
000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 COBEL-WORLD: HARNESSING LLM REASONING TO BUILD A COLLABORATIVE BELIEF WORLD FOR OPTI- MIZING EMBODIED MULTI-AGENT COLLABORATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Effective real-world multi-agent collaboration requires not only accurate planning but also the ability to reason about collaborators' intents—a crucial capability for avoiding miscoordination and redundant communication under partial observable environments. Due to their strong planning and reasoning capabilities, large language models (LLMs) have emerged as promising autonomous agents for collaborative task solving. However, existing collaboration frameworks for LLMs overlook their reasoning potential for *dynamic intent inference*, and thus produce inconsistent plans and redundant communication, reducing collaboration efficiency. To bridge this gap, we propose ***CoBel-World***, a novel framework that equips LLM agents with a *collaborative belief world*—an internal representation jointly modeling the physical environment and collaborators' mental states. CoBel-World enables agents to parse open-world task knowledge into structured beliefs via a symbolic belief language, and perform zero-shot Bayesian-style belief updates through LLM reasoning. This allows agents to proactively detect potential miscoordination (e.g., conflicting plans) and communicate adaptively. Evaluated on challenging embodied benchmarks (i.e., TDW-MAT and C-WAH), CoBel-World significantly reduces communication costs by **22-60%** and improves task completion efficiency by **4-28%** compared to the strongest baseline. Our results show that explicit, intent-aware belief modeling is essential for efficient and human-like collaboration in LLM-based multi-agent systems.

1 INTRODUCTION

Collaboration is a fundamental social mechanism through which humans solve complex tasks and reshape their environments. In recent years, large language models (LLMs) have demonstrated remarkable capabilities in reasoning, planning, and decision-making (Liu et al., 2024a; OpenAI, 2023; Comanici et al., 2025; Wu et al., 2025), suggesting growing potential for LLMs to act as autonomous agents capable of participating in collaborative problem-solving. While these advances are promising, the effectiveness of existing LLM-based collaboration frameworks has largely been confined to simple, text-based domains with high environmental certainty (Hong et al., 2023). In contrast, real-world collaboration requires agents to coordinate actions under uncertainty and adapt to dynamic, partially observable environments. This raises a key question: Can LLMs, when grounded in the physical world, autonomously coordinate with other agents for effective and efficient collaboration?

We investigate this question in the context of decentralized embodied multi-agent tasks (Zhang et al., 2023; Nayak et al., 2024; Kannan et al., 2023), where agents must perceive, plan, and act under partial observation (Spaan et al., 2006b; Bernstein et al., 2002), long-horizon dependencies, and environmental dynamics. In such settings, the primary challenge stems from incomplete and misaligned information across agents (Bernstein et al., 2002; Foerster et al., 2019). Communication thus becomes essential for synchronizing internal states, sharing observations, and aligning intents.

As shown in Figure 1, recent approaches have explored various communication protocols to enable information sharing and consensus in multi-agent systems. However, these methods typically rely on predefined collaboration or schemes and fixed communication protocols—such as step-by-step message generation (Zhang et al., 2023), dense discussion (Mandi et al., 2024), or event-triggered

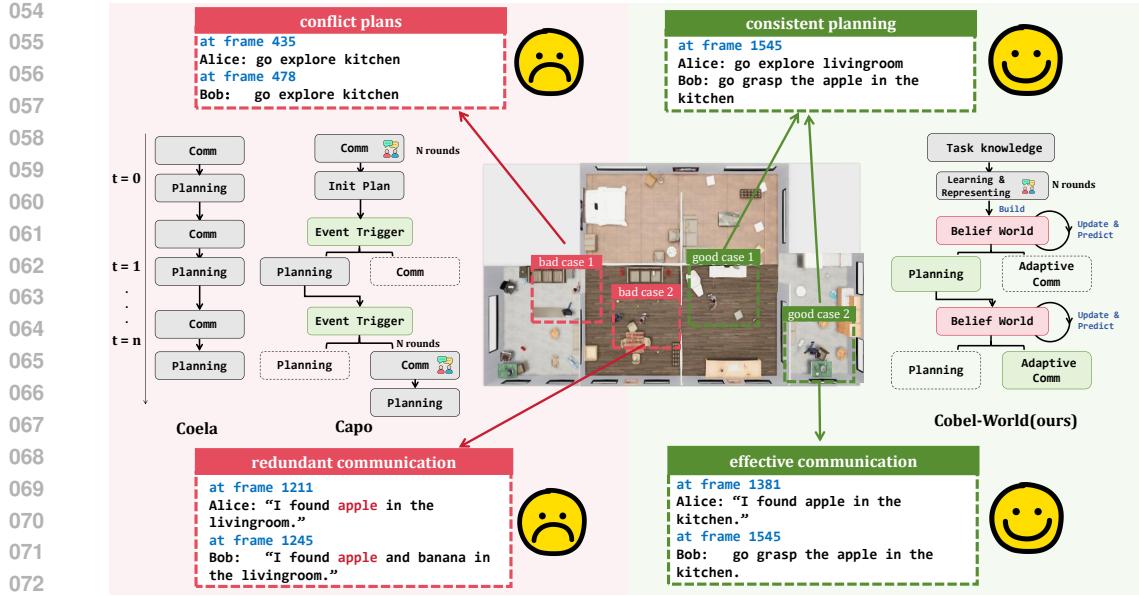


Figure 1: **Comparison of existing works with our work.** From left to right: (a) CoELA (Zhang et al., 2023): A collaboration framework based on step-by-step templated message generation and planning. (b) Capo (Liu et al., 2024b): A collaboration framework based on event-driven multi-round discussion. (c) Our CoBel-World framework, featuring belief modeling and adaptive collaboration. Our method enables consistent planning and effective communication.

multi-round discussion (Liu et al., 2024b). Crucially, they lack the ability to dynamically identify potential miscoordination and communicate adaptively. As a result, redundant communication and inconsistent planning are common, leading to heavy communication costs and redundant physical actions. These limitations hinder scalability in large-scale, communication-constrained, or human-AI collaborative environments.

We argue that this shortcoming arises from the absence of belief modeling. In multi-agent systems, beliefs refer to an agent’s internal representation of possible states—including the external environment and the mental states (e.g., intents, knowledge) of collaborators (Kominis & Geffner, 2015; Geffner & Bonet, 2013). In decentralized multi-agent reinforcement learning (DEC-MARL), belief modeling has proven critical for collaboration under partial observation, enabling agents to infer and align with others’ internal states or policies (Pritz & Leung, 2025; Wen et al., 2019; Zhai et al., 2023). With accurate belief estimation, agents can selectively communicate only the valuable information to achieve efficient communication and reach consensus, thus promoting consistent collaboration.

Despite its advantages, modeling belief for LLM-driven agents presents two primary challenges:

- Challenge 1: Formulating beliefs in open-ended environments.** Traditional MARL agents operate in low-dimensional, structured environments (e.g., grid worlds) with discrete action space, enabling straightforward belief representation. In contrast, LLM-based embodied agents interact with open-ended physical environments characterized by high-dimensional, compositional actions, and free-form communication. These features complicate the grounding of linguistic instructions into structured, explicit belief representation.
- Challenge 2: Zero-shot construction of belief models.** In abstract domains like grid-world games (Moreno et al., 2021), agents are trained on large-scale interaction datasets to infer others’ intents. However, collecting real-world interaction trajectories for fine-tuning LLM agents is prohibitively expensive and often impractical. Moreover, data-driven models may struggle to generalize across diverse, unseen scenarios. This necessitates a zero-shot approach: LLM agents must construct and update beliefs without access to annotated interaction data during pretraining or downstream adaptation.

108 To address these challenges, we propose ***CoBel-World***, a novel framework equips LLM agents with
109 a ***collaborative belief world***—an internal representation of the external world and mental states of
110 collaborators. We leverage the advanced reasoning capabilities of LLMs to predict possible be-
111 liefs based on observed information, thereby bridging the gap caused by the lack of collaborative
112 data during pretraining. This model enables agents to reason about the internal states of collabo-
113 rators and predict the future states of the external world, facilitating more efficient and human-like
114 collaboration. Specifically, CoBel-World incorporates two core components. First, inspired by sym-
115 bolic planning languages such as PDDL (Fox & Long, 2003; Fabiano et al., 2021), we introduce
116 a symbolic belief language to formalize the multi-agent task settings. Then, the agents will learn
117 knowledge about the external world and represent it as belief rules to guide subsequent task execu-
118 tion through a collaborative propose-and-revise progress. Second, each agent maintains a dynamic
119 internal world model with beliefs. This belief world model is updated via reasoning to infer the
120 intents of collaborators from partial observation and predict the possible states of external world.
121

122 To summarize, this work makes the following contributions:

- 123 • We propose ***CoBel-World***, a novel framework that integrates a collaborative belief world
124 into LLM agents, enabling efficient communication and consistent planning.
- 125 • We design a ***symbolic belief language*** to represent the world knowledge in a structured
126 and explicit form to guide collaboration. We further design a ***Bayesian belief collabora-***
127 ***tion*** protocol in a Bayesian filter manner, demonstrating how to leverage LLM reasoning
128 capabilities to predict possible beliefs and detect potential miscoordination in a zero-shot
129 manner.
- 130 • We evaluate our method on challenging embodied collaboration benchmarks (Zhang et al.,
131 2023) under partial observation. Results show that CoBel-World reduces communication
132 cost by **average 22–60%** while improving task completion efficiency by **average 4–28%**
133 on TDW-MAT and C-WAH), outperforming state-of-the-art baseline methods and demon-
134 strating the efficacy of belief-driven collaboration.

135 2 RELATED WORKS

136 **LLM-Based Multi-Agent Collaboration and Communication.** Recent advances in large language
137 models (LLMs) have enabled their deployment as autonomous agents capable of reasoning, plan-
138 ning, and communication in collaborative settings. Systems such as MetaGPT (Hong et al., 2023)
139 and ChatDev (Qian et al., 2023) demonstrate that LLM agents can follow predefined workflows
140 to solve complex tasks. In embodied intelligence, frameworks like CoELA (Zhang et al., 2023),
141 Capo (Liu et al., 2024b), and RoCo (Mandi et al., 2024) integrate LLMs with perception and ac-
142 tion modules to support collaborative embodied tasks. However, these approaches typically rely on
143 fixed communication protocols, such as step-by-step message generation (Zhang et al., 2023), event-
144 driven multi-round discussion (Liu et al., 2024b), or dense discussion (Guo et al., 2024), leading to
145 excessive communication overhead and poor scalability under partial observability. In contrast, our
146 work introduces a belief-driven communication mechanism that enables LLM agents to dynamically
147 identify and exchange only the most valuable information, significantly reducing communication re-
148 dundancy while improving collaboration efficiency.

149 **Belief Modeling in Decentralized Multi-Agent Systems.** In decentralized partially observable
150 Markov decision processes (DEC-POMDP), belief modeling is central to enabling agents to main-
151 tain and update probabilistic estimates over hidden states and other agents’ intents (Kominis &
152 Geffner, 2015; Moreno et al., 2021). Techniques such as Bayesian reasoning (Foerster et al., 2019)
153 and probabilistic recursive reasoning (Wen et al., 2019) allow agents to infer unobserved variables
154 and align policies through belief estimation. More recent approaches leverage pretrained belief
155 models (Zhai et al., 2023; Pritz & Leung, 2025), achieving improved collaboration in cooperative
156 games such as Hanabi and Overcooked. **Wu et al. (2020)** leverages inverse planning to infer col-
157 laborators’ beliefs, allowing agents to dynamically decide between labor division and collaboration.
158 **Jha et al. (2024)** enables agents to perform higher-order belief modeling with significantly reduced
159 computational cost. **Cao et al. (2024)** incorporates logical rules to infer human goals and beliefs
160 from demonstrations, thereby guiding hierarchical human–AI collaboration. Despite their success,
161 these methods are largely limited to low-dimensional, discrete-state environments with handcrafted
162 features or require extensive training data. Our work bridges this gap by leveraging the zero-shot

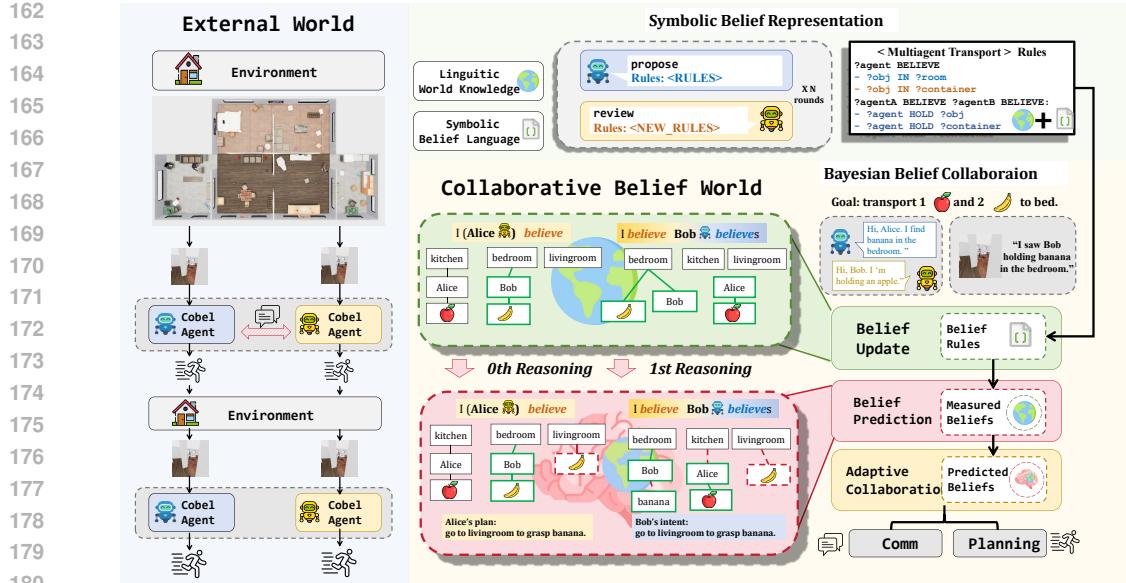


Figure 2: **Overview of Collaborative Belief World framework.** Cobel-World comprises two key components: (1) **Symbolic Belief Representation**: All agents are organized in a collaborative reasoning process to analyze and summarize the rules and requirements of the task in a structured format. With these rules, each agent constructs an initial belief about the world and collaborators; (2) **Bayesian Belief Collaboration**: After the belief world is constructed, each agent updates it via two ways: **belief prediction** (via LLM reasoning) and **belief update** (via observation). Adaptive collaborative decisions will be made based on the beliefs.

reasoning capabilities of LLMs to construct and update structured belief representations in high-dimensional, open-ended physical environments without environment-specific training or explicit state factorization. Recent works (Yi et al., 2025; Zhang et al., 2024) attempt to incorporate belief modeling into LLM-based multi-agent systems to guide decision and strategy selection. However, these works primarily operate under communication-free settings, which limits their scalability in real-world partially observable environments. In contrast, CoBel-World leverages structured belief modeling to guide communication behaviors. Agents with such collaborative belief world can proactively determine when to communicate, whom to communicate with, and how to communicate.

Reasoning Capabilities in LLM-Based Agents. The effectiveness of LLMs as autonomous agents hinges on their ability to perform diverse forms of reasoning, from task planning to social inference. Recent work has demonstrated that structured reasoning paradigms significantly enhance agent performance in complex tasks. Notable works include Chain-of-Thought (CoT) (Wei et al., 2022) and Tree of Thoughts (ToT) (Yao et al., 2023), which introduces multi-step reasoning to solve complex problems. More recently, research has advanced social reasoning, particularly theory of mind (ToM), enabling agents to model others' beliefs, intents, and internal states (He et al., 2023; Sclar et al., 2023; Jin et al., 2024; Shi et al., 2024). Several works (Li et al., 2023; Ma et al., 2023; Zhang et al., 2025), have gained benefits in collaborative multi-agent tasks with the introduction of such ability.

3 FORMULATION

We model the embodied multi-agent collaboration task as a *decentralized partially observable Markov decision process (DEC-POMDP)* (Oliehoek & Amato, 2016; Bernstein et al., 2000; Spaan et al., 2006a), defined by the tuple:

$$\mathcal{M} = \langle I, \mathcal{S}, \{\mathcal{A}_i\}, \{\mathcal{O}_i\}, T, \{O_i\}, R, h \rangle,$$

where:

- $I = \{1, \dots, n\}$ is a finite set of n agents;

-
- 216 • \mathcal{S} is a finite state space representing the environment;
 217 • \mathcal{A}_i is the action set of agent i , with $\mathcal{A} = \times_{i \in I} \mathcal{A}_i$ the joint action space;
 218 • \mathcal{O}_i is the observation set of agent i , encompassing partial egocentric visual inputs and
 219 received messages;
 220 • $T(s' | s, \mathbf{a}) = p(s' | s, \mathbf{a})$ is the transition function, denoting the probability of transitioning
 221 to state $s' \in \mathcal{S}$ from $s \in \mathcal{S}$ under joint action $\mathbf{a} \in \mathcal{A}$;
 222 • $O_i(o_i | s', \mathbf{a}) = p(o_i | s', \mathbf{a})$ is the observation model for agent i , giving the probability of
 223 observing $o_i \in \mathcal{O}_i$ upon reaching s' after executing \mathbf{a} ;
 224 • $R(s, \mathbf{a})$ is the global reward function shared by all agents;
 225 • h is the finite planning horizon.

226
 227
 228
 229 The objective is for the team to maximize the expected cumulative reward $\mathbb{E} \left[\sum_{t=0}^{h-1} R(s^t, \mathbf{a}^t) \right]$
 230 through decentralized execution of a joint policy $\pi = \{\pi_i\}_{i \in I}$, where each agent i selects actions
 231 $a_i^t \sim \pi_i(\cdot | \tau_i^t)$ based only on its local observation-action history $\tau_i^t = (o_i^0, a_i^0, \dots, o_i^t)$.
 232

233
 234 4 METHODOLOGY
 235

236 In this section, we present how CoBel-World leverages belief modeling to address communica-
 237 tion redundancy and inconsistent collaboration in embodied multi-agent systems. The theoretical
 238 foundation of CoBel-World can be found in Appendix B. Following the paradigm of belief mod-
 239 eling in traditional MARL, we decompose the construction of CoBel-World framework into two
 240 components: **Symbolic Belief Representation** for belief representation and **Bayesian Belief Col-
 241 laboration** for belief update, as depicted in Figure 2.

242 First, Symbolic Belief Representation (detailed in Section 4.1), centered on a symbolic belief lan-
 243 guage, enables agents to autonomously interpret task requirements in open-ended environments and
 244 encode world knowledge into structured belief rules. It further incorporates a collaborative reason-
 245 ing process to establish a *collaborative belief world*, ensuring consistent modeling of the environ-
 246 ment and collaborators’ intents. Second, Bayesian Belief Collaboration (detailed in Section 4.2)
 247 maintains and dynamically updates the established belief world during task execution. Agents per-
 248 form belief updates via a Bayesian filtering scheme powered by LLM reasoning to detect potential
 249 miscoordination. When belief misalignment arise, agents proactively communicate to align beliefs
 250 and share intents; when beliefs are synchronized, they proceed with action planning and execution.
 251 This adaptive mechanism enables context-aware collaboration decisions based on task progress and
 252 collaborators’ evolving states.

253 4.1 SYMBOLIC BELIEF REPRESENTATION
 254

255 **Symbolic belief language definition.** LLMs struggle to accurately model diverse and structured
 256 beliefs due to the complexity of real-world environments. To address this, we introduce a symbolic
 257 belief language inspired by classical planning language (Fox & Long, 2003; Fabiano et al., 2021).
 258 We formalize beliefs as tuples consisting of entities, attributes, and predicates. In particular, since
 259 beliefs are inherently higher-order (e.g., “Bob believes that Alice believes the apple is in the living
 260 room”), we explicitly introduce a recursive belief predicate `BELIEVE` to capture the collaborators’
 261 mental states. The definition of *symbolic belief language* is as follows:

262 An atomic belief takes one of the following two forms:

263
 264 ?belief ::= ?entity PREDICATE ?entity | ?entity ATTRIBUTE ?state

265 where:

- 266 • **PREDICATE:** A relational verb or spatial/state descriptor (e.g., `IN`, `HOLD`, `AT`, `INSIDE`,
 267 `NEAR`).
 268 • **ATTRIBUTE:** A unary property of an entity (e.g., `EXPLORATION_STATE`, `CONTENTS`).

-
- 270 • ?entity: A placeholder for any agent, object, or location (e.g., Alice, <apple>,
 271 <kitchen>).
 272 • ?state: A discrete condition or status (e.g., none, part, all, opened, closed).
- 273

274 The zero-order belief and first-order belief takes the following forms:

275

- 276 • Zero-order belief: ?agent BELIEVE ?belief.
 277 • First-order belief: ?agentA BELIEVE ?agentB BELIEVE ?belief.
- 278

279 As illustrated in Figure 2, when Alice observes Bob holding a banana, this visual input is encoded
 280 as a zero-order belief: Alice BELIEVE Bob HOLD <banana>. When Alice receives the
 281 message “I found an apple in the kitchen” from Bob, it is interpreted as a first-order belief: Alice
 282 BELIEVE Bob BELIEVE <apple> IN kitchen. We provide a detailed description of how
 283 unstructured natural language is converted into structured belief representations in Appendix D.1.

284 **Collaborative representing process.** As shown in Figure 2, we propose a propose-and-revise col-
 285 laborative representing progress to mitigate hallucination and compositional reasoning failures in-
 286 herent in LLMs. In this progress, agents iteratively propose and revise the structured belief rules
 287 including task constraints, agent capabilities, and logical dependencies. The output of this collab-
 288 orative progress is a consensus set of belief rules, which constitute a common collaborative belief
 289 world and are then used to guide subsequent task execution.

290
 291 4.2 BAYESIAN BELIEF COLLABORATION

292 In DEC-POMDPs, belief modeling typically follows a Bayesian filtering framework: a **update** that
 293 incorporates posterior observation, followed by a **prediction** step based on prior beliefs. We adopt
 294 this well-grounded mathematical structure. In the update phase, we generate the agent’s beliefs using
 295 its partial observation from the environment. In the prediction phase, we leverage the reasoning
 296 capabilities of LLMs to predict the potential states of external environment and infer collaborator’s
 297 intents. The specific design is as follows.

298 **Belief update.** This step captures the agent’s ability to update its beliefs in response to partial
 299 observation. We decompose observation into two modalities:

- 300 • **Visual observation:** The ego visual perception. (e.g., object positions, agent states);
 301 • **Communication observation:** Messages explicitly transmitted by other agents.

302 Given the belief rules summarized in the first phase, the agent extracts task-relevant information and
 303 updates both **zero-order beliefs** and **first-order beliefs**. Notably, during the update of first-order
 304 beliefs, we employ theory-of-mind (ToM) reasoning (Li et al., 2023; Ma et al., 2023) to prompt
 305 the agent to interpret messages from the collaborator’s perspective. This prevents the agent from
 306 conflating personal information with public information, ensuring a more accurate belief estimation.
 307 The prompt structure is illustrated below:

308
 309 **Belief Update Prompt**

310 Prompt: <Instruct Head> + <Partial Observation> + <Belief Rules>
 311 LLM: <Updated Beliefs>

312 **Belief prediction.** Building upon the agent’s collaborative belief world, we enable proactive co-
 313 ordination by predicting the possible beliefs based on the updated beliefs. Agents perform belief
 314 prediction separately based on zero-order and first-order beliefs. For zero-order beliefs, we prompt
 315 the LLM to infer possible states of environment. Based on these predicted beliefs, agents then gen-
 316 erate plans that maximize task efficiency by prioritizing high-utility, low-uncertainty exploration or
 317 manipulation steps. For first-order beliefs, we repeat the reasoning step. However, to ensure compre-
 318 hensive coverage of potential miscoordination, agent will explicitly reason over multiple intents for
 319 every collaborator—not just the most likely one. This multi-hypothesis modeling allows the agents
 320 to fully assess the current collaboration status, guiding their subsequent collaboration behaviors.
 321 The prompt structure is illustrated below:

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

Belief Prediction Prompt

First-order Belief Prediction: <Instruct Head> + <first-order Beliefs>

LLM: <Predicted Beliefs> + <Collaborator's Intents>

Zero-order Belief Prediction: <Instruct Head> + <zero-order Beliefs>

LLM: <Predicted Beliefs> + <My plan>

Adaptive collaboration. After updating and predicting the collaborative belief world, each agent obtains an estimation about collaborators' intents and their mental states, enabling agents to proactively evaluate the current collaboration status. With this capability for dynamic intent inference and state estimation, agents can autonomously and adaptively decide how to collaborate: when potential miscoordination (e.g. conflicting plans) is detected, they send context-aware messages to promote consensus and consistent planning among collaborators; when the current collaboration status is unlikely to cause serious conflicts, agents prefer executing actions directly to improve overall efficiency. To be specific, we first prompt the LLM to explicitly reason over two key aspects: (1) belief misalignment (e.g., Only Bob knows the apple's location.), and (2) potentially conflicting actions (e.g., Alice and Bob plan to explore the same room.). Second, if agents detect the **potential** miscoordination, they construct a message with the misaligned beliefs and share their intents. Based on this reasoning analysis, agents autonomously adjust their collaboration behaviors, thus promoting efficient, adaptive, and intent-aware collaboration. Details are illustrated in the Figure 2.

5 EXPERIMENTS

In this section, we instantiate CoBel-World with diverse LLMs to validate its effectiveness across different benchmarks. First, we compare CoBel-World against several important baselines to demonstrate its superiority in both collaboration efficiency and communication cost. Second, we visualize task trajectories and interaction content to illustrate how CoBel-World leverages belief modeling to facilitate consistent planning and effective communication. Next, we conduct ablation studies to verify the effectiveness of individual modules and extend CoBel-World to scenarios involving more agents to validate its scalability in many-agent environments.

5.1 EXPERIMENT SETTINGS

Benchmarks. Recently, several benchmarks have been developed to evaluate LLM-based multi-agent systems in embodied environments. PARTNR (Chang et al., 2024) provides a large-scale suite of household tasks to evaluate the reasoning and planning capabilities of LLM-based multi-agent systems. CoELA (Zhang et al., 2023) introduces multiple embodied multi-agent tasks with explicit inter-agent communication channel. To demonstrate CoBel-World's efficiency in communication, we follow CoELA (Zhang et al., 2023) and adopt the two challenging embodied multi-agent benchmarks for our experiments: ThreeDworld Multi-Agent Transport (TDW-MAT) (Zhang et al., 2023), and the Communicative Watch-And-Help (C-WAH) (Zhang et al., 2023). TDW-MAT is built on the general purpose virtual world simulation platform TDW (Gan et al., 2020), and requires agents to move objects by their hands or containers which can contain several objects for efficient moving to the destination. Moreover, agents can receive ego-centric RGB-D images as observation and communicate with others. The test set of TDW-MAT consists of 24 episodes, evenly divided into two task categories: food and stuff. Within each category, episodes are further divided by difficulty into high-capacity (with more containers can be used) and low-capacity settings. In C-WAH, agents are requested to complete five types of household activities, represented as various predicates with specific counts that must be satisfied. The test set contains 10 episodes, including both symbolic and visual observation settings. More details about TDW-MAT and C-WAH environments are provided in Appendix C.1 and C.2, respectively.

Metrics. Our evaluation metrics span two dimensions: task completion efficiency and communication cost. For task completion efficiency, we use different metrics for the two benchmarks. On TDW-MAT, we adopt *transport rates* as the primary performance metric, which refers to the fraction of subtasks successfully completed within 3,000 time steps (frames). Note that a single action step may span multiple time steps (e.g., arm resetting). On C-WAH, we report the *average steps* required to complete all tasks, which reflects the efficiency of collaborative coordination. For communication

378
 379 Table 1: Performance comparison using different LLMs on TDW_MAT benchmark. “ \uparrow/\downarrow ” means
 380 higher/lower is better. Values highlighted in pink denote the best performance, while values
381 indicate the second-best results.

Task Category	Classic Agents		Qwen3-32B Agents			GPT-4o Agents		
	RHP	RHP	CoELA	Capo	CoBel-World	CoELA	Capo	CoBel-World
<i>Transport Rate (\uparrow)</i>								
Food-low-capacity	46.67	78.33	63.33	63.33	65.00	86.67	<u>88.33</u>	88.33
Stuff-low-capacity	43.33	73.33	70.00	<u>66.67</u>	71.67	81.67	<u>83.33</u>	88.33
Low-capacity Average	45.00	75.83	66.67	65.00	68.34	84.17	<u>85.83</u>	88.33
Food-high-capacity	53.33	81.67	75.00	68.33	76.67	<u>81.67</u>	80.00	91.67
Stuff-high-capacity	50.00	65.00	58.33	71.67	58.33	<u>71.67</u>	<u>78.33</u>	78.33
High-capacity Average	51.67	73.34	66.67	70.00	67.50	76.67	<u>79.17</u>	85.00
Total Average	48.34	74.59	66.67	67.5	67.92	80.42	<u>82.50</u>	86.67
<i>Communication Cost (\downarrow)</i>								
Food-low-capacity	—	—	3549	8199	<u>2053</u>	2117	6878	1874
Stuff-low-capacity	—	—	4397	7620	<u>2092</u>	2122	7256	1506
Low-capacity Average	—	—	3973	7910	<u>2073</u>	2120	7067	1690
Food-high-capacity	—	—	3819	7954	<u>2103</u>	2425	5989	1786
Stuff-high-capacity	—	—	3408	7395	2369	<u>2229</u>	8178	1776
High-capacity Average	—	—	3613	7509	<u>2236</u>	2327	6814	1781
Total Average	—	—	3793	7709	<u>2155</u>	2224	6940	1736

397
 398 cost, we compute *the average number of tokens* generated by all agents per episode for communication.
 399 Higher transport rates, fewer average steps, and fewer tokens indicate better performance.

400 **Baselines.** We select two types of baselines for performance comparison: traditional LLM-free
 401 agents and LLM-based agents. The traditional agents include: (i) MCTS-based Hierarchical Planner
 402 (MHP) (Zhang et al., 2023): A hierarchical planning approach designed for the original Watch-
 403 And-Help Challenge. It features a Monte Carlo Tree Search (MCTS)-based high-level planner and a
 404 regression-based low-level planner. (ii) Rule-based Hierarchical Planner (RHP) (Zhang et al., 2023):
 405 A heuristic-based hierarchical planning approach designed for the original ThreeDWorld Transport
 406 Challenge. It uses a rule-based high-level planner combined with an A-start-based low-level planner
 407 for navigation. The LLM-based baselines include: (iii) CoELA (Zhang et al., 2023): A collaboration
 408 framework based on step-by-step templated message generation and planning. (iv) CaPo (Liu et al.,
 409 2024b): A collaboration framework based on event-driven multi-round discussions.

410 **Implementation details.** To evaluate CoBel-World across different underlying LLMs, we instanti-
 411 ate the LLM-based agents in CoBel-World and other LLM-based baselines using two state-of-the-art
 412 models: Qwen3-32B (Yang et al., 2025), an open-source model accessed via the Aliyun API, and
 413 ChatGPT-4o (Hurst et al., 2024), a closed-source model accessed via the OpenAI API. We set the
 414 parameters with temperature = 0.7, top-p = 1, and a maximum token limit of 512 for both models.
 415 Unless otherwise stated, all experiments involve two agents on both benchmarks.

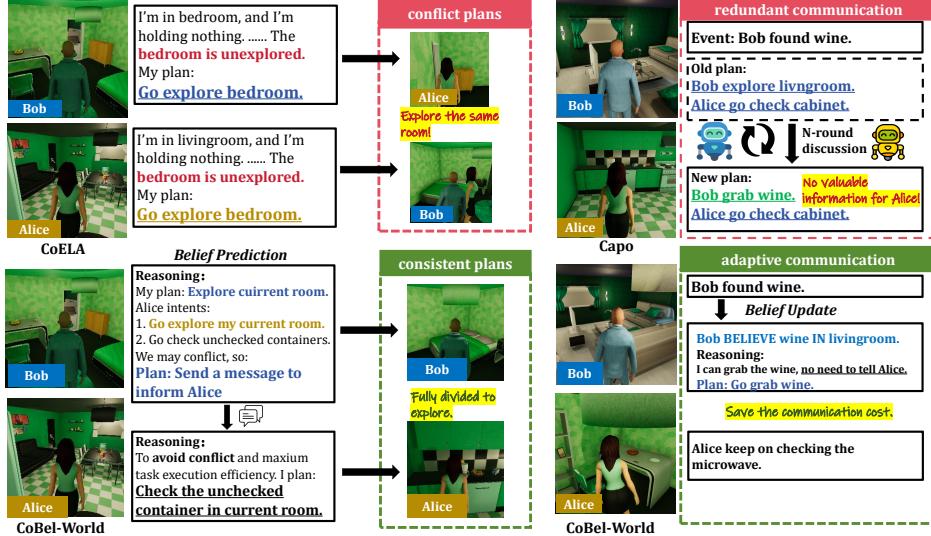
416
 417

5.2 RESULTS

418
 419 **Performance.** Table 1 and Table 2 compares the performance of different methods on the C-
 420 WAH and TDW-MAT benchmarks, respectively. In general, LLM-based agents driven by the small
 421 Qwen3-32B perform worse than traditional baselines due to the limited LLM model scale, but agents
 422 powered by the more powerful GPT-4o consistently outperform traditional baselines across all test
 423 settings. Among them, our CoBel-World framework achieves superior task efficiency over all base-
 424 line methods while significantly reducing communication costs. On TDW-MAT, CoBel-World im-
 425 proves average transport rate by **4%** over the best baseline results; on C-WAH, it reduces average
 426 steps by **24-28%** compared to the strongest baseline. In terms of communication cost, CoBel-World
 427 reduces token usage by **22-60%** across all test settings. These results indicate that belief-driven
 428 collaboration not only minimizes redundant communication but also enhances collaboration consis-
 429 tency and planning efficiency. By comparison, baselines such as CoELA and Capo rely on fixed
 430 communication protocols to exchange known information and thereby often fail to detect potential
 431 miscoordination until conflicting actions occur, leading to the drop of task completion efficiency.
 Moreover, they initiate communication even when collaboration is unnecessary (e.g., when agents
 can independently transport all objects in different rooms), causing higher communication costs.

432 Table 2: Performance comparison using different LLMs on C-WAH benchmark. “↑/↓” means high-
433 er/lower is better. Values highlighted in pink denote the best performance, while values underlined
434 indicate the second-best results.

435 Task	436 Obs Type	437 Classic Agents		438 Qwen3-32B Agents			439 GPT-4o Agents		
		MHP	MHP	CoELA	Capo	CoBel-World	CoELA	Capo	CoBel-World
<i>Average Step (↓)</i>									
439 Prepare tea	Symbolic Obs	163	87	91	101	106	82	85	53
440 Wash dishes	Visual Obs	206	<u>102</u>	181	180	105	130	184	91
441 Prepare meal	Symbolic Obs	106	70	48	56	49	46	68	38
442 Visual Obs	111	96	95	187	101	76	<u>75</u>	64	
443 Put groceries	Symbolic Obs	105	69	66	87	<u>56</u>	68	66	49
444 Visual Obs	181	95	97	151	97	100	83	65	
445 Set up table	Symbolic Obs	113	64	82	70	82	64	67	59
446 Visual Obs	166	80	108	168	<u>64</u>	82	93	57	
447 Prepare tea	Symbolic Obs	83	48	69	65	65	56	<u>45</u>	44
448 Wash dishes	Visual Obs	95	79	115	140	97	102	<u>78</u>	75
Symbolic Average		114	68	71	76	72	63	66	48
Visual Average		152	90	119	165	93	98	103	71
<i>Communication Cost (↓)</i>									
449 Prepare tea	Symbolic Obs	—	—	1114	5214	386	995	7027	409
450 Visual Obs	—	—	—	2025	5088	409	964	6207	399
451 Wash dishes	Symbolic Obs	—	—	1095	5435	<u>332</u>	642	5587	250
452 Visual Obs	—	—	—	914	3708	<u>349</u>	704	4412	322
453 Prepare meal	Symbolic Obs	—	—	1392	9183	<u>464</u>	1188	10244	365
454 Visual Obs	—	—	—	1734	5930	<u>497</u>	1001	6028	341
455 Put groceries	Symbolic Obs	—	—	1124	4349	<u>453</u>	878	7163	428
456 Visual Obs	—	—	—	1352	4797	<u>397</u>	862	4285	395
457 Set up table	Symbolic Obs	—	—	1430	3671	379	988	6136	434
458 Visual Obs	—	—	—	1242	2705	<u>430</u>	913	2547	347
Symbolic Average		—	—	1231	5570	403	938	7231	377
Visual Average		—	—	1453	4445	416	889	4696	360



476 **Figure 3: Illustration of the advantages of CoBel-World in terms of planning consistency and**
477 **communication efficiency on C-WAH benchmark.** All methods are powered by GPT-4o. The
478 left part illustrates CoBel-World’s superior planning consistency over CoELA, while the right panel
479 highlights its reduced communication costs compared to Capo.

481 **Qualitative analysis.** Figure 3 illustrates the advantages of CoBel-World over baselines in terms of
482 collaboration consistency and communication efficiency. As shown in Figure 3 (left), at the initial
483 stage of the task, agents will first plan their subsequent actions. CoELA follows a fixed pipeline of
484 communication-then-planning, which often fails to reach consensus with collaborators and leads to
485 conflicting plans (e.g., both Alice and Bob intend to explore the same room). In contrast, CoBel-
486 World performs belief prediction before decision-making to reason about the collaborators’ intents,

486 detect potential miscoordination, and proactively initiate communication to reach consensus. For
487 instance, Bob infers that Alice might also explore his current room and thus proactively shares
488 his intent and beliefs with her, enabling more consistent planning. Capo relies on event-triggered
489 multi-round discussions to reach consensus with collaborators. However, when the triggering event
490 provides little or no benefit to collaboration, this mechanism incurs unnecessary communication
491 costs. As illustrated in Figure 3 (right), Capo’s discussions fail to yield better plans, resulting in
492 redundant communication. In contrast, CoBel-World leverages belief modeling to autonomously
493 assess the expected utility of communication and dynamically decides whether to communicate to
494 enhance collaboration or directly execute a plan to maximize task efficiency.

495
496 **5.3 ABLATION STUDY**

497
498 **Effects of each component in CoBel-World.** With C-WAH benchmark as example, we analyze
499 the contributions of two key components in Cobel-World to collaboration: Symbolic Belief Repre-
500 sentation (SBP) and Bayesian Belief Collaboration (BBC). As shown in Table 3, after removing the
501 SBR module, Cobel-World exhibits a slight performance drop. This indicates that representing be-
502 liefs using unstructured natural language introduces more redundant information, impairing LLMs’
503 planning and decision-making capabilities. In contrast, removing the BBC module leads to a severe
504 performance drop. This phenomenon demonstrates that inferring collaborators’ intents significantly
505 enhances agents’ ability to perceive the collaborative status and thus enable more context-aware,
506 proactive collaboration.

507 **Cobel-World with many agents.** Table 4 reports CoBel-World’s performance on the C-WAH
508 benchmark as the number of agents scales beyond two. A significant performance gain is observed
509 when scaling from two to three agents. However, increasing the agent number to four yields only
510 marginal improvements in Average Steps. This is because the C-WAH benchmark includes a num-
511 ber of relatively simple tasks composed of only 2–3 subgoals and thus cannot fully leverage the
512 capacity of four agents. As the “wash dishes” task illustrated in the Appendix C.2, only two objects
513 require collection and transport, making collaboration among more than two agents unnecessary and
514 potentially hinder consistent planning.

515 Table 3: Effects of the components in CoBel-World
516 using GPT-4o on C-WAH benchmark. Average steps
517 required to complete task are reported. “SBP” de-
518 notes “Symbolic Belief Representation” and “BBC”
519 denotes “Bayesian Belief Collaboration”.

Method	Symbolic Obs (↓)
CoBel-World	51
CoBel-World (No SBR)	55
CoBel-World (No BBC)	68

520 Table 4: Benefits of increasing agent num-
521 ber in our CoBel-World using GPT-4o on
522 C-WAH benchmark. Average steps re-
523 quired for task completion are reported.

Method	Symbolic Obs (↓)
CoBel-World×2	51
CoBel-World×3	47
CoBel-World×4	43

525
526 **527 6 CONCLUDING REMARKS**

528
529 In this work, we introduced CoBel-World, a framework that equips LLM-based embodied agents
530 with a *collaborative belief world* to enable efficient and consistent multi-agent collaboration under
531 partial observability. CoBel-World formalizes world and mental state knowledge into a structured
532 symbolic belief language and leverages LLMs’ zero-shot reasoning for Bayesian-style belief up-
533 dates. With CoBel-World, LLM agents can proactively infer teammates’ intentions and detect po-
534 tential miscoordination. This intent-aware belief modeling supports adaptive communication, gen-
535 erating messages only when necessary to resolve conflicts or align critical information, thereby re-
536 ducing redundant dialogue and physical actions. Extensive experiments on challenging benchmarks
537 (TDW-MAT and C-WAH) show that CoBel-World reduces communication costs by 22–60% while
538 consistently improving task completion efficiency over state-of-the-art baselines. These results val-
539 idate that explicit belief representation is a key enabler of scalable and human-like collaboration in
open-ended environments.

540 7 ETHICS STATEMENT
541

542 This work involves simulated embodied agents in controlled virtual environments (TDW-MAT and
543 C-WAH) and does not include human subjects, real-world data collection, or deployment in safety-
544 critical settings. All experiments comply with standard research integrity practices. The proposed
545 CoBel-World framework aims to improve communication efficiency and collaboration efficiency
546 among AI agents, with no intent or mechanism to generate harmful, discriminatory, or privacy-
547 invasive behaviors. No external funding sources or conflicts of interest influenced the design or
548 interpretation of this research.

549
550 8 REPRODUCIBILITY STATEMENT
551

552 We have taken multiple steps to ensure the reproducibility of our results. Full experimental details,
553 including environment specifications (TDW-MAT and C-WAH), observation/action spaces, evalua-
554 tion metrics, and hyperparameters, are provided in Sections 5.1 and Appendix C. The symbolic
555 belief language syntax, belief update/prediction prompts, and **Bayesian** adaptive collaboration are
556 explicitly defined in Section 4 and Appendix D. Ablation studies and scaling analyses are reported
557 in Section 5.3. While we cannot release code due to double-blind review constraints, all algorithmic
558 components are described with sufficient detail to enable independent reimplementations.

559 We provide an anonymous github repo with codes for anyone to **reproduce** CoBel-World. The
560 anonymous github repo url: https://anonymous.4open.science/r/CoBel_World

561
562 REFERENCES
563

564 Daniel S. Bernstein, Shlomo Zilberstein, and Neil Immerman. The complexity of decentralized
565 control of markov decision processes. In *Conference on Uncertainty in Artificial Intelligence*,
566 2000. URL <https://api.semanticscholar.org/CorpusID:1195261>.

567 Daniel S Bernstein, Robert Givan, Neil Immerman, and Shlomo Zilberstein. The complexity of
568 decentralized control of markov decision processes. *Mathematics of operations research*, 27(4):
569 819–840, 2002.

571 Chengzhi Cao, Yinghao Fu, Sheng Xu, Ruimao Zhang, and Shuang Li. Enhancing human-ai col-
572 laboration through logic-guided reasoning. In *The Twelfth International Conference on Learning
573 Representations*, 2024.

574 Matthew Chang, Gunjan Chhablani, Alexander Clegg, Mikael Dallaire Cote, Ruta Desai, Michal
575 Hlavac, Vladimir Karashchuk, Jacob Krantz, Roozbeh Mottaghi, Priyam Parashar, Siddharth
576 Patki, Ishita Prasad, Xavi Puig, Akshara Rai, Ram Ramrakhyta, Daniel Tran, Joanne Truong,
577 John M. Turner, Eric Undersander, and Tsung-Yen Yang. Partnr: A benchmark for planning
578 and reasoning in embodied multi-agent tasks. *ArXiv*, abs/2411.00081, 2024. URL <https://api.semanticscholar.org/CorpusID:273798601>.

580 Gheorghe Comanici, Eric Bieber, Mike Schaeckermann, Ice Pasupat, Noveen Sachdeva, Inderjit
581 Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
582 frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
583 bilities. *arXiv preprint arXiv:2507.06261*, 2025.

585 Francesco Fabiano, Biplav Srivastava, Jonathan Lenchner, Lior Horesh, Francesca Rossi, and Mar-
586 rianna Bergamaschi Ganapini. E-pddl: A standardized way of defining epistemic planning prob-
587 lems. *arXiv preprint arXiv:2107.08739*, 2021.

588 Jakob Foerster, Francis Song, Edward Hughes, Neil Burch, Iain Dunning, Shimon Whiteson,
589 Matthew Botvinick, and Michael Bowling. Bayesian action decoder for deep multi-agent re-
590 inforcement learning. In *International Conference on Machine Learning*, pp. 1942–1951. PMLR,
591 2019.

592 Maria Fox and Derek Long. Pddl2. 1: An extension to pddl for expressing temporal planning
593 domains. *Journal of artificial intelligence research*, 20:61–124, 2003.

- 594 Chuang Gan, Jeremy Schwartz, Seth Alter, Damian Mrowca, Martin Schrimpf, James Traer, Julian
595 De Freitas, Jonas Kubilius, Abhishek Bhandwaldar, Nick Haber, et al. Threedworld: A platform
596 for interactive multi-modal physical simulation. *arXiv preprint arXiv:2007.04954*, 2020.
597
- 598 Hector Geffner and Blai Bonet. *A concise introduction to models and methods for automated plan-
599 ning*. Morgan & Claypool Publishers, 2013.
- 600 Xudong Guo, Kaixuan Huang, Jiale Liu, Wenhui Fan, Natalia Vélez, Qingyun Wu, Huazheng Wang,
601 Thomas L Griffiths, and Mengdi Wang. Embodied llm agents learn to cooperate in organized
602 teams. *arXiv preprint arXiv:2403.12482*, 2024.
603
- 604 Yinghui He, Yufan Wu, Yilin Jia, Rada Mihalcea, Yulong Chen, and Naihao Deng. Hi-tom: A
605 benchmark for evaluating higher-order theory of mind reasoning in large language models. *arXiv
606 preprint arXiv:2310.16755*, 2023.
- 607 Sirui Hong, Xiawu Zheng, Jonathan Chen, Yuheng Cheng, Jinlin Wang, Ceyao Zhang, Zili Wang,
608 Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, et al. Metagpt: Meta programming for multi-
609 agent collaborative framework. *arXiv preprint arXiv:2308.00352*, 3(4):6, 2023.
610
- 611 Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
612 trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint
613 arXiv:2410.21276*, 2024.
- 614 Kunal Jha, Tuan Anh Le, Chuanyang Jin, Yen-Ling Kuo, Joshua B Tenenbaum, and Tianmin Shu.
615 Neural amortized inference for nested multi-agent reasoning. In *Proceedings of the AAAI Con-
616 ference on Artificial Intelligence*, volume 38, pp. 530–537, 2024.
617
- 618 Chuanyang Jin, Yutong Wu, Jing Cao, Jiannan Xiang, Yen-Ling Kuo, Zhiting Hu, Tomer David
619 Ullman, Antonio Torralba, Joshua B. Tenenbaum, and Tianmin Shu. Mmtom-qa: Multimodal
620 theory of mind question answering. *ArXiv*, abs/2401.08743, 2024. URL <https://api.semanticscholar.org/CorpusID:266820764>.
621
- 622 Shyam Sundar Kannan, Vishnunandan L. N. Venkatesh, and Byung-Cheol Min. Smart-llm:
623 Smart multi-agent robot task planning using large language models. *2024 IEEE/RSJ Interna-
624 tional Conference on Intelligent Robots and Systems (IROS)*, pp. 12140–12147, 2023. URL
625 <https://api.semanticscholar.org/CorpusID:262055166>.
626
- 627 Filippos Kominis and Hector Geffner. Beliefs in multiagent planning: From one agent to many. In
628 *Proceedings of the International Conference on Automated Planning and Scheduling*, volume 25,
629 pp. 147–155, 2015.
630
- 631 Huao Li, Yu Quan Chong, Simon Stepputtis, Joseph Campbell, Dana Hughes, Michael Lewis, and
632 Katia P. Sycara. Theory of mind for multi-agent collaboration via large language models. In
633 *Conference on Empirical Methods in Natural Language Processing*, 2023. URL <https://api.semanticscholar.org/CorpusID:264172518>.
634
- 635 Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
636 Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. *arXiv preprint
637 arXiv:2412.19437*, 2024a.
638
- 639 Jie Liu, Pan Zhou, Yingjun Du, Ah-Hwee Tan, Cees G. M. Snoek, Jan Jakob Sonke, and Efs-
640 tratiros Gavves. Capo: Cooperative plan optimization for efficient embodied multi-agent coop-
641 eration. *ArXiv*, abs/2411.04679, 2024b. URL <https://api.semanticscholar.org/CorpusID:273877742>.
642
- 643 Ziqiao Ma, Jacob Sansom, Run Peng, and Joyce Chai. Towards a holistic landscape of situated
644 theory of mind in large language models. *arXiv preprint arXiv:2310.19619*, 2023.
645
- 646 Zhao Mandi, Shreeya Jain, and Shuran Song. Roco: Dialectic multi-robot collaboration with large
647 language models. In *2024 IEEE International Conference on Robotics and Automation (ICRA)*,
pp. 286–299. IEEE, 2024.

-
- 648 Pol Moreno, Edward Hughes, Kevin R McKee, Bernardo Avila Pires, and Théophane Weber. Neural
649 recursive belief states in multi-agent reinforcement learning. *arXiv preprint arXiv:2102.02274*,
650 2021.
- 651 Siddharth Nayak, Adelmo Morrison Orozco, Marina Ten Have, Vittal Thirumalai, Jackson Zhang,
652 Darren Chen, Aditya Kapoor, Eric Robinson, Karthik Gopalakrishnan, James Harrison, Brian
653 Ichter, Anuj Mahajan, and Hamsa Balakrishnan. Long-horizon planning for multi-agent robots
654 in partially observable environments. *ArXiv*, abs/2407.10031, 2024. URL <https://api.semanticscholar.org/CorpusID:271212913>.
- 655
- 656 Frans A. Oliehoek and Chris Amato. A concise introduction to decentralized pomdps. In
657 *SpringerBriefs in Intelligent Systems*, 2016. URL <https://api.semanticscholar.org/CorpusID:3263887>.
- 658
- 659 R OpenAI. Gpt-4 technical report. arxiv 2303.08774. *View in Article*, 2(5):1, 2023.
- 660
- 661 Paul J Pritz and Kin K Leung. Belief states for cooperative multi-agent reinforcement learning under
662 partial observability. *arXiv preprint arXiv:2504.08417*, 2025.
- 663
- 664 Chen Qian, Wei Liu, Hongzhang Liu, Nuo Chen, Yufan Dang, Jiahao Li, Cheng Yang, Weize Chen,
665 Yusheng Su, Xin Cong, et al. Chatdev: Communicative agents for software development. *arXiv
666 preprint arXiv:2307.07924*, 2023.
- 667
- 668 Melanie Sclar, Sachin Kumar, Peter West, Alane Suhr, Yejin Choi, and Yulia Tsvetkov. Minding
669 language models' (lack of) theory of mind: A plug-and-play multi-character belief tracker. In
670 Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), *Proceedings of the 61st Annual
671 Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 13960–
672 13980, Toronto, Canada, July 2023. Association for Computational Linguistics. doi: 10.18653/
673 v1/2023.acl-long.780. URL <https://aclanthology.org/2023.acl-long.780/>.
- 674
- 675 Haojun Shi, Suyu Ye, Xinyu Fang, Chuanyang Jin, Layla Isik, Yen-Ling Kuo, and Tianmin Shu.
676 Muma-tom: Multi-modal multi-agent theory of mind. In *AAAI Conference on Artificial Intelligence*,
677 2024. URL <https://api.semanticscholar.org/CorpusID:271924164>.
- 678
- 679 Matthijs T. J. Spaan, Geoffrey J. Gordon, and Nikos A. Vlassis. Decentralized planning under
680 uncertainty for teams of communicating agents. In *Adaptive Agents and Multi-Agent Systems*,
681 2006a. URL <https://api.semanticscholar.org/CorpusID:1751957>.
- 682
- 683 Matthijs TJ Spaan, Geoffrey J Gordon, and Nikos Vlassis. Decentralized planning under uncertainty
684 for teams of communicating agents. In *Proceedings of the fifth international joint conference on
685 Autonomous agents and multiagent systems*, pp. 249–256, 2006b.
- 686
- 687 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
688 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in
689 neural information processing systems*, 35:24824–24837, 2022.
- 690
- 691 Ying Wen, Yaodong Yang, Rui Luo, Jun Wang, and Wei Pan. Probabilistic recursive reasoning for
692 multi-agent reinforcement learning. *arXiv preprint arXiv:1901.09207*, 2019.
- 693
- 694 Duo Wu, Jinghe Wang, Yuan Meng, Yanning Zhang, Le Sun, and Zhi Wang. Catp-llm: Empowering
695 large language models for cost-aware tool planning. In *IEEE/CVF International Conference on
696 Computer Vision (ICCV)*. IEEE, 2025.
- 697
- 698 Sarah A Wu, Rose E Wang, James A Evans, Joshua B Tenenbaum, David C Parkes, and Max
699 Kleiman-Weiner. Too many cooks: Coordinating multi-agent collaboration through inverse plan-
ning. In *Proceedings of the annual meeting of the cognitive science society*, volume 42, 2020.
- 700
- 701 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
702 Chang Gao, Chengan Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint
703 arXiv:2505.09388*, 2025.
- 704
- 705 Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
706 Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. *Ad-
707 vances in neural information processing systems*, 36:11809–11822, 2023.

-
- 702 Xie Yi, Zhanke Zhou, Chentao Cao, Qiyu Niu, Tongliang Liu, and Bo Han. From debate to equi-
703 librium: Belief-driven multi-agent llm reasoning via bayesian nash equilibrium. *arXiv preprint*
704 *arXiv:2506.08292*, 2025.
- 705 Yunpeng Zhai, Peixi Peng, Chen Su, and Yonghong Tian. Dynamic belief for decentralized multi-
706 agent cooperative learning. In *IJCAI*, pp. 344–352, 2023.
- 708 Hongxin Zhang, Weihua Du, Jiaming Shan, Qinhong Zhou, Yilun Du, Joshua B. Tenenbaum, Tian-
709 min Shu, and Chuang Gan. Building cooperative embodied agents modularly with large lan-
710 guage models. *ArXiv*, abs/2307.02485, 2023. URL <https://api.semanticscholar.org/CorpusID:259342833>.
- 712 Hongxin Zhang, Zeyuan Wang, Qiushi Lyu, Zheyuan Zhang, Sunli Chen, Tianmin Shu, Yilun
713 Du, and Chuang Gan. Combo: Compositional world models for embodied multi-agent coop-
714 eration. *ArXiv*, abs/2404.10775, 2024. URL <https://api.semanticscholar.org/CorpusID:269157059>.
- 717 Zhining Zhang, Chuanyang Jin, Mung Yao Jia, Shunchi Zhang, and Tianmin Shu. Autotom: Scal-
718 ing model-based mental inference via automated agent modeling. In *The Thirty-ninth Annual*
719 *Conference on Neural Information Processing Systems*, 2025.
- 720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

756 A ADDITIONAL EXPERIMENTS AND ANALYSIS

758 A.1 STABILITY EXPERIMENTS

760 Due to the inherent stochasticity of large language models (LLMs), we conducted multiple evalua-
 761 tion runs to assess the stability of CoBel-World. Specifically, we performed three independent runs
 762 on the TDW-MAT benchmark using GPT-4o with a temperature setting of 0.7 and oracle perception.
 763 As shown in the Table 5, the results exhibit only minor variance across runs, indicating consistent
 764 and reproducible performance.

765 Table 5: Transport Rate (TR) comparison on the TDW-MAT task using GPT-4o and oracle percep-
 766 tion. We perform 3 runs and report mean and variance.
 767

768 Runs	769 Food (\uparrow)	770 Stuff (\uparrow)	771 Avg. (\uparrow)
770 1	771 0.87	772 0.83	773 0.85
771 2	772 0.89	773 0.84	774 0.87
772 3	773 0.91	774 0.83	775 0.87
773 Average	774 0.89 (0.016)	775 0.83 (0.004)	776 0.86 (0.009)

775 A.2 FAILURE ANALYSIS

777 The failures from CoBel-World primarily stem from inherent hallucinations in LLMs. Although our
 778 symbolic belief language substantially reduces such hallucinations, it cannot fully eliminate them.
 779 We give detailed failure cases in Figure 4.
 780

781 A.3 PERFORMANCE-COST TRADE-OFF REPORT

782 We report the performance-cost trade-off of CoBel-World and all baselines on the TDW-MAT bench-
 783 mark in Figure 5. Compared with prior methods, CoBel-World achieves the best trade-off between
 784 performance and cost.
 785

787 B THEORETICAL ANALYSIS OF COBEL-WORLD

789 **Belief update with Bayesian filter.** Due to partial observability, each agent i maintains a *belief state*
 790 $b_i : \mathcal{S} \rightarrow [0, 1]$, which represents its subjective probability distribution over the true state $s \in \mathcal{S}$. The
 791 belief b_i^t at time t is conditioned on the agent's local history $\tau_i^t = (o_i^0, a_i^0, \dots, o_i^t)$. Upon executing
 792 action $a^t \in \mathcal{A}$ and receiving observation $o_i^{t+1} \in \mathcal{O}_i$, agent i updates its belief using a Bayesian
 793 filter:
 794

$$795 b'_i(s') \propto O_i(o'_i | s', \mathbf{a}) \sum_{s \in \mathcal{S}} T(s' | s, \mathbf{a}) b_i(s), \quad (1)$$

797 where b_i is the current belief, b'_i is the updated belief, \mathbf{a} is the joint action, o'_i is the new observation,
 798 and T and O_i are the transition and observation models, respectively. This update decomposes into
 799 two conceptually distinct stages:
 800

801 **Prediction:** The agent predict possible beliefs based on its current belief:

$$802 \bar{b}_i(s') = \sum_{s \in \mathcal{S}} T(s' | s, \mathbf{a}) b_i(s),$$

804 resulting in a prior belief \bar{b}_i that captures the expected state distribution after the action. In our
 805 framework, this step is enhanced by *theory of mind reasoning* (Li et al., 2023; Ma et al., 2023),
 806 enabling agents to anticipate teammates' intentions.
 807

808 **Measurement update:** The agent conditions the prior on the new observation o'_i (including visual
 809 input and messages):

$$810 b'_i(s') \propto O_i(o'_i | s', \mathbf{a}) \cdot \bar{b}_i(s'),$$

810
811
812
813

Failure Cases

814
815
816 **Failure type:** belief update errors
817 **Failure log:**

Alice: low-level-plan: send a message: Hi Bob, I've explored part of the <Office>(3000). My subplan is to continue exploring the <Office>(3000) and transport objects to the bed.

belief_episode_0 - INFO - first belief update:
first-order beliefs:

Bob BELIEVE Alice BELIEVE <bed> IN <Office> (3000)

Analysis: In this case, LLM mistakenly associated bed and office (3000) in a sentence as belief, and finally got the wrong belief.

826
827 **Failure type:** belief prediction errors
828 **Failure log:**

Bob predict_first: The <Kitchen> (5000) is commonly associated with food items like oranges, breads, and bananas. Exploring this room might yield a higher chance of finding the goal objects.

Bob oppo_subplans:

- go to <Kitchen>(5000) - explore current room
<Kitchen>(5000)

Analysis: LLM mistakenly used common sense as a priori knowledge to aid belief prediction, but there is no setting in the experimental setting that "food is more likely to be in the kitchen", as a result, LLM suggest go to kitchen first.

838
839 **Failure type:** action-selection errors
840 **Failure log:**

Alice intuitive_planning: The last time you saw **Bob was in the <Office> (1000)**, which hasn't been explored yet. It may contain target objects or provide useful information for the goal.

Answer: A. go to <Office> (1000)

Analysis: Although LLM believed that Bob is in the <office>(1000) , LLM still chose to go to the <office>(1000) which is a redundant action.

847
848 **Failure type:** communication content generation error
849 **Failure log:**

Bob: low-level-plan:send a message: Hi Alice, I've explored all of the <Kitchen> (5000) and the <Livingroom> (8000), finding <orange> (556740) there. I'm holding <loaf_bread> (12849971). My subplan is to put <loaf_bread> (12849971) into <orange> (556740), grasp <orange> (556740), and transport to the bed.

Analysis: put <loaf_bread> (12849971) into <orange> (556740) is inconsistent with common sense and the simulation environment (Items are randomly initialized in each room) , which is the hallucination of LLM.

858
859
860
861
862
863

Figure 4: Failure cases of CoBel-World.

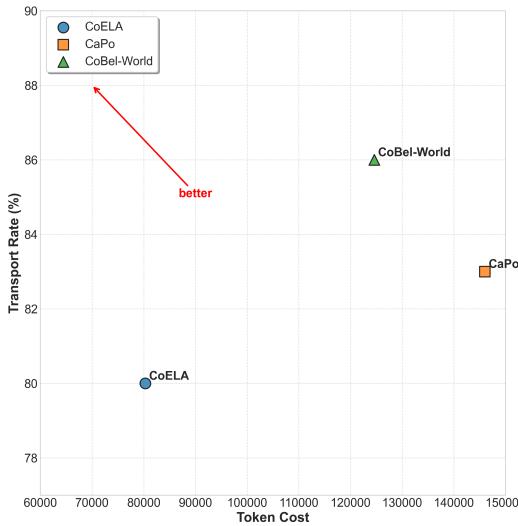


Figure 5: Performance-cost trade-off of CoBel-World and all baselines. The performance metric corresponds to the *Transport Rate* and the cost metric corresponds to the *Token Cost*.

yielding a posterior belief b'_i that incorporates direct evidence. This step enables rapid belief alignment through perception and communication.

This Bayesian-style process—predicting future states and update based on observations—forms the theoretical foundation of our **CoBel-World** framework.

C ADDITIONAL ENVIRONMENT DETAILS

We evaluate our methods and baseline methods on two challenging embodied multi-agent benchmarks: ThreeDWorld Multi-Agent Transport (TDW-MAT) and Communicative Watch-And-Help (C-WAH). We follow CoELA(Zhang et al., 2023) and the detailed descriptions of these benchmarks are provided below.

C.1 THREEDWORLD MULTI-AGENT TRANSPORT

Tasks. TDW-MAT comprises two distinct task categories: food-transportation and object-transportation. The food-transportation task involves 6 types of target objects including apple, banana, orange, bread, loaf bread, burger; and three container types: bowl, plate, and tea tray. And the object-transportation task includes another 6 different target objects including calculator, mouse, pen, lighter, purse, iPhone; and three container types: plastic basket, wooden basket, and wicker basket. In each task instance, the environment contains 10 target objects and between 2 to 5 containers. The scenes are structured across four semantically coherent room types: living room, office, kitchen, and bedroom with object placements adhering to real-world contextual plausibility. Agents are required to maximize the number of target objects delivered to a designated goal location within a time budget of 3,000 simulation frames. Containers serve as transport tools, each capable of carrying up to three objects; in their absence, agents can carry at most two objects simultaneously.

Observation Space. The embodied agent receives a variety of observations, with the primary ones being an egocentric RGB image and a depth image. Additionally, there are several auxiliary observations. The observation space includes:

- **RGB image:** An egocentric image captured by a forward-facing camera, with a resolution of 512×512 and a field of view of 90 degrees.
- **Depth image:** This image shares the same camera intrinsic parameters as the RGB image.
- **Oracle Perception (optional):** An image where each object ID is represented by a distinct color, using the same camera intrinsic parameters as the RGB image.

-
- 918 • **Agent position and rotation:** The position and rotation of the agent within the simulation
 919 environment.
 920
 921 • **Messages:** Communications sent by all agents.
 922
 923 • **Held objects:** Information about the objects currently held by the agent.
 924
 925 • **Opponent held objects:** Information about objects held by another agent, if the agent is
 926 within view.
 927

928 **Action Space** In TDW-MAT, agents can perform 7 distinct types of actions to interact with the
 929 environment or communicate with each other. Each action spans multiple frames, and the detailed
 930 action space is outlined below:

- 931 • **Move forward:** The agent advances by 0.5m.
 932
 933 • **Turn left:** The agent rotates left by 15 degrees.
 934
 935 • **Turn right:** The agent rotates right by 15 degrees.
 936
 937 • **Grasp:** The agent grasps an object, successfully performing this action only when in close
 938 proximity to the object. The object can be either a target or a container.
 939
 940 • **Put In:** The agent places a target into a container, an action that is possible only when the
 941 agent is holding a target in one hand and a container in the other.
 942
 943 • **Drop:** The agent releases the objects held in hand.
 944
 945 • **Send message:** The agent sends a message to others, with a limit of 500 characters per
 946 frame.
 947

948
 949 Table 6: TDW_MAT tasks extended with capacity dimension
 950

951 Task Type	952 Container Num	953 Container Name
953 Food-low-capacity	2	tea tray, bowl, plate
954 Food-high-capacity	5	tea tray, bowl, plate
955 Stuff-low-capacity	2	wood basket, wicker basket, plastic basket
957 Stuff-high-capacity	5	wood basket, wicker basket, plastic basket

959
 960 **Extended TDW-MAT Tasks.** Building upon the classic TDW-MAT benchmark introduced by
 961 CoELA (Zhang et al., 2023), we extend the evaluation along task difficulty dimension to enable
 962 a more comprehensive comparison between CoBel-World and various baselines. Specifically, tasks
 963 are categorized into low-capacity and high-capacity settings based on the number of containers
 964 available to the agent in the environment. Each difficulty level comprises half of both the food-
 965 transportation and stuff-transportation tasks. Task details are provided in Table 6.
 966
 967

968 C.2 COMMUNICATIVE WATCH-AND-HELP

969
 970 Communicative Watch-And-Help (C-WAH) builds upon the Watch-And-Help challenge by incorpo-
 971 rating the ability for agents to send messages to one another. Sending messages, like other actions,
 consumes one timestep and is subject to a maximum length constraint.

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Table 7: Detailed description of C-WAH tasks

Task Name	Object Set
Prepare afternoon tea	ON(cupcake,coffeetable), ON(pudding,coffeetable), ON(apple,coffeetable), ON(juice,coffeetable), ON(wine,coffeetable)
Wash dishes	IN(plate,dishwasher), IN(fork,dishwasher)
Prepare a meal	ON(coffeepot,dinnertable),ON(cupcake,dinnertable), ON(pancake,dinnertable), ON(poundcake,dinnertable), ON(pudding,dinnertable), ON(apple,dinnertable), ON(juice,dinnertable), ON(wine,dinnertable)
Put groceries	IN(cupcake,fridge), IN(pancake,fridge), IN(poundcake,fridge), IN(pudding,fridge), IN(apple,fridge), IN(juice,fridge), IN(wine,fridge)
Set up a dinner table	ON(plate,dinnertable), ON(fork,dinnertable)

Task The Communicative Watch-And-Help (C-WAH) framework comprises five household-oriented tasks: Prepare afternoon tea, Wash dishes, Prepare a meal, Put groceries, and Set up a dinner table. Each task involves multiple subtasks, expressed through predicates in the form “ON/IN(x, y)”, which correspond to actions like “Place x ON/IN y”. Some detailed information is provided in Table 7. The primary objective is to complete all given subtasks within 250 timesteps, with each task containing between 3 to 5 subtasks.

Observation Space The C-WAH framework provides two observation modalities: Symbolic Observation and Visual Observation. In Symbolic Observation—consistent with the original Watch-And-Help setup—the agent has full access to all object-related information in the same room, including each object’s name, location, state, and relational attributes. In Visual Observation, agents receive egocentric RGB and depth images along with auxiliary observations. Detailed observations include:

- **RGB image:** An egocentric image from a forward-facing camera, with a resolution of 256 × 512 and a field of view of 60 degrees.
- **Depth image:** An image with the same camera intrinsic parameters as the RGB image.
- **Oracle Perception:** An image where each object ID is mapped to a color, sharing the same camera intrinsic parameters as the RGB image.
- **Agent position:** The agent’s position within the simulation world.
- **Messages:** Communications sent by all agents.
- **Held objects:** Information about the objects currently held by the agent.
- **Opponent held objects:** Information about objects held by another agent, if visible.

Action Space The action space in C-WAH closely resembles that of the original Watch-And-Help Challenge, with the addition of the send message action. The detailed action space includes:

- **Walk towards:** Move towards an object in the same room or towards a specific room.
- **Turn left:** Rotate left by 30 degrees.
- **Turn right:** Rotate right by 30 degrees.
- **Grasp:** Grasp an object, which can be successfully performed only when the agent is close to the object.
- **Open:** Open a closed container, performable only when the agent is near the container.
- **Close:** Close an open container, performable only when the agent is near the container.
- **Put:** Place held objects into an open container or onto a surface, performable only when the agent is near the target position.
- **Send message:** Communicate with others, with a limit of 500 characters per message.

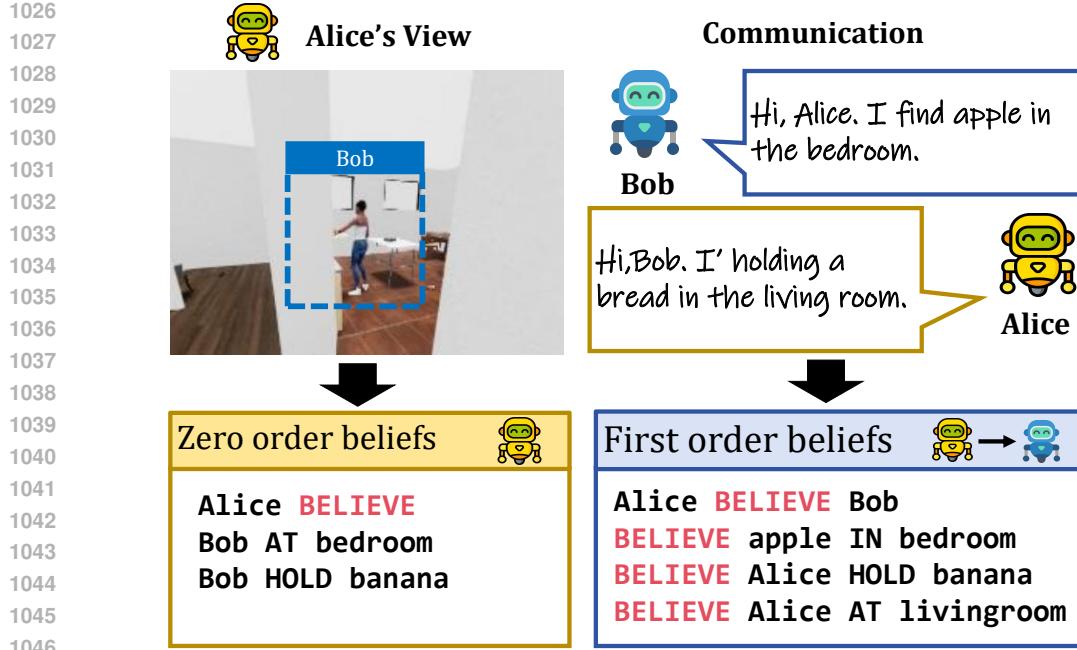


Figure 6: Examples of the transformation from unstructured natural language to structured beliefs.

D COBEL-WORLD DETAILS

D.1 BELIEF SYMBOLIC REPRESENTATION

Examples of Representing Beliefs. As illustrated in Figure 6, we provide several examples to demonstrate how natural language dialogues and partial visual observations are transformed into structured belief representations.

Prompt Templates. We list the belief rules construction prompts for the two agents Alice and Bob in the benchmarks, as shown in Figure 7 and Figure 8, respectively.

Belief Rules. Figure 9 illustrates the belief rules of CoBel-World.

D.2 BAYESIAN BELIEF COLLABORATION

In this part, we list the prompts used in the Bayesian Belief Collaboration module on TDW-MAT benchmark. Figure 11 and Figure 13 illustrate the prompts for zero-order belief update and prediction, respectively. Figure 10 and Figure 12 illustrate the prompts for first-order belief update and prediction, respectively. Figure 14, Figure 15, Figure 16 and Figure 17 depict the prompts for adaptive collaboration, communication, planning and replanning, respectively.

E LLM USAGE DISCLOSURE

We hereby disclose the use of LLM in the preparation of this manuscript, in compliance with ICLR's submission policies. The LLM was utilized as an assistive tool for language expression refinement during the writing process. Specifically, we leveraged the LLM to optimize the clarity, grammatical accuracy, and writing style of our manuscript. The LLM did not participate in any aspect of research ideation, experimental design or data analysis. All content processed with LLM assistance has undergone thorough review, verification, and manual revision by the authors to ensure scientific accuracy, originality, and consistency with the research findings. We confirm that no content generated by the LLM constitutes plagiarism, fabrication of facts, or other forms of scientific misconduct.

1080
1081
1082
1083
1084

1085 Belief Rules Construction Prompt of Alice

1086
1087 **Init Prompt:** You are Alice, you and Bob are constructing beliefs rules to denote the zero
1088 and first order belief of the world. You should first extract entity types and predicates in a
1089 specific domain given a task description and the belief symbolic language below. After that
1090 you should use the belief symbolic language to describe the possible belief types in this task
1091 domain and send to bob for discussion.

1092
1093 Belief symbolic language: \$BELIEF_LANGUAGE \$

1094 Task description: \$TASK_DESCRIPTIONS\$

1095 Note that the zeroth-order belief denote my knowledge of the world, first-order belief denote
1096 my knowledge of others belief.

1097 DO NOT generate beliefs that go beyond the information specified in the task description.
1098 Consider ONLY zero-order and first-order beliefs.

1099 The belief rules should be in syntax format with entity represented with a "?" prefix, and
1100 without any additional comment and analysis and explanation: You should output strictly in
1101 the format of the following structure:

1102
1103 Entity and predicate reasoning:

1104 Zero order belief rules:

1105 First order belief rules:

1106
1107 **Refine Prompt:** You are Alice, you and Bob are constructing beliefs rules to denote the
1108 zero and first order belief of the world. Given a task description and the belief symbolic
1109 language below, you should refine the belief rules according to Bob's suggestions.

1110 Belief symbolic language: \$BELIEF_LANGUAGE\$

1111 Task description: \$TASK_DESCRIPTIONS\$

1112 previous content: \$PREVIOUS_CONTENT\$

1113 Bob's suggestions: \$SUGGESTIONS\$

1114
1115 DO NOT generate beliefs that go beyond the information specified in the task description.
1116 Consider ONLY zeroth-order and first-order beliefs.

1117 Note that the zeroth-order belief denote my knowledge of the world, first-order belief denote
1118 my knowledge of others belief.

1119 Now try to refine your previous output according to Bob's suggestions. The belief rules
1120 should be in syntax format with entity represented with a ? prefix, and without any additional
1121 comment and analysis and explanation: You should output strictly in the format of the
1122 following structure:

1123
1124 Reasoning:

1125 Zero order belief rules:

1126 First order belief rules:

1127
1128 Figure 7: Alice's belief rules construction prompt

1129
1130
1131
1132
1133

1134
1135 **Belief Rules Construction Prompt of Bob**
1136
1137 **Discuss Prompt:** You are bob, you and Alice are constructing belief rules to denote the zero
1138 and first order belief of the world. You are required to check the belief rules made by Alice
1139 given the challenge description below. Give your reasoning progress in the reasoning:. And
1140 then give your comments: Satisfied or Unsatisfied. If Unsatisfied, you should give your
1141 suggestions to Alice on how to refine the construction.
1142
1143 These suggestions may include:
1144 Missing logical relationships among key beliefs, such as omitting the agent's belief about
1145 its position.
1146 Formatting errors, failing to comply with the prescribed format of the belief language.
1147
1148 Belief symbolic language: \$BELIEF_LANGUAGE\$ Task description: \$TASK_DESCRIPTION\$ Alice content: \$ALICE_CONTENT\$ Check if Alice's construction satisfy the need.
1149 Make deletion advice when occurring repeat syntagma. DO NOT provide suggestions that
1150 go beyond the information specified in the task description.
1151 Consider ONLY zeroth-order and first-order beliefs.
1152 Note that the zeroth-order belief denote my knowledge of the world, first-order belief denote
1153 my knowledge of others belief.
1154
1155 You should output strictly in the format of the following structure:
1156
1157 Reasoning:
1158 Suggestions:
1159 Satisfied:(yes or no)

Figure 8: Bob's belief rules construction prompt

1164
1165 **Belief Rules**
1166
1167 zero-order belief rules:
1168 ?agent BELIEVE ?object IN ?room
1169 ?agent BELIEVE ?bed IN ?room
1170 ?agent BELIEVE ?container IN ?room
1171 ?agent BELIEVE ?agent HOLD ?object
1172 ?agent BELIEVE ?agent HOLD ?container
1173 ?agent BELIEVE ?container CONTAIN ?object
1174 ?agent BELIEVE ?room EXPLORED ?exploration_state
1175 ?agent BELIEVE ?agent AT ?room
1176
1177 first-order belief rules:
1178 ?agentA BELIEVE ?agentB BELIEVE ?object IN ?room
1179 ?agentA BELIEVE ?agentB BELIEVE ?bed IN ?room
1180 ?agentA BELIEVE ?agentB BELIEVE ?container IN ?room
1181 ?agentA BELIEVE ?agentB BELIEVE ?agent HOLD ?object
1182 ?agentA BELIEVE ?agentB BELIEVE ?agent HOLD ?container
1183 ?agentA BELIEVE ?agentB BELIEVE ?container CONTAIN ?object
1184 ?agentA BELIEVE ?agentB BELIEVE ?room EXPLORED ?exploration_-
1185 state
1186 ?agentA BELIEVE ?agentB BELIEVE ?agent AT ?room
1187

Figure 9: Illustration of belief rules.

1188
1189
1190
1191
1192
1193
1194

Prompt for First-order Beliefs Update

1195
1196
1197

I am \$AGENT_NAME\$. My teammate \$OPPO_NAME\$ and I want to transport as many target objects as possible to the bed with the help of containers within 3000 steps.

1198
1199
1200
1201
1202

You are an expert in multi-agent theory-of-mind reasoning. Your task is to analyze, from the perspective of \$AGENT_NAME\$, what \$AGENT_NAME\$ believes about what \$OPPO_NAME\$ knows after the dialogue concludes. This constitutes \$AGENT_NAME\$'s first-order belief about \$OPPO_NAME\$'s knowledge.

1203
1204
1205
1206
1207

Given the dialogue history and belief rules below, perform the following steps:

1. Information Extraction Identify all information that \$AGENT_NAME\$ can infer from the dialogue, including:

Statements made by others to \$AGENT_NAME\$,

Statements \$AGENT_NAME\$ themselves made (which reflect their prior knowledge).

1208
1209
1210
1211
1212
1213
1214
1215
1216
1217

2. First-Order Belief Representation:

Based solely on the above information and the provided belief rules, generate \$AGENT_NAME\$'s first-order beliefs about \$OPPO_NAME\$'s knowledge. Notice:

- Adhere strictly to the belief rules; do not introduce external assumptions.
- Replace all placeholders prefixed with "?" with concrete entities mentioned in the dialogue.
- Represent all non-agent entities as <name> (id), e.g., <table> (712).
- Distinguish between private and shared knowledge.
- Beliefs must be expressed in the formal belief rules format—no natural language explanations.

1218
1219
1220
1221
1222
1223
1224

3. Plan Extraction:

Extract \$OPPO_NAME\$'s explicitly stated or unambiguously expressed plan for their next action, as conveyed in the dialogue. A "plan" refers to an intended future action declared by \$OPPO_NAME\$. Only include plans that are directly mentioned or clearly articulated; do not infer, complete, or hypothesize based on partial or implicit cues. If no such plan is present, state "None".

1225
1226
1227
1228

Constraints:

Do not generate any information not explicitly present or logically entailed by the dialogue. All output must conform to the structure and syntax of the belief rules.

Following are provided information for you:

1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Dialogue History: \$MESSAGE\$

Belief Rules: \$RULE\$

Output Format: Extracted Information: [about what \$AGENT_NAME\$ knows]

First order beliefs: [first-order beliefs in belief rule format]

\$OPPO_NAME\$'s plan: [concise description of the next plan]

Figure 10: Prompt for the update of first-order beliefs.

1242
1243
1244
1245
1246
1247

Prompt for Zero-Order Beliefs Update

1248
1249
1250 I am \$AGENT_NAME\$. My teammate \$OPPO_NAME\$ and I want to transport as many
1251 target objects as possible to the bed with the help of containers within 3000 steps.

1252 You are an expert in multi-agent theory-of-mind reasoning. Your task is to analyze,
1253 from the perspective of \$AGENT_NAME\$, what \$AGENT_NAME\$ knows after the
1254 dialogue concludes—this includes information conveyed to \$AGENT_NAME\$ by others,
1255 as well as information \$AGENT_NAME\$ themselves expressed (which reflects their prior
1256 knowledge). This constitutes \$AGENT_NAME\$'s zero-order belief about collaborator's
1257 knowledge and task information.

1258 Perform the following steps:
1259

1. Information Extraction:

Extract all information that \$AGENT_NAME\$ possesses after the dialogue, based solely
on the dialogue content.

2. Zero-Order Belief Generation:

Using only the extracted information and the belief rules below, generate \$AGENT_-
NAME\$'s zero-order beliefs.

Notice:

- Adhere strictly to the belief rules; do not introduce external assumptions.
- Replace all placeholders prefixed with “?” with concrete entities mentioned in the
dialogue.
- Represent all non-agent entities as <name> (id), such as <table> (712).
- The exploration state of rooms MUST be exactly one of: part, all, or none.
- Beliefs must be expressed exclusively in the formal belief rule format—no natural
language explanations.

Constraints:

Do not generate any information not explicitly present or logically entailed by the dialogue.
All output must conform to the structure and syntax of the belief rules.

Following are provided information for you:

Dialogue History: \$MESSAGE\$

Belief Rules: \$RULE\$

Answer strictly in this format:

Extracted Information: [about what \$AGENT_NAME\$ knows]

Zero order beliefs: [zero-order beliefs in belief rules format]

1290
1291
1292
1293
1294
1295
Figure 11: Prompt for the zero-order belief update.

1296
1297
1298
1299
1300

Prompt for First-Order Beliefs Prediction

1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

I am \$AGENT_NAME\$. My teammate \$OPPO_NAME\$ and I want to transport as many target objects as possible to the bed with the help of containers within 3000 steps.

Your task is to simulate \$OPPO_NAME\$'s decision-making process in a theory-of-mind reasoning style, which is grounded in first-order beliefs about what I \$OPPO_NAME\$ knows. This first-order beliefs captures \$AGENT_NAME\$'s understanding of observations, actions, and knowledge of the environment.

First, perform belief-based reasoning: starting from explicit first-order belief, infer the possible beliefs \$OPPO_NAME\$ may hold about the locations of untransported target objects. e.g., if \$AGENT_NAME\$ believes a room has been explored “none”, then \$OPPO_NAME\$ may reasonably believe that untransported target objects are likely present in that room. Provide this reasoning process and its conclusion after “reasoning:”. You may list at most three concise belief-based justifications.

Second, based on this belief-based reasoning, generate the top three candidate plans that \$OPPO_NAME\$ is most likely to execute to maximize transport efficiency. Each plan must satisfy the following:

Composed of 1 to 3 atomic actions selected from the allowed set: 1) ‘go to’: move to a specified room. 2) ‘explore current room <room>(id)’: explore current room(is not fully explored) for underlying target objects. 3) ‘go grasp’: go to grasp a specified target object. 4) ‘put’: Place an object into a specified container. 5) ‘transport’: Transport holding objects or containers to the bed and drop them on the bed.

Actions take several steps to finish. It may be costly to go to another room or transport to the bed, use these actions sparingly. I can grasp containers and put objects into them to hold more objects at a time. I can hold two items simultaneously (objects or containers). I may grasp only one container at a time. A container can hold up to three objects, enabling transport of up to four items per trip (three inside the container + one in the other hand). Note that containers are discarded upon delivery to the bed. Room exploration states are “none”, “part”, or “all”.

Notice: All entities (rooms, objects, containers) must be strictly represented as <name>(id), e.g., <livingroom>(1000), <wicker_basket>(5388017).

Following are provided information for you:

Goal: \$GOAL\$

First-order Beliefs: \$FIRST_ORDER_BELIEF\$

Answer strictly in this format:

reasoning:

plans:

plan1:

plan2:

plan3:

Figure 12: Prompt for first-order beliefs prediction.

1350
1351
1352
1353
1354
1355

Prompt for Zero-Order Beliefs Prediction

1356

1357

1358 I am \$AGENT_NAME\$. My teammate \$OPPO_NAME\$ and I want to transport as many
1359 target objects as possible to the bed with the help of containers within 3000 steps.

1360

1361

1362

1363

Your task is to simulate my (\$AGENT_NAME\$'s) decision-making process, grounded in
my zero-order belief—i.e., my direct knowledge of the environment, including observed
room exploration states and located objects.

1364

1365

1366

1367

1368

First, perform belief-based reasoning: starting from my explicit zero-order belief, infer the
possible beliefs I may hold about the locations of untransported target objects. For example,
if I believe a room has been explored “none”, I may reasonably believe that untransported
target objects are likely present in that room. Provide this reasoning process and its conclu-
sion after “reasoning:”. You may list at most three concise belief-based justifications.

1369

1370

Second, based on this belief-based reasoning, generate the best plan I am most likely to
execute to maximize transport efficiency. The plan must satisfy the following:

1371

1372

1373

1374

Composed of 1 to 3 atomic actions selected from the allowed set: 1) ‘go to’: move to a
specified room. 2) ‘explore current room <room>(id)’: explore current room(is not fully
explored) for underlying target objects. 3) ‘go grasp’: go to grasp a specified target object.
4) ‘put’: Place an object into a specified container. 5) ‘transport’: Transport holding objects
or containers to the bed and drop them on the bed.

1375

1376

1377

1378

1379

1380

1381

Actions take several steps to finish. It may be costly to go to another room or transport to
the bed, use these actions sparingly. I can grasp containers and put objects into them to
hold more objects at a time. I can hold two items simultaneously (objects or containers). I
may grasp only one container at a time. A container can hold up to three objects, enabling
transport of up to four items per trip (three inside the container + one in the other hand).
Note that containers are discarded upon delivery to the bed. Room exploration states are
“none”, “part”, or “all”.

1382

1383

1384

Notice: All entities (rooms, objects, containers) must be strictly represented as <name>(id),
e.g., <livingroom>(1000), <wicker_basket>(5388017).

1385

1386

Following are provided information for you:

1387

1388

Goal: \$GOAL\$

1389

1390

Zero-order Beliefs: \$ZERO_ORDER_BELIEF\$

1391

1392

Answer strictly in this format:

1393

reasoning:

1394

1395

plan:

1396

1397

1398

Figure 13: Prompt for zero-order beliefs prediction.

1399

1400

1401

1402

1403

1404
1405
1406
1407
1408
1409
1410

Prompt for Adaptive Collaboration

I am \$AGENT_NAME\$. My teammate \$OPPO_NAME\$ and I want to transport as many target objects as possible to the bed with the help of containers within 3000 steps. I can hold two things at a time, and they can be objects or containers. I can grasp containers and put objects into them to hold more objects at a time. Note that a container can contain three objects, and will be lost once transported to the bed. The room can be explored none/part/all.

Please answer the following questions:

1. Is there any potential miscoordination between my plan and \$OPPO_NAME\$'s plan, or between my zero-order beliefs and my first-order beliefs about \$OPPO_NAME\$? Please analyze the miscoordination in two aspects: (1) Conflicting plans: where my intended actions and \$OPPO_NAME\$'s intended actions may conflict in space or resource usage. Such as my plan is go to livingroom and explore it, while \$OPPO_NAME\$'s plans include go to livingroom and grasp the target object there. This is a conflict because we may explore in the same room at the same time which leads to a waste of time. (2) Belief misalignment: where my zero-order belief (what I know) and my first-order belief about \$OPPO_NAME\$ (what I believe \$OPPO_NAME\$ knows) are inconsistent regarding critical environmental states, potentially leading to inefficient or contradictory actions.

For example, I know <kitchen>(2000) is explored “all”, but I believe \$OPPO_NAME\$ thinks <kitchen>(2000) is explored “none”. Consequently, \$OPPO_NAME\$ might waste steps exploring an already fully explored room. Provide your analysis in at most three concise reasons.

2. If the above analysis reveals heavy miscoordination that would significantly impair task efficiency, answer Yes; otherwise, answer No. Minor or non-actionable belief discrepancies that do not lead to conflicting behavior should be tolerated.

3. If your answer is Yes, list the specific pieces of information that are misaligned between my zero-order belief and my first-order belief about \$OPPO_NAME\$. Itemize only the facts from my zero-order belief that are in conflict with what I believe \$OPPO_NAME\$ knows. For example: I know <apple>(12123) has been transported. Do not describe \$OPPO_NAME\$'s (believed) state.

4. If there is no heavy miscoordination, just answer NO.

Following are provided information for you:

My zero-order belief: \$ZERO_ORDER_BELIEF\$

My first-order belief about \$OPPO_NAME\$: \$MY_FIRST_ORDER_BELIEF\$

My plan: \$MY_PLAN\$

\$OPPO_NAME\$'s plans: \$OPPO_PLANS\$

Answer in this format:

reasons:

answer:

misaligned information:

Figure 14: Prompt for adaptive collaboration.

1451
1452
1453
1454
1455
1456
1457

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471

Prompt for Communication Module

I am \$AGENT_NAME\$. My teammate \$OPPO_NAME\$ and I want to transport as many target objects as possible to the bed with the help of containers within 3000 steps. I can hold two things at a time, and they can be objects or containers. I can grasp containers and put objects into them to hold more objects at a time. Note that a container can contain three objects, and will be lost once transported to the bed.

Please help me generate a concise and clear message to inform \$OPPO_NAME\$ of the misaligned information i know but he don't know and inform \$OPPO_NAME\$ of my subplan to achieve our shared goal collaboratively. The message should meet following requirements:

1.The message has to be concise, reliable, and helpful for assisting \$OPPO_NAME\$ and me to make an efficient and consistent action plan, and transport as many objects to the bed as possible. Don't generate repetitive messages. 2.The message must strictly contain two parts of contents : 1) information only \$AGENT_NAME\$ know and 2) my plan

Here is an example of generated massage for you:

Example: Message:Hi \$OPPO_NAME\$, I' ve explored all of the <kitchen>(2000) and found <apple>(12123) there. I'm holding <banana>(12234). My subplan is to grasp <apple>(12123) and transport holding things to the bed.

Just send what \$AGENT_NAME\$ know, don't need to send what \$OPPO_NAME\$ knows. Following are provided information for you:

Misaligned information: \$MISALIGNED INFORMATION\$

My subplan: \$MY_PLAN\$

Figure 15: Prompt for communication module.

1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525

Prompt for Planning Module

1526
1527
1528
1529
1530
1531

I am \$AGENT_NAME\$. My teammate \$OPPO_NAME\$ and I want to transport as many target objects as possible to the bed with the help of containers within 3000 steps. I can hold two things at a time, and they can be objects or containers. I can grasp containers and put objects into them to hold more objects at a time. Actions take several steps to finish. It may be costly to go to another room or transport to the bed, use these actions sparingly.

1532
1533
1534
1535
1536
1537
1538

Assume that you are an expert decision maker. Given our shared goal, my current plan, my previous actions, and my zero-order belief (i.e., my direct knowledge of the environment, including observed objects and room exploration states), please: (1) Analyze whether my current plan has been fully executed based on the previous actions and my zero-order belief; (2) If the plan is complete, respond with "SUBPLAN DONE"; (3) If the plan is not yet complete, select the best available next action from the provided action list to achieve the goal as efficiently as possible.

1539
1540
1541
1542
1543

Note: A container can hold up to three objects and is discarded upon transport to the bed. I can only put objects into a container after I have grasped it. All entities must be denoted as <name>(id), e.g., <table>(712).

Please provide up to three concise reasons to support your answer.
Following are provided information for you:

1544
1545
1546
1547
1548
1549
1550
1551

Goal: \$GOAL\$
My plan: \$MY_PLAN\$
Previous action: \$PREVIOUS_ACTIONS\$
My zero-order beliefs: \$ZERO_ORDER_BELIEF\$
Action list: \$ACTION_LIST\$

Answer strictly in this format: reasons: answer:

1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Figure 16: Prompt for planning module.

1566
1567
1568
1569
1570

Prompt for Replanning Module

1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

I am \$AGENT_NAME\$. My teammate \$OPPO_NAME\$ and I want to transport as many target objects as possible to the bed with the help of containers within 3000 steps.

Your task is to simulate my (\$AGENT_NAME\$'s) decision-making process, grounded in my zero-order belief—i.e., my direct knowledge of the environment, including observed room exploration states and located objects.

First, perform belief-based reasoning: starting from my explicit zero-order belief, infer the possible beliefs I may hold about the locations of untransported target objects. For example, if I believe a room has been explored “none”, I may reasonably believe that untransported target objects are likely present in that room. Provide this reasoning process and its conclusion after “reasoning:”. You may list at most three concise belief-based justifications.

Second, based on this belief-based reasoning and \$OPPO_NAME\$'s plan, generate the best plan I should execute to transport target objects as efficiently as possible while actively avoiding conflicts with \$OPPO_NAME\$'s actions. The plan should complement \$OPPO_NAME\$'s activities to maximize overall team efficiency (e.g., by exploring different rooms or handling distinct objects). The generated plan must satisfy the following:

Composed of 1 to 3 atomic actions selected from the allowed set: 1) ‘go to’: move to a specified room. 2) ‘explore current room <room>(id)’: explore current room(is not fully explored) for underlying target objects. 3) ‘go grasp’: go to grasp a specified target object. 4) ‘put’: Place an object into a specified container. 5) ‘transport’: Transport holding objects or containers to the bed and drop them on the bed.

Actions take several steps to finish. It may be costly to go to another room or transport to the bed, use these actions sparingly. I can grasp containers and put objects into them to hold more objects at a time. I can hold two items simultaneously (objects or containers). I may grasp only one container at a time. A container can hold up to three objects, enabling transport of up to four items per trip (three inside the container + one in the other hand). Note that containers are discarded upon delivery to the bed. Room exploration states are “none”, “part”, or “all”.

Notice: All entities (rooms, objects, containers) must be strictly represented as <name>(id), e.g., <livingroom>(1000), <wicker_basket>(5388017).

Following are provided information for you:

Goal: \$GOAL\$

\$OPPO_NAME\$'s plan: \$OPPO_PLAN\$

Zero-order Beliefs: \$ZERO_ORDER_BELIEF\$

Answer strictly in this format:

reasoning:

plan:

Figure 17: Prompt for replanning module.