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Abstract
We study the design of iterative combinatorial
auctions (ICAs). The main challenge in this do-
main is that the bundle space grows exponentially
in the number of items. To address this, recent
work has proposed machine learning (ML)-based
preference elicitation algorithms that aim to elicit
only the most critical information from bidders to
maximize efficiency. However, while the SOTA
ML-based algorithms elicit bidders’ preferences
via value queries, ICAs that are used in practice
elicit information via demand queries. In this
paper, we introduce a novel ML algorithm that
provably makes use of the full information from
both value and demand queries, and we show via
experiments that combining both query types re-
sults in significantly better learning performance
in practice. Building on these insights, we present
MLHCA, a new ML-powered auction that uses
value and demand queries. MLHCA significantly
outperforms the previous SOTA, reducing effi-
ciency loss by up to a factor 10, with up to 58%
fewer queries. Thus, MLHCA achieves large ef-
ficiency improvements while also reducing bid-
ders’ cognitive load, establishing a new bench-
mark for both practicability and efficiency. Our
code is available at https://github.com/
marketdesignresearch/MLHCA.

1. Introduction
Combinatorial auctions (CAs) are used to allocate multiple
items among several bidders who may view those items as
complements or substitutes. CAs allow bidders to place
bids on entire bundles of items, enabling more nuanced ex-
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pression of value. CAs have enjoyed widespread adoption
in practice, with their applications ranging from allocating
spectrum licenses (Cramton, 2013) to TV ad slots (Goetzen-
dorff et al., 2015) and airport landing/take-off slots (Rassenti
et al., 1982).

The key challenge in CAs is that the bundle space grows ex-
ponentially in the number of items, making it impossible for
bidders to report their full value function in all but the small-
est domains. Moreover, Nisan & Segal (2006) showed that,
for arbitrary value functions, CAs require an exponential
number of bids to guarantee full efficiency. Thus, practi-
cal CA mechanisms cannot provide efficiency guarantees
in real world settings with more than a modest number of
items. Instead, the focus has shifted towards iterative com-
binatorial auctions (ICAs), where bidders interact with the
auctioneer over a series of rounds, providing only a limited
(i.e., practically feasible) amount of information, with the
aim to maximize the efficiency of the final allocation.

The most established ICA following this interaction
paradigm is the combinatorial clock auction (CCA)
(Ausubel et al., 2006). Extensively used for allocating spec-
trum licenses, the CCA generated over USD 20 billion in
revenue between 2012 and 2014 alone (Ausubel & Baranov,
2017). However, a key challenge for any ICA, including
the CCA, is balancing speed of convergence with efficiency.
Each bidding round involves significant computational costs
and complex business modeling for participants (Kwasnica
et al., 2005; Milgrom & Segal, 2017; Bichler et al., 2017),
making faster convergence highly desirable.

Large spectrum auctions conducted under the CCA format
can require over 100 bidding rounds, prompting practition-
ers to adopt aggressive price update rules to reduce the num-
ber of rounds. For example, prices may be increased by up
to 10% per round, but such approaches come at the expense
of efficiency (Ausubel & Baranov, 2017). This trade-off
highlights the ongoing challenge of designing ICAs that
achieve both high efficiency and rapid convergence. Given
the value of resources allocated in these auctions, even a
one-percentage-point improvement in efficiency translates
to welfare gains of hundreds of millions of dollars.
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1.1. ML-Powered Iterative Combinatorial Auctions

To tackle this challenge, researchers have explored using
machine learning (ML) to enhance the efficiency of ICAs.
The foundational works of Blum et al. (2004) and Lahaie
& Parkes (2004) were the first to frame preference elicita-
tion in CAs as a learning problem. More recently, Brero
et al. (2018; 2021) and Weissteiner & Seuken (2020); Weis-
steiner et al. (2022b;a; 2023) introduced ML-powered ICAs.
Central to these approaches is an ML-based preference elic-
itation algorithm that trains an ML model on each bidder’s
value function to generate informative value queries (VQs)
(e.g., “What is your value for the bundle {A,B}?”), which
iteratively refine the ML model of each bidder’s values.1

Soumalias et al. (2024c) took a different approach. To
increase the likelihood of their approach being adopted in
practice, they introduced ML-CCA, an ML-powered auction
that follows the established interaction paradigm of the CCA
using demand queries. Building on earlier works by Brero
& Lahaie (2018); Brero et al. (2019), their design iteratively
trains individual ML models for each bidder using their
previously answered demand queries (DQs) and then selects
the next DQ with the highest clearing potential.

Although ML-CCA marked a major step towards a practical
ML-powered ICA and outperformed the baseline CCA used
in real-world applications, it still faced two key shortcom-
ings. First, it fell short of achieving the SOTA efficiency of
the VQ-based ML-powered ICAs. Second, like the CCA,
it relied on a very large number of supplementary round
bids to enhance its efficiency, requiring bidders to decide on
additional value bids—a cognitively demanding task.

We address these shortcomings by introducing the Ma-
chine Learning-powered Hybrid Combinatorial Auction
(MLHCA). Leveraging sophisticated DQ and VQ generation
algorithms, MLHCA maintains the established interaction
paradigm of the CCA while achieving unprecedented ef-
ficiency gains. MLHCA outperforms the previous SOTA
across all tested domains, reducing efficiency loss by up to a
factor of ten. Based on the value of goods traded (Ausubel &
Baranov, 2017), these efficiency improvements correspond
to welfare gains of hundreds of millions of USD. At the
same time, MLHCA significantly reduces the cognitive load
on bidders: compared to BOCA, the previous SOTA, ML-
HCA requires at least 42% fewer queries to achieve the same
efficiency, and compared to ML-CCA, the SOTA auction
following CCA’s interaction paradigm, MLHCA requires
at least 26% fewer queries. Moreover, unlike the CCA and
ML-CCA, in MLHCA bidders do not need to decide which
bundles to bid for in its VQ rounds, as the auction auto-
matically suggests these bundles. Thus, MLHCA achieves

1From an optimization perspective, this can be viewed as a
combinatorial Bayesian optimization problem.

unprecedented efficiency gains while significantly reducing
bidders’ cognitive load, establishing a new benchmark for
both practicability and efficiency.

1.2. Our Contributions

We introduce the Machine Learning-powered Hybrid Com-
binatorial Auction (MLHCA), a practical ICA that achieves
unprecedented efficiency and convergence speed. First, we
establish a theoretical foundation and provide illustrative
examples to demonstrate the advantages and limitations
of DQs and VQs from an auction design perspective (Sec-
tion 3). Then we develop a learning algorithm that effec-
tively leverages both query types (Section 4). We provide
strong experimental evidence of the learning benefits of
combining both query types, as well as the advantages of
starting an auction with DQs instead of VQs.

We then integrate these auction and ML insights to design
MLHCA, the first ICA to incorporate sophisticated DQ and
VQ generation algorithms (Section 5). Simulations in real-
istic domains (Section 6) show that MLHCA significantly
outperforms the previous SOTA, achieving unprecedented
efficiency while also using fewer queries, thus setting a new
benchmark for both efficiency and practicality.

1.3. Further Related work

In the field of automated mechanism design, Dütting et al.
(2015; 2019), Golowich et al. (2018) and Narasimhan et al.
(2016) used ML to learn new mechanisms from data, while
Cole & Roughgarden (2014); Morgenstern & Roughgar-
den (2015) and Balcan et al. (2023) bounded the sample
complexity of learning approximately optimal mechanisms.
In contrast to this line of prior work, in our design, the
ML algorithm is part of the mechanism itself. Lahaie &
Lubin (2019) suggest an adaptive price update rule that in-
creases price expressivity as the rounds progress in order to
improve efficiency and speed of convergence. Unlike that
work, we aim to improve efficiency without increasing price
expressivity, as that is not a popular interaction paradigm in
practice, and can cause added cognitive load on the bidders.
Preference elicitation is also a key challenge in combina-
torial allocation without money. Soumalias et al. (2024b)
introduce an ML-powered mechanism for course allocation
that improves preference elicitation by asking comparison
queries. See Appendix A.1 for further related work.

1.4. Practical Considerations and Incentives

MLHCA can be seen as a sophisticated modification of the
CCA. In practice, many other considerations (beyond pref-
erence elicitation complexity and efficiency) are important.
For example, Ausubel & Baranov (2017) discussed the vital
role of well-designed activity rules to induce truthful bid-
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ding in the clock phase of the CCA. In Appendix B.3, we
provide a detailed discussion of the most common activity
rules used in the CCA, and we detail how MLHCA can
also leverage these rules for the same goal. Additionally,
in Appendix B.4, we prove that MLHCA can immediately
detect if a bidder’s reports are inconsistent.

The payment rule used in the supplementary round of the
CCA is also important for incentives. Cramton (2013) ar-
gued that the use of the VCG-nearest payment rule, while
not strategyproof, induces good incentives in practice. Simi-
lar to the supplementary round of the CCA, the VQ-based
phase of MLHCA is not strategyproof. However, in Ap-
pendix B.5, we argue that the VQ-based phase of MLHCA
offers strong incentives in practice, and we show that, under
two additional assumptions, truthful bidding is an ex-post
Nash equilibrium (following the arguments from Brero et al.
(2021) for the MLCA).

2. Preliminaries
2.1. Formal Model for ICAs

We consider multiset CA domains with a set N =
{1, . . . , n} of bidders and a set M = {1, . . . ,m} of dis-
tinct items with corresponding capacities, i.e., number of
available copies, c = (c1, . . . , cm) ∈ Nm. We denote
by x ∈ X = {0, . . . , c1} × . . . × {0, . . . , cm} a bundle
of items represented as a positive integer vector, where
xj = k iff item j ∈ M is contained k-times in x. The
bidders’ true preferences over bundles are represented by
their (private) value functions vi : X → R≥0, i ∈ N , i.e.,
vi(x) represents bidder i’s value for bundle x ∈ X . We
assume that vi is nondecreasing and satisfies vi(0) = 0. We
collect the value functions vi in the vector v = (vi)i∈N .
By a = (a1, . . . , an) ∈ Xn we denote an allocation
of bundles to bidders, where ai is the bundle bidder i
obtains. We denote the set of feasible allocations by
F =

{
a ∈ Xn :

∑
i∈N aij ≤ cj , ∀j ∈ M

}
. We assume

that bidders have quasilinear utility functions of the form
ui(ai) = vi(ai)− πi where vi can be highly non-linear and
πi ∈ R≥0 denotes the bidder’s payment. This implies that
the (true) social welfare V (a) of an allocation a is equal
to the sum of all bidders’ values

∑
i∈N vi(ai).2 We let

a∗ ∈ argmaxa∈F V (a) denote a social-welfare maximiz-
ing, i.e., efficient, allocation. The efficiency of any allocation
a ∈ F is determined as V (a)/V (a∗).

An ICA mechanism defines how the bidders interact with
the auctioneer and how the allocation and payments are
determined. We consider ICAs that iteratively ask bidders
both demand queries (DQs) and value queries (VQs).

Definition 2.1 (Demand Query). In a (linear) demand query,

2Note that V (a) =
∑

i∈N ui(ai) + uauctioneer(a) =∑
i∈N (vi(ai)− πi) +

∑
i∈N πi =

∑
i∈N vi(ai).

the auctioneer presents a vector of item prices p ∈ Rm
≥0 and

each bidder i responds with her utility-maximizing bundle,

x∗
i (p) ∈ argmax

x∈X
{vi(x)− ⟨p, x⟩} i ∈ N, (1)

where ⟨·, ·⟩ denotes the Euclidean scalar product in Rm.

Definition 2.2 (Value Query). In a value query, the auction-
eer presents to bidder i a bundle of items x and bidder i
responds with her value at those prices, i.e., vi(x) ∈ R≥0.

For bidder i ∈ N , we denote her K ∈ N elicited DQs as
RDQ

i = {(x∗
i (p

r), pr)}Kr=1 and her L ∈ N elicited VQs as
RVQ

i =
{(

xl
i, vi(x

l
i)
)}L

l=1
. Bidder i’s reports are denoted

as Ri = (RDQ
i , RVQ

i ). We collect the elicited reports of all
bidders in the tuple R = (R1, . . . , Rn).

In auctions using DQs, a key concept is the bidder’s inferred
value. This represents the maximum lower bound on a
bidder’s value for a bundle that the auctioneer can deduce
from the bidder’s reports, without assuming monotonicity.
The inferred value is always weakly lower than the bidder’s
true value, with equality achieved if the bidder has answered
the corresponding VQ for that bundle. Formally:

Definition 2.3 (Inferred Value). Bidder i’s inferred value
for bundle x ∈ X given her reports Ri is

ṽi(x;Ri) =

{
vi(x), if (x, vi(x)) ∈ RVQ

i ,

max
{{

⟨x, pr⟩ : (x, pr) ∈ RDQ
i

}
∪ {0}

}
, else.
(2)

The ICA’s final allocation a∗(R) ∈ F and payments
πi := πi(R) ∈ Rn

≥0 are computed based only on the elicited
reports R. Concretely, a∗(R) ∈ F is determined by solving
the Winner Determination Problem (WDP):

a∗(R) ∈ argmax
a∈F

∑
i∈N

ṽi(ai;Ri), (3)

where
∑

i∈N ṽi(ai;Ri) is the allocation’s inferred social
welfare, a lower bound on its social welfare

∑
i∈N vi(ai).

2.2. Benchmark ICAs

In this section, we briefly introduce the three main bench-
mark mechanisms considered in this paper.

CCA The most established ICA is the Combinatorial
Clock Auction (CCA) (Ausubel et al., 2006). The CCA
consists of two phases. The initial clock phase proceeds
in rounds. In each round r, the auctioneer sets anonymous
(i.e., same prices for all bidders) item prices pr ∈ Rm

≥0,
prompting each bidder to respond to a DQ, declaring her
utility-maximizing bundle at pr. In the next round, the
prices of over-demanded items are increased by a fixed per-
centage, until over-demand is eliminated. The second phase
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of the CCA, known as the supplementary round, allows
bidders to report their values for additional bundles of their
choice. The clock bids raised heuristic suggests that bidders
report their values for all bundles they requested during the
clock phase. The final allocation is determined by solving
the WDP based on all reports as in Equation (3).

ML-CCA The most efficient DQ-based ICA is the Ma-
chine Learning-powered Combinatorial Clock Auction (ML-
CCA) (Soumalias et al., 2024c). ML-CCA has the same
interaction paradigm as the CCA, but with a substantially
more refined DQ-generation algorithm in its clock phase. In
each round, an ML model is trained to estimate each bidder’s
value function based on previously submitted DQ responses.
Then, the prices are not increased by a percentage like in the
CCA, but instead a convex optimization problem determines
the prices with the highest clearing potential.

BOCA The SOTA ICA in terms of efficiency is the VQ-
based Bayesian optimization-based combinatorial auction
(BOCA) (Weissteiner et al., 2023). The main idea of BOCA
is that in each round, the auctioneer creates an estimate of
the upper confidence bound of the value function of each
agent based on her past responses. Then, the auctioneer
solves an ML-based WDP to find the feasible allocation
with the highest upper bound on its estimated social welfare,
and queries each agent her value for her bundle in that
allocation. This allows the mechanism to balance between
exploring and exploiting the bundle space.

2.3. ML Framework

The ML models used by ML-CCA, and as basis for the con-
struction of the confidence bound estimates in BOCA are
monotone-value neural networks (MVNNs) Mθ : X → R
(Weissteiner et al., 2022a). MVNNs are a class of NNs
specifically designed to represent monotone combinatorial
valuations. MVNNs have also had success in combinatorial
allocation domains without money, e.g., for course alloca-
tion (Soumalias et al., 2024b). Soumalias et al. (2024c)
introduced multiset MVNNs (mMVNNs), an extension of
MVNNs that also incorporates at a structural level the infor-
mation that some items in the auction are identical copies of
each other. In this work, we instantiate our ML models us-
ing mMVNNs, and denote agent i’s model as Mθ

i : X → R.
Within this work, we will refer to all mMVNNs simply as
MVNNs. We provide more details in Appendix C.

3. A Theoretical Framework for Effectively
Combining DQs and VQs

This section develops a theoretical framework for effec-
tively combining DQs and VQs. Proofs are deferred to
Appendix D.

VQ-Based Approaches Rely on Cognitively Complex
Random VQs. At the start of an ICA, no specific infor-
mation about bidders’ preferences is available, making it
challenging to identify bundles relevant to them. Thus,
most VQ-based auctions, including the SOTA approach
(Weissteiner et al., 2023), begin by querying bidders about
randomly selected bundles. However, in practice, answer-
ing VQs for such random bundles that do not align with
the bidders’ interests is cognitively demanding. In contrast,
the most widely used ICAs in practice (e.g., the CCA) em-
ploy DQs, which are easier for bidders to answer effectively
(Cramton, 2013). This key advantage highlights why rely-
ing exclusively on VQs is often impractical in real-world
auctions.

DQs Offer Superior Efficiency Gains in Initial Rounds.
Even if bidders could easily answer random VQs, in Ap-
pendix D.1 we detail the significant advantages of DQs in
the initial rounds of an ML-ICA, where DQs are providing
more actionable and efficient information. This superior
efficiency is formalized in the following proposition:

Proposition 3.1. The expected social welfare of an auction
that uses a single random demand query can be arbitrarily
larger than that of an auction that uses any constant number
(k ≪ 2m) of random value queries.

Additionally, DQs can establish a proof of optimality, allow-
ing the auction to terminate early (Proposition D.3). These
theoretical insights are validated by our experimental results
in Section 6. An auction initialized with DQs has up to 20%
points higher efficiency after its initial queries compared to
an auction initialized with VQs.

VQs Offer Superior Efficiency Gains in Later Rounds.
This raises the question: is it sufficient to rely exclusively
on DQs? Theorem 3.2 proves that the answer is negative:

Theorem 3.2. For every ϵ > 0, there exist infinitely many
instances of auctions for which no combination of DQs can
achieve an efficiency above 50%+ϵ. This remains true even
for infinite combinations of DQs and even if the bidders
additionally report their true values for all bundles they
requested in those DQs.

Notably, Theorem 3.2 shows that this limitation persists
even when supplementing the auction with the clock-bids
raised heuristic. Without this heuristic, adding more DQs
can even decrease efficiency. In Proposition 3.3 we prove
that a single DQ can reduce the auction’s efficiency arbitrar-
ily close to 100%, whereas VQ-based auctions do not face
this issue.

Proposition 3.3. In a DQ-based ICA, adding DQs can
actually reduce efficiency. A single DQ can cause an effi-
ciency drop arbitrarily close to 100%. By comparison, in a
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VQ-based ICA, adding additional queries can never reduce
efficiency (assuming truthful bidding).

These issues are also very prevalent in the real world. In
Section 6, we demonstrate that in realistic domains, the
gap in average efficiency between the SOTA DQ-based and
VQ-based auctions can reach up to 8% points. Further-
more, the average efficiency of the CCA, the prominent
DQ-based auction, declines by 8% points during the auc-
tion. VQ-based auctions avoid these pitfalls entirely. First,
they can always achieve 100% efficiency after sufficiently
many VQs (Lemma D.14). Second, asking additional VQs
never reduces the efficiency of a VQ-based auction. In
Appendix D.2, we provide further theoretical and intuitive
arguments on why relying solely on DQs is insufficient.

Optimally Combining DQs and VQs. Building on the
discussion in this section, it is natural to leverage the
strengths of both query types by starting with DQs and
then transitioning to VQs. Example 1 in Appendix D.3 il-
lustrates why this approach is effective: even after infinitely
many DQs could not achieve more than 55% efficiency, a
single VQ can achieve 100% efficiency. However, caution
is required, as introducing even a single VQ can reduce
the auction’s efficiency by nearly 100% (Lemma D.7). To
address this, we introduce the bridge bid, a specialized VQ
designed to seamlessly connect the DQ and VQ phases of a
hybrid auction. The bridge bid asks each bidder her value
for the bundle she would have received according to the
WDP (Equation (3)) after the final DQ round. Incorporating
the bridge bid guarantees that the auction’s final efficiency
will be no less than its DQ-only efficiency (Lemma D.9).
We demonstrate the significance of this bid in practice in
Section 6.3 and Appendix G.8. Appendix D.3 provides
further insights into combining DQs with VQs.

4. Mixed Query Learning
Combining DQs and VQs not only improves the final effi-
ciency of auctions but also enables the global learning of
bidders’ value functions. In this section, we introduce a
mixed training algorithm that leverages both query types.
Specifically, we demonstrate the learning benefits of initial-
izing auctions with DQs over VQs and show how integrat-
ing both query types leads to superior learning performance.
Further details are presented in Appendix E.

4.1. Mixed Training Algorithm

To leverage the advantages of both DQs and VQs, we pro-
pose a two-stage training algorithm compatible with modern
NN architectures, including mMVNNs. In each epoch, the
ML model is first trained on all DQ responses using the
loss function of Soumalias et al. (2024c). The key idea is to
predict the bidder’s utility-maximizing bundle at the given

OPTIMIZATION TRAIN POINTS R2 KT MAE SCALED R2
c

METRIC VQS DQS Tr Tp Tr Tp Tr Tp Tr Tp

R2 ON Vr 20 40 0.84 0.42 0.79 0.80 0.037 0.044 0.84 0.80

60 0 0.73 −10.07 0.68 0.64 0.052 0.236 0.74 0.20

0 60 0.24 −3.07 0.77 0.77 0.103 0.128 0.83 0.76

R2 ON Vp 20 40 0.82 0.01 0.79 0.80 0.041 0.062 0.84 0.83

60 0 0.76 −3.40 0.72 0.62 0.049 0.141 0.77 0.05

0 60 −0.05 −6.24 0.78 0.72 0.103 0.154 0.84 0.69

Table 1: Learning comparison of training only on DQs, only
on VQs, or on both. Shown are averages over ten instances.
Winners marked in gray.

prices by treating her ML model as her true value function.
If the predicted reply deviates from the bidder’s true reply,
the loss equals the difference in predicted utility between
the two bundles. This loss function provably captures all
information provided by the DQ responses. Additionally,
the model is trained on the VQ responses using a standard
regression loss. For details, please refer to Appendix E.1.

4.2. Experimental Analysis

We demonstrate the learning benefits of initializing auctions
with DQs rather than VQs and highlight how combining
both query types leads to superior learning performance.

We conduct the following experiment: We perform hyper-
parameter optimization (HPO) to train an MVNN for the
most critical bidder in the most realistic simulation domain
(see Appendix G.1 for details on the simulation and Ap-
pendix E.3 for results for other domains). For this bidder,
we generate three training sets: (1) 40 DQs simulating 40
CCA clock rounds and 20 random VQs, (2) 60 DQs sim-
ulating 60 clock rounds with no VQs, and (3) 60 random
VQs with no DQs. The models are evaluated on two valida-
tion sets: a random bundle set (Vr) with 50,000 uniformly
sampled bundles, and a price-driven set (Vp) containing
bundles requested under 200 random price vectors. Vr tests
generalization across all bundles, while Vp focuses on utility-
maximizing bundles. We select the configuration with the
best coefficient of determination (R2), averaged over 10
bidder instances.

The selected configurations are then tested on 10 new bid-
ders, generating hold-out tests sets Tr and Tp in the same
way as Vp and Vr. We report R2, Kendall Tau (KT), scaled
Mean Absolute Error (scaled MAE), and R2

c . An R2
c value

of 1 indicates perfect learning up to a constant shift, with
differences between R2

c and R2 reflecting shift magnitude.
HPO procedures were consistent across all training sets,
with identical test instances, seeds, search spaces, and com-
putation time. Additional details are in Appendix G.3.

Table 1 shows that training on a mix of DQs and VQs consis-
tently outperforms training on either query type, particularly
for utility-maximizing bundles in Tp, where mixed training
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achieves nearly three times lower MAE. The mixed model
also closely matches the mean value for both test sets, as
indicated by the small gap between R2

c and R2. In contrast,
DQ-only models lack absolute value information, leading to
relative but not unique value function learning, as evidenced
by the large difference between R2 and R2

c . This limitation
goes even beyond constant shifts: Example 1 shows that
even with all possible DQs, unique identification up to a
constant shift is impossible. Meanwhile, VQ-only models
suffer from distributional shifts between test sets, reflected
in the significant discrepancy in R2 and MAE across the
two test sets. These shifts prevent VQ-trained models from
capturing critical, high-value bundles due to the absence of
utility-maximizing bundles in their training data.3

DQ-trained models generalize better to Tp than VQ-trained
models, as Tp emphasizes high-value bundles critical for
efficient allocations. This motivates initially training with
DQs, as they provide global information about the alloca-
tion space and focus on high-value regions from the outset.
These learning advantages are so pronounced that, as shown
in Section 6, MLHCA only needs to follow up its 40 DQs
with at most 18 VQs to outperform the previous SOTA,
which requires 100 VQs.

5. The Mechanism
In this section, we describe our ML-powered Hybrid Com-
binatorial Auction (MLHCA), which combines the auction
and ML insights from Sections 3 and 4.

We present a simplified version of MLHCA in Algorithm 1.
In Lines 2 to 5, we generate the first QCCA ∈ N DQs using
the price update rule of the CCA. Similar to ML-CCA, we
use larger price increments to arrive to similar prices as the
ML-CCA in fewer rounds. In each of the next QDQ ∈ N ML-
powered rounds, we first train, for each bidder, an mMVNN
on her demand responses (Line 8), and call NEXTPRICE
(Soumalias et al., 2024c) (see Appendix A.3) to generate the
next DQ based on the agents’ trained mMVNNs (Line 9). If
MLHCA has found market-clearing prices, then the corre-
sponding allocation is efficient and is returned, along with
payments π(R) according to the deployed payment rule
(Line 15). MLHCA is plug-and-play compatible with many
payment rules, such as VCG and VCG-nearest. If, by the
end of the ML-powered DQs, the market has not cleared
we switch to VQ rounds. In the first VQ round (Line 17)
we ask each bidder for her bridge bid (see Definition D.8).
This single VQ bid ensures that the MLHCA’s efficiency is
lower bounded by the efficiency after just the DQ rounds
(Lemma D.9). For a detailed experimental evaluation of
the bridge bid see Appendix G.8. In the final QVQ − 1 VQ
rounds, for each bidder, we query her value for the bundle

3At the start of a VQ-based auction, models are not accurate
enough to target value-maximizing bundles.

Algorithm 1: MLHCA(QCCA, QDQ, QVQ, π)

Parameters :QCCA, QDQ, QVQ and π
1 RVQ, RDQ ← ({})Ni=1, ({})Ni=1

2 for r = 1, ..., QCCA do ▷ Draw QCCA initial prices

3 pr ← CCA(RDQ)
4 foreach i ∈ N do ▷ Initial DQs

5 RDQ
i ← RDQ

i ∪ {(x
∗
i (p

r), pr)}
6 for r = QCCA +1, ..., QCCA +QDQ do ▷ ML-powered DQs

7 foreach i ∈ N do
8 Mθ

i ← MIXEDTRAINING(RDQ
i , RVQ

i )
▷ Algorithm 4

9 pr ← NEXTPRICE(
(
Mθ

i

)n
i=1

) ▷ Appendix A.3

10 foreach i ∈ N do
11 RDQ

i ← RDQ
i ∪ {(x

∗
i (p

r), pr)}

12 if
n∑

i=1

(x∗
i (p

k))j = cj ∀j ∈M then

▷ Market-clearing prices found

13 a∗(RDQ, RVQ)← (x∗
i (p

r))ni=1

14 π(RDQ, RVQ)← (πi(R
DQ, RVQ))ni=1

15 return a∗(RDQ, RVQ) and π(RDQ, RVQ)
16 foreach i ∈ N do ▷ Bridge bid

17 RVQ
i ←
RVQ

i ∪ {(a
∗
i (R

DQ, RVQ), vi(a
∗
i (R

DQ, RVQ)))}
18 for r = QCCA +QDQ + 2, ..., QCCA +QDQ +QVQ do

▷ ML-powered VQs

19 foreach i ∈ N do
20 Mθ

i ← MIXEDTRAINING(RDQ
i , RVQ

i )
▷ Algorithm 4

21 a← NEXTALLOCATION
((
Mθ

i

)n
i=1

), RDQ, RVQ)
▷ Appendix F

22 foreach i ∈ N do
23 RVQ

i ← RVQ
i ∪ {(ai, vi(ai))} ▷ Value query

responses

24 Calculate final allocation a∗(RDQ, RVQ) as in
Equation (3)

25 Calculate payments π(RDQ, RVQ) ▷ E.g., VCG

(Appendix B)

26 return a∗(RDQ, RVQ) and π(RDQ, RVQ)

she is allocated in the predicted optimal allocation (based
on all ML models), under the constraint that she has not
answered a VQ for that bundle in the past (Lines 21 to
23).4 The final allocation and payments are then determined
based on all reports (Lines 24 to 25). For details, please see
Appendix F.

6. Experiments
In this section, we experimentally evaluate MLHCA. We
compare its efficiency against BOCA (Weissteiner et al.,
2023) and ML-CCA (Soumalias et al., 2024b) the SOTA
VQ-based and DQ-based ICAs, respectively.

4This VQ algorithm was introduced in Brero et al. (2021) and
used in most follow-up work following the MLCA framework.
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6.1. Experiment Setup

To generate synthetic CA instances, we use the spectrum
auction test suite (SATS) (Weiss et al., 2017), which includes
various value models (domains) designed to simulate differ-
ent auction environments. Following standard practice in
this line of research (e.g., Soumalias et al. (2024c); Weis-
steiner et al. (2023)), we conduct experiments on the GSVM,
LSVM, SRVM, and MRVM domains (see Appendix G.1
for details). SATS provides access to the true optimal al-
location a∗ ∈ F , allowing us to measure the efficiency
loss, defined as 1− V (a∗(R))/V (a∗), where R represents
elicited reports. We focus on efficiency rather than revenue,
as do all mechanisms we compare against. This is consistent
with the primary application of ICAs in spectrum allocation,
a government-run operation with a welfare-maximization
mandate (Cramton, 2013). For results on revenue, see Ap-
pendix G.7. To ensure a fair comparison with prior work,
we limit all auction mechanisms to 100 total queries. These
consist of 100 VQs for BOCA, 100 DQs for ML-CCA, and
40 DQs and 60 VQs for MLHCA. For BOCA and ML-CCA,
we use the best mechanism configurations and hyperparam-
eters reported in their respective papers. For MLHCA’s
VQ rounds, we performed HPO separately for each bidder
type in each domain, as detailed in Appendix E.2. For the
DQ rounds, we adopted the HPO parameters reported by
Soumalias et al. (2024c), since our learning algorithm, when
restricted to DQs, is equivalent to theirs. For further experi-
mental details and analysis of MLHCA’s low computational
costs, please refer to Appendices G.3 and G.4 respectively.

6.2. Efficiency Results

In Table 2, we show the average efficiency loss of each
mechanism after 100 queries. For ML-CCA, we also report
results if it were supplemented with the clock bids raised
heuristic (see Section 2.2), which would involve up to an
additional 100 VQs per bidder.5 Finally, we report the num-
ber of queries that MLHCA requires to outperform the final
efficiency of each other mechanism, i.e., in GSVM, with 42
queries (40 DQs and 2 VQs) MLHCA statistically outper-
forms ML-CCA, even if ML-CCA were supplemented with
100 VQs from the clock bids raised heuristic.

In Table 2, we observe that MLHCA significantly outper-
forms all other mechanisms across all domains. Notably,
MLHCA is the only mechanism capable of achieving a per-
fect 100% efficiency in SRVM. Remarkably, it accomplishes
this with fewer than 60 queries, while the other mechanisms
fail even with 100 queries. In the LSVM domain, MLHCA
achieves a 10-fold reduction in efficiency loss compared
to BOCA, the previous SOTA. The most realistic domain,

5In the clock bids raised heuristic, the bidders only need to
report their value for each unique bundle they bid on during the
auction, which, for 100 DQs, can be up to 100 bundles.

MRVM further highlights MLHCA’s superiority. Here, ML-
HCA exceeds the efficiency of all other mechanisms by
over 2% points, making MLHCA the first mechanism to
substantially outperform CCA. MRVM simulates the 2014
Canadian spectrum auction (Weiss et al., 2017) with a rev-
enue of USD 5.27 billion (Ausubel & Baranov, 2017), where
2% points correspond to over USD 100 million.

Speed of convergence is another critical factor in these auc-
tions. In all domains, MLHCA requires at most 74 queries
(40 DQs and 34 VQs) to statistically outperform the final ef-
ficiency of both BOCA and ML-CCA, which use 100 VQs
and 100 DQs, respectively. Furthermore, in three out of
four domains, MLHCA surpasses the 100 DQ efficiency of
ML-CCA with only 40 DQs and 2 VQs. These results align
with our theoretical analysis in Appendix D.3, where we
show that, once DQs have sufficiently informed the bidders’
value functions, a single VQ can lead to 100% efficiency.

Figure 1 illustrates the efficiency loss path for all domains,
highlighting MLHCA’s consistent superiority. Up to query
40, MLHCA and ML-CCA perform identically since both
mechanisms employ the same DQs and network configu-
rations during these rounds. However, after query 40, ML-
HCA’s integration of VQs leads to a marked reduction in
efficiency loss compared to ML-CCA, aligning with our
insights on the efficiency of VQs and on the learning advan-
tages of combining DQs and VQs (Sections 3 and 4). Across
all domains, MLHCA also consistently outperforms BOCA,
leveraging the early-stage advantages of DQs when ML
models are still being quite uninformed and the later-stage
learning advantages of combining DQs and VQs.

In summary, MLHCA outperforms both DQ-based and VQ-
based SOTA mechanisms in terms of both efficiency and
speed of convergence, achieving high efficiency with fewer
queries. This makes MLHCA a powerful and practical
choice for real-world auction scenarios where high effi-
ciency and rapid convergence are crucial. These empirical
findings not only highlight the efficiency and convergence
speed of MLHCA but also closely align with our theoret-
ical insights. In the next section, we analyze how these
results validate the predictions and theoretical guarantees
established in this paper.

6.3. Alignment with Theoretical Insights

Figure 1 further validates our theoretical findings. The non-
monotonicity of DQ-based mechanisms, as suggested in
Proposition 3.3, is evident in the efficiency loss path of both
the CCA and the ML-CCA. Notably, in the LSVM domain,
the CCA achieves higher average efficiency after just 5 DQs
compared to 100. Additionally, the comparison between
BOCA and ML-CCA underscores the inefficiency of ran-
dom VQs in the early stages (Proposition 3.1), particularly
in the MRVM domain, where BOCA’s efficiency loss is

7
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EFFICIENCY LOSS IN % QUERIES TO REJECT NULL HYPOTHESIS

DOMAIN MLHCA BOCA ML-CCACLOCK ML-CCARAISED CCA BOCA ≥MLHCA ML-CCACLOCK ≥MLHCA ML-CCARAISED ≥MLHCA

GSVM 0.00± 0.00 — 1.77± 0.68 1.07± 0.37 9.60± 1.49 — 42 42
LSVM 0.04± 0.07 0.39± 0.31 8.36± 1.70 3.61± 0.77 17.44± 1.60 58 42 43
SRVM 0.00± 0.00 0.06± 0.02 0.41± 0.11 0.07± 0.02 0.37± 0.11 42 42 42
MRVM 4.81± 0.57 7.77± 0.35 6.94± 0.24 6.68± 0.22 7.53± 0.48 54 74 79

Table 2: MLHCA (40DQs + 60VQs) vs BOCA (100VQs), ML-CCA (ML-CCAclock) (100DQs) and ML-CCA with raised
clock bids (ML-CCAraised) (100DQs and up to 100VQs). Shown are averages and a 95% CI. Winners based on a t-test with
significance level of 5% are marked in grey.
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Figure 1: Efficiency loss paths (i.e., regret plots) of MLHCA compared to BOCA, ML-CCA and CCA. Shown are averages
over 50 instances with 95% CIs.

orders of magnitude worse than that of mechanisms em-
ploying ML-powered DQs. Finally, MLHCA’s performance
after query 40 demonstrates the potential efficiency gains of
supplementing DQs with VQs. The switch to ML-powered
VQs results in a dramatic reduction in efficiency loss—by
several orders of magnitude in the GSVM and SRVM do-
mains—while the DQ-based ML-CCA, which was identical
to MLHCA up to that point, stagnates. This aligns with
Theorem 3.2, which proves that once ML models effectively
capture bidder preferences, VQs can dramatically enhance
efficiency. In contrast, ML-CCA’s reliance on DQs prevents
further improvements, even with well-trained models.
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Figure 2: Efficiency of MLHCA with and without the bridge
bid (Definition D.8) in the MRVM domain.

To demonstrate the effectiveness of the bridge bid, in Fig-

ure 2, we plot MLHCA’s efficiency in MRVM–the most
realistic domain–against the number of bids, comparing
performance with and without the bridge bid. Without the
bridge bid, MLHCA’s efficiency drops by 7.3% points when
it transitions to its VQ rounds. Notably, MLHCA requires
20 of our powerful ML-powered VQs just to recover the
efficiency lost by the introduction of the first VQ. This is
consistent with Lemma D.7, where we showed that effi-
ciency can arbitrarily decrease when a VQ is introduced in
a DQ-based auction. In contrast, the bridge bid completely
mitigates this efficiency drop, as proven in Lemma D.9. In
Appendix G.8, we provide a detailed analysis and explaining
the bridge bid’s efficacy relative to market competition.

Finally, in Appendix G.9, we experimentally evaluate the
Inverse variant of MLHCA, which uses the inverse query or-
der: it begins with VQs and then transitions to DQs. Across
all tested domains, reversing the query order results in sub-
stantial efficiency losses, reaching up to 5 percentage points.
In the inverse auction, ML-powered DQs fail to improve
upon the efficiency achieved by the preceding VQs. More-
over, the early use of VQs alone cannot match the efficiency
attained by the later-stage VQs in MLHCA, due to sig-
nificantly weaker learning performance when the bidders’
models have not been trained on both query types. These
findings further reinforce our theoretical results on the criti-
cal role of query ordering in hybrid auctions.
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7. Conclusion
We have introduced MLHCA, the first ICA to effectively
combine both demand and value queries. By employing
tailored query generation algorithms, incorporating the full
information from both query types, and leveraging the the-
oretical insights developed in this work, MLHCA signif-
icantly outperforms current SOTA mechanisms across all
tested domains and with significantly fewer queries. No-
tably, prior to MLHCA, the best-performing mechanism
varied by domain, but MLHCA unifies the SOTA, deliver-
ing the best performance across all domains.

At first glance, it might seem obvious that combining DQs
and VQs improves performance. However, one of the key
insights of our work is that the ordering of queries mat-
ters. DQs provide broad but imprecise information across
the entire space, while VQs offer targeted, precise informa-
tion. As a result, DQs are more effective at the beginning
of an auction, while VQs become advantageous once the
auction’s ML model has already been trained for a while. A
second insight is that combining both query types requires
careful handling. The efficiency of an auction using both
DQs and VQs is non-monotone with respect to answered
queries, as DQ responses establish lower bounds on bid-
ders’ valuations for queried bundles. Naively combining
the two can lead to sharp efficiency drops, particularly in
low-competition scenarios. However, by introducing a sin-
gle, carefully-designed VQ, we can mitigate this effect and
guarantee that the auction’s efficiency does not fall below
its DQ-only value.

A promising direction for future work is incorporating epis-
temic uncertainty into MLHCA to enhance efficiency. An-
other is developing an algorithm to dynamically determine
the optimal switch to VQs, reducing cognitive load.

9



Prices, Bids, Values: One ML-Powered Combinatorial Auction to Rule Them All

Acknowledgments
We are grateful to Greg d’Eon, Bin Yu, Josef Teichmann,
and Denise Künzli for helpful discussions and their sup-
port. This work was supported by the Swiss National Sci-
ence Foundation (SNSF) Postdoc.Mobility fellowship [grant
number P500PT 225356] and ETH Zürich.
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Püschel, M. Fourier analysis-based iterative combina-
torial auctions. In Proceedings of the Thirty-First In-
ternational Joint Conference on Artificial Intelligence,
IJCAI-22, pp. 549–556. International Joint Conferences
on Artificial Intelligence Organization, 7 2022b. doi:
10.24963/ijcai.2022/78. URL https://doi.org/
10.24963/ijcai.2022/78. Main Track.

Weissteiner, J., Heiss, J., Siems, J., and Seuken, S. Bayesian
optimization-based combinatorial assignment. Proceed-
ings of the AAAI Conference on Artificial Intelligence, 37,
2023.

Williams, F., Trager, M., Panozzo, D., Silva, C., Zorin, D.,
and Bruna, J. Gradient dynamics of shallow univariate
relu networks. In Advances in Neural Information Pro-
cessing Systems, pp. 8378–8387, 2019.

12

https://arxiv.org/pdf/1910.01635.pdf
https://arxiv.org/pdf/1910.01635.pdf
https://arxiv.org/abs/1902.05040
https://arxiv.org/abs/2405.05905
https://arxiv.org/abs/2405.05905
https://doi.org/10.1145/3670865.3673573
https://doi.org/10.1145/3670865.3673573
https://ojs.aaai.org/index.php/AAAI/article/view/28850
https://ojs.aaai.org/index.php/AAAI/article/view/28850
https://ojs.aaai.org/index.php/AAAI/article/view/5606
https://ojs.aaai.org/index.php/AAAI/article/view/5606
https://doi.org/10.24963/ijcai.2022/77
https://doi.org/10.24963/ijcai.2022/77
https://doi.org/10.24963/ijcai.2022/78
https://doi.org/10.24963/ijcai.2022/78


Prices, Bids, Values: One ML-Powered Combinatorial Auction to Rule Them All

A. Extended Preliminaries and Literature Review
A.1. Extended Literature Review

In addition to the related work mentioned in Section 1, we also want to mention some further recent work an ML-based
ICAs.

Estermann et al. (2023) use more diverse VQs for the initial VQs. They show that this diversity leads to higher efficiency
than just asking initial VQs for i.i.d. uniformly random bundles. However, this does not solve the problem of it being
cognitively very hard for bidders to answer these VQs that are not aligned with their preferences. Moreover, their efficiency
results are outperformed by our MLHCA.

Maruo & Kashima (2024) uses multi-task learning to transfer to improve the generalization of the MVNNs by leveraging
similarities among the value functions across bidders. This technique should also be compatible with our MLHCA. Thus, it
would be an interesting direction for future work to incorporate multi-task learning into MLHCA and to evaluate how much
this would improve efficiency. From a game theoretical perspective, one should think very carefully if multi-task learning
could change the incentives of bidders. From a game-theoretical perspective, one would achieve incentive-alignment with
social welfare, if each bidder i cannot change the marginal efficiency of the economy N \ {i} (see Appendix B.5). For
MLCA, 3 out of 4 VQs actually query these marginal economies, such that Mθ

i has no direct influence on these queries,
which provides quite a strong game theoretical argument. Via multi-task learning, bidders have a more direct way to
influence other bidders’ models. While multi-task learning is a very promising direction to explore, one should be aware of
potential game-theoretical risks imposed by multi-task learning.

Lubin et al. (2021) allow bidders to answer VQs with an interval over prices instead of an exact price. It would be interesting
to combine this approach with MLHCA in future work.

Weissteiner (2023) and Heiss (2024, Section 4.4) provide a broader picture on ML-based ICAs.

Huang et al. (2025) explore how LLMs can be leveraged to create a new interaction paradigm for auctions, where the bidders
interact with the mechanism by providing only natural language input.

Another related line of research is mechanism design for LLMs, where participants bid to effect the output of an ML model,
specifically an LLM, e.g. Dütting et al. (2024); Soumalias et al. (2024a).

d’Eon et al. (2024); Almahdi et al. (2025) apply reinforcement learning algorithms to combinatorial auctions to better
understand bidder strategies. Extending this line of work to mechanisms such as MLHCA would be an interesting direction
for future research.

A.2. A Machine Learning-Powered ICA

In this section, we present in detail the machine learning-powered combinatorial auction (MLCA) by Brero et al. (2021).

At the core of MLCA is a query module (Algorithm 2), which, for each bidder i ∈ I ⊆ N , determines a new value query qi.
First, in the estimation step (Line 1), an ML algorithm Ai is used to learn bidder i’s valuation from reports Ri. Next, in
the optimization step (Line 2), an ML-based WDP is solved to find a candidate q of value queries. In principle, any ML
algorithm Ai that allows for solving the corresponding ML-based WDP in a fast way could be used. Finally, if qi has already
been queried before (Line 4), another, more restricted ML-based WDP (Line 6) is solved and qi is updated correspondingly.
This ensures that all final queries q are new.

In Algorithm 3, we present MLCA. In the following, let R−i = (R1, . . . , Ri−1, Ri+1, . . . , Rn). MLCA proceeds in rounds
until a maximum number of queries per bidder Qmax is reached. In each round, it calls Algorithm 2 (Qround − 1)n+ 1 times:
for each bidder i ∈ N , Qround − 1 times excluding a different bidder j ̸= i (Lines 5–10, sampled marginal economies) and
once including all bidders (Line 11, main economy). In total each bidder is queried Qround bundles per round in MLCA.
At the end of each round, the mechanism receives reports Rnew from all bidders for the newly generated queries qnew and
updates the overall elicited reports R (Lines 12–14). In Lines 16–17, MLCA computes an allocation a∗R that maximizes
the reported social welfare (see Equation (3)) and determines VCG payments p(R) based on the reported values R (see
Appendix Definition B.1).
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Algorithm 2: NEXTQUERIES(I,R) (Brero et al. 2021)

Inputs : Index set of bidders I and reported values R
1 foreach i ∈ I do Fit Ai on Ri: Ai[Ri] ▷ Estimation step

2 Solve q ∈ argmax
a∈F

∑
i∈I

Ai[Ri](ai) ▷ Optimization step

3 foreach i ∈ I do
4 if (qi, vi(qi)) ∈ Ri then ▷ Bundle already queried

5 Define F ′ = {a ∈ F : ai ̸= x,∀(x, vi(x)) ∈ Ri}
6 Re-solve q′ ∈ argmaxa∈F′

∑
l∈I Al[Rl](al)

7 Update qi = q′i
8 return Profile of new queries q = (q1, . . . , qn)

Algorithm 3: MLCA(Qinit, Qmax, Qround) (Brero et al. 2021)

Params :Qinit, Qmax, Qround initial, max and #queries/round
1 foreach i ∈ N do
2 Receive reports Ri for Qinit randomly drawn bundles
3 for k = 1, ..., ⌊(Qmax −Qinit)/Qround⌋ do ▷Round iterator

4 foreach i ∈ N do ▷ Marginal economy queries

5 Draw uniformly without replacement (Qround−1) bidders from N \ {i} and store them in Ñ

6 foreach j ∈ Ñ do
7 qnew = qnew∪ NEXTQUERIES(N \ {j}, R−j)
8 qnew = qnew∪ NEXTQUERIES(N,R) ▷ Main economy queries

9 foreach i ∈ N do
10 Receive reports Rnew

i for qnew
i , set Ri = Ri ∪Rnew

i

11 Given elicited reports R compute a∗
R as in Equation (3)

12 Given elicited reports R compute VCG-payments p(R)
13 return Final allocation a∗

R and payments p(R)

A.3. ML-Powered Demand Query Generation

In this section, we reprint the ML-powered demand query generation algorithm from Soumalias et al. (2024c). The critical
notions behind the idea are those of indirect utility and revenue and clearing prices.

Definition A.1 (Indirect Utility and Revenue). For linear prices p ∈ Rm
≥0, a bidder’s indirect utility U and the seller’s

indirect revenue R are defined as

U(p, vi) := max
x∈X

{vi(x)− ⟨p, x⟩} and (4)

R(p) := max
a∈F

{∑
i∈N

⟨p, ai⟩

}
6
=

∑
j∈M

cjpj , (5)

i.e., at prices p, Equations (4) and (5) are the maximum utility a bidder can achieve for all x ∈ X and the maximum revenue
the seller can achieve among all feasible allocations.

Definition A.2 (Clearing Prices). Prices p ∈ Rm
≥0 are clearing prices if there exists an allocation a(p) ∈ F such that

1. for each bidder i, the bundle ai(p) maximizes her utility, i.e., vi(ai(p))− ⟨p, ai(p)⟩ = U(p, vi),∀i ∈ N , and

2. the allocation a(p) ∈ F maximizes the sellers revenue, i.e.,
∑

i∈N ⟨p, ai(p)⟩ = R(p).6

Theorem A.3 extends Bikhchandani & Ostroy (2002, Theorem 3.1), establishing a connection between the aforementioned
definitions:

Theorem A.3 (Soumalias et al. (2024c)). Consider the notation from Definitions A.1 and A.2 and the objective function

6For linear prices, this maximum is achieved by selling every item, i.e., ∀j ∈M :
∑

i∈N (ai)j = cj .
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W (p, v) := R(p) +
∑

i∈N U(p, vi). Then it holds that, if a linear clearing price vector exists, every price vector

p′ ∈ argmin
p̃∈Rm

≥0

W (p̃, v) (6a)

such that (x∗
i (p̃))i∈N ∈ F (6b)

is a clearing price vector and the corresponding allocation a(p′) ∈ F is efficient.7

Theorem A.3 does not claim the existence of linear clearing prices (LCPs) p ∈ Rm
≥0. For general value functions v, LCPs

may not exist (Bikhchandani & Ostroy, 2002). However, in the case that LCPs do exist, Theorem A.3 shows that all
minimizers of equation 6 are LCPs and their corresponding allocation is efficient. This is at the core of their ML-powered
demand query generation algorithm.

Their key idea to generate ML-powered demand queries is the following: As an approximation for the true value function vi,
they use for each bidder a distinct mMVNN Mθ

i : X → R≥0 that has been trained on the bidder’s elicited DQ data Ri.
Motivated by Theorem A.3, they then try to find the DQ p ∈ Rm

≥0 minimizing W (p,
(
Mθ

i

)n
i=1

) subject to the feasibility
constraint equation 6b. This way, we find demand queries p ∈ Rm

≥0 which, given the already observed demand responses R,
have high clearing potential.

Note that equation 6 is a hard, bi-level optimization problem. Instead, Theorem A.4 allows them to minimize the problem
via gradient descent:
Theorem A.4 ((Soumalias et al., 2024c)). Let

(
Mθ

i

)n
i=1

be a tuple of trained mMVNNs and let x̂∗
i (p) ∈

argmaxx∈X
{
Mθ

i (x)− ⟨p, x⟩
}

denote each bidder’s predicted utility maximizing bundle w.r.t. Mθ
i . Then it holds that

p 7→ W (p,
(
Mθ

i

)n
i=1

) is convex, Lipschitz-continuous and a.e. differentiable. Moreover,

c−
∑
i∈N

x̂∗
i (p) ∈ ∇sub

p W (p,
(
Mθ

i

)n
i=1

) (7)

is always a sub-gradient and a.e. a classical gradient.

With Theorem A.4, we obtain the following update rule of classical GD pnew
j

a.e.
= pj − γ(cj −

∑
i∈N (x̂∗

i (p))j), ∀j ∈ M .
Interestingly, this equation has an intuitive economic interpretation. If the jth item is over/under-demanded based on the
predicted utility-maximizing bundles x̂∗

i (p), then its new price pnew
j is increased/decreased by the learning rate times its

over/under-demand. To enforce constraint equation 6b in GD, they asymmetrically increase the prices 1 + µ ∈ R≥0 times
more in case of over-demand than they decrease them in case of under-demand. This leads to the final update rule:

pnew
j

a.e.
= pj − γ̃j(cj −

∑
i∈N

(x̂∗
i (p))j), ∀j ∈ M, (8a)

γ̃j :=

{
γ · (1 + µ) , cj <

∑
i∈N (x̂∗

i (p))j

γ , else
(8b)

B. Payment and Activity Rules
In this section, we reprint the VCG and VCG-nearest payment rules, as well as give an overview of activity rules for the
CCA, and argue why the most prominent choices are also applicable to our MLHCA. Finally, we show how MLHCA can
immediately detect if a bidder’s reports are inconsistent with any valuation function.

B.1. VCG Payments

Definition B.1. (VCG PAYMENTS FROM DEMAND AND VALUE QUERY DATA) Let R = (R1, . . . , Rn) denote an elicited
set of both demand and value query data from each bidder and let R−i := (R1, . . . , Ri−1, Ri+1, . . . , Rn). We then calculate

7More precisely, constraint equation 6b should be reformulated as

∃ (x∗
i (p̃))i∈N ∈×

i∈N

X ∗
i (p̃) : (x

∗
i (p̃))i∈N ∈ F ,

where X ∗
i (p̃) := argmaxx∈X {vi(x)− ⟨p̃, x⟩}, since in theory, x∗

i (p̃) does not always have to be unique.
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the VCG payments πVCG(R) = (πVCG
1 (R) . . . , πVCG

n (R)) ∈ Rn
≥0 as follows:

πVCG
i (R) :=

∑
j∈N\{i}

ṽj (a
∗(R−i)j ;Rj)−

∑
j∈N\{i}

ṽj (a
∗(R)j ;Rj) . (9)

where a∗(R−i) is the allocation that maximizes the inferred social welfare when excluding bidder i, i.e.,

a∗(R−i) ∈ argmax
a∈F

∑
j∈N\{i}

ṽj(aj ;Rj), (10)

and a∗(R) is the inferred social welfare-maximizing allocation (see Equation (3)).

Thus, when using VCG payments, bidder i’s utility is:

ui = vi(a
∗(R)i)− πVCG

i (R)

= vi(a
∗(R)i) +

∑
j∈N\{i}

ṽj (a
∗(R)j ;Rj)

−
∑

j∈N\{i}

ṽj (a
∗(R−i)j ;Rj) .

B.2. VCG-Nearest Payments

To define the VCG-nearest payments, we must first introduce the core:
Definition B.2. (THE CORE) An outcome (a, π) ∈ F × Rn

≥0 (i.e., a tuple of a feasible allocation a and payments π) is in
the core if it satisfies the following two properties:

1. The outcome is individual rational, i.e, ui = vi(ai)− πi ≥ 0 for all i ∈ N

2. The core constraints
∀ L ⊆ N

∑
i∈N\L

πi(R) ≥ max
a′∈F

∑
i∈L

vi(a
′
i)−

∑
i∈L

vi(ai) (11)

where vi(ai) is bidder i’s value for bundle ai and F is the set of feasible allocations.

In words, a payment vector π (together with a feasible allocation a) is in the core if no coalition of bidders L ⊂ N is willing
to pay more for the items than the mechanism is charging the winners. Note that by replacing the true values vi(ai) with the
bidders’ (possibly untruthful) inferred values based on their reports ṽi(ai;Ri) in Definition B.2 one can equivalently define
the revealed core.

Now, we can define
Definition B.3. (MINIMUM REVENUE CORE) Among all payment vectors in the (revealed) core, the (revealed) minimum
revenue core is the set of payment vectors with smallest L1-norm, i.e., which minimize the sum of the payments of all
bidders.

We can now define VCG-nearest payments:
Definition B.4. (VCG-NEAREST PAYMENTS) Given an allocation aR for bidder reports R, the VCG-nearest payments
πVCG-nearest(R) are defined as the vector of payments in the (revealed) minimum revenue core that minimizes the L2-norm to
the VCG payment vector πVCG(R).

B.3. On the Importance of Activity Rules to Align Incentives

In the CCA, activity rules serve multiple purposes. First, they help accelerate the auction process. Second, they reduce
“bid-sniping” opportunities—bidders concealing their true intentions until the very last rounds of the auction.8 Third, they
limit surprise bids in the supplementary round of the CCA, significantly reducing a bidder’s ability to drive up opponents’
payments by overbidding on bundles they cannot win (Ausubel & Baranov, 2017). There are two types of activity rules that
are implemented in a CCA:

8The notion of ”bid-sniping” originated in eBay auctions with predetermined ending times, where high-value bidders could reduce
their payments by submitting bids at the very last moment.
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1. Clock phase activity rules, which limit the bundles that an agent can bid on during the clock phase, based on their bids
in previous clock rounds.

2. Supplementary round activity rules, which restrict the amounts that an agent can bid on specific sets of items during the
supplementary round.

Traditionally, most clock phase activity rules in the CCA have relied on either revealed-preference principles or a points-based
system, where points are assigned to each item before the auction, and bidders are only allowed to submit monotonically
non-increasing bids in terms of points. In other words, as prices rise across rounds, bidders cannot submit bids for larger
sets of items. Both of these approaches, as well as hybrid combinations thereof, were shown to actually further interfere
with truthful bidding in some cases (Ausubel & Baranov, 2014; 2020).

However, Ausubel & Baranov (2019) showed that basing clock phase activity rules entirely on the generalized axiom of
revealed preference (GARP) can dynamically approximate VCG payoffs, thus improving the bidding incentives of the CCA.
GARP imposes revealed-preference constraints (see Definition B.5) on the bidder’s demand responses. The GARP activity
rule requires that the bidder demonstrates rational behavior in her demand choices, without necessitating a monotonic price
trajectory. As a result, it can also be applied during the ML-powered DQ phase of MLHCA, allowing our mechanism to
enjoy similar improvements in bidding incentives.

For the supplementary round, the CCA’s most prominent activity rules are again based on a combination of points-based
systems and revealed-preference ideas, which we outline below:

Definition B.5. (REVEALED-PREFERENCE CONSTRAINT) The revealed-preference constraint for bundle x ∈ X with
respect to clock round r is

bi(x) ≤ bi(x
r) + ⟨pr, x− xr⟩ , (12)

where bi(x) ∈ R≥0 is bidder i’s bid for bundle x ∈ X in the supplementary round, xr ∈ X is the bundle demanded by the
agent at clock round r, bi(xr) ∈ R≥0 is the final bid for bundle xr ∈ X and pr ∈ Rm

≥0 is the linear price vector of clock
round r.

Intuitively, the revealed-preference constraint ensures that a bidder cannot claim a higher value for bundle x relative to bundle
xr, given that they expressed a preference for bundle xr at the given prices pr (see Equation (1)). The difference between
the three most prominent supplementary round activity rules is with respect to which clock rounds the revealed-preference
constraint should be satisfied. Specifically:

1. Final Cap: A bid for bundle x ∈ X should satisfy the revealed-preference constraint (Definition B.5) with respect to
the final clock round’s price pQ

CCA ∈ R≥0 and bundle xQCCA ∈ X .

2. Relative Cap: A bid for bundle x ∈ X should satisfy the revealed-preference constraint (Definition B.5) with respect to
the last clock round for which the bidder was eligible for that bundle x ∈ X , based on the points-based system.

3. Intermediate Cap: A bid for bundle x ∈ X should satisfy the revealed-preference constraint (Definition B.5) with
respect to all eligibility-reducing rounds, starting from the last clock round for which the bidder was eligible for x ∈ X
based on the point system.

Ausubel & Baranov (2017) showed that combining the Final Cap and Relative Cap activity rules leads to the largest amount
of reduction in bid-sniping opportunities for the UK 4G auction, as measured by the theoretical bid amount that each bidder
would need to increase her bid by in the supplementary round in order to protect her final clock round bundle. Finally, note
that the Final- and Intermediate Cap activity rules can also be applied to the ML-powered DQ phase of our MLHCA.9

To conclude, both the DQ and VQ phases of MLHCA are compatible with the most prominent activity rules of the CCA,
and MLHCA also remains compatible with the commonly used VCG-nearest pricing rule (Definition B.4). Combined with
MLHCA’s similar interaction paradigm to the CCA, these aspects provide strong evidence that our mechanism can leverage
activity rules to effectively mitigate bidder misreporting opportunities, much like the classical CCA.

9Soumalias et al. (2024c) argued that with the modification for the Relative Cap rule that the revealed-preference constraint should
hold for the QCCA rounds that follow the same price update rule as the CCA, and then the ML-powered clock rounds should be treated as
corresponding to the same amount of points, since the prices in these rounds on aggregate stay very close to the prices of the last Qinit

round.
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B.4. MLHCA Can Detect Inconsistent Misreports

In the following lemma, we formally prove that if a bidder’s reports are inconsistent with any valuation function, then the
training loss for that bidder’s network will be strictly positive, thus MLHCA can detect such misreports.

Lemma B.6 (Strictly Positive Loss from an Inconsistent Datapoint). Let R = (RDQ, RVQ) be a set of elicited reports by
a bidder that is rationalizable by some monotone valuation function v0 : X → R≥0. Suppose, that during the MLHCA
auction (Algorithm 1), the bidder responds to the next query, either a DQ (x̃∗(pr̃), pr̃) or a VQ (x̃, ṽ(x̃)) and assume that
no monotone valuation v can simultaneously rationalize all of her responses R′. Then, when using Algorithm 4 (with any
regression loss F for the VQ responses that satisfies F ≥ 0 and y = ỹ ⇐⇒ F (y, ỹ) = 0) to fit an MVNN Mθ to R′, we
have minθ L(θ) > 0.

Proof. We prove the claim in cases. Case 1: Suppose that the bidder misreports in a way that is non-rationalizable by any
valuation function during the DQ phase of the auction. In that phase, the bidder’s set of reports consists only of demand
queries.

For each datapoint (x∗(pr), pr) in RDQ, Algorithm 4 attempts to make

x̂∗(pr) ∈ argmax
x∈X

[
Mθ(x)− ⟨pr, x⟩

]
match the reported x∗(pr). If it does not match, the loss is incremented by a nonnegative amount:

∆Lr(θ) =
[
Mθ(x̂∗(pr))− ⟨pr, x̂∗(pr)⟩

]
−

[
Mθ(x∗(pr))− ⟨pr, x∗(pr)⟩

]
≥ 0.

Hence the total loss L(θ) is always weakly positive.

Suppose, for contradiction, that there exists θ with L(θ) = 0. If L(θ) = 0, it means the predicted best response matches the
reported one, i.e., x̂∗(pr) = x∗(pr) for all r, including r = r̃.

However, for any θ ∈ Θ, the (m)MVNN Mθ is by construction a valid valuation function satisfying free disposal (Weissteiner
et al., 2022a; Soumalias et al., 2024c). The condition x̂∗(pr) = x∗(pr) for all r means precisely that Mθ rationalizes all
data in D′. Thus, there exists a valuation function rationalizing all data points, including x̃∗(pr), a contradiction.

Case 2: Suppose that the bidder misreports in a way that is non-rationalizable by any valuation function during the VQ
phase of the auction. Similarly, given that the loss function in each datapoint (both DQs and VQs) is weakly positive, the
only way the loss can be zero is if it is zero on every point. But then, the MVNN once again has rationalized the agent’s
reports. Thus, a value function exists that rationalizes all of the agent’s reports, a contradiction.

Note that Lemma B.6 can also be applied to the case where we observe 0 VQs. Thus, Lemma B.6 can also be applied to
detect inconsistent misreporting for DQ-only auctions such as ML-CCA.

Further note that Lemma B.6 can always detect inconsistent misreporting, while other forms of misreporting cannot be
detected this way.

B.5. On the Importance of Marginal Economies to Align Incentives

In this section, we review the key arguments from Brero et al. (2021) on why MLCA provides strong incentives for truthful
reporting in practice. These arguments extend to any ML-powered ICA that employs the same VQ-generation algorithm,
including MLHCA.

Bidder i’s utility in MLCA (and MLHCA) under VCG payments (see Definition B.1) can be expressed as:

ui = vi(a
∗(R)i)− πVCG

i (R)

= vi(a
∗(R)i) +

∑
j∈N\{i}

ṽj (a
∗(R)j ;Rj)︸ ︷︷ ︸

(a)

−
∑

j∈N\{i}

ṽj (a
∗(R−i)j ;Rj)︸ ︷︷ ︸

(b) Inferred SW of marginal economy

.
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Any beneficial misreport by bidder i must increase the difference (a) − (b).

MLCA has two features that mitigate manipulations. First, MLCA explicitly queries each bidder’s marginal economy
(Algorithm 3, Line 5), which implies that (b) is practically independent of bidder i’s reports. Experimental evidence
supporting this claim is provided in Section 7.3 of Brero et al. (2021). Second, MLCA (and also MLHCA) enables bidders
to “push” information to the auction which they deem useful. This mitigates certain manipulations that target (a), as it
allows bidders to increase (a) with truthful information. Brero et al. (2021) argue that any remaining manipulation would be
implausible as it would require almost complete information.

Under further assumptions, we can also derive two theoretical incentive guarantees:

• Assumption 1 requires that, for all bidders i ∈ N , if all other bidders report truthfully, then the reported social welfare
of bidder i’s marginal economy (i.e., term (b)) is independent of her value reports.

• Assumption 2 requires that, if all bidders i ∈ N bid truthfully, then MLCA finds an efficient allocation.

Result 1: Social Welfare Alignment Under Assumption 1, and given that all other bidders are truthful, MLCA is social
welfare aligned. This means that the only way for a bidder to increase her true utility is by increasing the reported social
welfare of a∗(R) in the main economy (i.e., term (a)), which, in this case, equals the true social welfare of a∗(R) (Brero
et al., 2021, Proposition 3). The same is true for the VQ phase of MLHCA, as it employs the same allocation and payment
rules.

Result 2: Ex-Post Nash Equilibrium If both Assumption 1 and Assumption 2 hold, then bidding truthfully constitutes an
ex-post Nash equilibrium in MLCA (Brero et al., 2021, Proposition 4). The same is true for the VQ phase of MLHCA, as it
employs the same allocation and payment rules.
Remark B.7 (Experimental Evaluation of Assumption 2). The results shown in Tables 2 and 9 suggest that Assumption 2 is
more realistic for MLHCA than for any other mechanism. For GSVM, Assumption 2 is absolutely realistic for MLHCA
and was already realistic for other VQ-based mechanisms such as the ones proposed by (Weissteiner & Seuken, 2020;
Weissteiner et al., 2022a; 2023). Also for SRVM, Assumption 2 is very realistic for MLHCA. In fact, MLHCA is the first
method from Table 2 that always found an efficient allocation (only methods from Table 9 that use significantly more than
200 can keep up with this). Theoretically achieving 100% efficiency in all 50 random instances of an auction does not
suffice as mathematical proof that the auction will always achieve 100% efficiency. However, for GSVM and SRVM, the
fact that MLHCA found an efficient allocation within the first 60 out of 100 queries for all 50 instances, strongly suggests
that 100 queries allow MLHCA to find an efficient allocation with almost 100% probability. For LSVM, MLHCA found an
efficient allocation in 49 out of 50 auction instances, which from a practical point of view also almost satisfies Assumption
2, and with a few queries more fully satisfying Assumption 2 might be in reach. At least for every domain, MLHCA is
closer to satisfying Assumption 2 than its competitors.

To conclude, MLHCA’s compatibility with both activity rules during its DQ rounds and marginal economies during its
VQ rounds, as well as its compatibility with VCG and VCG-nearest payments, provides strong evidence that MLHCA can
effectively mitigate opportunities for bidder misreporting.
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C. MVNN
The original definition (Weissteiner et al., 2022a) is a special case of the more general definition (Soumalias et al., 2024c)
that we state here.
Definition C.1 (MVNN). An MVNN Mθ

i : X → R≥0 for bidder i ∈ N is defined as

Mθ
i (x) := W i,Kiφ0,ti,Ki−1

(
. . . φ0,ti,1(W

i,1 (Dx) + bi,1) . . .
)

(13)

• Ki + 2 ∈ N is the number of layers (Ki hidden layers),

• {φ0,ti,k}Ki−1
k=1 are the MVNN-specific activation functions with cutoff ti,k > 0, called bounded ReLU (bReLU):

φ0,ti,k(·) := min(ti,k,max(0, ·)) (14)

• W i := (W i,k)Ki

k=1 with W i,k ≥ 0 and bi := (bi,k)Ki−1
k=1 with bi,k ≤ 0 are the non-negative weights and non-positive

biases of dimensions di,k × di,k−1 and di,k, whose parameters are stored in θ = (W i, bi).

• D := diag (1/c1, . . . , 1/cm) is the linear normalization layer that ensures Dx ∈ [0, 1] and is not trainable.

Remark C.2. The index i of the MVNN Mθ
i (x) emphasizes that we train an individual MVNN for every bidder i to

approximate vi. In the following, we sometimes omit the index i if we just want to make general arguments about the
MVNN architecture without.
Remark C.3 (Linear Skip Connection). Sometimes we also use linear skip connections as introduced in Weissteiner et al.
(2023, Definition F.1)
Remark C.4 (Initiaization). We always use the initialization scheme from Weissteiner et al. (2023, Section 3.2 and
Appendix E), which offers crucial advantages over standard initialization schemes as discussed in Weissteiner et al. (2023,
Section 3.2 and Appendix E).

C.1. On the Inductive Bias of MVNNs

Weissteiner et al. (2022a); Soumalias et al. (2024c) have shown that MVNNs can represent any monotonic normalized
function on X . However, for finitely many data points, multiple different monotonic functions can fit the data equally well,
but the training algorithm will choose only one of these functions. We want to understand according to which preferences
the algorithm makes this choice, i.e., we want to understand its inductive bias.

For certain ReLU-NNs it has been shown that L2-regularization (also known as “weight decay”) of the parameters θ
corresponds to regularizing a Lp-norm of the second derivative of the function (Heiss et al., 2019; 2023; 2021; Heiss, 2024;
Savarese et al., 2019; Ongie et al., 2019; Williams et al., 2019; Parhi & Nowak, 2022). Since the second derivative of linear
functions is zero, these NNs prefer linear functions.

However, MVNNs use a different activation function (Weissteiner et al., 2022a). For MVNNs, no theoretical result about
their second derivative has been proven so far. It is quite clear that the L2-regularization of the parameters of a MVNN does
not exactly correspond to any Lp-norm of the second derivative. Weissteiner et al. (2023) modified the MVNN architecture
by adding so-called linear skip connections (Weissteiner et al., 2023, Definition F.1) to obtain an inductive bias towards
linear functions. If one uses unregularized linear skip connections but regularizes all other parameters, it is quite obvious
that the optimal parameters will only have non-zero weights in the linear skip connections if a monotonic linear function can
perfectly explain the data.10

In the setting of Example 1 (which is based on the example in the proof of Theorem 3.2) one can also prove that MVNNs
with arbitrarily small L2-regularization, would always choose a function that is linear on X given any possible truthful DQ
responses from bidder 2, even without linear skip connections.

Proposition C.5. As in Example 1, let n = 2, m = 1, c1 = 10 and v2 such that whenever bidder 2 is queried a DQ she
answers in the following way:

• If the price p is below 94
10 , bidder 2 will answer with x∗

2(p) = (10);

10If the data can be perfectly explained by a linear function, then only using the linear skip connections can achieve zero training loss
and zero regularization costs, while setting any parameter outside the linear skip connections to any non-zero value would lead to non-zero
L2 regularization costs.

20



Prices, Bids, Values: One ML-Powered Combinatorial Auction to Rule Them All

• if the price p = 94
10 , bidder 2 will answer with either x∗

2(p) = (10) or x∗
2(p) = (0);

• if the price p is higher than 94
10 , bidder 2 will answer with x∗

2(p) = (0).

Let {p1, . . . , pn
train
DQ } ⊂ [0,∞) be the subset of prices bidder 2 is queried. Let θ∗ be any (local) minimizer of the L2-regularized

loss from (Soumalias et al., 2024c)

Lλ(θ) :=

ntrain
DQ∑

r=1

(
Mθ(x̂

∗
2(p

r))− ⟨pr, x̂∗
2(p

r)⟩ −
(
Mθ(x

∗
2(p

r))− ⟨pr, x∗
2(p

r)⟩
) )+

+ λ ∥θ∥22 ,

where x̂∗
2(p

r) := argminx∈X (Mθ(x)− ⟨pr, x⟩). Then the MVNN Mθ∗ : X → R is linear.

Proof. We define p̃ := max
{
pr : x∗(r) = (10), 1 ≤ r ≤ ntrain

DQ

}
.11

1. First we show that Mθ∗(10) ≤ 10p̃ via a contraposition argument. Let’s assume Mθ∗(10) ≥ 10q > 10p̃, then
multiplying the last layer’s weights by 1− δ > q

p̃ would both reduce the data-loss-term L0 (since the activation the

hidden layers of MVNNs are always non-negative) and the regularization costs λ ∥·∥22. Therefore, no local minima θ∗

can satisfy Mθ∗(10) > 10p̃. Thus, we have shown that Mθ∗(10) ≤ 10p̃ holds for any local minima θ∗.

2. Next, we show that all pre-activations of our Mθ∗ are smaller or equal to the cut-off of the corresponding bReLU
activation function for any input x ∈ X . Let’s assume again the contraposition that at least one pre-activation is
larger than the cut-off. In this case, we can scale down all the incoming weights of such a neuron without changing
Mθ∗(10). Scaling down these weights cannot increase the value of Mθ∗(x) for any x ∈ X , so it cannot increase the
data-loss term L0, but scaling down weights obviously decreased the regularization costs. Thus, via this counterposition
argument, we have proven that all the pre-activations are smaller or equal to the cut-off for any local minima θ∗.

3. Next, we show that all biases of θ∗ are zero. First, note that by Item 2, we know that Mθ∗ is convex (since the bReLU
is convex below the cut-off). By combining this fact with Item 1, we obtain that Mθ∗(x) ≤ xp̃, since MVNNs always
satisfy Mθ(0) = 0. Let’s assume the counterposition of at least one bias being strictly negative (as by definition, biases
can never be positive for MVNNs). Then we could increase the bias a little bit without increasing the data-loss-term
L0,12 but increasing the bias reduces its regularization cost. Thus any local minima θ∗ satisfies that the biases are zero.

By combining Items 2 and 3 we obtain that Mθ∗ is linear.

Remark C.6 (Interpretation of the Inductive Bias of MVNNs). It is important to keep in mind that MVNNs can learn
complicated non-linear monotonic functions, if the training data requires it. For example, if we receive the 2 VQs,
v(20) = 20$ and v(10) = 19$, there is no linear function that can explain both VQs simultaneously, but an MVNN can
easily learn a non-linear monotonic function which perfectly fits both VQs simultaneously, i.e., Mθ∗(20) = 20$ and
Mθ∗(10) = 19$. Therefore, the ability of MVNNs to learn non-linear monotonic functions is important, since we don’t
want the MVNN to predict Mθ∗(10) = 10$, if we know already v(10) = 19$. However in the case that we don’t know
v(10) = 19$, but only observe 1 VQ, v(20) = 20$, then this section provides intuition to understand that the MVNN would
typically predict Mθ∗(10) = 10$. So the goal of this section is to better understand how MVNNs deal with insufficient
information.

11If
{
pr : x∗(r) = (10), 1 ≤ r ≤ ntrain

DQ

}
is empty, we define p̃ := 0. In Example 1, p̃ = 94−ϵ

10
.

12This argument relies on the fact that we only queried finitely many DQs. If we asked infinitely many DQs that are dense around
p = 94

10
, one would need to modify the argument by not only increasing the biases but simultaneously also decreasing certain weights.

21



Prices, Bids, Values: One ML-Powered Combinatorial Auction to Rule Them All

D. Details on Section 3
In this section, we examine the limitations of using only VQs or only DQs in auctions and highlight the benefits of combining
them.

D.1. Disadvantages of Only Using VQs

Almost all ML-powered VQ-based auctions including the current SOTA, BOCA (Weissteiner et al., 2023) first ask each
bidder multiple random VQs (i.e., VQs for randomly selected bundles). These VQs are necessary to initialize the ML
estimates of the bidder’s value functions. In practice, it is very hard for bidders to answer random VQs since they are not
aligned with their preferences.13 The most popular ICAs in practice (e.g., the CCA) ask the bidders DQs, which have been
argued can be answered by the bidders sufficiently well (Cramton, 2013).14

Even if bidders manage to respond perfectly to random VQs, the information obtained is limited. This is because, in large
combinatorial domains, bidders typically have high values for only a small subset of possible bundles, making the probability
of querying one of these high-value bundles at random exceedingly low. On the other hand, querying bidders with DQs
at a random price vector is more likely to prompt responses that reveal their high-value bundles. This is formalized in
Proposition 3.1, which we reprint for convenience:

Proposition D.1 (Restatement of Proposition 3.1). The expected social welfare of an auction that uses a single random
demand query can be arbitrarily larger than that of an auction that uses any constant number (k ≪ 2m) of random value
queries.

Proposition 3.1 Proof. Let n = 2 and c1 = c2 = · · · = cm = 1, i.e., the auction has m unique items. Bidder 1 has a value
of zero for the empty set and a value of ϵ > 0 for any non-empty set of items, while bidder 2 has a value of V → ∞
for the full bundle, and a value of zero for any other bundle. Note that these are proper value functions, as they are both
monotone and assign a value of zero to the empty set. The bundle space X has a size of 2m. For the auction that asks
random value queries, the probability that bidder 2 is queried her value for the full bundle conditioned on not having been
asked that question in the previous k queries is 1

2m−k . For auction instances with large numbers of items, taking m → ∞,
the probability of the auction not querying bidder 2 her value for the full bundle in k random value queries is:

lim
m→∞

k∏
j=1

(
1− 1

2m − (j − 1))

)
= lim

m→∞

k∏
j=1

(
2m − j

2m − (j − 1))

)
= 1 (15)

If that query for the full bundle is asked to bidder 2, then bidder 2 will be allocated the full bundle and bidder 1 will be
allocated the empty bundle, and the social welfare of the final allocation will be equal to V . In any other case, bidder 1 will
be allocated a non-empty bundle, and the social welfare of the allocation will be equal to ϵ.

Now let’s focus on the auction that asks each bidder a single random demand query, and assume that the price of each item
is an i.i.d. random variable with mean value p. The expected total price for the full bundle is m · p. Applying Chebyshev’s
inequality, the probability that the price of the full bundle is greater than V is zero. Thus, bidder 2 will always request the
full bundle.

The only possible scenario in which bidder 2 is not allocated the full bundle is if bidder 1 requests a non-empty bundle with
equal (or higher) value than the bundle of bidder 2, and ties are broken in bidder 1’s favor. Given that bidder 1’s value is
at most ϵ for any non-empty bundle, with probability 1, the value of the bundle requested by bidder 1 is at most ϵ. Given
that the expected value of the price of each item is p > 0, applying Chebyshev’s inequality yields that as m → ∞, the
probability of the full bundle having a price less than ϵ is zero. Thus, with probability 1 bidder 1 will have an inferred
value less than bidder 2 for the bundle she requested, and so with probability 1 the full bundle will be allocated to bidder 2,
yielding a social welfare of V → ∞ for this auction. This completes the proof.

Remark D.2. This limitation of random VQs is evidenced in practice. Empirical comparisons between VQ-based ML-
powered mechanisms, such as Weissteiner et al. (2023), and DQ-based mechanisms, such as (Soumalias et al., 2024c), reveal

13 To provide some intuition, imagine you go to the supermarket because you want to bake a birthday cake for your friend and then you
are asked your value for 30 frying pans plus 500 coconuts. It might be hard to estimate your value for such a random combination of items.

14 In our practical supermarket example, now imagine that you view the price tags for the same items. It is quite doable to decide which
items you want to buy and in which quantities.
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that efficiency after initial queries is significantly lower for VQ-based approaches across all tested domains (see Figure 1 in
Section 6).

Beyond auction efficiency, the limited information provided by random VQs poses challenges for learning algorithms in
ML-powered ICAS. In contrast, DQs provide global information about bidder preferences across the entire bundle space.
When bidder i responds to a DQ at prices p, she solves the optimization problem: x∗

i (p) ∈ argmaxx∈X {vi(x)− ⟨p, x⟩},
which reveals valuable information about her preferences across all possible bundles. Strong evidence for this is presented
in Appendix E.2, where we show that the network trained only on DQs exhibits better generalization performance than one
trained on random VQs.

Additionally, if DQ prices are sufficiently low, bidders respond with their value-maximizing bundles, which may be hard to
recover through VQs alone. By incorporating this information, the learning algorithm can more effectively identify critical
regions in the allocation space and subsequently focus on refining those areas. This advantage is further supported by our
experiments (Figure 1 in Section 6). We show that in our ML-powered hybrid auction, the first ML-powered VQ after a
series of DQs achieves significantly higher efficiency compared to the first ML-powered VQ after an equivalent number of
random VQs in the current SOTA VQ-based auction.

Moreover, even if the auction finds an efficient allocation by using VQs, it cannot terminate early as there is no way for
the auctioneer to certify that the auction has reached 100% efficiency. In contrast, for DQ-based auctions there is an easy
condition that allows the auction to terminate early:

Proposition D.3. If clearing prices exist, an auction using DQs can provide a guarantee of optimal efficiency and terminate
early.

Proof. If clearing prices have been found, the corresponding allocation constitutes a Walrasian equilibrium, and thus has an
efficiency equal to 100%. See Soumalias et al. (2024c, Appendix C.1) for a detailed proof.

Remark D.4. This is indeed an issue in practice. In Section 6, we experimentally show that, in realistic domains, our
MLHCA can often reach 100% efficiency before the common maximum number of 100 rounds used by most ML-powered
ICAs (e.g. Weissteiner & Seuken (2020); Weissteiner et al. (2022b;a; 2023); Soumalias et al. (2024c)) is reached.

D.2. Disadvantages of Only Using DQs

In this section, we show the disadvantages of using DQs to elicit the bidders’ preferences.

The first major disadvantage of an auction employing only DQs is that the auction’s efficiency can actually drop by adding
more DQs.

Proposition D.5 (Restatement of Proposition 3.3). In a DQ-based ICA, adding DQs can actually reduce efficiency. A single
DQ can cause an efficiency drop arbitrarily close to 100%. By comparison, in a VQ-based ICA, adding additional queries
can never reduce efficiency (assuming truthful bidding).

Proof. Let m = 2, n = 2, c1 = 1, c2 = 1,

v1 = max {400 · 1x1≥1, 2 · 1x2≥1} and
v2 = 1.1 · 1x1≥1.

Suppose the auction has asked two DQs. The first DQ p = (1, 1) is responded by both bidders with
(1, 0) ∈ argmaxx∈X {vi(x)− ⟨p, x⟩}. The second DQ p = (1.2, 1) is responded by bidder 1 with (1, 0) ∈
argmaxx∈X {v1(x)− ⟨p, x⟩} and by bidder 2 with (0, 0) ∈ argmaxx∈X {v2(x)− ⟨p, x⟩}.

After these 2 DQs the WDP based on the inferred values (see Equation (3)), would assign item 1 to bidder 1 (resulting in an
inferred social welfare of 1.2 + 0 = 1.2). This is the efficient allocation with a true social welfare (SCW) of 400, i.e., an
efficiency equal to 100%.

Now suppose that a third DQ p = (401, 1) is added to the auction. Bidder 1’s demand response is (0, 1) ∈
argmaxx∈X {v1(x)− ⟨p, x⟩} and bidder 2’s response is (0, 0) ∈ argmaxx∈X {v2(x)− ⟨p, x⟩}. The WDP would now
assign item 2 to bidder 1 and item 1 to bidder 2, resulting in an inferred SCW of 1 + 1 = 2). This would result only in an
efficiency of 2+1.1

400 < 1%.
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While the inferred SCW obviously cannot decrease in any round (since the set we maximize over cannot decrease in any
round and inferred values cannot decrease), we have shown here that the true SCW can decrease substantially. In this
example, the SCW dropped by more than 99%. One could easily modify this example to even obtain an efficiency drop
arbitrarily close to 100% if one decreases the values 1,1.2 and 2 (the prices and the values inside the value functions) by any
small factor or increases the numbers 400 and 401, by any large factor. Then the proof would still work, which shows that
the efficiency can even fall from 100% to values arbitrarily close to 0%.

On the other hand, if we only ask VQs, there is no difference between inferred SCW and true SCW (assuming truthful
bidding), which results in non-decreasing SCW.

Remark D.6. This is a significant issue in practice. In Section 6 we experimentally show that in the most realistic spectrum
auction domain, the CCA’s efficiency drops by over 7% with the introduction of more DQs. In a second realistic domain, the
CCA actually has higher efficiency after just 5 DQs compared to after 100. This efficiency degradation is not only a concern
for the CCA but also affects ML-powered DQ-based ICAs in similar ways.

In the next lemma, we show that the same issue arises in an auction that uses both DQs and VQs:

Lemma D.7. In an auction that first uses DQs and then VQs, adding VQs can actually reduce efficiency. The efficiency drop
can even be arbitrarily close to 100%.

Proof. Consider the setting from the proof of Proposition 3.3 including the first 2 DQs. Recall that in this setting after
these 2 DQs, the WDP would achieve 100% efficiency. Now instead of the third DQ, we ask the following VQ: We ask
bidder 1 for her value of the bundle (0, 1) and we ask bidder 2 for her value of the bundle (1, 0). Then the WDP based on
these 3 rounds would assign item 2 to bidder 1, and item 1 to bidder 2, as we explain in the following. The inferred SCW
v1(0, 1) + v2(1, 0) = 2 + 1.1 (which is equal to the true SCW of this allocation) is higher than the inferred SCW of all
other allocations consisting of elicited bundles: For bidder 1 the DQ responses were always (1, 0) with inferred value 1.2,
and the VQ elicited v1(0, 1) = 2. For bidder 2, the DQ responses were (1, 0) with inferred value 1 and (0, 0) with inferred
value 0, and the VQ response was v2(1, 0) = 1.1. So we see that the highest inferred SCW among all feasible allocations is
achieved by assigning item 2 to bidder 1 and item 1 to bidder 2 (e.g., assigning it the other way around would only achieve
an inferred SCW of 1.2 + 0, while the true SCW v1(1, 0) + v2(0, 1) = 400 + 0 would be much larger).

So the efficiency dropped from 100% to 2+1.1
400 < 1% after the VQ (i.e., the efficiency drops by more than 99%).

Even though Lemma D.7 shows that an auction using DQs followed by VQs can still experience an arbitrarily large efficiency
drop, we can completely address this issue using a single carefully designed VQ, which we call the ”bridge bid.”

Definition D.8 (Bridge bid). The bridge bid asks each bidder her value for the bundle she would have been allocated
according to the WDP after the last DQ.

Lemma D.9. In an ICA that first asks DQs and then VQs, by first using a single specific VQ, the bridge bid from
Definition D.8, the auction can ensure its efficiency is at least as high as the efficiency achieved by its DQs alone.

Proof. The bridge bid itself can obviously not decrease efficiency, because it simply replaces the inferred SCW of the
winning allocation of the previous WDP with the true SCW of exactly the same allocation. In other words, the inferred
values of the bundles of the previously WDP-winning allocation can be increased or stay the same, while all the other
inferred values stay the same. Thus the winning allocation stays the winning allocation when the bridge bid is added. For
the remainder of the proof, we will show that all the VQs after the bridge bid can also not decrease the efficiency. In every
further WDP another allocation can only outperform the bridge bid allocation if it has a higher inferred15 social welfare.
However, if it has a higher inferred SCW, it’s true SCW cannot be lower than the one of the bridge bid. And as we have
shown in the beginning of the proof, the SCW of the allocation of the bridge bid is equal to the SCW of the last WDP winner
after the last DQ. Thus, for any VQ after the bridge bid the SCW cannot be worse than the winning allocation of the WDP
right after the last DQ.

Remark D.10. Again, this in practice is highly impactful. In our experimental section (Section 6), we show that in the most
realistic domain, our MLHCA without this bridge bid loses 7 percentage points of efficiency. The auction needs another 20

15Note that after every VQ it is still possible that the WDP combines bundles queried during any VQ with bundles that were DQ
responses for any old DQ. Thus even after some VQs the inferred SCW of the WDP-winning allocation can be strictly smaller than its
true SCW.
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VQs to recover its DQ-only efficiency. By using just a single specialized VQ, the bridge bid, we can completely alleviate
this problem. For a more detailed discussion, see Appendix G.8.

The next theorem shows an even more fundamental limitation of only asking DQs. Specifically, asking only DQs can result
in low efficiency, even in the limit where we ask all possible DQs.

Theorem D.11 (Restatement of Theorem 3.2). For every ϵ > 0, there exist infinitely many instances of auctions for which
no combination16 of DQs can achieve an efficiency above 50% + ϵ. This remains true even if the bidders additionally report
their true values for all bundles they requested in those DQs.

Proof. First, we give an example with concrete numbers to convey the main intuition of the proof. Let n = 2, m = 1,
c1 = 10, v1(x) = 1001x1≥1, v2(x) = 9x1 +

1
25x

2
1. Here, the unique efficient allocation would assign 1 item to bidder 1

and the remaining 9 items to bidder 2, resulting in an SCW of v1(1) + v2(9) = 100 + 9 · 9 + 92

25 = 184.24. However, there
is no DQ p ∈ Rm

≥0 that bidder 2 would answer with x∗
2(p) = (9):

• If the price p is below 94
10 , bidder 2 will answer with x∗

2(p) = (10);

• if the price p = 94
10 , bidder 2 will answer with either x∗

2(p) = (10) or x∗
2(p) = (0);

• if the price p is higher than 94
10 , bidder 2 will answer with x∗

2(p) = (0).

Therefore, the WDP cannot assign 9 items to bidder 2 if only DQs were asked, no matter how many DQs were asked.
Raising the bids for those bundles would also not help, because this would still not give us any value for 9 items for bidder 2.
The best SCW that such WDPs based on DQ responses (and raised DQ responses) can achieve is thus 100, which results in
an efficiency of 100

184.24 ≈ 54.28%.

After this concrete intuitive example, we give the general proof. Let n = 2, m = 1, max(2, 1
ϵ ) < c1 ∈ N, v1(x) = c211x1≥1,

δ ∈ (0,min(0.5, ϵ)), v2(x) = (c1 − δ)x1 +
δ
c21
x2
1. Here, the unique efficient allocation would assign 1 item to bidder 1 and

the remaining c1 − 1 items to bidder 2, resulting in an SCW of v1(1) + v2(c1 − 1) = c21 + (c1 − δ)(c1 − 1) + δ
c21
(c1 − 1)2.

However, there is no DQ p ∈ Rm
≥0 that bidder 2 would answer with x∗

2(p) = (c1 − 1), due to the strict convexity of v2:

• If the price p is below v2(c1)
c1

= (c1 − δ) + δ
c1

, bidder 2 will answer with x∗
2(p) = (c1);

• if the price p is exactly v2(c1)
c1

, bidder 2 will answer with either x∗
2(p) = (c1) or x∗

2(p) = (0);

• if the price p is higher than v2(c1)
c1

, bidder 2 will answer with x∗
2(p) = (0).

Therefore, the WDP cannot assign c1 − 1 items to bidder 2 if only DQs were asked, no matter how many DQs were asked.
Raising the bids for those bundles would also not help, because this would still not give us any value for c1 − 1 items for
bidder 2. The best SCW that such WDPs based on DQ responses (and raised DQ responses) can achieve is thus c21, which
results in an efficiency of c21

c21+v2(c1−1)
< 50% + ϵ. Since there are infinitely many possible choices of δ ∈ (0,min(0.5, ϵ)),

the proof is concluded. (Note that there are infinitely many other scenarios that were also suitable for this proof.)

Thus, every method that only asks DQs (e.g., CCA or (Soumalias et al., 2024c)) will result in inefficient allocations even
in the limit of infinitely many iterations in the case of certain value functions (even if raised clock bids are added in the
supplementary round).
Remark D.12. The issue highlighted in Theorem 3.2 also arises in practical settings. In Section 6, we experimentally
show that in the most realistic domain, MRVM, the final 50 DQs of ML-CCA (Soumalias et al., 2024c), the current SOTA
DQ-based ICA, only increase efficiency by 0.3% points. If the bidders also report their true values for all bundles they
requested, this only causes an efficiency increase of less than 0.2% points. In contrast, for MLHCA, the last 30 VQs cause
an efficiency increase of over 1.8% points. For the other domains, we see a qualitatively similar picture in Figure 1.

16We want to emphasize that Theorem 3.2 holds for any combination of DQs, even combinations consisting of all (unaccountably
many) possible DQs (i.e., a DQ for every price vector in [0,∞)m). For these auction instances, even an oracle with complete knowledge
about everything and infinite computational abilities could not ask any combination of DQs resulting in a more efficient allocation (see
Remark D.13). Theorem 3.2 implies that no DQ-only mechanism can guarantee an efficiency above 55%.
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Remark D.13. The proof of Theorem 3.2 is not related to Proposition 3.3. Theorem 3.2 also holds if you allow an oracle
with complete information to choose any set of DQs (i.e., without using any of the harmful DQs from Proposition 3.3).
Theorem 3.2 and Proposition 3.3 are two distinct orthogonal problems of DQs. For example, Theorem 3.2 also holds when
the clock-bids raised heuristic is used, while Proposition 3.3 does not hold if the clock-bids raised heuristic is used.17

In Theorem 3.2, we showed that a DQ-based auction cannot guarantee full efficiency. Intuitively, the driving force behind
this limitation is that despite the broad information that DQs provide, they cannot fully reveal a bidder’s value function. In
Example 1, we show a practical example where both linear and non-linear value functions would result in exactly the same
response to any DQ by the bidder. However, the same is not true for a VQ-based auction, leading to the following result:

Lemma D.14. Asking each bidder
∏m

j=1 cj different VQs guarantees that the allocation will be efficient. This result holds
true if DQs are added to the auction.

Proof. If the bidders give us their values for all possible bundles, then we have access to their complete value functions.
Then the WDP is equivalent to optimizing the SCW.

Thus, (Weissteiner & Seuken, 2020; Weissteiner et al., 2022b;a; 2023) and the hybrid method that we introduce in this paper
have a guarantee to converge to an efficient allocation in the limit of infinitely many iterations.18

The number
∏m

j=1 cj in Lemma D.14 is obviously just a worst-case bound for the worst possible querying strategy. In
theory, it would be sufficient to ask each bidder only one VQ vi(a

∗
i ) corresponding to the efficient allocation a∗ to achieve

100% efficiency. However, in practice, the auctioneer does not know a∗. Our experimental results displayed in Table 2 show
that our method MLHCA usually finds the efficient allocation after much fewer queries than

∏m
j=1 cj . And once each bidder

answers the VQ vi(a
∗
i ), further queries cannot reduce the efficiency anymore.

To better understand the importance of asking VQs, we directly compare Theorem 3.2 and Lemma D.14. While Theorem 3.2
proves that there exist auction instances where even an oracle with full information cannot find any combination of DQs
that results in a decent efficiency above 55%, we know that an oracle can always find a single VQ that directly results in a
perfect efficiency of 100%. Theorem 3.2 proves that even without any prior information, asking at most

∏m
j=1 cj arbitrarily

stupidly chosen different VQs always results in 100% efficiency, while Theorem 3.2 proves that even asking infinitely many
arbitrarily smartly chosen DQs can result in catastrophically bad efficiencies below 55%. In practice, we neither have full
oracle information nor can we afford to ask

∏m
j=1 cj stupidly chosen different VQs; however, our experiments show that a

few VQs chosen by our MLHCA usually result in very high efficiencies.

D.3. The Advantages of Combining DQs and VQs

DQs are Cognitively Simpler Than VQs Early in the Auction. All ML-powered, VQ-based ICAs in the literature begin
by asking bidders their values for uniformly at random selected bundles to initialize the ML models. In contrast, the SOTA
ML-powered DQ-based approach (Brero & Lahaie, 2018; Brero et al., 2019; Soumalias et al., 2024c) starts by asking bidders
for their preferred bundles at low initial prices that gradually increase over rounds. From a practical standpoint, it is nearly
impossible for bidders to accurately assess VQs for randomly chosen bundles, whereas responding to DQs with low prices
is far easier.19 As the auction progresses and the bidders’ ML models become more accurate, a VQ-based ML-powered
ICA can ask targeted VQs that align better with bidder interests, making them easier to answer.20 See Appendix D.5 for an
extended discussion.

17When the clock-bids raised heuristic is used, there are no harmful DQs (i.e., every further DQ can only increase the SCW, but never
decrease the SCW). Even then, Theorem 3.2 shows that any arbitrary (possibly infinite) set of DQs cannot reach more than 55% efficiency
for the auction instance in the proof of Theorem 3.2 for example.

18Note that all these methods always enforce to ask a new VQ in any round, i.e., if the WDP suggests to ask a bidder a VQ for a bundle
she was already asked for in a previous round, then we solve a constrained WDP instead with the constraint that this bidder is not allowed
to be asked for any previously asked bundle again.

19In the example from Footnotes 13 and 14, imagine being asked your value for a bundle of 30 frying pans and 500 coconuts. It’s
hard to assess such a random combination. Now, imagine shopping at a supermarket with a 50% discount across all items; it’s easier to
determine what items you want under these conditions.

20Continuing with our example, imagine being asked for the value of ingredients specifically for a strawberry cake in one iteration and
for a blueberry cake in the next. If your goal is to bake a cake, these targeted VQs are much easier to respond to.
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DQs are More Effective in the Early Stages of the Auction. Initially, the auctioneer lacks knowledge of which bundles
align with bidders’ interests. Beginning with DQs allows the auctioneer to gather early insights about the bidders’ preferences
over the whole bundle space, facilitating the use of more targeted queries later on. This practice is well-established in the
combinatorial auction community. For instance, the initial DQ phase in the CCA is often referred to as a “price discovery
phase” (Ausubel et al., 2006). We argue that the same concept holds even in ML-powered auctions. Our experiments in
Section 6 confirm that DQ-based approaches (e.g., ML-CCA (Soumalias et al., 2024c)) outperform VQ-based approaches
(Weissteiner & Seuken, 2020; Weissteiner et al., 2022b;a; 2023) during the early rounds of the auction. However, as
suggested by Theorem 3.2 and Lemma D.14 , VQ-based approaches eventually surpass DQ-based mechanisms in later
iterations.

A key contributing factor as to why VQ-based ML-powered approaches perform better than DQ-based approaches is that
they can take into account the WDP, i.e., the downstream optimization problem that will determine the final allocation.21

In contrast, responses to a single DQ often lead to over-demand for certain items or leave some items unassigned (under-
demand). In Example 1, bidder 2 lacks information to know that she should bid for 9 items. Only the auctioneer, having
information from all bidders, knows that assigning 9 items to bidder 2 would complement bidder 1’s preferences. The
auctioneer can leverage this aggregated knowledge by asking bidder 2 a VQ for 9 items, whereas DQs alone would not
provide this opportunity.

Example 1. In the example from the proof of Theorem 3.2, after sufficiently many DQs have been asked, a single VQ
would suffice to increase the social welfare from ≈ 56.45% to 100%. MLHCA would ask this VQ in its first VQ round,
provided that enough DQs had been asked beforehand, as we explain in the remainder of this example. v1 can be very
precisely reconstructed from DQs p = ϵ (which is responded by x = (1)), p = 100− ϵ (which is responded by x = (1)),
and p = 100 + ϵ (which is responded by x = (0)). The last two DQs reveal that 100− ϵ ≤ v1(1) ≤ 100 + ϵ. And the first
DQ reveals that v1(x)− v1(1) ≤ (x− 1)ϵ for any x > 1. Combining these information reveals that v1 ≤ 1001·≥1 + 10ϵ
and with the help of monotonicity these 3 DQs reveal that v1 ≥ 1001·≥1 − ϵ. So, we can reconstruct the true v1 up to 10ϵ.
For bidder 2, from DQs p = 94−ϵ

10 (which is responded by x = 10) and p = 94+ϵ
10 (which is responded by x = 0), we can

only reconstruct that v2(·) ≤ 94+ϵ
10 (·) and that v2(10) ≥ 94 − ϵ. E.g., the linear function 94

10 (·) would not contradict any
possible DQ response from bidder 2. Our ML algorithm should not have any problem with estimating v1 sufficiently well. If
additionally, our ML algorithm estimates v2 (approximately) as this linear function 94

10 (·), then the WDP would directly
assign 1 item to bidder 1 and 9 items to bidder 2, which is the efficient allocation. In theory, MVNNs could also express
functions that achieve 0 training loss on all DQs for bidder 2 but do not result in an efficient allocation. However, these
functions would be highly non-linear and for many NN architectures it is shown that they prefer functions which are in a
certain sense close to linear (Heiss et al., 2019; 2023; 2021; Heiss, 2024). In Appendix C.1 we explain, why our MVNNs
would learn a linear approximation of v2. Therefore the WDP would result in the efficient allocation in this example.

Remark D.15. Note that this example is not pathological. In Section 6, we will show that in realistic domains using 40
DQs and only 2 VQs (1 bridge bid + 1 ML-VQ), our MLHCA can achieve higher efficiency than the SOTA DQ-based
mechanism using 100 queries.

Our MLHCA is the first auction to integrate both a sophisticated DQ and VQ generation algorithm. By leveraging insights
from auction theory and starting with DQs before transitioning to VQs, MLHCA achieves state-of-the-art efficiency in all
rounds and demonstrates significantly improved final efficiency across all domains compared to the current state-of-the-art.

Moreover, we argue that the combination of DQs and VQs is particularly powerful for learning bidders’ value functions, as
the information from these two query types complements each other nicely (see Appendix E).

D.4. Why One Should Ask DQs Before VQs and Not the Other Way Around

We neither want to claim that DQs are more informative or better than VQs, nor the other way around. We strongly believe
that DQs are more informative and practical at the start of the auction, while we also believe that VQs are more informative
and more effective at the end of the auction. We have multiple different reasons to believe so, adding up to very large effects
in our experiments in Appendix G.9. In the following paragraphs, we’ll quickly summarize these reasons.

21By definition, all the bundles in a VQ form a feasible allocation. Furthermore, VQs typically allocate (almost) all items to bidders,
as they maximize the estimated social welfare. The MVNN architecture ensures monotonicity in the estimated value functions. If the
estimated value functions were strictly monotonic, the solution to the MILPs determining the next VQ would always allocate all items.
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Reason 1: Congnitively Simpler. While our experiments do not measure the cognitive load on bidders, we already argued
in Appendix D.3 that at the early stage of the auction, answering VQs is considered to be extremely difficult by practitioners,
while starting ICAs with DQs is and ending them with value-bids is very common in practice. See Appendix D.5 for an
extended discussion.

Reason 2: Global Exploration vs Local Exploitation. At the start of an auction, it is not known which regions of the
bundle space could be particularly relevant for a bidder. DQs provide very quickly a coarse but global overview of a bidder’s
value function. This overview remains very valuable for all later iterations in deciding which regions are worth exploring
and which are not. In contrast, the values of some random bundles (which are with high probability far away from the
relevant region of the bundle space for large, combinatorial domains) will become almost irrelevant during the later iterations
of the auction. This is why DQs are more valuable at the start of the auction. However, towards the end of the auction,
entirely the opposite is true; the ML models already have lots of information on the bidders’ value functions and therefore
can pinpoint which regions of the bundle space are relevant for which bidder. Therefore very precise local information in
exactly those regions becomes extremely valuable, and VQs can ask for exactly this kind of information, whereas the coarse,
global information of DQs brings almost no additional value at this point.22 Theorem 3.2 and Example 1 illustrate this point
mathematically. They show scenarios in which it is impossible for DQs to provide any additional information on the bidders’
value functions, since infinitely many very different value functions with the same concave envelope would result in exactly
the same DQ reply, making these value functions indistinguishable from any DQ. At the same time, this information would
be crucial for achieving an acceptable efficiency, and those value functions are clearly distinguishable using VQs. In this
example, the first ML-VQ after sufficiently many DQs would directly deliver the needed information to almost double the
efficiency. And, in contrast to DQs, Lemma D.14 shows that, asking sufficiently many VQs can always exactly recover the
true value function.

Reason 3: ML-VQs Result in Compatible Bids, While DQs Do Not. Each bidder answers a DQ with a requested bundle.
However, combining all these bundles usually does not result in a feasible allocation that allocates all items. In fact, this
is only the case if linear clearing prices have been found, which is extremely challenging in realistic domains. In fact, in
the most realistic domain, the SOTA approach of Soumalias et al. (2024c) clears 0% of the instances tested, and it is not
even known whether linear clearing prices exist. For the auction in Example 1, linear clearing prices provably do not exist,
making it mathematically impossible to find clearing prices via DQs. However, for our ML-VQs, our algorithm first selects
a promising feasible allocation (that allocates all items) and then asks each bidder her value for the bundles she receives in
that allocation. This implies that for an ML-VQ round, the bids of all the bidders together result in a feasible allocation.
In the early rounds of an auction, the efficiency of the intermediate WDPs are completely irrelevant, as they are not final.
The goal of the first rounds is mainly to gather relevant information for later rounds. Therefore, it does not hurt that the
bids from the first DQ-rounds are not compatible. However, exactly the opposite is true in the last rounds of the auction.
For example, in the very last round, improving the models of bidders’ value functions does provide any value anymore,
since these models are not used anymore after the last round. However, obtaining a highly efficient feasible allocation is the
number one goal at the end of the auction. Theorem 3.2 and Example 1 show that in many scenarios, even if one had perfect
information on all the value functions, no combination of DQs can obtain bids that result in a feasible allocation with an
acceptable efficiency. In contrast, in any possible scenario, a single ML-VQ would always result in a feasible allocation with
100% efficiency if one had perfect information on all the value functions. And our experiments show that after 40 DQs (and
1 bridge bid), we often have already sufficient information to directly obtain 100% efficiency after a single ML-VQ, and
even if we do not directly achieve 100% efficiency after the first ML-VQ, we usually achieve already a very good efficiency
a few ML-VQs later.

We think that Reason 1, is the most relevant for implementing practical auctions while being completely unrelated to our
experimental results. We hypothesize that Reasons 2 and 3 are the main explanations of our experimental results and explain
why adding DQs after 80 VQs does not bring any efficiency gains in our experiments in Appendix G.9. Note that both
Reason 2 and 3 consist of 4 subreasons each. Each of them consist of an advantage of DQs in early rounds, a disadvantage
of VQs in early rounds, a disadvantage of DQs in late rounds and an advantage of VQs in late rounds. They all point in the
same direction to first ask DQs and then ask VQs afterwards. While we did not find a single reason to switch the order, we
found even further (maybe more subtle) reasons to start the auction with DQs.

22For strong empirical evidence of this diminished value of DQs, see Appendix G.9
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Reason 4: At the Start DQs Provide Better Bids and Better Local Information Than VQs Reason 2 says that at
the start of the auction, mainly global information is relevant, and Reason 3 says that at the start, one cares mainly about
learning the value functions rather than identifying bundles relevant for the WDP. However, even at the start it is beneficial
to additionally obtain useful local information and relevant bids. Proposition 3.1 is telling us that at the beginning of the
auction DQs even provide more relevant local information than random VQs, especially for high dimensional bundle spaces.
While random VQs result in bids for random bundles, DQs always result in bids for bundles that are at least to some extent
aligned with the bidders’ interests, providing useful local information as well. Figure 6 in Appendix G.9 suggests that the
dimension of GSVM and LSVM is high enough for this argument to hold, but the 3 dimensions of SRVM are not enough.

D.5. Intuitive Arguments Why DQs are Cognitively Simpler Than VQs Early in the Auction

This subsection offers an intuitive and informal discussion, grounded in common sense and informed by conversations with
practitioners, in contrast to the more formal and scientifically rigorous analysis found throughout the rest of the appendix
and the main paper. While answering a DQ may appear computationally hard in theory23, real-world bidders often do not
need to compute the precise value of any bundle to answer a DQ. Instead, they can make comparisons based on relative
value. For instance, a bidder may know that certain licenses are not worth their prices and can confidently exclude them
without quantifying by how much. This is sufficient to give an exact answer to a DQ.

For example, the experimental setting in Scheffel et al. (2012a) does not optimally reflect this reality. In their study,
participants were given explicit formulas for their value functions. In that setting, it is relatively easy to evaluate the value of
any bundle (i.e., to answer a VQ), but computationally hard to solve the optimization problem required to answer a DQ.
However, in actual spectrum auctions, bidders do not have such formulas. Especially for bundles outside their business
model, it can be very difficult to estimate values at all. In contrast, bidders often have strong intuition about how different
bundles compare to each other, which is exactly what DQs require. In this sense, real-world bidders are often better equipped
to answer DQs than VQs—opposite to the assumptions in Scheffel et al. (2012a).

To further illustrate, imagine a shopper who only visits a supermarket once a year and must buy enough food to survive
the year—just as telecoms acquire spectrum licenses only in rare, infrequent auctions. It may be difficult for the shopper
to assign an exact monetary value to the minimum amount of food they need. Yet, when comparing bananas and apples
with price tags, it’s relatively easy to decide which one to buy more of, based on their relative value. Making this choice
corresponds to answering a DQ and does not require the bidder to give absolute values.

In established real-world spectrum auctions, such as the CCA, the auction begins with DQs and only later allows bidders to
report values for additional bundles in a supplementary round (Ausubel et al., 2006). This structure reflects the widely held
belief among practitioners—and one we strongly share—that VQs are more difficult to answer at the beginning of an auction
than toward the end, when both bidders and the auctioneer have developed a better understanding of relevant bundles and
prevailing price levels. While this hypothesis is well aligned with practical auction design, there is still limited scientific
work formally analyzing the cognitive demands of DQs versus VQs. We believe future research could provide a more
refined and nuanced understanding of when and why each type of query is cognitively easier or harder to answer—insights
that could further inform auction design in practice.

23While the worst-case computational cost of answering a DQ is exponential, our algorithm computes near-optimal answers millions of
times per auction in under 0.2 seconds per query (see Line 4 in Algorithm 4). Although real-world value functions may be more complex
than our MVNN approximations, the main bottleneck in practice is not computation but uncertainty in the bidder’s own value estimates.
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E. Details on Section 4
In this section, we introduce our mixed training algorithm and provide experimental evidence supporting our theoretical
analysis from Section 3. Specifically, we demonstrate the learning benefits of initializing auctions with DQs rather than VQs
and highlight how combining DQs with VQs leads to superior learning performance.

E.1. Training Algorithm Detailed Description

In this section, we provide the details on our training algorithm to combine DQs and VQs. To leverage the advantages of
both DQs and VQs, we propose a straightforward two-stage training algorithm. In each epoch, the ML model is first trained
on all DQ responses using the loss function from (Soumalias et al., 2024c) (Lines 4 to 6). The main idea behind this loss, is
that for each DQ, an optimization problem is solved to predict the bidder’s utility-maximizing bundle at the given prices,
treating her ML model as her true value function. In case the predicted reply disagrees with the bidder’s true reply, the loss
is the difference in predicted utilities between these 2 bundles, given the current prices. Next, in each epoch, the model is
trained on the VQ responses using a standard regression loss (Lines 8 to 10). This mixed approach ensures that the model
benefits from both the broad information of DQs and the precise value information from VQs.

Algorithm 4: MIXEDTRAINING

Input :Demand query data RDQ
i = {(x∗

i (p
r), pr)}Rr=1, Value query data RVQ

i =
{(

xl
i, vi(x

l
i)
)}L

l=1
Epochs T ∈ N, Learning

Rate γ > 0, Cardinal loss function F (e.g., least-square loss)
1 θ0 ← init mMVNN ▷ Weissteiner et al. (2023, S.3.2)

2 for t = 0 to T − 1 do
3 for r = 1 to R do ▷ Demand responses for prices

4 Solve x̂∗
i (p

r) ∈ argmaxx∈XM
θt
i (x)− ⟨pr, x⟩

5 if x̂∗
i (p

r) ̸= x∗
i (p

r) then ▷ mMVNN is wrong

6 L(θt)←
(
(Mθt

i (x̂∗
i (p

r))− ⟨pr, x̂∗
i (p

r)⟩)− (Mθt
i (x∗

i (p
r))− ⟨pr, x∗

i (p
r)⟩)

)+

▷ Add predicted utility

difference to loss

7 θt+1 ← θt − γ(∇θL(θ))θ=θt ▷ SGD step

8 for l = 1 to L do ▷ Value Queries

9 L(θt)← F (Mθt
i (xl

i), vi(x
l
i)) ▷ Cardinal Loss on VQs

10 θt+1 ← θt − γ(∇θL(θ))θ=θt ▷ SGD step

11 return Trained mMVNNMθT
i

Remark E.1 (Computationally efficient implementation of Algorithm 4). In practice, running Algorithm 4 exactly the way it
is printed here would be quite slow. Our actual implementation does not rerun Line 4 every epoch, but reuses x̂∗

i (p
r) for

a couple of epochs. This does not violate the bidder’s preference due to the positive part in Line 6. In this way, we can
significantly speed up the training algorithm.

This training algorithm can be interpreted as a stochastic gradient descent on the loss function

Li(θ) :=

R∑
r=1

(
Mθ

i (x̂
∗
i (p

r))− ⟨pr, x̂∗
i (p

r)⟩ −
(
Mθ

i (x
∗
i (p

r))− ⟨pr, x∗
i (p

r)⟩
) )+

+
L∑

l=1

F (Mθ
i (x

l
i), vi(x

l
i)),

where and F is a loss function (e.g., F (y, ỹ) = (y − ỹ)2) and x̂∗
i (p

r) ∈ argmaxx∈X Mθt
i (x)− ⟨pr, x⟩.

In practice, one can obviously use modifications of this algorithm such as adding regularization or momentum or other
typical deep learning techniques.

E.2. Experimental Analysis

In this section, we demonstrate the learning benefits of initializing auctions with DQs rather than VQs and highlight how
combining both query types leads to superior learning performance.

We conduct the following experiment: We perform hyperparameter optimization (HPO) to train an mMVNN for the most
critical bidder type in the most realistic domain—the national bidder in the MRVM domain. In Appendix E.3 we present the
same experiment for all other domains. Our HPO procedure is the following. For a single bidder of that type, we generate
three distinct training sets:
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OPTIMIZATION TRAIN POINTS R2 KT MAE SCALED R2
c

METRIC VQS DQS Tr Tp Tr Tp Tr Tp Tr Tp

R2 ON Vr 20 40 0.84 0.42 0.79 0.80 0.037 0.044 0.84 0.80

60 0 0.73 −10.07 0.68 0.64 0.052 0.236 0.74 0.20

0 60 0.24 −3.07 0.77 0.77 0.103 0.128 0.83 0.76

R2 ON Vp 20 40 0.82 0.01 0.79 0.80 0.041 0.062 0.84 0.83

60 0 0.76 −3.40 0.72 0.62 0.049 0.141 0.77 0.05

0 60 −0.05 −6.24 0.78 0.72 0.103 0.154 0.84 0.69

Table 3: Learning comparison of training only on DQs, only on VQs, or on both. Shown are averages over ten instances for
the winning configuration of each HPO procedure. Winners are marked in gray.

1. The first training set contains 40 DQs simulating 40 CCA clock rounds, along with 20 VQs for bundles chosen
uniformly at random.

2. The second training set consists of 60 DQs, simulating 60 CCA clock rounds, with no VQs.

3. The third training set contains 60 VQs and no DQs.

We evaluate the generalization performance of the trained models on two distinct sets: A random bundle set (Vr), which
consists of 50,000 bundles sampled uniformly at random from the bundle space. A random price-driven set (Vp), which
consists of the bundles requested by the bidder in 200 randomly generated price vectors {pr}200r=1, where each item’s price is
drawn uniformly between 0 and three times its average value for that bidder type. Vr evaluates generalization performance
over the entire bundle space, while Vp focuses on the bidder’s utility-maximizing bundles for various prices.

For each HPO configuration, we average the performance across 10 bidders of the same type. The best-performing
configuration for each validation set is selected based on the coefficient of determination.

For the selected configurations, we evaluate performance on 10 separate test seeds representing new bidders, generating the
test sets Tr and Tp in the same way as for the validation sets. For each test set, we report the coefficient of determination
(R2), Kendall Tau (KT), scaled Mean Absolute Error (scaled MAE) normalized with respect to the average value of a bundle
in that domain and R2 centered (R2

c), a shift invariant version of R2. An R2
c value of 1 indicates that the ML model has

learned the bidder’s value function perfectly, up to a constant shift. By comparing R2
c with the standard R2, we can assess,

for the bundles tested, the shift magnitude in the learned value function.24

Each HPO procedure was conducted under identical conditions, including the same test instances, random seeds, hyperpa-
rameter search space, and total computation time. For more details on the HPO process, see Appendix G.3.

Table 1 shows that training on a mixture of DQs and VQs consistently outperforms training on either query type alone. This
is evident across all metrics, and especially for the utility-maximizing bundles of test set Tp, where mixed training yields
almost three times lower MAE compared to other approaches.

Furthermore, the mixed-query model was the only one able to approximately learn the correct mean value for both validation
sets, as reflected by the small difference between its R2

c and standard R2. In contrast, models trained solely on DQs or
VQs showed a much larger discrepancy between these two metrics for at least one of the validation sets. As explained in
Section 3, when training only on DQs, the model only has relative information about bundle values and thus the value
function is not uniquely identifiable, preventing the network from learning it accurately. On the other hand, models trained
solely on VQs experience a distributional shift between the two test sets—one set focuses on utility-maximizing bundles,
while the other contains bundles selected uniformly at random. Since the VQ training set is drawn uniformly at random and
lacks utility-maximizing bundles, the model fails to capture the bidder’s value function for these critical bundles.25

In Table 1 we observe that the models trained only on DQs exhibit much better generalization performance in the bundles of
Tp than the models trained on random VQs, despite of their lack of absolute value information. The reason for the better
generalization performance is the strong distributional shift between the bundles of the two sets. But from an allocative value
perspective, the bundles in the set Tp are those for which the bidders have high utility, and thus value. Thus, this is the critical

24Note that this shift is not perfectly constant as (m)MVNNs map the zero bundle to zero.
25Note that at the start of an ML-powered, VQ-based auction, the ML models are not yet sufficiently accurate, preventing the auctioneer

from asking VQs for utility- or value-maximizing bundles.
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area of the allocation space where the auctioneer wants the models to perform well. This gives strong empirical motivation
as to why starting the learning process with DQs is more effective than starting it with VQs. In Section 6 we showed that the
efficiency after the first ML-powered VQ is, across all domains, much higher for the model trained on DQs compared to the
one trained on random VQs. The reason behind this improvement is precisely the fact that the DQ-trained models have
learned a better approximation of the bidders’ value functions in the most critical part of the allocation space. In fact, the
learning performance is so much better that, in two out of the four realistic domains tested, a single ML-powered VQ in the
DQ-trained networks suffices to achieve better auction efficiency than the VQ-trained networks using 60 ML-powered VQs.

Comparing the models trained only on DQs with random VQs in Table 1 provides strong empirical evidence of the two
main, orthogonal learning advantages of starting an ML-powered auction with DQs compared to random VQs. The first
advantage is that CCA DQs provide global information about the bundle space, which promotes exploration of the allocation
space. This global information that DQs provide is evident from the higher KT that the DQ-trained network can achieve
across both test sets compared to the VQ-trained one. The reason for this increased performance is that, as explained in
Section 3, DQs provide global relative information about the entire allocation space.

The second learning advantage of starting an auction with CCA DQs is that they provide particularly much information
about the critical, high valued areas of the allocation space right from the start. This is evident from the fact that the models
trained only on DQs exhibit much better generalization performance in the bundles of Tp than the models trained on random
VQs, despite their lack of absolute value information. The reason for the better generalization performance is the strong
distributional shift between the bundles of the two sets. But from an allocative value perspective, the bundles in the set Tp
are those for which the bidders have high utility, and thus value. Thus, this is the critical area of the allocation space where
the auctioneer wants the models to perform well.

These two learning advantages are so critical that, as we will demonstrate in Section 6, the efficiency gains after the first
ML-powered VQs is, across all domains, much higher for the model trained on DQs compared to the one trained on random
VQs. In fact, the learning performance is so much better that, in two out of the four domains, our hybrid auction (Section 5)
using just two ML-powered VQs, following training on 40 DQs, achieves higher efficiency than the SOTA VQ-based
mechanism using 40 random VQs and 60 ML-powered VQs.

In Figure 3, we present prediction vs. true value plots for the top-performing configurations with respect to R2 on Vr from
Table 1. We compare the model trained on 40 DQs and 20 VQs against the one trained on 60 VQs, corresponding to the first
and second rows of Table 1. Bundles from Tc are represented by red circles, while those from Tp are shown in blue. For
bundles in Tp, we also plot their inferred values, reflecting their price when the bidder requested them.

In Figure 3a we observe that the model trained solely on VQs consistently under predicts values for bundles in Tp.
Furthermore, there is a very large spread in the predicted values of these bundles. These bundles are out of distribution for
the network, and thus it cannot generalize to them. If we examine the inferred values for the same bundles, we observe a
substantial deviation from the true diagonal. The vertical distance between each bundle’s inferred value and the true diagonal
line corresponds to the bidder’s utility when requesting that bundle - the quantity she is maximizing. In contrast, as shown in
Figure 3b, the model trained on the mixed dataset is able to place the bundles of Tp in an almost perfect parallel line to the
true diagonal, and with a much smaller shift. These bundles are not out of distribution for that network, which means it can
perform better. For the bundles of Tc, we observe that the predictions of both models are centered around the true diagonal,
indicating that both networks have learned the correct mean value. However, again we can observe that for the network
trained on the mixed dataset, its predictions on Tc are again more tightly clustered in a line around the true diagonal, as was
also suggested by the stronger MAE and KT in Table 1. These observations illustrate the powerful synergy between DQs
and VQs. The global, relative information provided by DQs enables the network to align its predictions roughly along a
consistent trajectory—essentially forming a parallel line to the true diagonal. The absolute value information from the VQs
then fine-tunes this alignment, effectively positioning the line exactly on the true diagonal, ensuring the predicted values
match the true values accurately.

E.3. Learning Experiments for Other Domains

In Tables 4 to 6 we present the results of the learning experiment of Appendix E.2 for all additional domains.

Across all domains, the network trained only on DQs demonstrates the worst generalization performance on the dataset Tr.
This is primarily due to two factors: the absence of absolute value information that VQs provide and the distributional shift
between Tr and Tp, with the DQ training data being more aligned with Tp.
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(a) (b)

Figure 3: Comparison of scaled prediction vs. true values for an mMVNN trained with different query types for the national
bidder in the MRVM domain. (a) Training with 60 demand queries. (b) Training with 40 demand queries and 20 value
queries.

The performance of the network trained solely on VQs varies by domain. In the GSVM and SRVM domains, the learning
task is relatively easy, as indicated by the already strong performance of previous ML-powered ICAs. In these domains, the
networks trained only on VQs perform well across both test sets (Tables 4 and 6). However, in the more challenging LSVM
domain—similarly to the MRVM domain discussed in Appendix E.2—the network trained exclusively on VQs performs
well on the Tr test set, which contains points from the same distribution as its training data, but performs worse on the
utility-maximizing bundles of Tp compared to the network trained on both query types.

This inferior learning performance on the critical dataset Tp explains why MLHCA outperforms pure VQ-based ML-powered
ICAs, such as Weissteiner et al. (2023); Weissteiner & Seuken (2020), in the LSVM domain.

OPTIMIZATION TRAIN POINTS R2 KT MAE SCALED R2
c

METRIC VQS DQS Tr Tp Tr Tp Tr Tp Tr Tp

R2 ON Vr 20 40 0.96 0.95 0.90 0.94 0.07 0.12 0.96 0.98
60 0 0.99 0.98 0.96 0.98 0.03 0.05 0.99 0.98
0 60 0.79 0.97 0.83 0.94 0.04 0.02 0.91 0.98

R2 ON Vp 20 40 0.96 0.99 0.91 0.96 0.07 0.04 0.97 0.99
60 0 0.99 0.98 0.96 0.98 0.03 0.02 0.99 0.98
0 60 0.79 0.97 0.83 0.94 0.13 0.05 0.91 0.98

Table 4: Learning comparison of training only on DQs, only on VQs, or on both for the GSVM domain.
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OPTIMIZATION TRAIN POINTS R2 KT MAE SCALED R2
c

METRIC VQS DQS Tr Tp Tr Tp Tr Tp Tr Tp

R2 ON Vr 20 40 0.38 0.88 0.65 0.80 0.46 0.33 0.44 0.91
60 0 0.67 0.80 0.75 0.81 0.30 0.46 0.67 0.87
0 60 -1.20 0.99 0.80 0.84 1.10 0.11 0.46 0.99

R2 ON Vr 20 40 0.38 0.88 0.65 0.80 0.46 0.33 0.44 0.91
60 0 0.65 0.82 0.81 0.88 0.25 0.38 0.66 0.87
0 60 -2.97 0.96 0.77 0.85 1.51 0.22 0.42 0.97

Table 5: Learning comparison of training only on DQs, only on VQs, or on both for the LSVM domain.

OPTIMIZATION TRAIN POINTS R2 KT MAE SCALED R2
c

METRIC VQS DQS Tr Tp Tr Tp Tr Tp Tr Tp

R2 ON Vr 20 40 1.00 0.89 0.97 0.90 0.02 0.03 1.00 0.93
60 0 1.00 0.96 0.99 0.97 0.00 0.01 1.00 0.97
0 60 0.93 -0.13 0.96 0.92 0.11 0.10 0.97 0.94

R2 ON Vp 20 40 1.00 0.94 0.98 0.92 0.01 0.02 1.00 0.94
60 0 1.00 0.96 0.99 0.97 0.00 0.01 1.00 0.97
0 60 0.91 0.02 0.96 0.86 0.12 0.09 0.95 0.89

Table 6: Learning comparison of training only on DQs, only on VQs, or on both for the SRVM domain.
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F. Detailed Auction Mechanism

Algorithm 5: MLHCA(QCCA, QDQ, QVQ, Qround)

Parameters :QCCA, QDQ, QVQ, Qround and π
1 RVQ ← ({})Ni=1

2 RDQ ← ({})Ni=1

3 for r = 1, ..., QCCA do ▷ Draw QCCA initial prices

4 pr ← CCA(RDQ)
5 foreach i ∈ N do ▷ Initial demand query responses

6 RDQ
i ← RDQ

i ∪ {(x
∗
i (p

r), pr)}
7 for r = QCCA + 1, ..., QCCA +QDQ do ▷ ML-powered DQs

8 foreach i ∈ N do
9 Mθ

i ← MIXEDTRAINING(RDQ
i , RVQ

i ) ▷ Algorithm 4

10 pr ← NEXTPRICE(
(
Mθ

i

)n
i=1

) ▷ Appendix A.3

11 foreach i ∈ N do ▷ Demand query responses for pr

12 RDQ
i ← RDQ

i ∪ {(x
∗
i (p

r), pr)}

13 if
n∑

i=1

(x∗
i (p

k))j = cj ∀j ∈M then ▷ Market-clearing

14 a∗(RDQ, RVQ)← (x∗
i (p

r))ni=1 ▷ Set final allocation to clearing allocation

15 Calculate payments π(RDQ, RVQ)← (πi(R
DQ, RVQ))ni=1

16 return a∗(RDQ, RVQ) and π(RDQ, RVQ)
17 foreach i ∈ N do ▷ Bridge bid

18 Ri ← Ri ∪ {(a∗
i (R), vi(a

∗
i (R)))}

19 for r = QCCA +QDQ + 2, ..., QCCA +QDQ +QVQ do ▷ ML-powered VQs

20 foreach i ∈ N do
21 Mθ

i ← MIXEDTRAINING(RDQ
i , RVQ

i ) ▷ Algorithm 4

22 if r%Qround = 0 then ▷ Query Main Economy

23 foreach i ∈ N do
24 x′(R)← argmax

x∈F:xi /∈R
VQ
i

∑
i′∈NM

θ
i (xi′) ▷ Find predicted optimal allocation

25 x∗
i (R)← x′

i(R)
26 else ▷ Query Marginal Economy

27 foreach i ∈ N do
28 Ñ ← draw uniformly at random Qround − 1 bidders from N \ {i}
29 x′(R)← argmax

x∈F:xi′ /∈R
VQ
i′

∑
i′∈ÑM

θ
i (xi′) ▷ Find predicted optimal allocation in marginal

economy

30 x∗
i (R)← x′

i(R)
31 foreach i ∈ N do ▷ Value query responses for x∗(R)

32 Ri ← Ri ∪ {(x∗
i (R), vi(x

∗
i (R)))}

33 Calculate final allocation a∗(R) as in Equation (3)
34 Calculate payments π(R) ▷ E.g., VCG (Appendix B)

35 return a∗(R) and π(R)

In this section, we present a detailed description of MLHCA. The full auction mechanism is presented in Algorithm 5.
In Lines 3 to 6, we generate the first QCCA DQs using the same price update rule as the CCA. In each of the next QDQ

ML-powered rounds, we first train, for each bidder, an mMVNN on her demand responses (Line 9). Next, in Line 10, we call
NEXTPRICE (Soumalias et al., 2024c) to generate the next DQ based on the agents’ trained mMVNNs (see Appendix A.3).
If MLHCA has found market-clearing prices, then the corresponding allocation is efficient and is returned, along with
payments π(R) according to the deployed payment rule (Line 16). If, by the end of the ML-powered DQs the market has not
cleared we switch to VQ rounds. In the first VQ round (Line 18) we ask each bidder for her bridge bid (see Definition D.8).
As proven in Lemma D.9, this single VQ ensures that the MLHCA’s efficiency is lower bounded by the efficiency after just
the DQ rounds. The difference in the algorithm description compared to the version presented in Section 5 lies in the VQ
rounds. Specifically, we make use of marginal economies. Once every Qround VQ rounds, for each bidder, we query her
value for the bundle she receives in the predicted optimal allocation (based on all ML models), under the constraint that the
bidder in question receives a bundle for which she has not been queried in the past (Lines 22 to 25). This is as described in
Section 5. But in the other Qround − 1 rounds, for each bidder, we query her value for the bundle she receives in the predicted
optimal allocation based only on the models of the non-marginalized bidders (Lines 26 to 30). Each time, for each bidder,
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we marginalize Qround − 1 bidders uniformly at random without replacement. The marginal economies have been designed
to improve the incentive properties of the auction (for a detailed analysis, see Brero et al. (2021)). Similar to all papers
in this line of work, e.g. Brero et al. (2021); Weissteiner et al. (2022a; 2023), we set Qround = 4 in all of our experiments.
The final allocation and payments are then determined based on all reports (Lines 24 to 25). Note that ML-CCA can be
combined with various possible payment rules π(R), such as VCG or VCG-nearest.
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G. Experiment Details
Our code is available on GitHub: https://github.com/marketdesignresearch/MLHCA.

G.1. SATS Domains

In this section, we provide a more detailed overview of the four SATS domains, which we use to experimentally evaluate
MLHCA:

• Global Synergy Value Model (GSVM) (Goeree & Holt, 2010) has 18 items with capacities cj = 1 for all j ∈ {1, . . . , 18},
6 regional and 1 national bidder. In this domain the value of a package increases by a certain percentage with every
additional item of interest. Thus, the value of a bundle only depends on the total number of items contained in a bundle
which makes it one of the simplest models in SATS. In fact, bidders’ valuations exhibit at most two-way(i.e., pairwise)
interactions between items.

• Local Synergy Value Model (LSVM) (Scheffel et al., 2012b) has 18 items with capacities cj = 1 for all j ∈ {1, . . . , 18},
5 regional and 1 national bidder. Complementarities arise from spatial proximity of items.

• Single-Region Value Model (SRVM) (Weiss et al., 2017) has 3 items with capacities c1 = 6, c2 = 14, c3 = 9 and 7
bidders (categorized as local, high frequency, regional, or national) and models UK 4G spectrum auctions.

• Multi-Region Value Model (MRVM) (Weiss et al., 2017) has 42 items with capacities cj ∈ {2, 3} for all j ∈ {1, . . . , 42}
and 10 bidders (local, regional, or national) and models large Canadian 4G spectrum auctions.

In the efficiency experiments in this paper, we instantiated for each SATS domain the 100 synthetic CA instances with the
seeds {101, . . . , 200}. We used SATS version 0.8.1.

G.2. Compute Infrastructure

All experiments were conducted on a compute cluster running Debian GNU/Linux 10 with Intel Xeon E5-2650 v4 2.20GHz
processors with 24 cores and 128GB RAM and Intel E5 v2 2.80GHz processors with 20 cores and 128GB RAM and Python
3.8.10.

G.3. Hyperparameter Optimization Details

In this section, we provide details on our exact HPO methodology and the ranges that we used.

We separately optimized the HPs of the mMVNNs for each bidder type of each domain, using a different set of SATS seeds
than for all other experiments in the paper. Specifically, for each bidder type, we first trained an mMVNN using as initial
data points the demand responses of an agent of that type during 40 consecutive CCA clock rounds, and her value responses
for 30 uniformly at random selected bundles, and then measured the generalization performance of the resulting network on
a validation set that consisted of 50,000 uniformly at random bundles of items, similar to Vr in Appendix E.2. The number
of seeds used to evaluate each model was equal for all models and set to 10. Finally, for each bidder type, we selected the
set of HPs that performed the best on this validation set with respect to the coefficient of determination (R2). The full range
of HPs tested for all agent types and all domains is shown in Table 7, while the winning configurations are shown in Table 8.

The winning configurations for both metrics are shown in Table 8.

G.4. Computational Costs and Bidder-Perceived Latency

All experiments were conducted using the compute infrastructure described in Appendix G.2.

The average wall-clock runtime for a single instance of MLHCA across the GSVM, LSVM, SRVM, and MRVM domains
was 1 day, 12 hours, and 42 minutes; 16 hours and 42 minutes; 11 hours and 6 minutes; and 7 days and 36 minutes,
respectively. Each instance ran on a single CPU with 20 or 24 physical cores, as detailed in Appendix G.2, without GPU
acceleration. GPUs were incompatible with both our training and query generation implementation.

Considering the substantial welfare gains achieved by MLHCA, we regard these compute costs as marginal. In total, we
conducted experiments on over 1,000 realistically-sized instances.

26For the definition of (m)MVNNs with a linear skip connection, please see Weissteiner et al. (2023, Definition F.1)
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Hyperparameter HPO-Range

Non-linear Hidden Layers [1,2,3]
Neurons per Hidden Layer [8, 10, 20, 30]
Learning Rate (1e-4, 1e-2)
Epochs [30, 50, 70, 100, 300, 500, 1000]
L2-Regularization (1e-8, 1e-2)
Linear Skip Connections26 [True, False]
Cached DQ solution Frequency [1, 2, 5, 10]
Batch Size for VQs [1, 5, 10]

Table 7: HPO ranges for all domains.

DOMAIN BIDDER TYPE # HIDDEN LAYERS # HIDDEN UNITS LIN. SKIP LEARNING RATE L2 REGULARIZATION EPOCHS CACHED SOLUTION FREQ. BATCH SIZE

LSVM REGIONAL 1 20 FALSE 0.001 0.000001 100 20 1
NATIONAL 1 30 TRUE 0.0001 0.001 1000 10 5

GSVM REGIONAL 2 30 TRUE 0.0001 0.001 1000 10 5
NATIONAL 2 30 FALSE 0.0005 0.0001 200 10 1

MRVM LOCAL 3 20 TRUE 0.001 0.00001 200 5 10
REGIONAL 1 30 TRUE 0.0001 0.000001 1000 20 1
NATIONAL 2 20 FALSE 0.001 0.000001 100 5 10

SRVM LOCAL 1 10 TRUE 0.01 0.0001 1000 5 1
REGIONAL 1 30 FALSE 0.005 0.000001 500 5 1
HIGH FREQUENCY 1 10 TRUE 0.005 0.00001 500 10 5
NATIONAL 1 10 TRUE 0.005 0.00001 1000 5 10

Table 8: Winning HPO configurations for R2

Furthermore, in real-world settings, no more than two query rounds are typically conducted within a day. Therefore, the
bidder-perceived latency of our mechanism is not a concern.
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G.5. Extended Efficiency Results

In this appendix we compare to further competitors including some that use significantly more queries in Table 9. Each profit-
max bid (see Appendix G.6) used by some of our competitors actually consists of 1 constrained DQ plus 1 VQ. However,
we count each profit-max query as only 1 VQ. Although this counting scheme is strongly in favor of the competitors, in the
3 most realistic domains LSVM, SRVM and MRVM, our method (MLHCA) significantly outperforms the efficiency of any
other competitor except those who use substantially more queries. Even those mechanisms that use more queries did not
manage to outperform our efficiency in any of the 4 domains.

EFFICIENCY LOSS IN %

DOMAIN MLHCA BOCA ML-CCACLOCK ML-CCARAISED ML-CCAPROFIT CCA CCARAISED CCAPROFIT MVNN NN FT RS

GSVM 0.00± 0.00 — 1.77± 0.68 1.07± 0.37 0.00 9.60± 1.49 6.41 0.00 00.00± 0.00 00.00± 0.00 01.77± 0.96 30.34± 1.61

LSVM 0.04± 0.07 0.39± 0.31 8.36± 1.70 3.61± 0.77 0.05 17.44± 1.60 8.40 0.24 00.70± 0.40 02.91± 1.44 01.54± 0.65 31.73± 2.15

SRVM 0.00± 0.00 0.06± 0.02 0.41± 0.11 0.07± 0.02 0.00 0.37± 0.11 0.19 0.00 00.23± 0.06 01.13± 0.22 00.72± 0.16 28.56± 1.74

MRVM 4.81± 0.57 7.77± 0.35 6.94± 0.24 6.68± 0.22 6.32 7.53± 0.48 7.38 6.82 08.16± 0.41 09.05± 0.53 10.37± 0.57 48.79± 1.13

NUMBER OF QUERIES

#DQS 40 0 100 100 100 100 100 100 0 0 0 0
#VQS 60 100 0 1-100 101-200 0 1-100 101-200 100 100 100 100
#QS 100 100 100 101-200 201-300 100 101-200 201-300 100 100 100 100

Table 9: Extending Table 2 by ML-CCAPROFIT (which adds 100 expensive profit-max bids to ML-CCARAISED), CCARAISED,
CCAPROFIT, MVNN (Weissteiner et al., 2022a), NN (based on classical neural networks (Weissteiner & Seuken, 2020)), FT
(based on Fourier Transforms (Weissteiner et al., 2022b)), and RS (random search, as a baseline). Shown are averages and a
95% CI. Winners based on a t-test with significance level of 5% are marked in grey.

G.5.1. COMPARING MLHCA TO ML-CCAPROFIT

In each domain, the 2nd highest efficiency is achieved by ML-CCAPROFIT, which uses both more DQs and more VQs than
our method (see Table 2). In total ML-CCAPROFIT uses 201-300 queries if you count profit-max bids as only 1 query. If you
count profit-max bids as 2 queries ML-CCAPROFIT uses 301-400 queries. Although ML-CCAPROFIT asks 2-4 times more
queries than MLHCA, ML-CCAPROFIT is not able to outperform MLHCA in any domain, not even slightly. On the contrary,
MLHCA substantially outperforms ML-CCAPROFIT in the most realistic domain MRVM.

G.5.2. UNDERSTANDING THE SCALE OF THESE EFFICIENCY IMPROVEMENTS.

For example, the most realistic simulator MRVM was specifically designed to simulate the 2014 Canadian 4G spectrum
auction. The real 2014 Canadian 4G spectrum auction achieved a revenue of USD 5.27 billion (Ausubel & Baranov, 2017).
The revenue of an auction is a very conservative lower bound of the social welfare (SCW), which is typically significantly
higher than the revenue. With this conservative lower bound 1% point corresponds to more than USD 50 million, probably
even significantly more. For this simulation MRVM, MLHCA is outperforming every other 100-query method by more than
2% point (averaged over 50 random instances of the auction). Even those results of Table 2 that use substantially more than
100 queries, are outperformed by only 100 queries of MLHCA by over 1.5% points. Every supplemented version of the
CCA from Table 2 (with up to 300 queries) is outperformed by only 100 queries of MLHCA by over 2% points. This is
particularly interesting, since CCA is among the most popular mechanisms currently used for real-world auctions. Such
an improvement 2% points would result in a gain in SCW of USD 100 million of a single instance of the 2014 Canadian
spectrum auction.

Translating these results to the latest Canadian Spectrum Auction (Innovation, Science and Economic Development Canada,
2023), MLHCA’s welfare gains would equate to over 50 million USD compared to all other mechanisms.

Note that repeatedly multiple spectrum auctions are conducted all over the world. E.g., CCA generated over USD 20 billion
in revenue between 2012 and 2014 alone (Ausubel & Baranov, 2017).

G.6. Details on Bidding Heuristics

The second phase of the CCA (or ML-CCA) is the supplementary round. In this phase, each bidder can submit a finite
number of additional bids for bundles of items, which are called push bids. Then, the final allocation is determined based
on the combined set of all inferred bids of the clock phase, plus all submitted push bids of the supplementary round.
This design aims to combine good price discovery in the clock phase with good expressiveness in the supplementary

39



Prices, Bids, Values: One ML-Powered Combinatorial Auction to Rule Them All

round. In simulations, the supplementary round is parametrized by the assumed bidder behaviour in this phase, i.e., which
bundle-value pairs they choose to report. As in (Brero et al., 2021), we consider the following heuristics when simulating
bidder behaviour:

• Clock Bids: Corresponds to having no supplementary round. Thus, the final allocation is determined based only on the
inferred bids of the clock phase (Equation (3)).

• Raised Clock Bids: The bidders also provide their true value for all bundles they bid on during the clock phase.

• Profit Max: Bidders provide their true value for all bundles that they bid on in the clock phase, and additionally submit
their true value for the QP-Max bundles earning them the highest utility at the prices of the final clock phase. I.e., each
profit-max bid can be seen as

– one constrained DQ to determine which bundle is best given a price vector p, constrained on not choosing an already
chosen bundle plus

– one VQ to determine the exact value of this bundle.
However, in Table 2 we count each profit-max query only as 1 VQ.

Note that our mechanism also allows the bidders to voluntarily provide push bids. These additional VQs could probably
increase the efficiency of our mechanism even slightly further. However, we evaluate our mechanism in the worst case,
where no push bids are provides to MLHCA. And the results in Table 2 show that even without receiving any push bids
MLCA achieves the highest average efficiency in each tested domain.
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G.7. Revenue Results

EFFICIENCY LOSS IN % RELATIVE REVENUE IN %

DOMAIN MLHCA BOCA MLHCA BOCA

GSVM 0.00± 0.00 — 70.15± 4.43 —
LSVM 0.04± 0.07 0.39± 0.31 79.43± 3.05 73.53± 3.72

SRVM 0.00± 0.00 0.06± 0.02 56.05± 1.69 54.22± 1.46

MRVM 4.81± 0.57 7.77± 0.35 27.97± 2.16 42.04± 1.89

Table 10: Efficiency loss and relative revenue comparison between MLHCA (40DQs + 60VQs) and BOCA (100VQs).
Shown are averages and a 95% CI. Winners marked in gray.

In Table 10, we present the relative revenue results of MLHCA and BOCA, both using VCG payments (see Appendix B.1).
We define relative revenue as the percentage of optimal welfare recovered as revenue on a per-instance basis. For a detailed
discussion of the corresponding efficiency results, please refer to Section 6.

Unlike efficiency, the best-performing mechanism in terms of revenue varies by domain. In the LSVM and SRVM domains,
MLHCA generates higher revenue than BOCA, while in the MRVM domain, the opposite is true.

The explanation for MLHCA’s higher revenue in the LSVM and SRVM domains is straightforward: MLHCA achieves
higher efficiency than BOCA in these domains and still has at least 42 VQs remaining after matching BOCA’s efficiency.
This additional exploration afforded by those extra VQs enables MLHCA to identify many high-value allocations, ultimately
driving up prices under the VCG payment rule.

The lower revenue of MLHCA compared to BOCA in the MRVM domain can be explained by examining the DQ rounds
of MLHCA. In this domain, lower competition among bidders results in relatively low item prices, which reduces the
inferred-to-true welfare ratio of the allocations based only on the DQs. This is illustrated in Figure 5. The low inferred value
from these queries prevents them from driving up the VCG prices, even though they lead to allocations with high efficiency.
As a result, in this domain, only the VQs contribute significantly to the auction’s payments. Given that BOCA uses 100 VQs
while MLHCA uses only 60, this difference leads to BOCA achieving higher revenue in the MRVM domain.
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G.8. Evaluating the Effectiveness of the Bridge Bid
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(a) Efficiency of MLHCA with and without the bridge bid (Defini-
tion D.8) in the MRVM domain.
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(b) Normalized inferred and true social welfare (SCW) of MLHCA
without the bridge bid in the MRVM domain. Both quantities are
normalized with respect to their average values at the start of the
ML-based VQs.

Figure 4: Comparison of MLHCA’s performance in the MRVM domain: (a) Efficiency with and without the bridge bid; (b)
Normalized inferred and true SCW. Shown are averages over 50 instances including 95% CIs.

In this section, we experimentally evaluate the effectiveness of the bridge bid from Section 3.

In Figure 4a, we plot MLHCA’s efficiency in the MRVM domain as a function of the number of elicited bids, comparing
performance with and without the bridge bid. Without the bridge bid, we observe a significant efficiency drop of 7.3% points
when MLHCA transitions to its VQ rounds. This is consistent with our theoretical results in Lemma D.7, where we showed
that efficiency can decrease when the first VQ is introduced after DQs. In the MRVM domain, the most realistic setting, this
effect is particularly pronounced. Notably, the auction requires 20 of our powerful ML-powered VQs just to recover the
efficiency lost by the introduction of the first VQ. By contrast, using the bridge bid (Definition D.8) completely mitigates
this efficiency drop, as predicted by Lemma D.9. However, as Figure 4a shows, if enough VQs are elicited, MLHCA without
the bridge bid can eventually recover its efficiency, and both approaches converge to similar performance levels.

However, given that the auctioneer cannot determine the true efficiency of the auction at runtime, it is prudent to use
the bridge bid version, which ensures consistent performance throughout the auction and significantly outperforms the
alternative for the majority of rounds. Therefore, we consider this version the default approach for our MLHCA.

To better understand the cause of this efficiency drop, we refer to Figure 4b, where we plot the normalized inferred and true
social welfare of MLHCA without the bridge bid in the MRVM domain. Both quantities are normalized to their values at
the start of the ML-powered VQ rounds. At this point, we observe a stark contrast: the first VQ increases inferred social
welfare by over 70%, while decreasing true social welfare by more than 7%. Before the ML-powered VQs, agents’ reports
were limited to their responses to DQs, and the auction’s inferred social welfare was calculated based on the prices of the
allocated bundles, as described in Equation (3). Due to the relatively low competition in MRVM, there was a substantial gap
between the agents’ true values and the inferred values based on their DQ responses.27

When the auction transitioned to VQs, agents responded with their true values for the queried bundles, leading to a sharp
increase in inferred social welfare. However, the bidders’ true values for the bundles they received during the DQ rounds
were much higher than their inferred values, which the WDP failed to capture. As a result, transitioning to ML-powered
VQs without the bridge bid caused a sharp increase in inferred social welfare alongside a drop in true social welfare.

This efficiency drop when transitioning to VQs is less pronounced in other domains. In Figure 5, we plot MLHCA’s SCW
for all domains as a function of the number of elicited bids, normalized to the start of the ML-powered VQ rounds. In these
domains, the higher level of competition leads to inferred values for the queried bundles during the DQ rounds being much
closer to the true values. Consequently, the bridge bid is less critical in these settings.

27Low competition in the auction can be gauged from its revenue, as, in the absence of reserve prices, revenue is primarily driven by
competition among bidders. MRVM has the lowest ratio of revenue to welfare across all domains by a factor of nearly 2; see Appendix G.7.
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Figure 5: Normalized Inferred Social Welfare of MLHCA (with the bridge bid) in all domains. Shown are averages over 50
instances including 95% CIs.
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G.9. Inverse Query Order

EFFICIENCY LOSS IN % QUERIES TO REJECT NULL HYPOTHESIS

DOMAIN MLHCA INVERSE BOCA ML-CCACLOCK ML-CCARAISED BOCA ≥MLHCA INVERSE ≥MLHCA ML-CCARAISED ≥MLHCA

GSVM 0.00± 0.00 0.28± 0.30 — 1.77± 0.68 1.07± 0.37 — 50 42
LSVM 0.04± 0.07 5.12± 2.18 0.39± 0.31 8.36± 1.70 3.61± 0.77 58 43 43
SRVM 0.00± 0.00 0.08± 0.16 0.06± 0.02 0.41± 0.11 0.07± 0.02 42 — 42

Table 11: MLHCA (40DQs + 60VQs) vs Inverse (80 VQs + 20 DQs), BOCA (100VQs), ML-CCA (ML-CCAclock) (100DQs)
and ML-CCA with raised clock bids (ML-CCAraised) (100DQs and up to 100VQs). Shown are averages and a 95% CI.
Winners based on a t-test with significance level of 5% are marked in grey.
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Figure 6: Efficiency loss paths (i.e., regret plots) of MLHCA compared to BOCA, ML-CCA and Inverse, an auction that
inverses the order of DQs and VQs compared to MLHCA. Shown are averages over 50 instances with 95% CIs.

In this section, we experimentally evaluate how the order of queries affects auction performance. To this end, we introduce a
variant of our mechanism, which we refer to as Inverse. This mechanism mirrors the structure of MLHCA described in
Section 5, but with the query order reversed: Inverse begins with value queries (VQs), followed by demand queries (DQs).
Concretely, while MLHCA starts with 20 CCA-based DQs to initialize learning, followed by 20 ML-powered DQs and
then 60 ML-powered VQs, Inverse instead begins with 20 randomly chosen VQs, proceeds with 60 ML-powered VQs, and
concludes with 20 ML-powered DQs. Unlike MLHCA, Inverse does not use the bridge bid introduced in Section 5. Because
its final stage consists of DQs, there is no need for a special bid to preserve its DQ-only efficiency at later phases.

To isolate the effect of query order on auction efficiency, we evaluate all auction formats on the same set of auction
instances. For the same reason, we use identical hyperparameters for both MLHCA and the Inverse auction, as described in
Appendix G.3. For more details on the experimental setup, please refer to Section 6.1.

As in Section 6.2, Table 2 reports the average efficiency loss of each mechanism after 100 queries. For ML-CCA, we
additionally report results assuming it is supplemented with the clock bids raised heuristic (see Section 2.2), which may
require up to 100 additional VQs per bidder.28 We also report how many queries MLHCA needs to statistically outperform
the final efficiency of the other mechanisms.

We observe that in all domains tested,29 MLHCA consistently outperforms the Inverse auction. In the LSVM domain,
the efficiency difference reaches 5 percentage points, which would translate to welfare gains exceeding 200 million USD
based on the value of goods typically traded in such auctions. Notably, in both the GSVM and LSVM domains, MLHCA
statistically outperforms the Inverse auction at the 95% confidence level while using at most half as many queries. At this

28Under the clock bids raised heuristic, bidders report their value only for each unique bundle they bid on during the auction—up to
100 bundles for 100 DQs.

29Due to time constraints between the final reviews and the camera-ready deadline, results for the MRVM domain are not yet available.
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point, Inverse has already asked each bidder 50 of the more cognitively demanding VQs, whereas MLHCA has used asked
10 VQs. In the SRVM domain, despite achieving higher average efficiency, MLHCA does not statistically outperform the
Inverse auction. This is due to the simplicity of the domain: the Inverse auction reaches perfect (100%) efficiency in 49 out
of 50 instances, rendering the two mechanisms statistically indistinguishable.

To gain a more detailed understanding of the impact of the inverse query order, Figure 1 illustrates the efficiency loss path
for the GSVM, LSVM, and SRVM domains. Across all three domains, we observe that placing ML-powered DQs after the
ML-powered VQs fails to improve the auction’s efficiency. This is particularly noteworthy in the LSVM domain, where the
efficiency loss after the ML-powered VQ phase was over 5 percentage points, meaning there was still significant room for
improvement. Although the bidders’ ML models become significantly more accurate once the auction reaches its DQ phase,
the DQ algorithm is unable to leverage this improved model accuracy to generate more efficient outcomes.

Taken together, the results in this section provide strong empirical support for our theoretical analysis in Appendices D.3
and D.4: effective hybrid auctions should begin with DQs to gather global information about bidders’ valuation functions,
and only then transition to VQs to both refine understanding in the most critical regions of the allocation space and to obtain
bids for bundles that are compatible for a feasible allocation. Across all tested domains, reversing this order results in
substantial efficiency losses: ML-powered DQs fail to improve upon the efficiency achieved by the preceding VQs, while
VQs, when used upfront, perform worse than in the standard order due to the reduced learning performance from training
solely on VQs. These findings underscore the pivotal role of query ordering in the design of machine learning-powered
combinatorial auctions.

While all subplots in Figure 6 clearly support our claim that asking DQs before VQs results in better final efficiency than
asking them the other way around, certain details in the subplot for SRVM might raise some questions that we answer in
Remarks G.1 and G.2.
Remark G.1 (Why are 20 random VQs better now than 20 random VQs were for BOCA for SRVM?). In Figure 6, for
SRVM, we see that the efficiency of the Inverse auction after its initial random 20 VQs is approximately 4 times better
than BOCA after its initial 40 random VQs. The reason for this, is a difference in the data pre-processing used for
BOCA from (Weissteiner et al., 2023) and our data pre-processing from (Soumalias et al., 2024c). SRVM (Weiss et al.,
2017) has 3 items with capacities c1 = 6, c2 = 14, c3 = 9. In (Weissteiner et al., 2023), these items were treated as
c1 + c2 + c3 = 6+14+9 = 29 unique items. In other words, we and (Soumalias et al., 2024c) provide the mechanism with
the prior knowledge that the first 6 items are indistinguishable copies of each other, and the next 14 items are indistinguishable
copies of each other, and the remaining 9 items are indistinguishable copies of each other, while (Weissteiner & Seuken,
2020; Weissteiner et al., 2022b;a; 2023) did not use this prior knowledge in any form. This additional prior knowledge used
by Inverse, but not used by BOCA, explains the advantage of Inverse over BOCA in this domain. The reason that those
works did not leverage that information is that the multiset MVNNs required to capture that prior knowledge were only
introduced in Soumalias et al. (2024c), which superseded these works. Nevertheless, the point of the inverse auction is not
to compare against the SOTA ML-powered auction, BOCA, but to empirically evaluate the effect of switching the query
order compared to MLHCA. In the end, BOCA can still outperform Inverse for 2 potential reasons: 1) BOCA keeps asking
VQs until the end, while Inverse switches to DQs for the last 20 rounds, where DQs lose their effectiveness towards the end
of the auction, or 2) BOCA explicitly fosters exploring unexplored regions of the bundle space, which gives it an advantage
in the long run.
Remark G.2 (Are initial random VQs better for SRVM than initial CCA-DQs?). In Figure 6, we directly see that for GSVM
and LSVM, starting the auction with 20 CCA-DQs is better than starting the auction with 20 random VQs. However, for
SRVM, the efficiency after the initial random 20 VQs of Inverse is better than the efficiency after the initial 20 CCA-DQs of
MLHCA or ML-CCA. Nevertheless, for all considered domains, including SRVM, we can see that MLHCA takes the lead
after round 42. Our intuitive explanation is that 1) for all considered domains, including SRVM, the initial 20 CCA-DQs
foster a better learning of the value functions, 2) the bundles that bidders request in the CCA-DQs, are usually incompatible,
which seems to especially hurt the efficiency of SRVM, and 3) ML-VQs are always asked for perfectly compatible bundles,
and if the models understand the value functions already sufficiently well, directly the first ML-VQ after the bridge bid can
result in an allocation with very high efficiency (as intuitively demonstrated in Example 1 and as supported empirically by
all our experiments). In summary, the efficiency observed from DQs can be misleading as a signal of learning progress,
since the requested bundles are often incompatible and therefore fail to reflect the model’s understanding. In contrast, the
efficiency observed immediately after an ML-VQ provides a much more accurate reflection of the current learning state, as
it elicits bids on perfectly compatible bundles across all bidders.
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