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Abstract

The recent development of Foundation Mod-001
els (FMs), represented by large language mod-002
els, vision transformers, and multimodal mod-003
els, has been making a significant impact on004
both academia and industry. Compared with005
small-scale models, FMs have a much stronger006
demand for high-volume data during the pre-007
training phase. Although general FMs can be008
pre-trained on data collected from open sources009
such as the Internet, domain-specific FMs need010
proprietary data, posing a practical challenge011
regarding the amount of data available due to012
privacy concerns. Federated Learning (FL) is013
a collaborative learning paradigm that breaks014
the barrier of data availability from different015
participants. Therefore, it provides a promising016
solution to customize and adapt FMs to a wide017
range of domain-specific tasks using distributed018
datasets whilst preserving privacy. This survey019
paper discusses the potentials and challenges of020
synergizing FL and FMs and summarizes core021
techniques, future directions, and applications.022

1 Introduction023

The landscape of Artificial Intelligence (AI) has024

been revolutionized by the emergence of Founda-025

tion Models (FMs) (Bommasani et al., 2021), such026

as BERT (Devlin et al., 2019), GPT series (Brown027

et al., 2020; OpenAI, 2022, 2024), and LLaMA028

series (Touvron et al., 2023a,b) in Natural Lan-029

guage Processing (NLP); ViTs (Dosovitskiy et al.,030

2021) and SAM (Kirillov et al., 2023) in Computer031

Vision (CV); CLIP (Radford et al., 2021), DALL-032

E (Ramesh et al., 2021), Gemini (Google, 2023),033

and GPT-4o in multimodal applications. These034

FMs have become pivotal in a myriad of AI appli-035

cations across diverse domains. Their superb capa-036

bility to generalize across tasks and domains stems037

from their pre-training on extensive datasets (Gu-038

nasekar et al., 2023), which imbues them with a039

profound understanding of language, vision, and040

multimodal data.041

While general-purpose FMs can leverage openly 042

accessible data from the Internet, domain-specific 043

FMs require proprietary data. It is, however, chal- 044

lenging to collect vast amounts of proprietary data 045

and perform centralized pre-training or fine-tuning 046

for domain-specific FMs, due to privacy restric- 047

tions (Jo and Gebru, 2020; GDPR, 2016; CCPA, 048

2023). Particularly in domains such as law, health- 049

care, and finance, where data is inherently privacy- 050

sensitive, there is a pressing need for stringent 051

privacy safeguards. Furthermore, given that data 052

often constitutes a pivotal asset for enterprises, 053

its widespread distribution is prohibitive. Conse- 054

quently, there is an urgent need for novel strate- 055

gies to handle data availability and facilitate model 056

training, thereby unlocking the potential of domain- 057

specific FMs whilst respecting data privacy. 058

To address the challenges associated with data 059

privacy in model training, Federated Learning (FL) 060

(McMahan et al., 2017) has emerged as a promis- 061

ing paradigm. FL facilitates collaborative model 062

training across decentralized clients without the 063

need for sharing raw data, thus ensuring privacy 064

preservation. Concretely, FL encompasses periodic 065

interactions between the server and decentralized 066

clients for the exchange of trainable model param- 067

eters, without the requirement for private client 068

data. Recognizing such a benefit, integrating FMs 069

with FL presents a compelling solution for domain- 070

specific FMs (Zhuang et al., 2023; Yu et al., 2023d). 071

Despite the potential synergies between FL and 072

FMs, the field is still nascent, lacking a comprehen- 073

sive understanding of challenges, methodologies, 074

and directions. This survey aims to bridge this gap 075

by providing a thorough exploration of the integra- 076

tion of FMs and FL. We delve into the motivations 077

and challenges of combining these two paradigms, 078

highlight representative techniques, and discuss fu- 079

ture directions and applications. By elucidating the 080

intersection of FL and FMs, we aim to catalyze 081

further research and innovation in this burgeon- 082
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ing area, ultimately advancing the development of083

privacy-aware, domain-specific FMs.084

The paper continues as follows: The next section085

introduces background on FMs and FL. Section 3086

presents the motivation and challenges for syner-087

gizing FMs and FL. Section 4 highlights represen-088

tative techniques. Before concluding, we discuss089

representative future directions in Section 5.090

2 Background091

2.1 Foundation Models092

An FM is a model that can be adapted to a wide093

array of tasks through fine-tuning after initial pre-094

training (Bommasani et al., 2021). The lifecycle095

of FMs typically involves pre-training on extensive096

generic data to establish the basis of their abili-097

ties (Bubeck et al., 2023), followed by adaptation098

to downstream tasks such as domain-specific ques-099

tion answering (Zhang et al., 2023d), and ultimately100

application in various domains.101

FMs have sparked a significant paradigm shift in102

various fields of AI such as NLP, CV, speech and103

acoustics, and beyond. In the realm of NLP, the104

most prominent example is Large Language Mod-105

els (LLMs) with substantial parameter sizes (Zhao106

et al., 2023). These models, such as ChatGPT and107

GPT-4 (OpenAI, 2022, 2024), demonstrate excep-108

tional abilities in natural language understanding109

and generation, enabling them to comprehend and110

respond to user inputs with remarkable contextual111

relevance. This capability proves invaluable in ap-112

plications like customer service, virtual assistants,113

and chatbots, where effective communication is114

paramount. Moreover, LLMs eliminate the need115

for training models from scratch for specific tasks,116

be it machine translation, document summarization,117

text generation, or other language-related tasks.118

In the realm of CV and other modalities, FMs119

have also made remarkable progress. Vision Trans-120

formers (ViTs) (Dosovitskiy et al., 2021) segment121

images into distinct patches, which serve as in-122

puts for transformer architectures. SAM (Kirillov123

et al., 2023) can segment anything in images ac-124

cording to the input prompts. CLIP (Radford et al.,125

2021) bridges the gap between text and images126

through contrastive learning. DALL·E, proposed127

by Ramesh et al. (2021), generates images from128

textual descriptions, expanding the possibilities of129

creative image generation. Additionally, models130

like GAto (Reed et al., 2022), exhibit versatility131

by being applicable across various tasks such as132

conversational agents, robotic control, and gaming. 133

2.2 Federated Learning 134

FL (McMahan et al., 2017) is a learning paradigm 135

that enables a collection of clients to collabora- 136

tively learn a shared global model by leveraging 137

their private datasets in a distributed manner, as- 138

sisted by the coordination of a central server. The 139

most representative algorithms in the FL literature 140

are the FedAvg-family algorithms (McMahan et al., 141

2017; Reddi et al., 2021). The standard FedAvg in- 142

volves periodic interactions between the server and 143

decentralized clients to exchange trainable model 144

parameters. Many variants have been proposed to 145

tackle issues such as convergence and local data 146

heterogeneity (Diao et al., 2021). For example, 147

FedProx (Li et al., 2020) and FedDyn (Acar et al., 148

2021) introduce regularizer terms to penalize client 149

updates that are far away from the server model. A 150

general framework FedOpt (Reddi et al., 2021) uni- 151

fies adaptive optimizers (Adam, Yogi, etc.) and 152

demonstrates superior convergence speed when 153

compared to the naive FedAvg. 154

FL offers an efficient privacy-preserving way 155

to train models on large-scale and diverse data 156

(Kairouz et al., 2021), leading to its application 157

across various domains such as healthcare (Lincy 158

and Kowshalya, 2020; Rieke et al., 2020; Joshi 159

et al., 2022), finance (Chatterjee et al., 2023; Liu 160

et al., 2023b), and smart cities (Ramu et al., 2022; 161

Pandya et al., 2023). 162

3 FM-FL: Motivation & Challenges 163

In this section, we first motivate the synergy of 164

FMs and FL (Section 3.1), then summarize the key 165

challenges (Section 3.2). 166

3.1 Motivation 167

The integration of FMs and FL represents a com- 168

pelling collaboration that leverages each other’s 169

strengths to address their respective limitations, 170

embodying a complementary relationship (Zhuang 171

et al., 2023; Li and Wang, 2024). 172

FL expands data availability for FMs. By lever- 173

aging data from a wide range of sources in a 174

privacy-preserving manner, FL makes it possible 175

to build models on sensitive data in specific do- 176

mains, such as healthcare (Lincy and Kowshalya, 177

2020; Joshi et al., 2022; Rieke et al., 2020) and 178

finance (Chatterjee et al., 2023; Liu et al., 2023b). 179

This enhances the diversity and volume of training 180
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data, improving model robustness and adaptability.181

Moreover, FL enables the integration of personal182

and task-specific data, allowing FMs to be cus-183

tomized for personal applications. For instance,184

Google has trained next-word-prediction language185

models on mobile keyboard input data with FL to186

improve user experience (Xu et al., 2023; Bonawitz187

et al., 2021).188

FMs boost FL with feature representation and189

few-shot learning capabilities. By pre-training190

on large-scale generic data, FMs acquire essential191

knowledge and understanding capabilities (Brown192

et al., 2020), providing multiple benefits to FL.193

Firstly, they benefit FL systems by offering ad-194

vanced feature representations and learning capa-195

bilities from the outset. Secondly, leveraging the196

pre-learned knowledge of FMs can accelerate the197

FL process, enabling efficient and effective adapta-198

tion to specific tasks with minimal additional train-199

ing. Thirdly, FMs’ powerful generative capabilities200

could help FL overcome the data heterogeneity201

challenge by synthesizing extra data, thus acceler-202

ating model convergence (Huang et al., 2024).203

3.2 Core Challenges204

In this part, we discuss challenges emerging from205

the FM-FL marriage in three aspects: efficiency,206

adaptability, as well as trustworthiness.207

Efficiency Challenges. Efficiency challenges208

stem from the mismatch between the significant209

resource demands of FM training and the limited,210

heterogeneous system resources (e.g., mobile de-211

vices) within FL systems, such as communication212

bandwidth, computational power, and memory (Su213

et al., 2023). The communication bottleneck of FL214

is induced by frequently exchanging training infor-215

mation between the server and clients over limited216

bandwidth channels (Kairouz et al., 2021). The217

substantial number of parameters in FMs further218

exacerbates this burden, thus hindering the training219

process.220

Adaptability Challenges. Adaptability chal-221

lenges arise from the adaptation of an FM to a222

specific downstream task (e.g., by fine-tuning) in223

FL settings. Key challenges include data hetero-224

geneity and resource heterogeneity. Performance225

degradation in FL, attributed to heterogeneous data226

distributions among clients, is a well-recognized is-227

sue (Kairouz et al., 2021; Li et al., 2022). A recent228

study (Babakniya et al., 2023a) has shown that such229

performance penalty is even more substantial when 230

fine-tuning FMs. For NLP tasks, data heterogene- 231

ity can manifest as variations in language, style, 232

topic, or sentiment across datasets held by different 233

clients. In multi-modal scenarios, the challenge is 234

even more pronounced due to the inherent diversity 235

in data types (e.g., text, images, and audio) (Yu 236

et al., 2023a). Addressing data heterogeneity in- 237

volves not just identifying and measuring it but also 238

developing algorithms that are robust to such diver- 239

sity, ensuring that the model can learn effectively 240

from varied data contributions without compromis- 241

ing on performance. In terms of resource hetero- 242

geneity, the memory and computational resources 243

of the devices for different participants may be di- 244

verse (Diao et al., 2021), which could cause delays 245

for model synchronization and inactivation of some 246

participants, i.e., stragglers, making it challenging 247

to leverage the full potential of FMs in FL settings. 248

Trustworthiness Challenges. Trustworthiness 249

challenges emphasize the concerns regarding pri- 250

vacy, security, and ethical considerations in the life- 251

cycle of FM-FL, from the pre-training and model 252

adaptation to the application stages. We present 253

two representative challenges from this perspective: 254

(1) intellectual property: Intellectual Property (IP) 255

protection in FM-FL primarily involves attributing 256

ownership rights for both models and data. From 257

the server’s perspective, broadcasting a pre-trained 258

model to multiple nodes for fine-tuning poses IP 259

protection and security risks (e.g., model theft), ne- 260

cessitating measures to safeguard IP rights and en- 261

sure model integrity (Kang et al., 2024); (2) privacy 262

leakage: Although FL does not immediately share 263

data, studies have shown that it may not always 264

guarantee sufficient privacy preservation (Geiping 265

et al., 2020), as model parameters (e.g., weights or 266

gradients) may leak sensitive information to mali- 267

cious adversaries (Zhu et al., 2019). 268

4 Techniques 269

Recent work has begun to address challenges as- 270

sociated with adapting pre-trained FMs to specific 271

downstream tasks in FL settings. In this section, we 272

survey FM-FL techniques on three aspects, namely 273

efficiency (Section 4.1), adaptability (Section 4.2), 274

and trustworthiness (Section 4.3). As illustrated in 275

Figure 1, we further refine them according to the 276

key features of different methods. 277
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FM
-F

L

Efficiency
(§4.1)

Parameter-Efficient
Fine-Tuning

Selective RaFFM (Yu et al., 2023c), FedBF (Zhang et al., 2023e)

Additive FedCLIP (Lu et al., 2023a), FedDAT (Chen et al., 2024)

Reparameterization-based HETLORA (Cho et al., 2024), FedDPA (Yang et al., 2024b)

Model Compression
Sparsification PruneFL (Jiang et al., 2023c), FLASH (Babakniya et al., 2023b)

Quantization FedSplitBERT (Lit et al., 2022)

Zeroth-Order
Optimization

BAFFLE (Feng et al., 2023b), FedZeN (Maritan et al., 2023), FedKSeed (Qin et al., 2024),
FwdLLM (Xu et al., 2024a), ZooPFL (Lu et al., 2023b), FedMeZO (Ling et al., 2024)

Adaptability
(§4.2)

Domain-Centric
Domain-Adaptive Pre-Training FMTDA (Yao et al., 2022), FEDBFPT (Wang et al., 2023)

Multi-Domain Adaptation FedAPT (Su et al., 2024), DiPrompT (Bai et al., 2024b)

Client-Centric
Personalization FedDAT (Chen et al., 2024), Fed-MNMT (Liu et al., 2023d)

Client Clustering FedLFC (Zhihan et al., 2024), FL-TAC (Ping et al., 2024)

System-Centric
Resource-Heterogeneous FedRA (Su et al., 2023), HETLORA (Cho et al., 2024)

Split Learning FedBERT (Tian et al., 2022), FedSplitX (Shin et al., 2023b)

Trustworthiness
(§4.3)

IP Protection
Watermarking WAFFLE (Tekgul et al., 2021), DUW (Yu et al., 2023b)

Black-Box Tuning Fed-BBPT (Lin et al., 2023), pFedGPT (Rui et al., 2024)

Privacy Protection
Privacy-Preserving Techniques DP-FTRL (Xu et al., 2023), DP-LoRA (Liu et al., 2023c)

Privacy Attack FILM (Gupta et al., 2022), DRA (Zhang et al., 2024c)

Figure 1: Taxonomy of research in foundation models with federated learning.

4.1 Efficiency278

There has been a considerable focus on developing279

resource-efficient approaches. This part describes280

techniques that improve resource efficiency.281

4.1.1 Parameter-Efficient Fine-Tuning282

Federated Parameter-Efficient Fine-Tuning (Fed-283

PEFT), originating from the fine-tuning practices284

of FMs (Lester et al., 2021; Hu et al., 2022; Li and285

Liang, 2021), is a suite of techniques designed to286

reduce both the computational load and the asso-287

ciated communication overheads (Malaviya et al.,288

2023; Woisetschläger et al., 2024). In alignment289

with existing FM fine-tuning taxonomies (Lialin290

et al., 2023; Ding et al., 2023), we present FedPEFT291

methods in three categories: selective methods,292

additive methods, and reparameterization-based293

methods.294

Selective Methods. Selective methods fine-tune295

a small subset of the parameters, leaving the ma-296

jority unchanged. In the field of LLMs, a promi-297

nent example of such methods is BitFit (Ben Za-298

ken et al., 2022), which only fine-tunes the bias299

terms. BitFit has inspired a series of studies300

in FedPEFT (Bu et al., 2022; Sun et al., 2022a;301

Zhang et al., 2023e), demonstrating the superior302

communication efficiency of only updating the303

bias terms while still achieving competitive perfor-304

mance. More sophisticated methods strive to find305

sparse subnetworks for partial fine-tuning. Among 306

them, various methods (Seo et al., 2021; Li et al., 307

2021a; Tamirisa et al., 2024) advocate for the Lot- 308

tery Ticket Hypothesis (LTH) (Frankle and Carbin, 309

2019), positing that a dense network contains many 310

subnetworks whose inference capabilities are as 311

accurate as that of the original network. FedSelect 312

(Tamirisa et al., 2024) is a representative method 313

that encourages clients to find optimal subnetworks 314

based on LTH and continually fine-tunes these de- 315

rived subnetworks to encapsulate local knowledge. 316

As another important aspect, RaFFM (Yu et al., 317

2023c) proposes to prioritize specialized salient pa- 318

rameters by ranking them using salience evaluation 319

metrics such as the ℓ1 and ℓ2 norms. 320

Additive Methods. Instead of fine-tuning a sub- 321

set of model parameters, additive methods incorpo- 322

rate lightweight trainable blocks into frozen FMs 323

and tune the additional parameters for model adap- 324

tation. These methods not only enhance computa- 325

tional and communicational efficiency but also in- 326

troduce an extra benefit: personalization (Lu et al., 327

2023a), i.e., the integration of these supplemen- 328

tary parameters allows for the customization of het- 329

erogeneous models tailored to specific local data 330

characteristics or user preferences. Key branches 331

within additive methods include adapter tuning and 332

prompt tuning. Adapter tuning integrates small- 333

scale neural networks (known as “adapters”) into 334
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the pre-trained models (Houlsby et al., 2019; Hu335

et al., 2022). On the other hand, prompt tun-336

ing incorporates trainable task-specific continuous337

prompt vectors at the input layer (Liu et al., 2023a;338

Dong et al., 2023). More details on these methods339

are provided in Appendix A.1.340

Reparameterization-based Methods. The hy-341

pothesis behind reparameterization-based meth-342

ods is that fine-tuning adaptations can be re-343

parameterized into optimization within low-rank344

subspaces (Aghajanyan et al., 2021). Low-Rank345

Adaptation (LoRA) (Hu et al., 2022), as a popu-346

lar PEFT method from the area of LLMs, reduces347

the number of trainable parameters for downstream348

tasks by representing the weight updates with two349

smaller matrices (called update matrices) through350

low-rank decomposition (Ding et al., 2023). When351

optimizing a parameter matrix W ∈ Rm×n, the up-352

date equation can be written as: W←W +∆W.353

The core idea of LoRA is to freeze the original354

matrix W while approximating the parameter up-355

date ∆W by low-rank decomposition matrices, i.e.,356

∆W = A ·B⊤, where A ∈ Rm×k and B ∈ Rn×k357

are the trainable parameters for task adaptation and358

k ≪ min(m,n) is the reduced rank. The train-359

able parameter size is then reduced from mn to360

k(m + n). The major benefit of LoRA is that it361

can largely save memory and storage usage. A362

straightforward way to perform federated finetun-363

ing with LoRA is to train the LoRA modules A364

and B with homogeneous rank k across all clients365

with standard FL such as FedAvg (McMahan et al.,366

2017). Serval studies have shown that this method367

can achieve an outstanding level of trade-off be-368

tween performance and communication overhead369

for a wide range of FMs, including language mod-370

els (Zhang et al., 2024b, 2023e), vision-language371

models (Nguyen et al., 2024), and speech-to-text372

models (Du et al., 2024).373

To summarize, FedPEFT techniques have exhib-374

ited remarkable potential in effectively harnessing375

and adapting FMs within FL scenarios, leading to376

enhanced performance and efficiency across dis-377

tributed systems. We refer to Appendix A.2 for a378

detailed comparison.379

4.1.2 Model Compression380

Model compression refers to the techniques used381

to reduce the size of models, thereby improving382

resource efficiency (Shah and Lau, 2023).383

Sparsification. Model sparsification methods re- 384

duce communication burden by only transmitting a 385

subset of FM parameters across the network (Jiang 386

et al., 2023c). Typical methods focus on identifying 387

and cultivating high-potential subnetworks (Fran- 388

kle and Carbin, 2019; Tsouvalas et al., 2023). 389

Quantization. Quantization is well-established 390

in both the FM and FL domains (Xu et al., 2024b; 391

Reisizadeh et al., 2020), which involves decreas- 392

ing the precision of floating-point parameters for 393

mitigating the storage, computational, and commu- 394

nication demands. Quantization is orthogonal to 395

other resource-efficient techniques, making it fea- 396

sible to combine them for greater efficiency and 397

flexibility (Lit et al., 2022). 398

4.1.3 Zeroth-Order Optimization 399

In contrast to the use of gradient descent in most 400

FL optimization algorithms, a particular line of re- 401

search advocates for the removal of BackPropaga- 402

tion (BP) (Malladi et al., 2023a) in favor of Zeroth- 403

Order Optimization (ZOO) (Fang et al., 2022; Li 404

and Chen, 2021). BP-free methods conserve mem- 405

ory needed for computing gradients and minimize 406

communication overhead for model aggregation 407

(Qin et al., 2024), making FMs more accessible for 408

lower-end devices, thereby enhancing their appli- 409

cability in diverse hardware environments. 410

ZOO methods primarily rely on perturbation 411

methods to estimate gradients with forward prop- 412

agation. Based on this, recent work, such as that 413

by Xu et al. (2024a); Lu et al. (2023b), has initi- 414

ated preliminary explorations into the deployment 415

of both FedPEFT and full-model fine-tuning of 416

billion-sized FMs, like LLaMA, on mobile devices. 417

The naive ZOO methods remain impractical for 418

training large FMs in standard FL frameworks such 419

as FedAvg, as they still result in a significant com- 420

munication burden for model aggregation. In light 421

of this, FedKSeed (Qin et al., 2024) was proposed 422

to further reduce communication overheads be- 423

tween the server and clients by using just a few 424

random seeds and scalar gradients, requiring only 425

a few thousand bytes for communication. 426

Although ZOO methods have shown promise in 427

resource-efficient FL (Ling et al., 2024), they gen- 428

erally require many iterations to achieve strong per- 429

formance (Malladi et al., 2023b). Compared to the 430

well-established BP-based optimization, ZOO is 431

still in the early stages of development, particularly 432

for FM-FL settings, necessitating further research 433
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and optimization.434

4.2 Adaptability435

Adaptation refers to the process of tailoring a pre-436

trained FM to perform effectively across varying437

FL settings and scenarios. This mainly includes the438

capability to learn from different domains, cater to439

individual user needs, and work across diverse de-440

vices while retaining overall performance and effi-441

ciency. We focus on three key aspects of adaptation,442

namely domain-centric adaptation, client-centric443

adaptation, and system-centric adaptation.444

4.2.1 Domain-Centric Adaptation445

Domain-centric adaptation focuses on adapting446

FMs within specific domains by addressing the447

domain diversity across client datasets.448

Domain-Adaptive Pre-Training. Despite being449

heavily reliant on large-scale and public datasets450

for their initial training, FMs often require fur-451

ther Domain-Adaptive Pre-Training (DAPT) with452

domain-specific data for tasks that necessitate spe-453

cialized knowledge (Gururangan et al., 2020; Guo454

and Yu, 2022). In domains like healthcare, FL455

allows for the continued pre-training of these mod-456

els using sensitive, domain-specific data without457

compromising privacy. Based on this idea, Jiang458

et al. (2023b) proposed FFDAPT, a computational-459

efficient further pre-training algorithm that freezes460

a portion of consecutive layers while optimizing461

the rest of the layers. Similarly, Wang et al. (2023)462

proposed FEDBFPT that builds a local model for463

each client, progressively training the shallower464

layers of local models while sampling deeper lay-465

ers, and aggregating trained parameters on a server466

to create the final global model.467

Multi-Domain Adaptation. Given that client468

data may belong to various domains in real-world469

FL scenarios, some efforts (Feng et al., 2023c;470

Su et al., 2024) have been devoted to facilitating471

multi-domain collaborative adaptation. Feng et al.472

(2023c) applied a pre-trained CLIP to the multi-473

domain scenario and proposed an adaptive prompt474

tuning method that uses domain-specific keys to475

generate prompts for each test sample. Further-476

more, Su et al. (2024) employed knowledge distil-477

lation to selectively distill global knowledge based478

on an entropy measure, improving the generaliza-479

tion across different domains.480

4.2.2 Client-Centric Adaptation 481

Client-centric adaptation refers to the process of 482

tailoring an FM to meet the specific needs or pref- 483

erences of individual clients while leveraging the 484

decentralized and privacy-preserving nature of FL. 485

Particularly, we discuss two types of popular per- 486

sonalized methods as follows: 487

Personalization. Adapter-based methods intro- 488

duce small, trainable adapters into the frozen pre- 489

trained FMs, allowing for client-specific model 490

adaptation without altering the original FL. Fed- 491

DAT (Chen et al., 2024) leverages a dual-adapter 492

structure, with personalized adapters focusing on 493

client-specific knowledge and a global adapter 494

maintaining client-agnostic knowledge. FedDAT 495

executes bi-directional knowledge distillation be- 496

tween personalized adapters and the global adapter 497

to regularize the client’s updates and prevent over- 498

fitting. Prompt-based methods involve using client- 499

specific soft prompts to guide the model’s response. 500

pFedPG (Yang et al., 2023a) trains a prompt gener- 501

ator to exploit underlying client-specific character- 502

istics and produce personalized prompts for each 503

client, thereby enabling efficient and personalized 504

adaptation. 505

Client Clustering. This branch of study aims to 506

cluster clients based on the underlying relationships 507

and tailor FMs for the client group with similar data 508

distributions, thus reducing the negative impact of 509

data heterogeneity and improving accuracy. Zhihan 510

et al. (2024) proposed a FedPEFT-based frame- 511

work for multilingual modeling, which employs 512

language family clustering to alleviate parameter 513

conflicts of LoRA tuning. 514

4.2.3 System-Centric Adaptation 515

System-centric aims to improve adaptability at the 516

system level. This involves handling resource het- 517

erogeneity in the FL systems while ensuring train- 518

ing efficiency and model utility. 519

Resource-Heterogeneous Methods. Cross- 520

device FL systems may be composed of devices 521

equipped with heterogeneous resources, leading 522

to disparities where certain devices exhibit more 523

efficient model training than others (Chen et al., 524

2024). To address this, several methods have 525

been developed to customize model architectures 526

for resource-heterogeneous FL systems. In FL 527

environments with heterogeneous resources, 528

LoRA-based FedPEFT exhibits distinctive flexi- 529
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bility and adaptation in fine-tuning frozen FMs530

without overburdening client devices. Su et al.531

(2023) suggested assigning LoRA adapters to532

varying numbers of layers for heterogeneous533

clients according to a randomly generated mask534

matrix. An alternative and more targeted idea is to535

choose diverse LoRA ranks across clients based536

on their system capabilities. Bai et al. (2024a)537

proposed FlexLoRA to adjust local LoRA ranks538

dynamically. FlexLoRA reconstructs the uniform539

full-sized LoRA module ∆W for server-side540

model aggregation followed by an SVD-based541

parameter redistribution. However, concurrent542

research by Cho et al. (2024) has empirically543

demonstrated that the reconstruct-redistribute544

method suffers from performance loss compared to545

homogeneous LoRA. Instead, they proposed HET-546

LORA (Cho et al., 2024) that utilizes zero-padding547

to align module size before aggregation. It then548

truncates the global LoRA modules for the specific549

rank of the next selected clients.550

Split Learning. Split learning addresses the re-551

source heterogeneity between servers and clients552

by splitting a large model at a cut layer into client553

and server models (Thapa et al., 2022). For each554

training step, the output tensor, so-called smashed555

data, from the client model and the corresponding556

labels are transmitted over to the server. The server557

continues the forward propagation by processing558

the smashed data through its remaining layers; it559

then computes the loss using the transmitted label560

and performs backpropagation. The gradient gen-561

erated at the first layer of the server model is then562

transmitted back to the client for further backprop-563

agation. Along this line, FedBERT (Tian et al.,564

2022) proposes to leverage split learning for train-565

ing the BERT model, showing the feasibility of566

training large FMs in FL settings. FedSplitX (Shin567

et al., 2023b) is a more fine-grained method that568

allows multiple partition points for model splitting,569

accommodating more diverse client capabilities.570

Compared to conventional FL, split learning scales571

better with the size of FMs as it communicates572

only small-sized smashed data instead of model573

parameters (Singh et al., 2019). Despite its merits,574

split learning is highly dependent on the network575

connection quality. Given that server-client inter-576

actions occur at every step of the optimization pro-577

cess (Zheng et al., 2023), communication delays578

cause a more significant impact on efficiency.579

4.3 Trustworthiness 580

This line of work aims to enhance trustworthiness 581

throughout the FM-FL lifecycle, covering a variety 582

of key aspects including, but not limited to, IP pro- 583

tection, privacy protection, and attack robustness. 584

4.3.1 IP Protection 585

Existing IP protection involves safeguarding own- 586

ership of FMs from unauthorized use (e.g., model 587

theft) (Tekgul et al., 2021). We discuss the fol- 588

lowing two mainstream IP protection strategies: 589

watermarking and black-box tuning. 590

Watermarking. Watermarking is a well-known 591

deterrence technology for model IP protection by 592

providing the identities of model owners to demon- 593

strate ownership of their models (Adi et al., 2018). 594

Tekgul et al. (2021) proposed WAFFLE, the first 595

solution that addresses the ownership problem by 596

injecting a watermark into the global model in FL 597

environments. Recently, Yu et al. (2023b) proposed 598

DUW that embeds a client-unique key into each 599

client’s local model, aiming to identify the infringer 600

of a leaked model while verifying the FL model’s 601

ownership. 602

Black-Box Tuning. Black-Box Tuning (BBT) is 603

a set of ZOO-based methods that fine-tune FMs 604

without direct access to model parameters (Sun 605

et al., 2022c,b). BBT methods are often additive, 606

introducing additional parameters while keeping 607

the original model frozen (See Section 4.1.1). Fed- 608

BBPT (Lin et al., 2023) is a general prompt tuning 609

framework that facilitates the joint training of a 610

global lightweight prompt generator across mul- 611

tiple clients. FedBPT (Sun et al., 2024a) adopts 612

a classic evolutionary-based ZOO method, CMA- 613

ES (Hansen and Ostermeier, 2001), for training 614

an optimal prompt that improves the performance 615

of frozen FMs. ZooPFL (Lu et al., 2023b), on 616

the other hand, applies coordinate-wise gradient 617

estimate to learn input surgery that incorporates 618

client-specific embeddings. BBT allows for local 619

fine-tuning of FMs while not infringing IP con- 620

straints. However, current research in this line is 621

limited to few-shot learning with small datasets for 622

LLM fine-tuning (Sun et al., 2022b), while larger 623

datasets and other modalities remain unexplored. 624

4.3.2 Privacy Protection 625

Protecting privacy in FM-FL requires both design- 626

ing protective measures and studying privacy attack 627

strategies. 628
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Privacy-Preserving Techniques. Differential629

Privacy (DP) is a theoretical framework that gov-630

erns privacy boundaries and manages the trade-631

off between privacy and model convergence (Wei632

et al., 2020; Xu et al., 2023). DP-based FL ap-633

proaches often add artificial noise (e.g., Gaussian634

noise) to parameters at the clients’ side before ag-635

gregating to prevent information leakage (Xu et al.,636

2023). Besides, DP is compatible with most Fed-637

PEFT methods. For instance, Sun et al. (2024b)638

showed that DP noise can even be amplified by639

the locally “semi-quadratic” nature of LoRA-based640

methods, motivating the integration of LoRA with641

DP to improve resource efficiency while maintain-642

ing data privacy (Liu et al., 2023c). In addition to643

DP, Secure Multi-Party Computation (SMPC) (Mu-644

gunthan et al., 2019) and Homomorphic Encryp-645

tion (HE) (Zhang et al., 2020) are also effective646

privacy-preserving mechanisms. However, they do647

not scale well enough for large-scale deployments648

in FM-FL.649

Privacy Attack. Privacy attacks in FM-FL in-650

volve extracting sensitive information from the data651

used in training, even though the data itself is not652

directly shared. Major attacks include membership653

inference attack and data reconstruction attack,654

where the former aims to determine whether a spe-655

cific data sample is in a victim client’s training set,656

and the latter strives to reconstruct original input657

data from the model parameters or gradients (Ren658

et al., 2024). Regarding membership inference at-659

tacks, Vu et al. (2024) revealed the vulnerabilities660

of popular LLMs, including BERT, DistilBERT,661

and OpenAI’s GPTs. In terms of data reconstruc-662

tion attacks, Gupta et al. (2022) presented an attack663

FILM, which recovers private text data by extract-664

ing information from gradients transmitted during665

training despite employing a DP mechanism.666

5 Future Directions667

Although recent work has already begun to address668

the challenges discussed in Section 3.2, many crit-669

ical open directions are yet to be explored. Here,670

we outline several representative ones.671

Multimodal FM-FL. With the development of672

mobile technology and IoT infrastructures (Brunete673

et al., 2021), numerous edge devices produce data674

from a range of modalities, such as sensory, visual,675

and audio. In the era of FMs, the success of LLMs676

and their multimodal derivatives (Ramesh et al.,677

2021; Google, 2023; OpenAI, 2024) have demon- 678

strated the potential of multimodal FMs. The po- 679

tential opportunities and challenges for multimodal 680

FM-FL have yet to be explored. 681

Continual Learning. Continual learning enables 682

models to adapt to new data over time, improving 683

their performance and accuracy. By incorporat- 684

ing new data into the model training process, FL 685

and FMs can continuously improve and adapt to 686

changing environments and user needs (Yang et al., 687

2024a). Future directions may involve leveraging 688

transfer learning techniques in continual learning 689

for FL and FMs. Models can transfer knowledge 690

from previous tasks or domains to new ones, en- 691

abling more efficient adaptation (Good et al., 2023). 692

Efficient Federated Black-Box Tuning. In sce- 693

narios where gradient access is unavailable, prelim- 694

inary efforts have focused on federated fine-tuning 695

black-box FMs (Lin et al., 2023; Sun et al., 2024a; 696

Lu et al., 2023b; Rui et al., 2024) utilizing ZOO. 697

However, ZOO’s noticeably slower convergence 698

rates, especially in high-dimensional contexts com- 699

pared to gradient-based methods (Golovin et al., 700

2020), indicate an important direction for further 701

research. The impact of these slower convergence 702

rates on overall efficiency and computational load 703

within FL, particularly concerning large-scale FMs, 704

has not been adequately investigated and under- 705

stood. 706

FL with AI-Generated Content. AI-Generated 707

Content (AIGC) denotes content produced via ad- 708

vanced generative FMs (Wu et al., 2023a). The 709

strong generative capability of FMs offers the ad- 710

vantage of rapidly automating the creation of inex- 711

haustible synthetic data. This capability positions 712

AIGC as a valuable supplementary data source for 713

model training and evaluation in many tasks (Xu 714

et al., 2024c). Despite some efforts (Zhang et al., 715

2023b), more potential opportunities and chal- 716

lenges for AIGC-aided FL have yet to be explored. 717

6 Conclusions 718

In this survey, we have meticulously surveyed the 719

intersection of FM and FL. We identified core chal- 720

lenges in efficiency, adaptability, and trustworthi- 721

ness and proposed a comprehensive taxonomy of 722

techniques in response to these challenges. In ad- 723

dition, we discussed future directions and applica- 724

tions in this research field, hoping to attract more 725

breakthroughs in future research. 726
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Limitations727

FM and FL are very fast-moving fields. We have728

put a lot of effort into including the latest research729

efforts in the community in this survey. There-730

fore, we believe that our survey will help to inspire731

and push further research and innovation in these732

important areas. Our survey does not focus on ex-733

perimental evaluation of the available ideas and734

systems. We believe that would be an important735

next step that we are leaving for future work.736
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A Additional Details of FedPEFT1852

A.1 Additive Methods1853

A.1.1 Adapter Tuning1854

Adapter tuning integrates small-scale neural net-1855

works (known as “adapters”) into the pre-trained1856

models (Houlsby et al., 2019; Hu et al., 2022). A1857

straightforward implementation of adapter tuning1858

is to collaboratively train a shared adapter among1859

all clients in the FedAvg manner, as highlighted1860

by Sun et al. (2022a). Based on FedAvg, Fed-1861

CLIP (Lu et al., 2023a) incorporates an attention-1862

based adapter for the image encoder in CLIP mod-1863

els (Radford et al., 2021). In the domain of mul-1864

tilingual machine translation, where different lan-1865

guage pairs exhibit substantial discrepancies in data1866

distributions, Fed-MNMT (Liu et al., 2023d) ex-1867

plores clustering strategies that group adapter pa-1868

rameters and makes inner-cluster parameters ag-1869

gregation for alleviating the undesirable effect of1870

data discrepancy. Another representative approach1871

named C2A (Kim et al., 2023) employs hypernet-1872

works (Ha et al., 2017) to generate client-specific1873

adapters by conditioning on the client’s informa-1874

tion, maximizing the utility of shared model param-1875

eters while minimizing the divergence caused by1876

data heterogeneity.1877

A.1.2 Prompt Tuning 1878

Prompt tuning incorporates trainable task-specific 1879

continuous prompt vectors at the input layer (Liu 1880

et al., 2023a; Dong et al., 2023). Compared to full 1881

fine-tuning, it achieves comparable performance 1882

but with 1000× less parameter storage and com- 1883

munication (Jia et al., 2022). A variation of prompt 1884

tuning, FedPerfix (Sun et al., 2023) uses a local 1885

adapter to generate the prefixes and aggregate the 1886

original self-attention layers. 1887

Depending on target modalities, prompt tuning 1888

in current literature can be further classified into 1889

three categories: 1890

• Textual Prompt Tuning. Task-specific prompt em- 1891

beddings are combined with the input text embed- 1892

dings, which are subsequently fed into language 1893

models. These soft prompts serve as instructive 1894

contexts to influence the generation process of 1895

LLMs by steering the probability distribution of 1896

the next token (Dong et al., 2023). 1897

• Visual Prompt Tuning. Taking inspiration from 1898

advances in efficiently tuning LLMs, prompts 1899

are also introduced in the input space of vision 1900

models (Jia et al., 2022). Naive implementa- 1901

tions introduce prompts at the pixel level, act- 1902

ing as a form of data augmentation (Li et al., 1903

2024a). Alternatively, one could also insert the 1904

prompts as latent vectors for the first Transformer 1905

layer (Deng et al., 2024; Yang et al., 2023a). Nev- 1906

ertheless, an empirical study (Jia et al., 2022) has 1907

suggested that it is easier for visual prompts to 1908

learn condensed task-dependent signals in the 1909

latent input space of Transformers. 1910

• Textual-Visual Prompt Tuning. Unlike single- 1911

modal FMs, vision-language FMs can process 1912

and interpret both visual data and textual infor- 1913

mation, endowing them with powerful represen- 1914

tation ability and transferability (Radford et al., 1915

2021). Based on vision-language FMs like CLIP, 1916

textual-visual prompt tuning shows promising ca- 1917

pabilities in FL (Guo et al., 2023), especially in 1918

cross-domain scenarios, where the model needs 1919

to generalize across varied domains and unseen 1920

classes (Qiu et al., 2024). 1921

A.2 Comparison of FedPEFT methods 1922

Figure 2 depicts the taxonomy of FedPEFT with 1923

representative methods. Note that some methods 1924

may belong to multiple overlapping categories. To 1925

19
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Table 1: Comparison of Federated Parameter-Efficient Fine-Tuning (FedPEFT) Methods.

Category Representative Work Modality Model # Full
Params.

# Train.
Params.

Training
Accel.

Comm.
Cost

Selective
RaFFM (Yu et al., 2023c) Txt. BERT-Large (2019) 336M 100M 6.13× 29.8%

FedBF (Zhang et al., 2023e) Txt. Roberta-Base (2019) 125M 0.66M 1.6%

Additive

Adapter

FedAP (Zhang et al., 2023e) Txt. Roberta-Base (2019) 125M 2M 1.6%

FedCLIP (Lu et al., 2023a) Vis.-Txt. ViT-B/32 (2020a) 150M 0.53M 3.5%

FedDAT (Chen et al., 2024) Vis.-Txt. ALBEF (2021b) 290M 2.86M 9.9%

C2A (Kim et al., 2023) Txt. DistilBERT (2020) 66M 0.06M 0.1%

Fed-MNMT (Liu et al., 2023d) Txt. mBART-50 (2020) 611M 8M 1.3%

AdaFL (Cai et al., 2023) Txt. BERT (2019) 110M 0.61M 1.63× 0.6%

Prompt

PromptFL (Guo et al., 2023) Vis.-Txt. ViT-B/16 (2021) 87M 0.87M 2.38× 0.9%

MFPT (Zhao et al., 2024b) Txt. XLM-RoBERTa (2020) 270M 1.2M 0.4%

FedAPT (Su et al., 2024) Vis.-Txt. ViT-B/32 (2020a) 88M 2.8M 3.2%

FedSP (Dong et al., 2023) Txt. GPT2-XL (2019) 1.6B 111M 0.5%

Reparameterization-based
Methods

SLoRA (Babakniya et al., 2023a) Txt. DistilBERT (2020) 67M 0.7M 13.47× 5.8%

LP-FL (Jiang et al., 2023a) Txt. BERT-Large (2019) 336M 100M 30%

FedMS (Wu et al., 2023c) Vis.-Txt. ViT-B/16 (2021) 87M 8.6M 10%

pFedS2T (Du et al., 2024) Aud. Whisper (2023) 254M 10.1M 4%

FFA-LoRA (Sun et al., 2024b) Txt. RoBERTa-Large (2019) 355M 0.39M 0.1%

Figure 2: Taxonomy of Federated Parameter-Efficient
Fine-Tuning (FedPEFT). Apart from efficiency, some
methods also account for other considerations, such
as data and resource heterogeneity challenges that are
identified in Section 3.2 and black-box tuning (see Sec-
tion 4.3).

compare the communication efficiency of different1926

FedPEFT methods, Table 1 gives a brief overview1927

of experimental evaluations from representative1928

studies. Compared to full-model fine-tuning, Fed-1929

PEFT methods only require 0.1%-30% communi-1930

cation overhead. We note that the differences can1931

be attributed to several factors, including model1932

complexity and implementation details.1933

B Additional Details of Trustworthiness1934

Due to the distributed characteristic of optimiza-1935

tion, FL is vulnerable to poisoning attacks (Lyu1936

et al., 2022; Rodríguez-Barroso et al., 2023), 1937

wherein certain participants may deviate from the 1938

prescribed update protocol and upload arbitrary 1939

parameters to the central server. 1940

Poisoning Attacks. Depending on the adversar- 1941

ial goals, poisoning attacks in FL can be classified 1942

as targeted and untargeted (Jere et al., 2020). Tar- 1943

geted attacks, like backdoor attacks, aim to manip- 1944

ulate the global model to generate attacker-desired 1945

misclassifications for some particular samples (Xie 1946

et al., 2020; Bagdasaryan et al., 2020), while un- 1947

targeted attacks seek to degrade the overall perfor- 1948

mance of the model indiscriminately (Fang et al., 1949

2020). In addition to the well-recognized attacks on 1950

conventional FL studies (Li et al., 2023b, 2024b), 1951

FM-FL also faces potential threats from compro- 1952

mised pre-trained FMs (Li et al., 2023c). Thus, The 1953

attacker can introduce backdoors to downstream 1954

tasks without prior knowledge (Shen et al., 2021). 1955

Specifically, Li et al. (2023d) proposed Fed-EBD 1956

that introduces a backdoor-compromised FM to 1957

generate a public, synthetic dataset for FL training. 1958

The clients’ models, pre-trained on this dataset, 1959

inherit the backdoor throughout the training. 1960

Defense Techniques. As for defenses, robust 1961

aggregation rules are widely applied to make an 1962

attack-resilient estimation of the true updates and 1963

exclude the influence of malicious updates (Blan- 1964

chard et al., 2017; Yin et al., 2018; Chen et al., 1965

2017; Li et al., 2023a). Other research directions 1966

include trust-based strategies (Cao et al., 2021; 1967

20



Xu et al., 2022; Park et al., 2021) and variance-1968

reduced algorithms (Gorbunov et al., 2023; Wu1969

et al., 2020b). Although these techniques have1970

been widely examined in various FL settings, their1971

effectiveness has yet to be explored in the FM-FL1972

paradigm.1973

C Applications of FM-FL1974

In this part, we briefly review the recent progress1975

on FM-FL applications. Table 2 lists representative1976

work on specific applications and domains.1977

C.1 FM-FL for Multilingual NLP1978

Multilingual NLP refers to the techniques that han-1979

dle multiple natural languages (Pires et al., 2019),1980

often to perform equally well across them (Wu and1981

Dredze, 2020). Earlier research (Johnson et al.,1982

2017) has shown that parameter sharing among dif-1983

ferent languages boosts the model’s performance1984

in multilingual NLP, especially for low-resource1985

languages for which significantly less content is1986

available. However, real-world multilingual text1987

data is often distributed across devices or regions,1988

with each client (user) accessing only a limited sub-1989

set of languages, where transferring the data to a1990

central server is often problematic or prohibited1991

due to privacy issues (Wang et al., 2022). Thanks1992

to its inherent privacy-preserving characteristic, FL1993

holds promise in breaking the barriers of cross-1994

lingual modeling and data isolation by allowing1995

models to learn from decentralized datasets.1996

The pioneer work by Weller et al. (2022) has1997

firstly demonstrated that fine-tuning pre-trained lan-1998

guage models with FL can perform similarly to pre-1999

trained models fine-tuned with the standard cen-2000

tralized method under multilingual NLP settings.2001

Various subsequent studies have focused on adapt-2002

ing pre-trained FMs through FedPEFT techniques2003

such as adapter tuning (Liu et al., 2023d), prompt2004

tuning (Zhao et al., 2024b), and LoRA (Zhihan2005

et al., 2024), aiming to enhance training efficiency.2006

Considering the adverse effect of conflicting pa-2007

rameters from diverse languages during federated2008

fine-tuning, recent studies have exploited clustering2009

strategies to alleviate this issue. For instance, Wang2010

et al. (2022) applied k-means clustering on each2011

client’s data to obtain representative knowledge,2012

specifically the clustered data centroids. These cen-2013

troids were then shared across clients for local train-2014

ing, enriching training data and addressing the chal-2015

lenges associated with data heterogeneity. Another2016

compelling strategy along this line is language 2017

family-based clustering. Liu et al. (2023d) explored 2018

various clustering strategies to group adapter pa- 2019

rameters to mitigate the negative effects of multi- 2020

lingual data heterogeneity, showing that language 2021

family-based clustering significantly outperforms 2022

the other clustering strategies. Similarly, Zhihan 2023

et al. (2024) proposed fine-tuning FMs with LoRA 2024

and language family-based clustering to address 2025

the heterogeneity issue of multilingual modeling. 2026

General downstream tasks include language 2027

modeling (Wang et al., 2022), machine transla- 2028

tion (Liu et al., 2023d; Chu et al., 2024), and text 2029

classification (Weller et al., 2022). In addition, 2030

some studies also focus on more specific applica- 2031

tions such as medical transcript analysis (Manoel 2032

et al., 2023) and hate speech detection (Akshay 2033

and Rahul, 2024). These advancements illustrate 2034

the applicability of FM-FL across a wide range of 2035

scenarios in multilingual NLP. 2036

C.2 FM-FL for Speech 2037

With the development of AI, researchers have also 2038

carried out many studies on speech-related FMs, 2039

e.g., wav2vec 2.0 (Baevski et al., 2020) and Whis- 2040

per (Radford et al., 2023). In this field, the adap- 2041

tation of FMs often relies on FL to facilitate sce- 2042

narios where the audio data is privacy-sensitive. 2043

Compared to other data modalities, speech-related 2044

FM-FL applications especially attract excessive at- 2045

tention to the aspects of on-device training and 2046

personalization, motivated by the following con- 2047

siderations: (1) Audio data is continually generated 2048

on end-devices such as mobile phones, and owned 2049

by individual users—thus it should be processed 2050

locally, rather than being transferred elsewhere; (2) 2051

Although FL takes advantage of all user data to col- 2052

lectively train one model that maximizes speaker- 2053

independent accuracy, such a one-model-fits-all so- 2054

lution can be sub-optimal for individual users (Jia 2055

et al., 2023). Specific tasks in this field include Au- 2056

tomatic Speech Recognition (ASR) (Azam et al., 2057

2023b) and Speech-to-Text (S2T) (Du et al., 2024). 2058

C.3 FM-FL for Recommendation 2059

Federated Recommendation (FR) strives to cap- 2060

ture underlying user preferences and recommend 2061

appropriate information to users while safeguard- 2062

ing data privacy (Bobadilla et al., 2013; Zhang 2063

et al., 2023a). Typical FR systems consist of a 2064

server and multiple clients, where clients represent 2065

individual users or local data servers possessing 2066
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Table 2: A list of representative studies on the applications of FM-FL. Abbreviations: LoRA Tuning (LT), Adapter Tuning (AT),
Full-Parameter Tuning (FT), Selective Tuning (ST), Prompt Tuning (PT).

Domain/Application Task Representative Work

O
n-

D
ev

ic
e

Pe
rs

on
al

iz
at

io
n

Modality Backbone

Fi
ne

-T
un

in
g

Multilingual NLP

Language Understanding FedKC (Wang et al., 2022) % % Txt. mBERT FT

Multi-Tasks PMMFL (Weller et al., 2022) % % Txt. mBERT FT

Machine Translation Fed-MNMT (Liu et al., 2023d) % % Txt. mBART-50 AT

Machine Translation FL-MetaSend (Chu et al., 2024) % % Txt. M2M-100 ST

Multi-Tasks MFPT (Zhao et al., 2024b) ! % Txt. XLM-RoBERTa PT

Speech
Speech-to-Text pFedS2T (Du et al., 2024) % ! Aud. Conformer/Whisper LT

Speech Recognition FedASR (Jia et al., 2023) ! ! Aud. RNN-T AT

Speech Recognition FedE2EASR(Azam et al., 2023a) % ! Aud. CTC-AED FT

Recommendation

General PPLR (Zhao et al., 2024a) % ! Txt. LLaMA-7B/LongFormer FT

General TransFR (Zhang et al., 2024a) ! ! Txt. DistBERT AT

General GPT-FedRec (Zeng et al., 2024) % % Txt. ChatGPT NA

Healthcare
Mental Health Prediction FedTherapist (Shin et al., 2023a) ! % Txt. BERT & LLaMa-7B LT

MRI Reconstruction FedPR (Feng et al., 2023a) % % Vis. Swin Transformers PT

smaller datasets and retaining private user informa-2067

tion (Ammad-Ud-Din et al., 2019). These clients2068

collaborate to train a global model while ensuring2069

their data privacy protection by abstaining from2070

direct data sharing (Zeng et al., 2024; Zhang et al.,2071

2023a). Recently, LLM-based recommendations2072

have been gaining increasing attention (Wu et al.,2073

2023b) due to their strong capacities in language2074

understanding and domain generalization. The ben-2075

efits are mainly twofold: (1) LLMs mitigate the2076

cold-start issue by utilizing textual descriptions to2077

make recommendations without the need for exten-2078

sive historical data (Zhang et al., 2023c); (2) The2079

inherent transferability of LLMs allows them to ap-2080

ply cross-domain knowledge and side information2081

to improve accuracy and relevance across diverse2082

items and user interests (Gao et al., 2023).2083

One straightforward way to adapt FMs for FR2084

is by fine-tuning them with historical user-item2085

data. More specifically, FedPEFT techniques such2086

as adapter tuning (Zhang et al., 2024a) and split2087

learning (Zhao et al., 2024a) can be employed to2088

improve resource efficiency. Apart from parame-2089

ter fine-tuning, LLMs can also be adapted to as-2090

sist the recommendation in a zero-shot paradigm2091

through prompt engineering (i.e., without parame-2092

ter tuning) (Gao et al., 2023). For example, Zeng2093

et al. (2024) proposed GPT-FedRec, a two-stage2094

FR framework that leverages ChatGPT for its pow-2095

erful zero-shot generalization ability. Firstly, GPT-2096

FedRec facilitates hybrid retrieval by collabora-2097

tively training ID and text retrievers, after which the 2098

retrieved results are transformed into text prompts 2099

and submitted to GPT for re-ranking in the second 2100

stage. Additionally, Guo et al. (2024) employed a 2101

pre-trained BERT to obtain the representation vec- 2102

tors of item descriptions, which are then fed into a 2103

recommender system as augmented input. 2104

C.4 FM-FL for Healthcare 2105

FMs, especially LLMs, have been found to excel in 2106

healthcare applications, showcasing impressive ca- 2107

pabilities in tasks like mental health analysis (Yang 2108

et al., 2023b), disease diagnosis (Panagoulias et al., 2109

2024), and drug discovery (Chenthamarakshan 2110

et al., 2023). However, it raises privacy concerns 2111

to upload the health information of patients (Tang 2112

et al., 2023) into a commercial server that sup- 2113

ports the FMs. Meanwhile, FL has consistently 2114

received widespread attention in the healthcare do- 2115

main (Lincy and Kowshalya, 2020; Rieke et al., 2116

2020; Joshi et al., 2022), driven by the need for 2117

collaborative model training across different medi- 2118

cal institutions without compromising patient data 2119

privacy. By breaking the barriers of private data 2120

availability, the FM-FL paradigm shows the po- 2121

tential to further harness the power of FMs in the 2122

healthcare domain. 2123

A recent study (Shin et al., 2023a) presents a 2124

mobile mental health monitoring system, FedTher- 2125

apist, which leverages user speech and keyboard in- 2126

put to fine-tune FMs with FL, demonstrating supe- 2127

rior accuracy in mental health prediction tasks such 2128
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Table 3: A list of existing FM-FL libraries and benchmarks. Missing or inapplicable details denoted by N/A.! denotes a
strong focus or presence;% indicates no focus or absence; G# signifies a moderate focus or partial inclusion.

Library/Benchmark FL Backend
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D
iff

er
en
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Description

FederatedScope-LLM (Kuang et al., 2023) FederatedScope ! % ! % ! % An end-to-end benchmark for efficient fine-tuning LLMs with FL

NVIDIA FLARE (Roth et al., 2024) NVFlare ! % ! % ! ! Scalable and efficient fine-tuning LLMs with FL

FATE-LLM (Fan et al., 2023) FATE ! % ! % ! ! Focuses on IP and privacy protection in federated LLM

FedLLM (FedML, 2023) FedML ! % G# ! ! ! An MLOps-supported training pipeline based on FedML

OpenFedLLM (Ye et al., 2024) N/A ! % G# % N/A % An LLM framework focusing on FL instruction tuning/alignment

Shepherd (Zhang et al., 2024b) N/A ! % ! % % % Federated instruction tuning based on Huggingface

FedPETuning (Zhang et al., 2023e) FedLab ! % ! % ! % A benchmark comprising four FedPEFT methods

FedLegal (Zhang et al., 2023d) FedLab ! % % % ! % A benchmark comprising six legal NLP tasks under FL settings

as depression, stress, and mood prediction. Another2129

representative study (Feng et al., 2023a) focuses on2130

Magnetic Resonance Imaging (MRI) reconstruc-2131

tion, which involves retrieving a complex-valued2132

image from its under-sampled signal. The authors2133

adopted an FM pre-trained on public datasets and2134

trained visual prompts from decentralized clinical2135

datasets via a personalized FL mechanism, thereby2136

reducing communication costs and achieving com-2137

petitive performance on limited local data.2138

Despite the efforts, it has been shown that FMs in2139

healthcare risk generating misleading information2140

due to their imperfect understanding of complex2141

medical data (Jeblick et al., 2024).2142

D Libraries and Benchmarks2143

This part briefly introduces a series of available2144

libraries and benchmarks for developing and exam-2145

ining FM-FL techniques. An overview is provided2146

in Table 3.2147

• FederatedScope-LLM (Kuang et al., 2023) is an2148

open-source package for fine-tuning LLMs via2149

FL. Built on top of a popular FL backend Feder-2150

atedScope (Xie et al., 2023), it supports federated2151

fine-tuning of LLMs under various FL scenarios,2152

including FedPEFT and model personalization.2153

• NVIDIA FLARE (Roth et al., 2024) is an FL2154

framework that allows researchers and data scien-2155

tists to seamlessly move their machine learning2156

and deep learning workflows into a federated2157

paradigm.2158

• FATE-LLM (Fan et al., 2023) is an industrial-2159

grade FL framework for LLM. Apart from Fed-2160

PEFT, it provides a privacy hub integrating sev- 2161

eral IP protection and privacy-preserving mecha- 2162

nisms to protect model security and data privacy. 2163

• FedLLM (FedML, 2023) is an MLOps- 2164

supported training pipeline built upon the FedML 2165

AI platform (He et al., 2020). FedLLM is com- 2166

patible with popular LLM libraries such as Hug- 2167

gingFace and DeepSpeed to support a large range 2168

of FMs and datasets. 2169

• OpenFedLLM (Ye et al., 2024) is a federated 2170

tuning framework for LLMs, which covers appli- 2171

cations of instruction tuning and value alignment, 2172

diverse FL baselines, training datasets, and eval- 2173

uation datasets. 2174

• Shepherd (Zhang et al., 2024b) is a lightweight 2175

federated tuning framework. The local training 2176

process of Shepherd is built upon the implemen- 2177

tations of Alpaca-LoRA (Wang, 2023), and Hug- 2178

ging Face’s PEFT (Mangrulkar et al., 2022), en- 2179

abling efficient fine-tuning. 2180

• FedPETuning (Zhang et al., 2023e) is a pioneer- 2181

ing federated benchmark for four representative 2182

FedPEFT methods, covering adapter tuning, pre- 2183

fix tuning, LoRA, and BitFit. 2184

• FedLegal (Zhang et al., 2023d) is the very first 2185

real-world FL benchmark for legal NLP, which 2186

comprises five legal NLP tasks and one privacy 2187

task based on the data from Chinese courts. 2188
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