution of (H,W, 1), and each value within the map indicates the probability
of the corresponding pixel value in the current location belongs to the human head are. Then, this
fD[fE(x)] is also fed into the threshold along with the aforementioned fE(x) to obtain a threshold
map T (x) ∈ [0, 1], which also has a resolution of (H,W, 1). Then, the final prediction can be
obtained by comparing the values by I{fD[fE(x)] ≥ T (x)}, where I denotes the indicator function.

With this predicted binary map, we can obtain the predicted areas mask. Then, the locations of these
foreground areas can be extracted by graphical operation, where the center of each area is treated as
the predicted human heads’ location.

However, in our task, to make the model concise enough to promise its adaptability, we remove
the processes concerning the learnable threshold map, in which we directly obtain a confidence
from encoder and decoder, then obtain the final binary map via a global and fixed threshold of 0.5.
Experiments in the main text showcases this threshold is able to generalize well under the InD data.

C DETAILS FOR REPRODUCED OOD ALGORITHMS

In this section, we list the details of our reproduced algorithms.

Empirical Risk Minimization (ERM) (Vapnik, 1999): This is the baseline OOD algorithm, where
the crowd locator is trained in a fully supervised manner on the source domains’ training set, then
we select the model performs best in the validation set of source domains. With this model, we test
its generalization performance on the whole set of target domain.
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Feature Threshold 
Learner

Binarization Layer 

Binarization Layer 

Binarization Module

Encoder Decoder

Feature

Encoder Decoder
Threshold = 0.5

IIM

Scalebench

Figure 7: Pipeline for the crowd localization IIM, where we make certain modification to it to make
it more concise and generalized enough to be our baseline model.

Correlation Alignment for Domain Adaptation (CORAL) (Sun & Saenko, 2016): CORAL mini-
mizes domain shift by aligning the second-order statistics of source and target distributions, without
requiring any target labels. In task setting of OOD, we conduct CORAL among source domains to
learn an invariant features.

Domain Adversarial Neural Network (DANN) (Ganin et al., 2016): Based on ERM, DANN has a
domain discriminator which aims to enhance the discrimination of predicted feature over domains.
This can be viewed as an adversarial paradigm.

Maximum Mean Discrepancy (MMD) (Li et al., 2018): In MMD, it tries to minimize the maximum
mean discrepancy among source distributions. Empirically, to obtain the feature distribution, we use
a Gaussian kernel to transfer it into reproducing kernel Hilbert space (RKHS).

Invariant Risk Minimization (IRM) (Arjovsky et al., 2019): IRM seeks to find representations that
are invariant across different environments by minimizing a combination of the empirical risk and a
penalty term that measures the divergence of optimal predictors across environments. The idea is to
make the representation good for all environments simultaneously, which is hypothesized to lead to
better OOD generalization.

Manifold Mixup (Mixup-F) (Verma et al., 2019): Mixup-F is a technique that extends the idea of
Mixup-Ito the hidden representations within a neural network. It generates virtual training examples
by combining hidden representations of different training examples along with their corresponding
labels. This regularizes the neural network to favor simple linear behaviors in-between training
examples, which can lead to better generalization.

Mixup (Yan et al., 2020): Mixup-Itrains a model on convex combinations of pairs of examples and
their labels. By doing this, it encourages the model to behave linearly in-between training examples,
which can help to regularize the model and can potentially improve the OOD performance by making
the model less certain on interpolations between training domains.

Sharpness Aware Minimization (SAM) (Foret et al., 2021): SAM seeks to improve model gen-
eralization by focusing on the sharpness of the loss landscape. By minimizing the worst-case loss
within a neighborhood around the parameters, SAM aims to find parameters that lie in flatter regions
of the loss landscape, under the assumption that flatter minima correlate with better generalization,
especially in OOD scenarios.
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Variance Training Risks (VREx) (Krueger et al., 2021): VREx is a method that minimizes the
variance of the empirical risk across different environments. The intuition is that by finding a model
that has stable performance across various source domains, it will likely perform well on unseen
target domains.

Spectral Decoupling (SD) (Pezeshki et al., 2021): SD addresses the overfitting to spurious correla-
tions by decoupling the spectral components of the feature representations. It does so by regularizing
the spectral norm of the weights, which encourages the model to rely less on features that are highly
predictive on the training data but may not generalize well to OOD data.

Style-Agnostic Networks (SagNets) (Nam et al., 2021): SagNets are designed to disentangle con-
tent and style information in the neural representations to improve OOD generalization. The network
learns to separate style-related features from content-related features, and during inference, it relies
more on content features, which are presumed to be more stable across different domains.

Invariant Representation Learning (IRL) (Chevalley et al., 2022): It bridges the gap between
causal reasoning and representation learning. And it establishes a foundation for understanding
invariance in the face of style variations.

Information Bottleneck (IB) (Li et al., 2022): The IB principle aims at finding a representation
that preserves as much information as possible about the target variable while compressing the input
data, effectively reducing its complexity. This is achieved by minimizing a trade-off between the
mutual information of the representation and the target and the mutual information of the input and
the representation. In OOD settings, this can lead to learning more robust features that are less
sensitive to variations not relevant to the prediction task.

Exact Feature Distribution Matching (EFDM) (Zhang et al., 2022): The EFDM approach is de-
signed to address the limitations of traditional feature distribution matching methods in the context
of Arbitrary Style Transfer (AST) and Domain Generalization (DG) tasks. These tasks are pred-
icated on the idea that matching the feature distributions between different domains or styles can
improve the performance of visual learning models.

DomainDrop (Guo et al., 2023): The DomainDrop approach is an innovative method designed to
improve domain generalization, which is the ability of deep neural network models to perform well
on unseen test datasets that may have different distributions from the training (source) datasets. The
central challenge being addressed is the performance degradation that occurs due to domain shifts,
meaning differences between the data distributions of the source and target domains.

SAGM (Wang et al., 2023b): SAGM is an optimization method designed to enhance the domain
generalization (DG) capabilities of machine learning models. The main goal of DG is to train
models on a source domain in such a way that they can perform well when applied to unseen target
domains.

GAM (Zhang et al., 2023b): GAM is an optimization approach that seeks to enhance the gener-
alization of deep learning models by targeting minima with uniformly small curvature across all
directions in the loss landscape. The motivation behind GAM stems from the observed benefits of
training models to find flat minima—regions of the parameter space where the loss function varies
slowly with parameter changes, which are associated with better generalization to unseen data.

D EXPERIMENTAL SETTINGS

D.1 SCALEBENCH GENERATION

In our study, we began by aggregating a comprehensive collection of images. Subsequently, we
extracted relevant information on the scale and coordinates of each instance within these images.
This data was instrumental in fitting a two-dimensional Gaussian mixture model. Specifically, we
normalized the scales by dividing by the maximum scale value and normalized the vertical coordi-
nates by the height of the image. The normalized scale and coordinate data were then combined and
inputted into an Expectation-Maximization (EM) algorithm to optimize the parameters of a Gaus-
sian mixture distribution. We preset the number of Gaussian components to five for each image, a
number intentionally set to include some redundancy. Following this, we segmented the images into
patches based on their respective sub-Gaussian distributions. An initial filtering step was applied
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to these patches, eliminating any with a height less than 100 pixels. Moreover, we implemented a
variance restriction on the scale of the patches, discarding those with a scale variance greater than
twice the mean scale. Once we had obtained a set of clean patches, we moved on to the domain
partitioning phase. During this stage, we generated a scale distribution for each patch and employed
a greedy search algorithm to identify the optimal scale boundary. This boundary was used to divide
the complete scale distribution into five discrete regions. The first four regions were designated for
the formation of the ScaleBench, while the fifth region was excluded from further analysis due to its
nonconformity with the established criteria.

D.2 LEAVE-ONE-OUT GENERALIZATION

In our leave-one-out generalization experiments, we conducted a series of four distinct trials. For
each trial, one particular domain was designated as the ’target’ while the remaining domains collec-
tively formed the ’source’ domain. During the training process, we implemented a random rescaling
of the input images to vary their size within a range of 0.8 to 1.2 times their original resolution. The
images were then randomly cropped to a standard size of 512×512 pixels. For images with a height
smaller than 512 pixels, we employed padding to increase their size to 513 pixels to ensure consis-
tency in input dimensions. Additionally, to augment the dataset and promote model robustness, we
included a random horizontal flip for each image.

For algorithms that did not feature a bespoke optimizer, we utilized the Adam optimizer to fine-
tune the model parameters. We initiated the optimization with a learning rate of 1 × 10−5, which
was systematically reduced following each training step at a decay rate of 0.99 to allow for precise
adjustments as the model converged. When it came to sampling during training, we tailored our ap-
proach to the architecture of each neural network. Specifically, we sampled 8 images for each source
domain when training with ResNet-18, 6 images for HRNet, and 4 images for ViT-B. This strategy
ensured that each network received an appropriate number of images from the source domains to
effectively learn and generalize across the distinct datasets.

D.3 MULTI-SOURCE GENERALIZATION

The experimental setup for multi-source generalization mirrors that of the leave-one-out general-
ization approach in many aspects. However, a key distinction lies in the segregation of the dataset
within each domain into three subsets: training (train-set), validation (val-set), and testing (test-set).
When a domain is designated as the source domain, both its train-set and val-set are employed for
model training and validation, respectively. This allows the model to learn from and tune its parame-
ters based on a diverse range of examples and feedback within the source domain. In contrast, when
a domain assumes the role of the target domain, its test-set is exclusively utilized. The performance
of the model is then evaluated based on how well it generalizes to this unseen data. This structured
approach ensures a clear delineation between the data used for model development and the data used
for testing, thereby providing a rigorous assessment of the model’s generalization capabilities across
different domains.

D.4 LESS IS MORE EXPERIMENTS

The experimental setting is as same as that in Sec. F.3.

D.5 EXPERIMENTAL SETTING OF TABLE 1

Following official setting of included crowd localization methods, we train their models with cor-
responding officially released codes on the training set of Tiny and Big domains. And then, we test
each models performance on the test set of Tiny and Big domains to obtain the results exhibited in
Table 1.
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Figure 8: Left is the statistic for the number of image and pedestrian within each dataset, where
the number of pedestrian we annotated with boxes are in noted in red; Mid is the statistic for the
resolution distributions; Right is the boxplot for the scale distribution, where the star denotes the
mean value, the dash line within the box denotes the median value.

Scale & Vertical Scale & HorizontalHorizontal & Vertical

Figure 9: The Pearson correlation value distributions among vertical, horizontal, and scale features.

E DATASET STATISTIC INFORMATION

E.1 DATASETS DISTRIBUTION

The statistical information on included datasets has been depicted in Fig. 8.

E.2 CORRELATION BETWEEN SCALE WITH VERTICAL AND HORIZONTAL FEATURES.

For domain partitioning, we employ only the vertical features of humans, as per Wang et al. (2023a),
to fit Gaussian distributions, guiding the patch-splitting process. We assess the Pearson correlation
coefficients among scale, vertical, and horizontal features at the image level and aggregate these
correlations across the dataset in Figure 9. Results show a strong positive correlation (close to 1)
between scale and vertical features, but no correlation (around 0) with horizontal features. For
comparison, the correlation between vertical and horizontal features is also presented, which are
irrelevant as a common sense. However, the distribution in scale and horizontal features is closed to
that in vertical and horizontal features, which further support our claim.

F ADDITIONAL PERFORMANCES

F.1 LEAVE-ONE-OUT GENERALIZATION

Table 6 presents the leave-one-out test results for the ResNet on the domain T, trained on SNB do-
mains, and tested on domain T. The algorithms are evaluated using six metrics: F1-score, Precision,
Recall, Mean Absolute Error (MAE), Mean Square Error (MSE), and Normalized Absolute Error
(NAE). Based on the F1-score, the best-performing algorithm is ERM with an F1-score of 23.19, fol-
lowed by IRM with 23.07. The lowest F1-score belongs to DomainDrop with 6.60. When it comes
to Recall, the best performer is again ERM with 13.33, followed by SagNet with 13.26. Overall,
ERM and SagNet seem to be the strongest algorithms across most metrics, while DomainDrop has
the weakest performance.
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Table 7 presents the leave-one-out test results for the ResNet on the domain S, trained on TNB
domains, and tested on domain S. The algorithms are evaluated using six metrics: F1-score, Pre-
cision, Recall, Mean Absolute Error (MAE), Mean Square Error (MSE), and Normalized Absolute
Error (NAE). Based on the F1-score, the best-performing algorithm is SagNet with an F1-score of
69.64, followed by SAGM with 69.48. The lowest F1-score belongs to DomainDrop with 25.92.
When it comes to Recall, the best performer is again SagNet with 55.72, followed by SAGM with
54.83. Overall, SAGM and SagNet seem to be the strongest algorithms across most metrics, while
DomainDrop has the weakest performance.

Table 8 presents the leave-one-out test results for the ResNet on the domain N, trained on TSB do-
mains, and tested on domain N. The algorithms are evaluated using six metrics: F1-score, Precision,
Recall, Mean Absolute Error (MAE), Mean Square Error (MSE), and Normalized Absolute Error
(NAE). Based on the F1-score, the best-performing algorithm is SAGM with an F1-score of 80.68,
followed by ERM with 79.76. The lowest F1-score belongs to DomainDrop with 56.05. When it
comes to Recall, the best performer is again SAGM with 70.11, followed by ERM with 69.42. Over-
all, ERM and SAGM seem to be the strongest algorithms across most metrics, while DomainDrop
has the weakest performance.

Table 9 presents the leave-one-out test results for the ResNet on the domain B, trained on STN do-
mains, and tested on domain B. The algorithms are evaluated using six metrics: F1-score, Precision,
Recall, Mean Absolute Error (MAE), Mean Square Error (MSE), and Normalized Absolute Error
(NAE). Based on the F1-score, the best-performing algorithm is IB-ERM with an F1-score of 70.11,
followed by IB-IRM with 69.64. The lowest F1-score belongs to DomainDrop with 54.14. When it
comes to Recall, the best performer is again IB-ERM with 61.19, followed by IB-IRM with 60.18.
Overall, IB-ERM and IB-IRM seem to be the strongest algorithms across most metrics, while Do-
mainDrop has the weakest performance.

Table 10 presents the leave-one-out test results for the HRNet on the domain T, trained on SNB do-
mains, and tested on domain T. The algorithms are evaluated using six metrics: F1-score, Precision,
Recall, Mean Absolute Error (MAE), Mean Square Error (MSE), and Normalized Absolute Error
(NAE). In terms of Precision, GAM leads with a score of 91.25, followed by SAGM with 90.86.
Overall, VREx seem to be the strongest algorithms across most metrics, while Mixup-F has the
weakest performance.

Table 11 presents the leave-one-out test results for the HRNet on the domain S, trained on TNB do-
mains, and tested on domain S. The algorithms are evaluated using six metrics: F1-score, Precision,
Recall, Mean Absolute Error (MAE), Mean Square Error (MSE), and Normalized Absolute Error
(NAE). Based on the F1-score, the best-performing algorithm is SAGM with an F1-score of 85.95.
The lowest F1-score belongs to Mixup-F with 27.74. In terms of Precision, GAM leads with a score
of 95.60, followed by SAM with 95.43. Overall, SAGM seem to be the strongest algorithms across
most metrics, while Mixup-F has the weakest performance.

Table 12 presents the leave-one-out test results for the HRNet on the domain N, trained on TSB do-
mains, and tested on domain N. The algorithms are evaluated using six metrics: F1-score, Precision,
Recall, Mean Absolute Error (MAE), Mean Square Error (MSE), and Normalized Absolute Error
(NAE). The lowest F1-score belongs to Mixup-F with 45.31. In terms of Precision, GAM leads with
a score of 96.93, followed by SAM with 96.85. Overall, VREx seem to be the strongest algorithms
across most metrics, while Mixup-F has the weakest performance.

Table 13 presents the leave-one-out test results for the HRNet on the domain B, trained on TSN do-
mains, and tested on domain B. The algorithms are evaluated using six metrics: F1-score, Precision,
Recall, Mean Absolute Error (MAE), Mean Square Error (MSE), and Normalized Absolute Error
(NAE). Based on the F1-score, the best-performing algorithm is VREx with an F1-score of 82.56,
followed by CORAL with 82.12. The lowest F1-score belongs to Mixup-F with 19.53. In terms
of Precision, SAGM leads with a score of 97.99, followed by SAM with 97.77. When it comes to
Recall, the best performer is VREx with 79.43, followed by IRM with 72.95. Overall, VREx and
CORAL seem to be the strongest algorithms across most metrics, while Mixup-F has the weakest
performance.

Table 14 presents the leave-one-out test results for the ViT-B on the domain T, trained on SNB do-
mains, and tested on domain T. The algorithms are evaluated using six metrics: F1-score, Precision,
Recall, Mean Absolute Error (MAE), Mean Square Error (MSE), and Normalized Absolute Error

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

(NAE). The lowest F1-score belongs to IRL-MMD with 33.08. In terms of Precision, IRL-Gaussian
leads with a score of 91.28, followed by GAM with 91.27. Overall, CORAL seem to be the strongest
algorithms across most metrics, while IRL-MMD has the weakest performance.

Table 15 presents the leave-one-out test results for the ViT-B on the domain S, trained on TNB
domains, and tested on domain S. The algorithms are evaluated using six metrics: F1-score, Pre-
cision, Recall, Mean Absolute Error (MAE), Mean Square Error (MSE), and Normalized Absolute
Error (NAE). The lowest F1-score belongs to IRL-Gaussian with 73.99. In terms of Precision, SD
leads with a score of 94.79, followed by EFDM Img with 94.00. Overall, CORAL seems to be the
strongest algorithms across most metrics, while IRL-Gaussian has the weakest performance.

Table 16 presents the leave-one-out test results for the ViT-B on the domain N, trained on STB do-
mains, and tested on domain N. The algorithms are evaluated using six metrics: F1-score, Precision,
Recall, Mean Absolute Error (MAE), Mean Square Error (MSE), and Normalized Absolute Error
(NAE). Based on the F1-score, the best-performing algorithm is VREx with an F1-score of 89.91,
followed by CORAL with 89.68. The lowest F1-score belongs to IRL-MMD with 76.39. In terms
of Precision, SAG leads with a score of 95.73, followed by SD with 95.50. When it comes to Recall,
the best performer is again CORAL with 87.77, followed by VREx with 86.10. Overall, VREx and
CORAL seem to be the strongest algorithms across most metrics, while IRL-MMD has the weakest
performance.

Table 17 presents the leave-one-out test results for the ViT-B on the domain B, trained on STN do-
mains, and tested on domain B. The algorithms are evaluated using six metrics: F1-score, Precision,
Recall, Mean Absolute Error (MAE), Mean Square Error (MSE), and Normalized Absolute Error
(NAE). Based on the F1-score, the best-performing algorithm is VREx with an F1-score of 83.28,
followed by CORAL with 82.79. The lowest F1-score belongs to IRL-Gaussian with 63.21. In terms
of Precision, SAGM leads with a score of 97.67, followed by GAM with 97.65. When it comes to
Recall, the best performer is again VREx with 74.92, followed by CORAL with 74.56. Overall,
VREx and CORAL seem to be the strongest algorithms across most metrics, while IRL-Gaussian
has the weakest performance.

Table 6: The leave-one-out results (%) for ResNet on the domain T, which is trained on SNB do-
mains, and tested on domain T.

Algorithm Venue F1-Score Pre. Rec. MAE MSE NAE
ERM None 23.19 89.09 13.33 295.69 901.80 0.69
Coral ECCV16 14.78 83.38 8.11 313.81 911.56 0.79
DANN JMLR16 20.87 87.76 11.84 300.81 905.74 0.72
MMD CVPR18 13.14 79.61 7.16 316.39 913.81 0.81
IRM arXiv19 23.07 89.16 13.25 296.05 902.26 0.69
Manifold-Mu ICLR19 20.79 89.64 11.76 302.08 907.22 0.72
Mixup-Img arXiv20 18.60 90.01 10.37 307.57 912.45 0.75
SAM ICLR20 20.10 90.44 11.31 304.22 909.50 0.73
VREx ICML21 21.53 89.00 12.25 299.84 905.27 0.71
SD NeurIPS21 19.94 90.59 11.21 304.64 910.53 0.73
SagNet CVPR21 23.07 88.63 13.26 295.74 901.40 0.69
IRL-Gaussian arXiv22 12.34 80.12 6.69 318.58 917.60 0.82
IRL-MMD arXiv22 12.57 80.53 6.82 318.19 916.28 0.82
IB-IRM AAAI22 15.30 87.18 8.39 314.21 914.55 0.79
IB-ERM AAAI22 15.62 86.97 8.58 313.37 913.76 0.78
EFDM-Feat CVPR22 22.13 88.84 12.64 298.25 904.66 0.70
EFDM-Img CVPR22 17.91 88.59 9.96 308.54 913.16 0.75
DomainDrop ICCV23 6.60 79.85 3.44 332.57 930.50 0.89
SAGM CVPR23 22.78 91.03 13.02 297.94 904.64 0.70
GAM CVPR23 19.38 90.39 10.85 305.90 911.74 0.73
Semantic Hook - 23.37 88.78 13.46 295.09 898.77 0.69
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Table 7: The leave-one-out results (%) for ResNet on the domain S, which is trained on TNB do-
mains, and tested on domain S.

Algorithm Venue F1-Score Pre. Rec. MAE MSE NAE
ERM None 68.27 93.42 53.79 64.32 218.30 0.35
Coral ECCV16 50.53 91.43 34.91 92.89 279.93 0.54
DANN JMLR16 63.17 93.17 47.79 73.53 236.31 0.41
MMD CVPR18 46.09 89.59 31.02 98.40 287.56 0.59
IRM arXiv19 68.26 93.48 53.76 64.41 218.45 0.35
Manifold-Mu ICLR19 64.98 93.82 49.70 70.91 235.99 0.39
Mixup-Img arXiv20 61.48 94.43 45.58 77.76 253.15 0.42
SAM ICLR20 64.99 94.27 49.58 71.44 239.06 0.38
VREx ICML21 65.98 93.44 50.99 68.59 229.97 0.37
SD NeurIPS21 64.58 94.51 49.05 72.34 237.71 0.39
SagNet CVPR21 69.64 92.82 55.72 60.93 208.77 0.34
IRL-Gaussian arXiv22 45.70 90.05 30.62 99.21 288.08 0.59
IRL-MMD arXiv22 45.86 89.39 30.84 98.61 292.13 0.58
IB-IRM AAAI22 54.82 93.06 38.85 87.63 272.20 0.48
IB-ERM AAAI22 55.48 92.89 39.55 86.43 269.62 0.48
EFDM-Feat CVPR22 67.24 93.52 52.49 66.41 224.21 0.37
EFDM-Img CVPR22 61.00 94.31 45.08 78.48 253.14 0.42
DomainDrop ICCV23 25.92 89.84 15.14 124.78 338.90 0.75
SAGM CVPR23 69.48 94.80 54.83 63.64 215.38 0.34
GAM CVPR23 62.03 95.26 45.99 77.71 251.62 0.42
Semantic Hook - 67.68 93.71 52.97 65.91 222.50 0.36

Table 8: The leave-one-out results (%) for ResNet on the domain N, which is trained on TSB do-
mains, and tested on domain N.

Algorithm Venue F1-Score Pre. Rec. MAE MSE NAE
ERM None 79.76 93.71 69.42 20.84 50.16 0.27
Coral ECCV16 70.34 88.84 58.21 28.55 66.20 0.37
DANN JMLR16 74.81 93.14 62.51 26.35 61.07 0.34
MMD CVPR18 65.30 86.26 52.54 32.73 73.72 0.43
IRM arXiv19 79.75 93.71 69.41 20.86 50.19 0.27
Manifold-Mu ICLR19 78.98 92.59 68.86 21.12 51.85 0.27
Mixup-Img arXiv20 77.40 93.16 66.21 23.32 56.98 0.29
SAM ICLR20 79.56 93.83 69.06 21.25 51.93 0.27
VREx ICML21 79.31 93.04 69.12 20.95 51.34 0.27
SD NeurIPS21 77.94 94.59 66.28 23.62 55.74 0.30
SagNet CVPR21 78.63 93.03 68.09 21.59 51.25 0.29
IRL-Gaussian arXiv22 65.62 86.77 52.76 32.73 73.80 0.42
IRL-MMD arXiv22 65.56 87.09 52.57 32.61 73.13 0.42
IB-IRM AAAI22 73.49 89.93 62.13 25.96 61.90 0.32
IB-ERM AAAI22 73.80 89.72 62.67 25.52 61.10 0.32
EFDM-Feat CVPR22 78.06 94.08 66.70 23.25 53.94 0.30
EFDM-Img CVPR22 78.40 92.95 67.79 21.89 52.04 0.28
DomainDrop ICCV23 56.05 84.15 42.01 41.31 94.96 0.52
SAGM CVPR23 80.68 94.98 70.11 20.74 49.46 0.27
GAM CVPR23 77.32 94.56 65.40 24.41 57.30 0.33
Semantic Hook - 79.24 94.02 68.47 21.78 52.20 0.29

Table 9: The leave-one-out results (%) for ResNet on the domain B, which is trained on TSN do-
mains, and tested on domain B.

Algorithm Venue F1-Score Pre. Rec. MAE MSE NAE
ERM None 65.03 94.35 49.62 21.50 41.18 0.49
Coral ECCV16 63.34 85.22 50.40 20.63 40.34 0.48
DANN JMLR16 64.87 90.97 50.41 20.73 39.78 0.49
MMD CVPR18 62.14 80.94 50.42 21.00 42.66 0.49
IRM arXiv19 64.92 94.37 49.48 21.57 41.20 0.49
Manifold-Mu ICLR19 68.05 91.61 54.13 19.23 37.70 0.45
Mixup-Img arXiv20 64.63 93.17 49.47 21.49 41.39 0.49
SAM ICLR20 67.52 92.50 53.17 19.79 38.65 0.46
VREx ICML21 69.43 92.24 55.66 18.63 36.12 0.44
SD NeurIPS21 61.37 94.85 45.36 23.47 44.20 0.53
SagNet CVPR21 62.32 92.43 47.01 22.36 42.06 0.51
IRL-Gaussian arXiv22 62.54 80.79 51.02 20.63 41.73 0.48
IRL-MMD arXiv22 62.42 80.95 50.79 20.87 41.66 0.49
IB-IRM AAAI22 69.64 82.62 60.18 17.10 34.91 0.41
IB-ERM AAAI22 70.11 82.08 61.19 16.85 34.41 0.41
EFDM-Feat CVPR22 64.51 94.14 49.06 21.59 42.56 0.48
EFDM-Img CVPR22 68.75 92.52 54.69 19.06 36.99 0.44
DomainDrop ICCV23 54.14 78.31 41.37 25.22 50.39 0.57
SAGM CVPR23 68.25 95.07 53.23 19.89 37.61 0.47
GAM CVPR23 62.85 94.08 47.18 22.58 42.34 0.52
Semantic Hook - 66.26 93.76 51.23 20.68 40.03 0.48
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Table 10: The leave-one-out results (%) for HRNet on the domain T, which is trained on SNB
domains, and tested on domain T.

Algorithm Venue F1-Score Pre. Rec. MAE MSE NAE
ERM None 58.05 88.74 43.13 181.45 761.96 0.34
Coral ECCV16 57.88 87.76 43.18 179.78 753.15 0.35
DANN JMLR16 39.18 89.39 25.09 250.47 852.11 0.53
MMD CVPR18 33.47 81.76 21.04 259.25 862.77 0.57
IRM arXiv19 57.65 88.86 42.67 183.52 762.38 0.35
Manifold-Mu ICLR19 8.65 59.52 4.66 323.06 928.51 0.81
Mixup-Img arXiv20 56.05 89.40 40.83 191.04 779.26 0.37
SAM ICLR20 57.36 90.62 41.96 189.04 784.63 0.37
VREx ICML21 58.77 87.56 44.23 175.70 753.63 0.33
SD NeurIPS21 55.40 90.01 40.02 194.95 783.06 0.38
SagNet CVPR21 57.70 88.73 42.75 182.92 767.73 0.34
IRL-Gaussian arXiv22 40.67 86.39 26.60 241.84 843.23 0.51
IRL-MMD arXiv22 41.16 86.28 27.03 239.68 844.09 0.50
IB-IRM AAAI22 55.50 88.89 40.35 192.65 789.34 0.37
IB-ERM AAAI22 55.72 88.88 40.58 191.69 790.45 0.37
EFDM-Feat CVPR22 56.55 88.42 41.57 186.96 775.91 0.35
EFDM-Img CVPR22 56.83 89.18 41.70 188.08 771.54 0.36
DomainDrop ICCV23 45.97 88.62 31.04 227.23 836.95 0.45
SAGM CVPR23 55.15 90.86 39.59 197.61 798.25 0.38
GAM CVPR23 50.36 91.25 34.78 216.58 824.68 0.42
Semantic Hook - 59.26 86.56 45.06 171.58 755.75 0.32

Table 11: The leave-one-out results (%) for HRNet on the domain S, which is trained on TNB
domains, and tested on domain S.

Algorithm Venue F1-Score Pre. Rec. MAE MSE NAE
ERM None 85.30 94.04 78.05 27.56 80.89 0.17
Coral ECCV16 84.46 93.48 77.03 28.96 84.51 0.17
DANN JMLR16 74.79 93.63 62.26 51.38 164.25 0.28
MMD CVPR18 72.70 83.98 64.09 44.79 155.64 0.28
IRM arXiv19 85.20 94.08 77.86 28.00 81.81 0.17
Manifold-Mu ICLR19 27.74 64.01 17.71 113.86 335.40 0.61
Mixup-Img arXiv20 84.64 94.21 76.84 29.87 89.10 0.17
SAM ICLR20 85.75 95.43 77.86 29.01 79.22 0.18
VREx ICML21 85.24 92.61 78.96 25.89 77.96 0.16
SD NeurIPS21 84.21 94.77 75.77 31.34 91.40 0.18
SagNet CVPR21 85.30 93.83 78.20 27.11 80.27 0.17
IRL-Gaussian arXiv22 77.76 87.62 69.89 36.97 129.80 0.23
IRL-MMD arXiv22 77.24 87.88 68.90 38.38 132.18 0.23
IB-IRM AAAI22 84.52 94.89 76.19 31.10 88.13 0.19
IB-ERM AAAI22 84.72 94.71 76.63 30.44 85.99 0.19
EFDM-Feat CVPR22 85.13 94.16 77.67 28.15 80.78 0.17
EFDM-Img CVPR22 85.04 94.10 77.57 28.37 81.98 0.18
DomainDrop ICCV23 82.46 92.77 74.21 32.55 100.59 0.20
SAGM CVPR23 85.95 94.86 78.56 27.79 81.42 0.17
GAM CVPR23 84.55 95.60 75.78 32.24 89.91 0.20
Semantic Hook - 85.90 92.90 79.89 24.46 67.58 0.16

Table 12: The leave-one-out results (%) for HRNet on the domain N, which is trained on TSB
domains, and tested on domain N.

Algorithm Venue F1-Score Pre. Rec. MAE MSE NAE
ERM None 87.90 94.06 82.50 11.13 29.25 0.16
Coral ECCV16 87.37 92.78 82.55 11.23 31.07 0.16
DANN JMLR16 81.05 93.25 71.67 19.53 47.33 0.26
MMD CVPR18 74.37 71.73 77.22 22.94 48.97 0.39
IRM arXiv19 87.85 94.19 82.30 11.34 29.61 0.16
Manifold-Mu ICLR19 45.31 61.66 35.81 46.58 110.64 0.55
Mixup-Img arXiv20 87.71 94.82 81.59 12.10 32.68 0.17
SAM ICLR20 87.96 96.85 80.57 13.58 35.26 0.19
VREx ICML21 87.63 91.92 83.72 10.32 28.32 0.16
SD NeurIPS21 87.22 94.73 80.81 12.57 33.45 0.17
SagNet CVPR21 87.49 93.30 82.37 11.34 30.44 0.16
IRL-Gaussian arXiv22 79.97 80.39 79.57 16.00 36.22 0.26
IRL-MMD arXiv22 79.24 79.32 79.15 16.21 37.68 0.27
IB-IRM AAAI22 87.02 95.87 79.67 13.86 35.58 0.19
IB-ERM AAAI22 87.20 95.89 79.95 13.66 35.25 0.19
EFDM-Feat CVPR22 87.44 94.54 81.34 12.13 32.81 0.17
EFDM-Img CVPR22 87.60 94.68 81.51 12.17 33.05 0.17
DomainDrop ICCV23 84.81 91.29 79.19 13.14 34.09 0.20
SAGM CVPR23 87.91 96.60 80.64 13.50 34.22 0.19
GAM CVPR23 86.96 96.93 78.85 14.85 37.12 0.21
Semantic Hook - 88.03 92.99 83.58 10.39 28.01 0.16
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Table 13: The leave-one-out results (%) for HRNet on the domain B, which is trained on TSN
domains, and tested on domain B.

Algorithm Venue F1-Score Pre. Rec. MAE MSE NAE
ERM None 81.57 91.62 73.50 10.13 22.07 0.25
Coral ECCV16 82.12 90.14 75.41 9.65 20.97 0.25
DANN JMLR16 73.14 90.32 61.45 15.54 32.07 0.39
MMD CVPR18 57.01 45.80 75.48 38.87 88.29 0.88
IRM arXiv19 81.38 92.01 72.95 10.50 22.45 0.26
Manifold-Mu ICLR19 19.53 56.77 11.79 39.44 72.01 0.86
Mixup-Img arXiv20 78.69 93.90 67.72 12.92 27.07 0.31
SAM ICLR20 75.51 97.77 61.51 16.48 32.00 0.39
VREx ICML21 82.56 85.95 79.43 8.70 18.68 0.23
SD NeurIPS21 79.98 93.33 69.98 11.83 24.87 0.29
SagNet CVPR21 79.03 88.24 71.56 11.31 24.07 0.31
IRL-Gaussian arXiv22 66.81 61.74 72.78 20.62 43.93 0.50
IRL-MMD arXiv22 67.81 64.31 71.72 18.85 39.52 0.46
IB-IRM AAAI22 77.54 96.77 64.69 14.87 29.61 0.34
IB-ERM AAAI22 78.03 96.64 65.43 14.47 28.88 0.33
EFDM-Feat CVPR22 80.22 92.90 70.59 11.38 23.61 0.29
EFDM-Img CVPR22 79.69 94.18 69.07 12.32 24.85 0.30
DomainDrop ICCV23 76.35 82.48 71.07 12.36 25.56 0.33
SAGM CVPR23 70.57 97.99 55.15 19.38 36.52 0.46
GAM CVPR23 69.81 97.21 54.45 19.52 36.93 0.47
Semantic Hook - 81.19 90.62 73.53 10.20 21.40 0.28

Table 14: The leave-one-out results (%) for ViT-B on the domain T, which is trained on SNB do-
mains, and tested on domain T.

Algorithm Venue F1-Score Pre. Rec. MAE MSE NAE
ERM None 56.19 88.05 41.26 187.63 757.86 0.36
Coral ECCV16 56.69 85.68 42.36 182.09 757.99 0.34
DANN JMLR16 48.73 85.57 34.07 211.94 816.21 0.40
MMD CVPR18 36.96 89.76 23.27 257.80 855.82 0.58
IRM arXiv19 56.01 87.93 41.09 188.10 750.08 0.36
Manifold-Mu ICLR19 49.94 89.30 34.66 214.58 814.74 0.41
Mixup-Img arXiv20 52.77 88.52 37.59 202.45 784.05 0.38
SAM ICLR20 52.01 89.33 36.68 207.29 806.89 0.39
VREx ICML21 56.59 87.47 41.83 185.33 747.35 0.34
SD NeurIPS21 53.15 89.29 37.84 202.46 773.52 0.39
SagNet CVPR21 55.13 88.19 40.10 192.81 779.02 0.35
IRL-Gaussian arXiv22 33.64 91.28 20.62 269.31 875.07 0.60
IRL-MMD arXiv22 33.08 91.19 20.20 270.79 876.63 0.60
IB-IRM AAAI22 52.77 88.98 37.51 203.41 798.29 0.39
IB-ERM AAAI22 52.91 88.89 37.66 202.72 797.93 0.38
EFDM-Feat CVPR22 46.14 88.57 31.20 227.71 851.91 0.39
EFDM-Img CVPR22 54.68 88.44 39.57 194.79 766.45 0.37
DomainDrop ICCV23 42.30 88.55 27.78 240.10 844.57 0.48
SAGM CVPR23 48.23 89.72 32.98 222.03 830.66 0.42
GAM CVPR23 38.16 91.27 24.12 256.76 881.44 0.51
Semantic Hook - 56.08 87.58 41.24 187.78 763.30 0.34

Table 15: The leave-one-out results (%) for ViT-B on the domain S, which is trained on TNB do-
mains, and tested on domain S.

Algorithm Venue F1-Score Pre. Rec. MAE MSE NAE
ERM None 85.89 93.74 79.25 26.32 81.40 0.17
Coral ECCV16 86.50 91.12 82.33 22.00 62.23 0.17
DANN JMLR16 80.81 91.91 72.11 35.70 116.24 0.21
MMD CVPR18 76.12 90.03 65.94 44.64 147.92 0.27
IRM arXiv19 85.92 93.90 79.18 26.40 81.76 0.17
Manifold-Mu ICLR19 84.12 93.33 76.56 30.40 92.49 0.19
Mixup-Img arXiv20 85.06 93.56 77.97 28.35 93.75 0.18
SAM ICLR20 85.39 93.66 78.47 27.99 94.41 0.18
VREx ICML21 86.50 93.10 80.78 24.23 73.08 0.16
SD NeurIPS21 84.53 94.79 76.27 31.01 98.00 0.19
SagNet CVPR21 85.74 93.22 79.37 26.65 83.77 0.17
IRL-Gaussian arXiv22 73.99 92.61 61.60 51.97 159.28 0.30
IRL-MMD arXiv22 75.81 91.39 64.76 46.87 147.20 0.27
IB-IRM AAAI22 85.34 92.97 78.87 26.68 83.02 0.17
IB-ERM AAAI22 85.44 93.02 79.00 26.46 80.81 0.17
EFDM-Feat CVPR22 84.95 93.45 77.86 28.76 125.89 0.17
EFDM-Img CVPR22 85.09 94.00 77.72 28.91 94.92 0.17
DomainDrop ICCV23 80.31 90.76 72.01 36.42 118.88 0.23
SAGM CVPR23 84.47 93.87 76.77 30.75 103.36 0.18
GAM CVPR23 81.53 92.98 72.58 36.68 146.40 0.22
Semantic Hook - 86.28 93.87 79.83 25.36 72.58 0.16
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Table 16: The leave-one-out results (%) for ViT-B on the domain N, which is trained on TSB do-
mains, and tested on domain N.

Algorithm Venue F1-Score Pre. Rec. MAE MSE NAE
ERM None 89.39 94.64 84.69 9.99 27.27 0.15
Coral ECCV16 89.68 91.68 87.77 9.07 23.47 0.16
DANN JMLR16 84.11 93.19 76.64 15.63 37.63 0.22
MMD CVPR18 76.55 92.13 65.48 23.66 55.35 0.29
IRM arXiv19 89.42 94.83 84.59 10.06 27.12 0.15
Manifold-Mu ICLR19 87.92 94.52 82.19 11.86 30.25 0.17
Mixup-Img arXiv20 89.35 94.06 85.09 9.78 26.17 0.15
SAM ICLR20 88.90 95.73 82.97 11.53 28.18 0.18
VREx ICML21 89.91 94.07 86.10 9.11 25.26 0.14
SD NeurIPS21 88.51 95.50 82.48 11.70 31.15 0.16
SagNet CVPR21 89.26 94.17 84.84 10.10 27.15 0.16
IRL-Gaussian arXiv22 78.34 91.67 68.39 21.56 50.98 0.28
IRL-MMD arXiv22 76.39 93.91 64.38 25.08 58.09 0.31
IB-IRM AAAI22 88.78 94.80 83.48 10.87 28.11 0.16
IB-ERM AAAI22 88.81 94.65 83.65 10.75 28.11 0.16
EFDM-Feat CVPR22 89.45 93.92 85.39 9.69 26.59 0.15
EFDM-Img CVPR22 89.35 95.15 84.21 10.36 26.31 0.16
DomainDrop ICCV23 86.47 93.00 80.80 12.71 32.36 0.19
SAGM CVPR23 89.31 93.64 85.36 9.93 25.53 0.16
GAM CVPR23 86.78 94.09 80.52 13.45 32.13 0.22
Semantic Hook - 89.93 94.41 85.86 9.22 24.24 0.14

Table 17: The leave-one-out results (%) for ViT-B on the domain B, which is trained on TSN do-
mains, and tested on domain B.

Algorithm Venue F1-Score Pre. Rec. MAE MSE NAE
ERM None 80.98 94.32 70.95 12.26 25.56 0.31
Coral ECCV16 82.79 93.06 74.56 10.94 22.50 0.30
DANN JMLR16 71.52 90.83 58.98 17.10 32.45 0.46
MMD CVPR18 73.75 80.37 68.13 14.61 29.78 0.39
IRM arXiv19 80.87 94.20 70.85 12.16 25.40 0.31
Manifold-Mu ICLR19 81.22 95.45 70.68 11.99 23.76 0.30
Mixup-Img arXiv20 80.35 94.71 69.77 12.83 26.06 0.32
SAM ICLR20 74.19 97.35 59.92 17.31 33.30 0.41
VREx ICML21 83.28 93.74 74.92 10.66 23.36 0.28
SD NeurIPS21 77.23 93.51 65.77 14.33 29.30 0.34
SagNet CVPR21 80.32 89.41 72.90 11.62 24.17 0.33
IRL-Gaussian arXiv22 63.21 91.29 48.34 21.42 41.03 0.50
IRL-MMD arXiv22 68.13 89.01 55.19 18.23 35.96 0.44
IB-IRM AAAI22 78.81 95.95 66.87 13.88 28.08 0.34
IB-ERM AAAI22 80.06 96.03 68.64 13.14 26.70 0.32
EFDM-Feat CVPR22 82.72 94.31 73.66 11.18 23.29 0.29
EFDM-Img CVPR22 80.76 95.51 69.96 12.57 25.88 0.31
DomainDrop ICCV23 76.24 93.48 64.37 14.81 29.19 0.38
SAGM CVPR23 71.66 97.67 56.59 18.81 35.70 0.44
GAM CVPR23 63.39 97.65 46.92 23.10 43.80 0.52
Semantic Hook - 80.27 95.36 69.29 12.99 26.03 0.32
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Table 18: The results (%) for different domains trained model generalizing to domain T.

HRNetW-48 F1-Score Pre. Rec. MAE MSE
JointTrain 61.26 81.11 49.22 115.98 394.14
From T 62.05 73.01 53.96 95.34 343.17
From S 58.26 73.66 48.18 111.00 370.73
From N 40.10 70.40 28.03 168.65 453.64
From B 11.25 59.94 6.20 248.56 514.47
From SNB 56.15 77.65 43.97 127.01 407.89
From TNB 61.80 78.60 50.91 110.46 380.85
From TSB 61.92 78.77 51.01 108.04 370.37
From TSN 62.02 79.13 50.99 109.27 373.83
From TS 62.80 72.39 55.45 95.84 329.16
From TN 61.86 77.86 51.31 105.86 354.47
From TB 61.70 75.70 52.10 103.20 362.20
From SN 56.71 76.68 44.99 122.50 397.26
From SB 56.62 76.29 45.01 121.85 389.02
From NB 40.55 71.73 28.26 169.63 456.19

F.2 MULTI-SOURCE GENERALIZATION

Table 18 presents the results for different domains, with models trained to generalize to domain T
using the HRNet-W48 architecture. The models are also evaluated using the F1-score, Precision
(Pre.), Recall, Mean Absolute Error (MAE), and Mean Square Error (MSE). From the F1-score
perspective, the best-performing model is the one trained on TS with an F1-score of 62.80, and the
lowest is the model trained on B with an F1-score of 11.25. In terms of Precision, the highest score
is achieved by the model jointly trained on all domains with a precision of 81.11, while the lowest
is again the model trained on B with 59.94. Regarding Recall, the top-performing model is the one
trained on TS with a recall of 55.45, and the lowest is the model trained on B with 6.20. For MAE,
the lowest (best) score is obtained by the model trained on T with a value of 95.34, which suggests it
has the least absolute error. On the other hand, the highest MAE is for the model trained on B with
248.56, indicating it has the highest absolute error in predictions. Looking at MSE, the model trained
on TS also performs best, with a score of 329.16, representing the tightest clustering of predictions
around the true values. Meanwhile, the highest MSE is found in the model trained on B with a score
of 514.47, indicating more significant variance in the predictions. Overall, models trained on TN
and T show strong generalizability to domain T across all metrics. The models trained on omni-
domain, TSN show moderate performance. From Train present lower generalization performance,
suggesting that training solely on T might not be sufficient. The model trained on NB consistently
performs the worst across all the metrics, indicating that this domain may be substantially different
from domain T, resulting in poor generalization. This indicates that the choice of the training domain
has a significant impact on the model’s performance on domain T, with closer domains providing
better generalization.

Summarizing results exhibited in Table 18, 19, 20, 21, we can observe several generalized phe-
nomenons that: 1) Once the target domain is involved in training, its final performance is greatly
enhanced. To explain this, we can see that the present of target domain during training reduces the
domain divergence. This also further support our claim on the scale shift influences the final gener-
alization performance. 2) Considering the continual distribution of scale, we can observe that when
source domains includes the target domain’ s scale scope, even the target domain is absent, its final
performance is not very low in generalization. 3) The domain farther to the target domain incurs
less influence to the final performance.
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Table 19: The results (%) for different domains trained model generalizing to domain S.

HRNetW-48 F1-Score Pre. Rec. MAE MSE
JointTrain 80.48 83.25 77.90 22.10 51.72
From T 74.69 72.98 76.49 31.31 57.35
From S 79.40 80.69 78.16 25.57 56.49
From N 70.30 79.93 62.74 42.71 133.11
From B 42.95 74.76 30.13 85.10 216.22
From SNB 79.22 83.07 75.70 25.70 63.91
From TNB 77.94 80.24 75.76 26.30 66.26
From TSB 79.95 82.10 77.91 22.43 49.05
From TSN 80.71 82.92 78.61 21.82 48.37
From TS 78.57 75.95 81.38 26.03 47.31
From TN 77.92 80.55 75.45 27.79 68.81
From TB 75.09 77.20 73.09 30.27 72.78
From SN 79.70 82.60 76.90 24.20 56.90
From SB 70.70 80.50 63.00 43.10 131.00
From NB 70.82 79.57 63.80 41.91 128.05

Table 20: The results (%) for different domains trained model generalizing to domain N.

HRNetW-48 F1-Score Pre. Rec. MAE MSE
JointTrain 84.09 86.65 81.67 13.38 33.26
From T 71.32 69.80 72.90 23.47 43.50
From S 80.39 81.23 79.57 16.90 38.14
From N 82.60 83.89 81.34 13.64 34.05
From B 66.89 80.68 57.13 33.20 84.94
From SNB 83.62 86.20 81.18 13.72 34.81
From TNB 83.30 84.00 82.62 13.16 30.47
From TSB 82.44 84.64 80.35 14.83 36.81
From TSN 84.16 85.87 82.52 12.60 30.61
From TS 80.48 81.28 79.69 17.27 38.15
From TN 83.28 85.04 81.58 13.16 31.73
From TB 78.51 81.42 75.79 17.33 45.25
From SN 83.80 85.60 82.00 13.30 32.00
From SB 82.29 84.29 80.38 15.44 38.75
From NB 82.40 85.90 79.20 14.50 38.00

Table 21: The results (%) for different domains trained model generalizing to domain B.

HRNetW-48 F1-Score Pre. Rec. MAE MSE
JointTrain 85.48 84.79 86.18 7.33 13.99
From T 62.20 57.16 68.22 21.01 37.13
From S 71.00 63.93 79.84 19.39 31.38
From N 81.57 78.50 84.89 9.38 14.47
From B 83.46 81.34 85.68 9.33 17.84
From SNB 85.57 84.27 86.92 6.85 11.81
From TNB 84.60 80.77 88.81 8.65 14.06
From TSB 84.63 83.65 85.63 7.96 15.38
From TSN 82.34 81.25 83.47 8.27 14.01
From TS 72.36 66.91 78.77 16.38 25.07
From TN 82.40 79.41 85.62 9.23 14.02
From TB 84.20 82.40 85.90 7.70 14.20
From SN 82.27 80.66 83.95 8.74 14.97
From SB 84.70 82.50 87.00 7.90 12.60
From NB 85.90 84.40 87.40 7.10 14.00
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F.3 PRE-TRAINED MODELS

To harness the capabilities of vision transformers for our task, we began by extracting the image
encoder from the selected vision transformer models. The encoder serves as a feature extractor, cap-
turing the intricate patterns and high-level representations within the images. Recognizing the need
to reconstruct the spatial detail lost during the encoding process, we complemented the encoder with
a series of transposed convolutional modules. These modules, often referred to as deconvolutional
layers, function in a manner inverse to that of standard convolutional layers. By employing learn-
able filters and strides, they progressively upsample the lower-resolution feature maps output by
the encoder, thereby regaining the original spatial resolution of the input images. This architecture,
combining the discriminative power of vision transformer encoders with the spatial recovery ability
of transposed convolutional modules, forms a robust foundation for our model. However, to fully
exploit this structure, we tailored the fine-tuning stage to optimally adjust the pre-trained weights to
our specific application. Fine-tuning was performed with a bifurcated learning rate strategy aimed at
balancing stability and adaptability. For the decoder, we adopted a learning rate of 1× 10−5, which
is relatively higher to encourage the model to learn the nuances of upsampling and reconstruction
more rapidly. This rate allows the decoder to adapt to the task of restoring image details without
major restrictions. In contrast, for the encoder—which already possesses a wealth of pre-trained
knowledge—a much lower learning rate of 1 × 10−8 was chosen. This conservative learning rate
ensures that the valuable encoded representations are retained and only subtly modified, preventing
the overwriting of useful features developed through pre-training on large and diverse datasets. By
employing this dual learning rate approach, we strike a delicate balance: we maintain the integrity
of the encoder’s pre-trained features while allowing the decoder to evolve and specialize for the task
at hand. This fine-tuning methodology is designed to bring the entire model in line with the specific
requirements of our application, thus enabling the production of high-fidelity results in recovering
the original image resolution.

To undertake a comprehensive evaluation of the generalization capabilities of various pre-trained
models under conditions of scale shift, we must establish an experimental framework that presents
models with a range of object scales that change dynamically.

This framework is essential for simulating scenarios akin to real-world applications where object
sizes can differ significantly from those seen during the training phase. The experimental setup is as
follows:

1 Creation of a Varied Scale Dataset: Our first step is to assemble a dataset that is reflective of
diverse object scales. This dataset is composed of image patches, each containing objects
of different sizes. By covering a broad spectrum of scales, the dataset ensures that the scale
distribution is continuous and representative of potential real-world variations.

2 Discretization into Scale Bins: With the dataset in hand, we segment the continuous scale
distribution into discrete intervals called scale bins. Each bin corresponds to a specific
range of object scales and effectively represents a mini-dataset or ’domain.’ This segmen-
tation allows us to handle the scale variation in a structured manner, facilitating separate
analysis and modeling for each bin.

3 Expansion of Domain Variety: This binning approach stands in contrast to our primary
method, referred to as ScaleBench, which limited the domain count to four. By increasing
the number of bins, we correspondingly increase the number of distinct domains, thereby
enriching the diversity of scale shifts that we can analyze. This methodological shift en-
ables a more detailed investigation into how models respond to subtle changes in scale,
beyond the coarse groupings used previously.

4 Domain Partitioning for Training and Testing: We then strategically divide the scale bins
into two groups based on a predetermined scale threshold. The bins below this threshold are
designated for training the models and selecting the optimal model configurations (modes).
Conversely, the bins that exceed this threshold are reserved for testing. This division is
critical for evaluating OOD generalization: during training, models are exposed only to a
restricted range of scales, while during testing, they encounter scales that they have not
been trained on—mirroring the challenges models face when deployed in the real world.
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Table 22: Generalization performance (%) of CLIP pre-trained ViT.

Index 0 20 40 60 80 100 120 140 160 180 200 220
F1-Score 65 60 61 57 54 48 57 49 52 53 47 51
Pre. 63 56 59 48 50 42 44 42 40 41 40 38
Rec. 75 75 76 81 77 70 87 76 83 81 69 80

Table 23: Generalization performance (%) of DINO-v2 pre-trained ViT.

Index 0 20 40 60 80 100 120 140 160 180 200 220
F1-Score 56 54 57 48 53 43 56 45 49 49 44 50
Pre. 67 62 69 51 60 46 48 39 51 46 46 44
Rec. 56 56 61 54 60 57 76 61 65 64 53 61

Scale Shift Increase

Relative Metric 
Degradation

SAM

MAE

IN-1K

Scratch

CLIP

DINO-2

Figure 10: After training crowd locators on a
source domain, we evaluated their performance on
continuous domains with increasing scale shifts.
To better support the results, we utilized various
backbone models Deng et al. (2009); Dosovitskiy
et al. (2021); Radford et al. (2021); Kirillov et al.
(2023); Oquab et al. (2023). See Appendix for de-
tailed experimental setting.

Figure 10 illustrates the variations in model per-
formance in relation to the index of the test do-
main. This index serves as a proxy for the de-
gree of scale shift—the higher the index, the
greater the scale deviation from the training
set. The graph provides a visual representa-
tion of how each model’s accuracy fluctuates
in response to progressively larger scale shifts.
To complement the visual analysis, we have
compiled extensive numerical data, which is
detailed in the subsequent tables. These ta-
bles present a comprehensive view of the per-
formance metrics—such as accuracy, precision,
recall, and F1 score—for each of the scale bins.
By dissecting the models’ performance across
these metrics, we can draw nuanced insights
into their resilience and adaptability to varying
scale conditions. This elaborate setup and the
ensuing detailed analysis enable us to identify
which models are best equipped to maintain high levels of performance across scale shifts. Such
models would be particularly advantageous in applications where robustness to scale variation is of
paramount importance, such as in surveillance, autonomous driving, or medical imaging, where the
ability to accurately recognize objects of varying sizes can be critical to the system’s success and
reliability.

Table 24: Generalization performance (%) of MAE pre-trained ViT.

Index 0 20 40 60 80 100 120 140 160 180 200 220
F1-Score 80 75 74 71 70 65 74 61 66 69 69 55
Pre. 81 71 74 65 68 65 68 68 61 66 62 61
Rec. 81 82 81 82 76 72 85 63 78 80 82 65
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Table 25: Generalization performance (%) of ViT training from scratch.

Index 0 20 40 60 80 100 120 140 160 180 200 220
F1-Score 70 63 66 59 56 54 60 44 55 59 44 51
Pre. 69 59 65 56 53 52 49 34 46 53 40 38
Rec. 75 75 78 75 73 69 87 68 76 80 64 82

Table 26: Generalization performance (%) of SeAM pre-trained ViT.

Index 0 20 40 60 80 100 120 140 160 180 200 220
F1-Score 84 82 80 80 75 71 80 63 79 72 74 63
Pre. 89 82 86 79 79 72 80 75 81 68 77 70
Rec. 82 84 79 82 75 72 84 60 81 79 74 65

Table 27: Generalization performance (%) of ImageNet pre-trained ViT.

Index 0 20 40 60 80 100 120 140 160 180 200 220
F1-Score 73 68 68 65 62 55 63 51 58 58 54 48
Pre. 73 63 64 60 59 49 56 58 48 49 45 47
Rec. 79 79 79 79 73 74 81 65 79 79 73 76
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Figure 11: Expected calibration error with different pre-trained vision transformers.

F.4 CALIBRATION EXPERIMENTS

The relationship between model calibration and out-of-distribution (OOD) generalization perfor-
mance has become a focal point of investigation within the OOD research community. This interest
is driven by the hypothesis that well-calibrated models, which provide accurate probability estimates
of their predictions, are also likely to demonstrate better generalization to data that differs from the
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distribution seen during training. This concept has been extensively explored and discussed in sem-
inal works within the field. To contribute to this body of research, we propose a novel approach
by adapting the notion of calibration to the specific task of crowd localization. Our methodological
framework is defined as follows:

Definition 5 Consider a set of Npre predicted independent entities, such as individuals in a crowd,
as identified by a trained model on an image. For each predicted entity, we ascertain its associated
prediction confidence by computing the mean value of the pixels that lie within the ground-truth
bounding box on a confidence map—a spatial representation of prediction confidence levels across
the image. These predictions are subsequently grouped into 10 equidistant confidence bins, repre-
sented as {confi}10i=1, where each bin spans a confidence interval of 0.1. Within each bin, we derive
the bin-specific posterior precision {prei}10i=1. We then define the expected calibration error (ECE)
in a quantitative manner:

ECE =

10∑
i=1

Ni

Npre
|confi − prei|, (22)

with Ni denoting the number of predictions falling within the ith bin. The ECE serves as a statistical
measure of calibration quality, indicating the discrepancy between predicted confidences and actual
accuracies.

In our investigation, we extend the analysis to evaluate how the calibration performance of ma-
chine learning models holds up under conditions where the scale of objects in images is subject to
variations—a scenario referred to as scale shift generalization. Figure 11 in our paper depicts the
calibration errors of six different pre-trained models, each subjected to varying degrees of scale shift.
These shifts are indexed, with higher index values signifying more pronounced deviations from the
scale of objects seen during training. Our findings reveal a counterintuitive phenomenon: calibra-
tion seems to improve with greater scale shifts. This could be attributed to models exhibiting lower
confidence in their predictions as the deviation from trained object scales increases—a behavior that
may inadvertently lead to better-calibrated predictions. Upon a comparative assessment of various
pre-trained models, it becomes evident that the Vision Transformer (ViT) stands out for its calibra-
tion accuracy. The ViT’s strong performance suggests that its architecture may be inherently more
adept at maintaining reliable probabilistic outputs, even in the face of significant scale variations that
are characteristic of OOD data. This insight underscores the potential of ViT models for deployment
in applications where encountering OOD scenarios is likely, thereby demanding models that can not
only generalize well but also provide trustworthy predictions.

F.5 LESS IS MORE EXPERIMENTS

We specifically explore whether adhering to the feature distribution of the dataset, in this case,
the scale distribution, offers a pathway to identifying the smallest yet optimal subset of data—a
’coreset’—that maximizes model performance. This approach is insightful for understanding data
economy in the training process. Our experimental design is centered on the distribution of object
scales within our dataset. We embarked on an exploration to determine whether a subset of data that
mirrors the original scale distribution could lead to efficient model training. Here is the revised and
elaborate methodology:

1 Dataset Analysis: We begin with a thorough analysis of the scale distribution within the
complete dataset. This involves identifying the range and frequency of object scales present
in the dataset, providing a comprehensive overview of the scale feature distribution.

2 Subset Construction: Leveraging this distribution, we construct a subset of the dataset.
The selection of data points for this subset is guided by the aim of maintaining the same
proportional representation of scale ranges as in the full dataset. This method ensures that
the subset is a scaled-down yet faithful microcosm of the original data in terms of scale
distribution.

3 Proportional Split into Data Splits: This carefully constructed subset is further split into
training, validation (val-), and testing (test-) sets, maintaining the proportional representa-
tion of the scale distribution in each split. The proportionality is critical to ensure that the
scale variance is consistently represented across all phases of model training and evalua-
tion.
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Table 28: Training a ViT on 5% InD scale data. (%)

Iteration 20k 30k 40k 50k 80k 100k 150k 200k
F1-Score 44 44 46 49 51 43 46 48
Pre. 44 59 54 45 52 77 66 43
Rec. 45 35 40 53 50 30 35 56
MAE 146.53 121.13 132.11 152.66 131.31 116.59 119.53 169.35
MSE 448.38 439.30 442.39 444.14 425.80 437.51 4453 455.32
NAE 1.18 67 1.07 1.52 1.30 55 69 1.84

Table 29: Training a ViT on 10% InD scale data. (%)

Iter. 20k 30k 40k 50k 80k 100k 150k 200k 250k 300k
F1-Score 46 50 51 49 48 50 54 51 56 53
Pre. 54 63 56 68 79 76 57 79 59 77
Rec. 40 41 46 38 35 38 51 38 53 41
MAE 120.05 107.35 120.82 111.36 109.22 105.81 119.42 101.54 110.33 97.35
MSE 427.24 414.07 424.94 430.06 435.14 429.28 415.78 424.70 403.82 413.57
NAE 0.78 0.61 0.84 0.56 0.48 0.48 1.00 0.44 0.94 0.45

4 Efficacy Evaluation: We then engage in training models using this scale-distributed subset
and evaluate their performance. The intriguing findings of this experiment are illustrated
in Fig. 4. We discovered that by using only 30% of the data, which is proportionally
representative of the original scale distribution, the models can achieve performance that is
comparable to, and in some cases even slightly surpasses, the performance attained when
using the entire dataset (100% of samples). This is a remarkable demonstration of the ’less
is more’ principle, where the judicious selection of data based on feature distribution can
lead to equally or more effective model training.

The implications of these findings are significant. They suggest that an optimal coreset can be
accessed by sampling data according to its feature distribution—here, the scale distribution. This
methodological insight could lead to substantial computational savings and efficiency improvements
in model training, particularly in applications where data is abundant but resources are limited. It
also highlights the potential for strategic data selection to enhance the focus of model training on
critical features, potentially improving model robustness and reducing overfitting to non-essential
data variations. Our results underscore the importance of scale as a determinant of data efficacy
in model training. This has profound implications for fields such as computer vision, where scale
invariance is a known challenge. By optimizing data selection for scale representation, we can
make progress toward more efficient and effective machine learning practices that better leverage
the available data.

F.6 IMAGE INTERPOLATION EXPERIMENTS

In our study, we examined the potential of image interpolation as a countermeasure to address the
scale shift effects that often pose challenges in image recognition tasks. Our experimental design
centered on the ’Big’ domain—which served as our source dataset—and we sought to evaluate
the model’s ability to generalize this knowledge to various ’Left’ domains. These Left domains
encompass a range of datasets, including those with images of different resolutions and scales,
challenging the robustness and adaptability of our model. To tackle the issue of scale variability,

Table 30: Training a ViT on 30% InD scale data. (%)

Iter. 20k 30k 40k 50k 80k 100k 150k 200k 250k 300k 350k 400k
F1-Score 47 51 51 51 55 53 56 56 57 56 57 58
Pre. 52 58 67 74 74 80 81 79 78 79 79 77
Rec. 42 45 42 39 44 40 43 44 45 44 45 46
MAE 126.15 113.75 107.60 104.18 99.30 101.24 94.89 95.23 94.34 97.36 93.77 94.00
MSE 427.91 413.44 419.78 422.22 410.45 417.45 411.59 411.81 408.96 412.44 411.61 405.11
NAE 0.83 0.69 0.58 0.50 0.48 0.46 0.41 0.41 0.43 0.43 0.42 0.44
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Table 31: Training a ViT on 60% InD scale data. (%)

Iter. 20k 30k 40k 50k 80k 100k 150k 200k 250k 300k 350k 400k 450k 500k
F1-Score 46 49 52 53 54 53 55 56 57 59 56 59 59 58
Pre. 58 62 64 69 77 80 80 83 81 80 83 81 81 83
Rec. 39 41 44 43 42 40 42 43 43 47 43 47 47 45
MAE 116.82 113.54 107.67 104.38 99.39 100.38 98.01 94.72 96.20 89.78 96.56 89.99 90.40 91.75
MSE 423.80 420.24 411.62 411.13 414.90 418.92 415.59 408.22 408.90 399.07 411.61 398.37 401.14 402.15
NAE 0.66 0.63 0.63 0.55 0.46 0.45 0.43 0.41 0.42 0.41 0.42 0.40 0.39 0.39

Table 32: Training a ViT on omni-InD scale data. (%)

Iter. 20k 30k 40k 50k 80k 100k 150k 200k 250k 300k 350k 400k 450k 500k 550k 600k
F1-Score 46 48 50 52 52 53 55 56 57 58 57 59 57 58 58 60
Pre. 55 64 67 68 76 79 80 83 82 79 85 81 84 82 81 81
Rec. 40 38 40 43 39 40 42 43 43 46 43 46 44 45 45 48
MAE 119.16 113.82 110.82 105.13 105.98 101.55 99.59 95.50 95.49 92.50 94.87 92.39 93.98 93.33 94.68 89.18
MSE 425.14 424.59 418.32 409.84 422.79 418.36 415.41 408.48 407.36 402.63 408.50 403.43 405.10 406.47 407.11 399.27
NAE 0.72 0.62 0.59 0.54 0.50 0.46 0.44 0.42 0.42 0.41 0.41 0.42 0.40 0.40 0.41 0.38

we implemented a trio of augmentation strategies. The first strategy, Random Augmentation (RA),
involves stochastic interpolation of training images. This method introduces a degree of randomness
to the scaling of images, which is intended to simulate the diversity of scales that a model might
encounter in real-world scenarios. By training the model on this augmented dataset, we aimed to
promote the development of scale-invariant features within the model’s architecture.

Our second strategy, Inference Augmentation (IA), diverges from the training phase and is applied
directly during inference. In this approach, test images are modified with resolution changes akin
to adversarial perturbations. This is intended to test the robustness of the model against unexpected
scale shifts at inference time, simulating a form of stress test for the model’s generalizability.

Our findings imply that image interpolation, while beneficial, should be considered as one com-
ponent in a multifaceted approach to enhancing scale invariance in image recognition. Further re-
search is needed to explore combinations of interpolation with other techniques, such as multi-scale
architectures or hybrid training protocols, to develop more robust solutions capable of handling the
diverse scaling challenges present in real-world image datasets. By providing this more detailed
explanation of our methodology and results, we hope to convey the nuances of our study’s contri-
butions to the field of image recognition and the ongoing efforts to overcome the hurdles of scale
variability.

G DISCUSSION FOR DIFFERENT KINDS OF DOMAIN SHIFT

Scale Distribution KL-Divergence
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Figure 12: Localization performance of Gao et al. (2020)
on the test set of the target domain. Under the same kind of
shift, different color depths represent various training sets.
The key difference between source 1 and source 2 is that
we manually replaced certain images in source 1 to create
source 2, which features a larger scale shift to the target do-
main.

In this section, we collect datasets
from JHU (Sindagi et al., 2020), and
split it into several datasets accord-
ing to the domain shift type, in-
cluding scene shift (from Stadium to
Street), weather shift (from Sunny to
Snowy), dataset shift (from SHHA to
QNRF), and count shift (from Dense
to Sparse). According to the results
that generalizes source 1 to target,
we observe non-trivial performance
degradation. In the meanwhile, we
illustrate the scale distribution diver-
gence between source 1 and target.
We notice a correlation between scale
divergence with performance degra-
dation. To further support this em-
pirical observation, we manually ma-
nipulate the source domain scale dis-
tribution to make it farther to the tar-
get domain and form a new domain
source 2. When generalizing from
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source 2, we notice a consistent per-
formance degradation. This reveal a significant empirical conclusion: Scale shift generally exists
and coupled with other domain shifts. This further strengthen the significance in researching this
issue.

H DISCUSSION ON ANNOTATED DATA

H.1 DATA ANNOTATION

H.1.1 ANNOTATION TEAM

To manually annotate over 2,700 images from the SHHA, SHHB, and QNRF datasets, we assem-
bled a team of 39 annotators. All annotators hold at least a bachelor’s degree or are undergraduate
students, ensuring a level of educational background that we believe is essential for maintaining high
annotation quality.

H.1.2 ANNOTATION PLATFORM

Thanks to the authors of NWPU (Wang et al., 2020b), who have open-sourced a Python Django-
based framework for crowd image annotation, we had a convenient platform for this process.

H.1.3 ANNOTATION PROCESS

Recognizing that annotating bounding boxes in congested and complex scenes can be tedious, we
conducted four rounds of annotation. The first round involved initializing bounding boxes based
on the method presented in (Gao et al., 2020). The second round focused on refining these boxes
through human input. The final two rounds aimed at further refining the manually annotated boxes.

To facilitate this process, we divided our team into three sub-teams: Team A (20 members), Team
B (15 members), and Team C (4 members). Through this collaborative approach, we successfully
provided more than 1.5 million bounding boxes for the over 2,700 images.

H.2 UNIFIED EVALUATION METRIC FOR CROWD LOCALIZATION

In the domain of crowd localization, accurately evaluating performance is crucial. Typically, this
evaluation involves establishing a point-to-point correspondence between the predicted coordinates
and the actual ground-truth positions through the construction of a bipartite graph. Subsequently,
distances are computed between paired points, and a prediction is deemed correct if this distance
falls below a predetermined threshold. Nonetheless, the choice of threshold is pivotal, greatly im-
pacting the perceived precision of predictions. A threshold that is excessively lenient may yield
results that are overly generalized, while an overly strict threshold might result in an underesti-
mation of the model’s predictive capabilities. In practice, for datasets that provide bounding box
annotations, such as NWPU-Crowd (Wang et al., 2020b) and JHU-Crowd++ (Sindagi et al., 2020),
the threshold is often pragmatically set to the length of the diagonal of these boxes. However, ear-
lier datasets like SHHA (Zhang et al., 2016), SHHB (Zhang et al., 2016), and QNRF (Idrees et al.,
2018) do not offer such annotations, thereby introducing an element of subjectivity into the evalu-
ation process concerning the localization threshold. In our work, we address this inconsistency by
contributing bounding box annotations for the SHHA, SHHB, and QNRF datasets. This enhance-
ment enables us to standardize the evaluation procedure by setting the matching threshold to the
diagonal length of the bounding box. Furthermore, we advocate for subsequent research in this area
to utilize these annotations, fostering a more objective and uniform assessment of methodological
performance across the SHHA, SHHB, and QNRF datasets.

H.3 TYPICAL SAMPLES FROM ANNOTATED DATASETS

Please see supplementary materials for high resolution images.
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