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ABSTRACT

Effective real-world multi-agent collaboration requires not only accurate planning
but also the ability to reason about collaborators’ intents—a crucial capability for
avoiding miscoordination and redundant communication under partial observable
environments. Due to their strong planning and reasoning capabilities, large lan-
guage models (LLMs) have emerged as promising autonomous agents for collab-
orative task solving. However, existing collaboration frameworks for LLMs over-
look their reasoning potential for dynamic intent inference, and thus produce in-
consistent plans and redundant communication, reducing collaboration efficiency.
To bridge this gap, we propose CoBel-World, a novel framework that equips LLM
agents with a collaborative belief world—an internal representation jointly mod-
eling the physical environment and collaborators’ mental states. CoBel-World
enables agents to parse open-world task knowledge into structured beliefs via a
symbolic belief language, and perform zero-shot Bayesian-style belief updates
through LLM reasoning. This allows agents to proactively detect potential mis-
coordination (e.g., conflicting plans) and communicate adaptively. Evaluated on
challenging embodied benchmarks (i.e., TDW-MAT and C-WAH), CoBel-World
significantly reduces communication costs by 22-60% and improves task com-
pletion efficiency by 4-28% compared to the strongest baseline. Our results show
that explicit, intent-aware belief modeling is essential for efficient and human-like
collaboration in LLM-based multi-agent systems.

1 INTRODUCTION

Collaboration is a fundamental social mechanism through which humans solve complex tasks and
reshape their environments. In recent years, large language models (LLMs) have demonstrated re-
markable capabilities in reasoning, planning, and decision-making (Liu et al., 2024a; OpenAI, 2023;
Comanici et al., 2025; Wu et al., 2025), suggesting growing potential for LLMs to act as autonomous
agents capable of participating in collaborative problem-solving. While these advances are promis-
ing, the effectiveness of existing LLM-based collaboration frameworks has largely been confined to
simple, text-based domains with high environmental certainty (Hong et al., 2023). In contrast, real-
world collaboration requires agents to coordinate actions under uncertainty and adapt to dynamic,
partially observable environments. This raises a key question: Can LLMs, when grounded in the
physical world, autonomously coordinate with other agents for effective and efficient collaboration?

We investigate this question in the context of decentralized embodied multi-agent tasks (Zhang
et al., 2023; Nayak et al., 2024; Kannan et al., 2023), where agents must perceive, plan, and act
under partial observation (Spaan et al., 2006b; Bernstein et al., 2002), long-horizon dependencies,
and environmental dynamics. In such settings, the primary challenge stems from incomplete and
misaligned information across agents (Bernstein et al., 2002; Foerster et al., 2019). Communication
thus becomes essential for synchronizing internal states, sharing observations, and aligning intents.

As shown in Figure 1, recent approaches have explored various communication protocols to enable
information sharing and consensus in multi-agent systems. However, these methods typically rely
on predefined collaboration or schemes and fixed communication protocols-such as step-by-step
message generation (Zhang et al., 2023), dense discussion (Mandi et al., 2024), or event-triggered
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Figure 1: Comparison of existing works with our work. From left to right: (a) CoELA (Zhang
et al., 2023): A collaboration framework based on step-by-step templated message generation and
planning. (b) Capo (Liu et al., 2024b): A collaboration framework based on event-driven multi-
round discussion. (c) Our CoBel-World framework, featuring belief modeling and adaptive collab-
oration. Our method enables consistent planning and effective communication.

multi-round discussion (Liu et al., 2024b). Crucially, they lack the ability to dynamically identify
potential miscoordination and communicate adpatively. As a result, redundant communication and
inconsistent planning are common, leading to heavy communication costs and redundant physical
actions. These limitations hinder scalability in large-scale, communication-constrained, or human-
AI collaborative environments.

We argue that this shortcoming arises from the absence of belief modeling. In multi-agent systems,
beliefs refer to an agent’s internal representation of possible states—including the external environ-
ment and the mental states (e.g., intents, knowledge) of collaborators (Kominis & Geffner, 2015;
Geffner & Bonet, 2013). In decentralized multi-agent reinforcement learning (DEC-MARL), belief
modeling has proven critical for collaboration under partial observation, enabling agents to infer and
align with others’ internal states or policies (Pritz & Leung, 2025; Wen et al., 2019; Zhai et al., 2023).
With accurate belief estimation, agents can selectively communicate only the valuable information
to achieve efficient communication and reach consensus, thus promoting consistent collaboration.

Despite its advantages, modeling belief for LLM-driven agents presents two primary challenges:

1. Challenge 1: Formulating beliefs in open-ended environments. Traditional MARL
agents operate in low-dimensional, structured environments (e.g., grid worlds) with dis-
crete action space, enabling straightforward belief representation. In contrast, LLM-based
embodied agents interact with open-ended physical environments characterized by high-
dimensional, compositional actions, and free-form communication. These features compli-
cate the grounding of linguistic instructions into structured, explicit belief representation.

2. Challenge 2: Zero-shot construction of belief models. In abstract domains like grid-
world games (Moreno et al., 2021), agents are trained on large-scale interaction datasets to
infer others’ intents. However, collecting real-world interaction trajectories for fine-tuning
LLM agents is prohibitively expensive and often impractical. Moreover, data-driven mod-
els may struggle to generalize across diverse, unseen scenarios. This necessitates a zero-
shot approach: LLM agents must construct and update beliefs without access to annotated
interaction data during pretraining or downstream adaptation.
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To address these challenges, we propose CoBel-World, a novel framework equips LLM agents with
a collaborative belief world—an internal representation of the external world and mental states of
collaborators. We leverage the advanced reasoning capabilities of LLMs to predict possible be-
liefs based on observed information, thereby bridging the gap caused by the lack of collaborative
data during pretraining. This model enables agents to reason about the internal states of collabo-
rators and predict the future states of the external world, facilitating more efficient and human-like
collaboration. Specifically, CoBel-World incorporates two core components. First, inspired by sym-
bolic planning languages such as PDDL (Fox & Long, 2003; Fabiano et al., 2021), we introduce
a symbolic belief language to formalize the multi-agent task settings. Then, the agents will learn
knowledge about the external world and represent it as belief rules to guide subsequent task execu-
tion through a collaborative propose-and-revise progress. Second, each agent maintains a dynamic
internal world model with beliefs. This belief world model is updated via reasoning to infer the
intents of collaborators from partial observation and predict the possible states of external world.

To summarize, this work makes the following contributions:

• We propose CoBel-World, a novel framework that integrates a collaborative belief world
into LLM agents, enabling efficient communication and consistent planning.

• We design a symbolic belief language to represent the world knowledge in a structured
and explicit form to guide collaboration. We further design a Bayesian belief collabora-
tion protocol in a Bayesian filter manner, demonstrating how to leverage LLM reasoning
capabilities to predict possible beliefs and detect potential miscoordination in a zero-shot
manner.

• We evaluate our method on challenging embodied collaboration benchmarks (Zhang et al.,
2023) under partial observation. Results show that CoBel-World reduces communication
cost by average 22–60% while improving task completion efficiency by average 4-28%
on TDW-MAT and C-WAH), outperforming state-of-the-art baseline methods and demon-
strating the efficacy of belief-driven collaboration.

2 RELATED WORKS

LLM-Based Multi-Agent Collaboration and Communication. Recent advances in large language
models (LLMs) have enabled their deployment as autonomous agents capable of reasoning, plan-
ning, and communication in collaborative settings. Systems such as MetaGPT (Hong et al., 2023)
and ChatDev (Qian et al., 2023) demonstrate that LLM agents can follow predefined workflows
to solve complex tasks. In embodied intelligence, frameworks like CoELA (Zhang et al., 2023),
Capo (Liu et al., 2024b), and RoCo (Mandi et al., 2024) integrate LLMs with perception and ac-
tion modules to support collaborative embodied tasks. However, these approaches typically rely on
fixed communication protocols, such as tep-by-step message generation (Zhang et al., 2023), event-
driven multi-round discussion (Liu et al., 2024b), or dense discussion (Guo et al., 2024), leading to
excessive communication overhead and poor scalability under partial observability. In contrast, our
work introduces a belief-driven communication mechanism that enables LLM agents to dynamically
identify and exchange only the most valuable information, significantly reducing communication re-
dundancy while improving collaboration efficiency.

Belief Modeling in Decentralized Multi-Agent Systems. In decentralized partially observable
Markov decision processes (DEC-POMDP), belief modeling is central to enabling agents to main-
tain and update probabilistic estimates over hidden states and other agents’ intents (Kominis &
Geffner, 2015; Moreno et al., 2021). Techniques such as Bayesian reasoning (Foerster et al., 2019)
and probabilistic recursive reasoning (Wen et al., 2019) allow agents to infer unobserved variables
and align policies through belief estimation. More recent approaches leverage pretrained belief
models (Zhai et al., 2023; Pritz & Leung, 2025), achieving improved collaboration in cooperative
games such as Hanabi and Overcooked. Wu et al. (2020) leverages inverse planning to infer col-
laborators’ beliefs, allowing agents to dynamically decide between labor division and collaboration.
Jha et al. (2024) enables agents to perform higher-order belief modeling with significantly reduced

computational cost. Cao et al. (2024) incorporates logical rules to infer human goals and beliefs
from demonstrations, thereby guiding hierarchical human–AI collaboration. Despite their success,
these methods are largely limited to low-dimensional, discrete-state environments with handcrafted
features or require extensive training data. Our work bridges this gap by leveraging the zero-shot
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Figure 2: Overview of Collaborative Belief World framework. Cobel-World comprises two key
components: (1) Symbolic Belief Representation: All agents are organized in a collaborative rea-
soning process to analyze and summarize the rules and requirements of the task in a structured
format. With these rules, each agent constructs an initial belief about the world and collaborators;
(2) Bayesian Belief Collaboration: After the belief world is constructed, each agent updates it via
two ways: belief prediction (via LLM reasoning) and belief update (via observation). Adaptive
collaborative decisions will be made based on the beliefs.

reasoning capabilities of LLMs to construct and update structured belief representations in high-
dimensional, open-ended physical environments without environment-specific training or explicit
state factorization. Recent works (Yi et al., 2025; Zhang et al., 2024) attempt to incorporate belief
modeling into LLM-based multi-agent systems to guide decision and strategy selection. However,
these works primarily operate under communication-free settings, which limits their scalability in
real-world partially observable environments. In contrast, CoBel-World leverages structured be-
lief modeling to guide communication behaviors. Agents with such collaborative belief world can
proactively determine when to communicate, whom to communicate with, and how to communicate.

Reasoning Capabilities in LLM-Based Agents. The effectiveness of LLMs as autonomous agents
hinges on their ability to perform diverse forms of reasoning, from task planning to social inference.
Recent work has demonstrated that structured reasoning paradigms significantly enhance agent per-
formance in complex tasks. Notable works include Chain-of-Thought (CoT) (Wei et al., 2022) and
Tree of Thoughts (ToT) (Yao et al., 2023), which introduces multi-step reasoning to solve com-
plex problems. More recently, research has advanced social reasoning, particularly theory of mind
(ToM), enabling agents to model others’ beliefs, intents, and internal states (He et al., 2023; Sclar
et al., 2023; Jin et al., 2024; Shi et al., 2024). Several works (Li et al., 2023; Ma et al., 2023; Zhang
et al., 2025), have gained benefits in collaborative multi-agent tasks with the introduction of such
ability.

3 FORMULATION

We model the embodied multi-agent collaboration task as a decentralized partially observable
Markov decision process (DEC-POMDP) (Oliehoek & Amato, 2016; Bernstein et al., 2000; Spaan
et al., 2006a), defined by the tuple:

M = ⟨I,S, {Ai}, {Oi}, T, {Oi}, R, h⟩,

where:

• I = {1, . . . , n} is a finite set of n agents;
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• S is a finite state space representing the environment;

• Ai is the action set of agent i, with A = ×i∈IAi the joint action space;

• Oi is the observation set of agent i, encompassing partial egocentric visual inputs and
received messages;

• T (s′ | s,a) = p(s′ | s,a) is the transition function, denoting the probability of transition-
ing to state s′ ∈ S from s ∈ S under joint action a ∈ A;

• Oi(oi | s′,a) = p(oi | s′,a) is the observation model for agent i, giving the probability of
observing oi ∈ Oi upon reaching s′ after executing a;

• R(s,a) is the global reward function shared by all agents;

• h is the finite planning horizon.

The objective is for the team to maximize the expected cumulative reward E
[∑h−1

t=0 R(st,at)
]

through decentralized execution of a joint policy π = {πi}i∈I , where each agent i selects actions
ati ∼ πi(· | τ ti ) based only on its local observation-action history τ ti = (o0i , a

0
i , . . . , o

t
i).

4 METHODOLOGY

In this section, we present how CoBel-World leverages belief modeling to address communica-
tion redundancy and inconsistent collaboration in embodied multi-agent systems. The theoretical
foundation of CoBel-World can be found in Appendix B. Following the paradigm of belief mod-
eling in traditional MARL, we decompose the construction of CoBel-World framework into two
components: Symbolic Belief Representation for belief representation and Bayesian Belief Col-
laboration for belief update, as depicted in Figure 2.

First, Symbolic Belief Representation (detailed in Section 4.1), centered on a symbolic belief lan-
guage, enables agents to autonomously interpret task requirements in open-ended environments and
encode world knowledge into structured belief rules. It further incorporates a collaborative reason-
ing process to establish a collaborative belief world, ensuring consistent modeling of the environ-
ment and collaborators’ intents. Second, Bayesian Belief Collaboration (detailed in Section 4.2)
maintains and dynamically updates the established belief world during task execution. Agents per-
form belief updates via a Bayesian filtering scheme powered by LLM reasoning to detect potential
miscoordination. When belief misalignment arise, agents proactively communicate to align beliefs
and share intents; when beliefs are synchronized, they proceed with action planning and execution.
This adaptive mechanism enables context-aware collaboration decisions based on task progress and
collaborators’ evolving states.

4.1 SYMBOLIC BELIEF REPRESENTATION

Symbolic belief language definition. LLMs struggle to accurately model diverse and structured
beliefs due to the complexity of real-world environments. To address this, we introduce a symbolic
belief language inspired by classical planning language (Fox & Long, 2003; Fabiano et al., 2021).
We formalize beliefs as tuples consisting of entities, attributes, and predicates. In particular, since
beliefs are inherently higher-order (e.g., “Bob believes that Alice believes the apple is in the living
room”), we explicitly introduce a recursive belief predicate BELIEVE to capture the collaborators’
mental states. The definition of symbolic belief language is as follows:

An atomic belief takes one of the following two forms:

?belief ::= ?entity PREDICATE ?entity | ?entity ATTRIBUTE ?state

where:

• PREDICATE: A relational verb or spatial/state descriptor (e.g., IN, HOLD, AT, INSIDE,
NEAR).

• ATTRIBUTE: A unary property of an entity (e.g., EXPLORATION_STATE, CONTENTS).

5
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• ?entity: A placeholder for any agent, object, or location (e.g., Alice, <apple>,
<kitchen>).

• ?state: A discrete condition or status (e.g., none, part, all, opened, closed).

The zero-order belief and first-order belief takes the following forms:

• Zero-order belief: ?agent BELIEVE ?belief.

• First-order belief: ?agentA BELIEVE ?agentB BELIEVE ?belief.

As illustrated in Figure 2, when Alice observes Bob holding a banana, this visual input is encoded
as a zero-order belief: Alice BELIEVE Bob HOLD <banana>. When Alice receives the
message “I found an apple in the kitchen” from Bob, it is interpreted as a first-order belief: Alice
BELIEVE Bob BELIEVE <apple> IN kitchen. We provide a detailed description of how
unstructured natural language is converted into structured belief representations in Appendix D.1.

Collaborative representing process. As shown in Figure 2, we propose a propose-and-revise col-
laborative representing progress to mitigate hallucination and compositional reasoning failures in-
herent in LLMs. In this progress, agents iteratively propose and revise the structured belief rules
including task constraints, agent capabilities, and logical dependencies. The output of this collab-
orative progress is a consensus set of belief rules, which constitute a common collaborative belief
world and are then used to guide subsequent task execution.

4.2 BAYESIAN BELIEF COLLABORATION

In DEC-POMDPs, belief modeling typically follows a Bayesian filtering framework: a update that
incorporates posterior observation, followed by a prediction step based on prior beliefs. We adopt
this well-grounded mathematical structure. In the update phase, we generate the agent’s beliefs using
its partial observation from the environment. In the prediction phase, we leverage the reasoning
capabilities of LLMs to predict the potential states of external environment and infer collaborator’s
intents. The specific design is as follows.

Belief update. This step captures the agent’s ability to update its beliefs in response to partial
observation. We decompose observation into two modalities:

• Visual observation: The ego visual perception. (e.g., object positions, agent states);

• Communication observation: Messages explicitly transmitted by other agents.

Given the belief rules summarized in the first phase, the agent extracts task-relevant information and
updates both zero-order beliefs and first-order beliefs. Notably, during the update of first-order
beliefs, we employ theory-of-mind (ToM) reasoning (Li et al., 2023; Ma et al., 2023) to prompt
the agent to interpret messages from the collaborator’s perspective. This prevents the agent from
conflating personal information with public information, ensuring a more accurate belief estimation.
The prompt structure is illustrated below:

Belief Update Prompt

Prompt: <Instruct Head> + <Partial Observation> + <Belief Rules>
LLM: <Updated Beliefs>

Belief prediction. Building upon the agent’s collaborative belief world, we enable proactive co-
ordination by predicting the possible beliefs based on the updated beliefs. Agents perform belief
prediction separately based on zero-order and first-order beliefs. For zero-order beliefs, we prompt
the LLM to infer possible states of environment. Based on these predicted beliefs, agents then gen-
erate plans that maximize task efficiency by prioritizing high-utility, low-uncertainty exploration or
manipulation steps. For first-order beliefs, we repeat the reasoning step. However, to ensure compre-
hensive coverage of potential miscoordination, agent will explicitly reasons over multiple intents for
every collaborator—not just the most likely one. This multi-hypothesis modeling allows the agents
to fully assess the current collaboration status, guiding their subsequent collaboration behaviors.
The prompt structure is illustrated below:

6
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Belief Prediction Prompt

First-order Belief Prediction: <Instruct Head> + <first-order Beliefs>
LLM: <Predicted Beliefs> + <Collaborator’s Intents>
Zero-order Belief Prediction: <Instruct Head> + <zero-order Beliefs>
LLM: <Predicted Beliefs> + <My plan>

Adaptive collaboration. After updating and predicting the collaborative belief world, each agent
obtains an estimation about collaborators’ intents and their mental states, enabling agents to proac-
tively evaluate the current collaboration status. With this capability for dynamic intent inference and
state estimation, agents can autonomously and adaptively decide how to collaborate: when potential
miscoordination (e.g. conflicting plans) is detected, they send context-aware messages to promote
consensus and consistent planning among collaborators; when the current collaboration status is
unlikely to cause serious conflicts, agents prefer executing actions directly to improve overall effi-
ciency. To be specific, we first prompt the LLM to explicitly reason over two key aspects: (1) belief
misalignment (e.g., Only Bob knows the apple’s location.), and (2) potentially conflicting actions
(e.g., Alice and Bob plan to explore the same room.). Second, if agents detect the potential misco-
ordination, they construct a message with the misaligned beliefs and share their intents. Based on
this reasoning analysis, agents autonomously adjust their collaboration behaviors, thus promoting
efficient, adaptive, and intent-aware collaboration. Details are illustrated in the Figure 2.

5 EXPERIMENTS

In this section, we instantiate CoBel-World with diverse LLMs to validate its effectiveness across
different benchmarks. First, we compare CoBel-World against several important baselines to
demonstrate its superiority in both collaboration efficiency and communication cost. Second, we
visualize task trajectories and interaction content to illustrate how CoBel-World leverages belief
modeling to facilitate consistent planning and effective communication. Next, we conduct abla-
tion studies to verify the effectiveness of individual modules and extend CoBel-World to scenarios
involving more agents to validate its scalability in many-agent environments.

5.1 EXPERIMENT SETTINGS

Benchmarks. Recently, several benchmarks have been developed to evaluate LLM-based multi-
agent systems in embodied environments. PARTNR (Chang et al., 2024) provides a large-scale suite
of household tasks to evaluate the reasoning and planning capabilities of LLM-based multi-agent
systems. CoELA (Zhang et al., 2023) introduces multiple embodied multi-agent tasks with explicit
inter-agent communication channel. To demonstrate CoBel-World’s efficiency in communication,
we follow CoELA (Zhang et al., 2023) and adopt the two challenging embodied multi-agent bench-
marks for our experiments: ThreeDworld Multi-Agent Transport (TDW-MAT) (Zhang et al., 2023),
and the Communicative Watch-And-Help (C-WAH) (Zhang et al., 2023). TDW-MAT is built on
the general purpose virtual world simulation platform TDW (Gan et al., 2020), and requires agents
to move objects by their hands or containers which can contain several objects for efficient mov-
ing to the destination. Moreover, agents can receive ego-centric RGB-D images as observation and
communicate with others. The test set of TDW-MAT consists of 24 episodes, evenly divided into
two task categories: food and stuff. Within each category, episodes are further divided by difficulty
into high-capacity (with more containers can be used) and low-capacity settings. In C-WAH, agents
are requested to complete five types of household activities, represented as various predicates with
specific counts that must be satisfied. The test set contains 10 episodes, including both symbolic and
visual observation settings. More details about TDW-MAT and C-WAH environments are provided
in Appendix C.1 and C.2, respectively.

Metrics. Our evaluation metrics span two dimensions: task completion efficiency and communi-
cation cost. For task completion efficiency, we use different metrics for the two benchmarks. On
TDW-MAT, we adopt transport rates as the primary performance metric, which refers to the fraction
of subtasks successfully completed within 3,000 time steps (frames). Note that a single action step
may span multiple time steps (e.g., arm resetting). On C-WAH, we report the average steps required
to complete all tasks, which reflects the efficiency of collaborative coordination. For communication
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Table 1: Performance comparison using different LLMs on TDW_MAT benchmark. “↑/↓” means
higher/lower is better. Values highlighted in pink denote the best performance, while values
underlined indicate the second-best results.

Task Category Classic Agents Qwen3-32B Agents GPT-4o Agents

RHP RHP CoELA Capo CoBel-World CoELA Capo CoBel-World

Transport Rate (↑)

Food-low-capacity 46.67 78.33 63.33 63.33 65.00 86.67 88.33 88.33
Stuff-low-capacity 43.33 73.33 70.00 66.67 71.67 81.67 83.33 88.33

Low-capacity Average 45.00 75.83 66.67 65.00 68.34 84.17 85.83 88.33

Food-high-capacity 53.33 81.67 75.00 68.33 76.67 81.67 80.00 91.67
Stuff-high-capacity 50.00 65.00 58.33 71.67 58.33 71.67 78.33 78.33

High-capacity Average 51.67 73.34 66.67 70.00 67.50 76.67 79.17 85.00

Total Average 48.34 74.59 66.67 67.5 67.92 80.42 82.50 86.67

Communication Cost (↓)

Food-low-capacity — — 3549 8199 2053 2117 6878 1874
Stuff-low-capacity — — 4397 7620 2092 2122 7256 1506

Low-capacity-Average — — 3973 7910 2073 2120 7067 1690

Food-high-capacity — — 3819 7954 2103 2425 5989 1786
Stuff-high-capacity — — 3408 7395 2369 2229 8178 1776

High-capacity Average — — 3613 7509 2236 2327 6814 1781

Total Average — — 3793 7709 2155 2224 6940 1736

cost, we compute the average number of tokens generated by all agents per episode for communica-
tion. Higher transport rates, fewer average steps, and fewer tokens indicate better performance.

Baselines. We select two types of baselines for performance comparison: traditional LLM-free
agents and LLM-based agents. The traditional agents include: (i) MCTS-based Hierarchical Planner
(MHP) (Zhang et al., 2023): A hierarchical planning approach designed for the original Watch-
And-Help Challenge. It features a Monte Carlo Tree Search (MCTS)-based high-level planner and a
regression-based low-level planner. (ii) Rule-based Hierarchical Planner (RHP) (Zhang et al., 2023):
A heuristic-based hierarchical planning approach designed for the original ThreeDWorld Transport
Challenge. It uses a rule-based high-level planner combined with an A-start-based low-level planner
for navigation. The LLM-based baselines include: (iii) CoELA (Zhang et al., 2023): A collaboration
framework based on step-by-step templated message generation and planning. (iv) CaPo (Liu et al.,
2024b): A collaboration framework based on event-driven multi-round discussions.

Implementation details. To evaluate CoBel-World across different underlying LLMs, we instanti-
ate the LLM-based agents in CoBel-World and other LLM-based baselines using two state-of-the-art
models: Qwen3-32B (Yang et al., 2025), an open-source model accessed via the Aliyun API, and
ChatGPT-4o (Hurst et al., 2024), a closed-source model accessed via the OpenAI API. We set the
parameters with temperature = 0.7, top-p = 1, and a maximum token limit of 512 for both models.
Unless otherwise stated, all experiments involve two agents on both benchmarks.

5.2 RESULTS

Performance. Table 1 and Table 2 compares the performance of different methods on the C-
WAH and TDW-MAT benchmarks, respectively. In general, LLM-based agents driven by the small
Qwen3-32B perform worse than traditional baselines due to the limited LLM model scale, but agents
powered by the more powerful GPT-4o consistently outperform traditional baselines across all test
settings. Among them, our CoBel-World framework achieves superior task efficiency over all base-
line methods while significantly reducing communication costs. On TDW-MAT, CoBel-World im-
proves average transport rate by 4% over the best baseline results; on C-WAH, it reduces average
steps by 24-28% compared to the strongest baseline. In terms of communication cost, CoBel-World
reduces token usage by 22–60% across all test settings. These results indicate that belief-driven
collaboration not only minimizes redundant communication but also enhances collaboration consis-
tency and planning efficiency. By comparison, baselines such as CoELA and Capo rely on fixed
communication protocols to exchange known information and thereby often fail to detect potential
miscoordination until conflicting actions occur, leading to the drop of task completion efficiency.
Moreover, they initiate communication even when collaboration is unnecessary (e.g., when agents
can independently transport all objects in different rooms), causing higher communication costs.
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Table 2: Performance comparison using different LLMs on C-WAH benchmark. “↑/↓” means high-
er/lower is better. Values highlighted in pink denote the best performance, while values underlined
indicate the second-best results.

Task Obs Type Classic Agents Qwen3-32B Agents GPT-4o Agents

MHP MHP CoELA Capo CoBel-World CoELA Capo CoBel-World

Average Step (↓)

Prepare tea Symbolic Obs 163 87 91 101 106 82 85 53
Visual Obs 206 102 181 180 105 130 184 91

Wash dishes Symbolic Obs 106 70 48 56 49 46 68 38
Visual Obs 111 96 95 187 101 76 75 64

Prepare meal Symbolic Obs 105 69 66 87 56 68 66 49
Visual Obs 181 95 97 151 97 100 83 65

Put groceries Symbolic Obs 113 64 82 70 82 64 67 59
Visual Obs 166 80 108 168 64 82 93 57

Set up table Symbolic Obs 83 48 69 65 65 56 45 44
Visual Obs 95 79 115 140 97 102 78 75

Symbolic Average 114 68 71 76 72 63 66 48
Visual Average 152 90 119 165 93 98 103 71

Communication Cost (↓)

Prepare tea Symbolic Obs — — 1114 5214 386 995 7027 409
Visual Obs — — 2025 5088 409 964 6207 399

Wash dishes Symbolic Obs — — 1095 5435 332 642 5587 250
Visual Obs — — 914 3708 349 704 4412 322

Prepare meal Symbolic Obs — — 1392 9183 464 1188 10244 365
Visual Obs — — 1734 5930 497 1001 6028 341

Put groceries Symbolic Obs — — 1124 4349 453 878 7163 428
Visual Obs — — 1352 4797 397 862 4285 395

Set up table Symbolic Obs — — 1430 3671 379 988 6136 434
Visual Obs — — 1242 2705 430 913 2547 347

Symbolic Average — — 1231 5570 403 938 7231 377
Visual Average — — 1453 4445 416 889 4696 360

Alice

Bob

Alice

conflict plans

Alice

Bob

consistent plans
Reasoning：
My plan: Explore cuirrent room.
Alice intents:
1. Go explore my current room.
2. Go check unchecked containers.
We may conflict, so:
Plan: Send a message to 
inform Alice

Reasoning：
To avoid conflict and maxium 
task execution efficiency. I plan:
Check the unchecked 
container in current room.

I’m in livingroom, and I’m 
holding nothing. ...... The 
bedroom is unexplored.
My plan:
Go explore bedroom.

Bob

Alice

Bob

I’m in bedroom, and I’m 
holding nothing. ...... The 
bedroom is unexplored.
My plan:
Go explore bedroom.

Explore the same 
room!

Fully divided to 
explore.

Alice

Event: Bob found wine. 

Bob

Old plan:
Bob explore livngroom.
Alice go check cabinet.

Alice

Bob

N-round 
discussion

New plan:
Bob grab wine.
Alice go check cabinet.

No valuable 
information for Alice!

Bob found wine.

Bob BELIEVE wine IN livingroom.
Reasoning:
I can grab the wine, no need to tell Alice.
Plan: Go grab wine.

Alice keep on checking the 
microwave.

adaptive communication

redundant communication

Belief Prediction

Belief Update

CoELA Capo

CoBel-World CoBel-World

Save the communication cost.

Figure 3: Illustration of the advantages of CoBel-World in terms of planning consistency and
communication efficiency on C-WAH benchmark. All methods are powered by GPT-4o. The
left part illustrates CoBel-World’s superior planning consistency over CoELA, while the right panel
highlights its reduced communication costs compared to Capo.

Qualitative analysis. Figure 3 illustrates the advantages of CoBel-World over baselines in terms of
collaboration consistency and communication efficiency. As shown in Figure 3 (left), at the initial
stage of the task, agents will first plan their subsequent actions. CoELA follows a fixed pipeline of
communication-then-planning, which often fails to reach consensus with collaborators and leads to
conflicting plans (e.g., both Alice and Bob intend to explore the same room). In contrast, CoBel-
World performs belief prediction before decision-making to reason about the collaborators’ intents,
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detect potential miscoordination, and proactively initiate communication to reach consensus. For
instance, Bob infers that Alice might also explore his current room and thus proactively shares
his intent and beliefs with her, enabling more consistent planning. Capo relies on event-triggered
multi-round discussions to reach consensus with collaborators. However, when the triggering event
provides little or no benefit to collaboration, this mechanism incurs unnecessary communication
costs. As illustrated in Figure 3 (right), Capo’s discussions fail to yield better plans, resulting in
redundant communication. In contrast, CoBel-World leverages belief modeling to autonomously
assess the expected utility of communication and dynamically decides whether to communicate to
enhance collaboration or directly execute a plan to maximize task efficiency.

5.3 ABLATION STUDY

Effects of each component in CoBel-World. With C-WAH benchmark as example, we analyze
the contributions of two key components in Cobel-World to collaboration: Symbolic Belief Repre-
sentation (SBP) and Bayesian Belief Collaboration (BBC). As shown in Table 3, after removing the
SBR module, Cobel-World exhibits a slight performance drop. This indicates that representing be-
liefs using unstructured natural language introduces more redundant information, impairing LLMs’
planning and decision-making capabilities. In contrast, removing the BBC module leads to a severe
performance drop. This phenomenon demonstrates that inferring collaborators’ intents significantly
enhances agents’ ability to perceive the collaborative status and thus enable more context-aware,
proactive collaboration.

Cobel-World with many agents. Table 4 reports CoBel-World’s performance on the C-WAH
benchmark as the number of agents scales beyond two. A significant performance gain is observed
when scaling from two to three agents. However, increasing the agent number to four yields only
marginal improvements in Average Steps. This is because the C-WAH benchmark includes a num-
ber of relatively simple tasks composed of only 2–3 subgoals and thus cannot fully leverage the
capacity of four agents. As the “wash dishes” task illustrated in the Appendix C.2, only two objects
require collection and transport, making collaboration among more than two agents unnecessary and
potentially hinder consistent planning.

Table 3: Effects of the components in CoBel-World
using GPT-4o on C-WAH benchmark. Average steps
required to complete task are reported. “SBP” de-
notes “Symbolic Belief Representation” and “BBC”
denotes “Bayesian Belief Collaboration”.

Method Symbolic Obs (↓)

CoBel-World 51
CoBel-World (No SBR) 55
CoBel-World (No BBC) 68

Table 4: Benefits of increasing agent num-
ber in our CoBel-World using GPT-4o on
C-WAH benchmark. Average steps re-
quired for task completion are reported.

Method Symbolic Obs (↓)

CoBel-World×2 51
CoBel-World×3 47
CoBel-World×4 43

6 CONCLUDING REMARKS

In this work, we introduced CoBel-World, a framework that equips LLM-based embodied agents
with a collaborative belief world to enable efficient and consistent multi-agent collaboration under
partial observability. CoBel-World formalizes world and mental state knowledge into a structured
symbolic belief language and leverages LLMs’ zero-shot reasoning for Bayesian-style belief up-
dates. With CoBel-World, LLM agents can proactively infer teammates’ intentions and detect po-
tential miscoordination. This intent-aware belief modeling supports adaptive communication, gen-
erating messages only when necessary to resolve conflicts or align critical information, thereby re-
ducing redundant dialogue and physical actions. Extensive experiments on challenging benchmarks
(TDW-MAT and C-WAH) show that CoBel-World reduces communication costs by 22–60% while
consistently improving task completion efficiency over state-of-the-art baselines. These results val-
idate that explicit belief representation is a key enabler of scalable and human-like collaboration in
open-ended environments.
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7 ETHICS STATEMENT

This work involves simulated embodied agents in controlled virtual environments (TDW-MAT and
C-WAH) and does not include human subjects, real-world data collection, or deployment in safety-
critical settings. All experiments comply with standard research integrity practices. The proposed
CoBel-World framework aims to improve communication efficiency and collaboration efficiency
among AI agents, with no intent or mechanism to generate harmful, discriminatory, or privacy-
invasive behaviors. No external funding sources or conflicts of interest influenced the design or
interpretation of this research.

8 REPRODUCIBILITY STATEMENT

We have taken multiple steps to ensure the reproducibility of our results. Full experimental details,
including environment specifications (TDW-MAT and C-WAH), observation/action spaces, evalu-
ation metrics, and hyperparameters, are provided in Sections 5.1 and Appendix C. The symbolic
belief language syntax, belief update/prediction prompts, and Bayesian adaptive collaboration are
explicitly defined in Section 4 and Appendix D. Ablation studies and scaling analyses are reported
in Section 5.3. While we cannot release code due to double-blind review constraints, all algorithmic
components are described with sufficient detail to enable independent reimplementation.

We provide an anonymous github repo with codes for anyone to reproduce CoBel-World. The
anonymous github repo url: https://anonymous.4open.science/r/CoBel_World
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A ADDITIONAL EXPERIMENTS AND ANALYSIS

A.1 STABILITY EXPERIMENTS

Due to the inherent stochasticity of large language models (LLMs), we conducted multiple evalua-
tion runs to assess the stability of CoBel-World. Specifically, we performed three independent runs
on the TDW-MAT benchmark using GPT-4o with a temperature setting of 0.7 and oracle perception.
As shown in the Table 5, the results exhibit only minor variance across runs, indicating consistent
and reproducible performance.

Table 5: Transport Rate (TR) comparison on the TDW-MAT task using GPT-4o and oracle percep-
tion. We perform 3 runs and report mean and variance.

Runs Food (↑) Stuff (↑) Avg. (↑)
1 0.87 0.83 0.85
2 0.89 0.84 0.87
3 0.91 0.83 0.87

Average 0.89 (0.016) 0.83 (0.004) 0.86 (0.009)

A.2 FAILURE ANALYSIS

The failures from CoBel-World primarily stem from inherent hallucinations in LLMs. Although our
symbolic belief language substantially reduces such hallucinations, it cannot fully eliminate them.
We give detailed failure cases in Figure 4.

A.3 PERFORMANCE-COST TRADE-OFF REPORT

We report the performance-cost trade-off of CoBel-World and all baselines on the TDW-MAT bench-
mark in Figure 5. Compared with prior methods, CoBel-World achieves the best trade-off between
performance and cost.

B THEORETICAL ANALYSIS OF COBEL-WORLD

Belief update with Bayesian filter. Due to partial observability, each agent i maintains a belief state
bi : S → [0, 1], which represents its subjective probability distribution over the true state s ∈ S. The
belief bti at time t is conditioned on the agent’s local history τ ti = (o0i , a

0
i , . . . , o

t
i). Upon executing

action at ∈ A and receiving observation ot+1
i ∈ Oi, agent i updates its belief using a Bayesian

filter:

b′i(s
′) ∝ Oi(o

′
i | s′,a)

∑
s∈S

T (s′ | s,a) bi(s), (1)

where bi is the current belief, b′i is the updated belief, a is the joint action, o′i is the new observation,
and T and Oi are the transition and observation models, respectively. This update decomposes into
two conceptually distinct stages:

Prediction: The agent predict possible beliefs based on its current belief:

bi(s
′) =

∑
s∈S

T (s′ | s,a) bi(s),

resulting in a prior belief bi that captures the expected state distribution after the action. In our
framework, this step is enhanced by theory of mind reasoning (Li et al., 2023; Ma et al., 2023),
enabling agents to anticipate teammates’ intentions.

Measurement update: The agent conditions the prior on the new observation o′i (including visual
input and messages):

b′i(s
′) ∝ Oi(o

′
i | s′,a) · bi(s′),
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Failure Cases

Failure type: belief update errors
Failure log:
Alice: low-level-plan: send a message: Hi Bob, I’ve
explored part of the <Office>(3000). My subplan is to
continue exploring the <Office>(3000) and transport objects
to the bed.
belief_episode_0 - INFO - first belief update:
first-order beliefs:
Bob BELIEVE Alice BELIEVE <bed> IN <Office> (3000)
Analysis: In this case, LLM mistakenly associated bed and office (3000) in a sen-
tence as belief, and finally got the wrong belief.

Failure type: belief prediction errors
Failure log:
Bob predict_first: The <Kitchen> (5000) is commonly
associated with food items like oranges, breads, and bananas.
Exploring this room might yield a higher chance of finding
the goal objects.
Bob oppo_subplans:
- go to <Kitchen>(5000) - explore current room
<Kitchen>(5000)
Analysis: LLM mistakenly used common sense as a priori knowledge to aid belief predic-
tion, but there is no setting in the experimental setting that "food is more likely to be in the
kitchen", as a result, LLM suggest go to kitchen first.

Failure type: action-selection errors
Failure log:
Alice intuitive_planning: The last time you saw **Bob was
in the <Office> (1000)**, which hasn’t been explored yet. It
may contain target objects or provide useful information for
the goal.
Answer: A. go to <Office> (1000)
Analysis: Although LLM believed that Bob is in the <office>(1000) , LLM still chose
to go to the <office>(1000) which is a redundant action.

Failure type: communication content generation error
Failure log:
Bob: low-level-plan:send a message: Hi Alice, I’ve explored
all of the <Kitchen> (5000) and the <Livingroom> (8000),
finding <orange> (556740) there. I’m holding <loaf_bread>
(12849971). My subplan is to put <loaf_bread> (12849971)
into <orange> (556740), grasp <orange> (556740), and
transport to the bed.
Analysis: put <loaf_bread> (12849971) into <orange> (556740) is in-
consistent with common sense and the simulation environment ( Items are randomly initial-
ized in each room) , which is the hallucination of LLM.

Figure 4: Failure cases of CoBel-World.
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Figure 5: Performance-cost trade-off of CoBel-World and all baselines. The performance metric
corresponds to the Transport Rate and the cost metric corresponds to the Token Cost.

yielding a posterior belief b′i that incorporates direct evidence. This step enables rapid belief align-
ment through perception and communication.

This Bayesian-style process—predicting future states and update based on observations—forms the
theoretical foundation of our CoBel-World framework.

C ADDITIONAL ENVIRONMENT DETAILS

We evaluate our methods and baseline methods on two challenging embodied multi-agent bench-
marks: ThreeDWorld Multi-Agent Transport (TDW-MAT) and Communicative Watch-And-Help
(C-WAH). We follow CoELA(Zhang et al., 2023) and the detailed descriptions of these benchmarks
are provided below.

C.1 THREEDWORLD MULTI-AGENT TRANSPORT

Tasks. TDW-MAT comprises two distinct task categories: food-transportation and object-
transportation. The food-transportation task involves 6 types of target objects including apple, ba-
nana, orange, bread, loaf bread, burger; and three container types: bowl, plate, and tea tray. And
the object-transportation task includes another 6 different target objects including calculator, mouse,
pen, lighter, purse, iPhone; and three container types: plastic basket, wooden basket, and wicker bas-
ket. In each task instance, the environment contains 10 target objects and between 2 to 5 containers.
The scenes are structured across four semantically coherent room types: living room, office, kitchen,
and bedroom with object placements adhering to real-world contextual plausibility. Agents are re-
quired to maximize the number of target objects delivered to a designated goal location within a time
budget of 3,000 simulation frames. Containers serve as transport tools, each capable of carrying up
to three objects; in their absence, agents can carry at most two objects simultaneously.

Observation Space. The embodied agent receives a variety of observations, with the primary ones
being an egocentric RGB image and a depth image. Additionally, there are several auxiliary obser-
vations. The observation space includes:

• RGB image: An egocentric image captured by a forward-facing camera, with a resolution
of 512 × 512 and a field of view of 90 degrees.

• Depth image: This image shares the same camera intrinsic parameters as the RGB image.
• Oracle Perception (optional): An image where each object ID is represented by a distinct

color, using the same camera intrinsic parameters as the RGB image.
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• Agent position and rotation: The position and rotation of the agent within the simulation
environment.

• Messages: Communications sent by all agents.

• Held objects: Information about the objects currently held by the agent.

• Opponent held objects: Information about objects held by another agent, if the agent is
within view.

Action Space In TDW-MAT, agents can perform 7 distinct types of actions to interact with the
environment or communicate with each other. Each action spans multiple frames, and the detailed
action space is outlined below:

• Move forward: The agent advances by 0.5m.

• Turn left: The agent rotates left by 15 degrees.

• Turn right: The agent rotates right by 15 degrees.

• Grasp: The agent grasps an object, successfully performing this action only when in close
proximity to the object. The object can be either a target or a container.

• Put In: The agent places a target into a container, an action that is possible only when the
agent is holding a target in one hand and a container in the other.

• Drop: The agent releases the objects held in hand.

• Send message: The agent sends a message to others, with a limit of 500 characters per
frame.

Table 6: TDW_MAT tasks extended with capacity dimension

Task Type Container Num Container Name

Food-low-capacity 2 tea tray, bowl, plate

Food-high-capacity 5 tea tray, bowl, plate

Stuff-low-capacity 2 wood basket, wicker basket, plastic basket

Stuff-high-capacity 5 wood basket, wicker basket, plastic basket

Extended TDW-MAT Tasks. Building upon the classic TDW-MAT benchmark introduced by
CoELA (Zhang et al., 2023), we extend the evaluation along task difficulty dimension to enable
a more comprehensive comparison between CoBel-World and various baselines. Specifically, tasks
are categorized into low-capacity and high-capacity settings based on the number of containers
available to the agent in the environment. Each difficulty level comprises half of both the food-
transportation and stuff-transportation tasks. Task details are provided in Table 6.

C.2 COMMUNICATIVE WATCH-AND-HELP

Communicative Watch-And-Help (C-WAH) builds upon the Watch-And-Help challengeby incorpo-
rating the ability for agents to send messages to one another. Sending messages, like other actions,
consumes one timestep and is subject to a maximum length constraint.
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Table 7: Detailed description of C-WAH tasks

Task Name Oject Set

Prepare afternoon tea ON(cupcake,coffeetable), ON(pudding,coffeetable),
ON(apple,coffeetable), ON(juice,coffeetable),
ON(wine,coffeetable)

Wash dishes IN(plate,dishwasher), IN(fork,dishwasher)

Prepare a meal ON(coffeepot,dinnertable),ON(cupcake,dinnertable),
ON(pancake,dinnertable), ON(poundcake,dinnertable),
ON(pudding,dinnertable), ON(apple,dinnertable),
ON(juice,dinnertable), ON(wine,dinnertable)

Put groceries IN(cupcake,fridge), IN(pancake,fridge),
IN(poundcake,fridge), IN(pudding,fridge),
IN(apple,fridge), IN(juice,fridge),
IN(wine,fridge)

Set up a dinner table ON(plate,dinnertable), ON(fork,dinnertable)

Task The Communicative Watch-And-Help (C-WAH) framework comprises five household-
oriented tasks: Prepare afternoon tea, Wash dishes, Prepare a meal, Put groceries, and Set up a dinner
table. Each task involves multiple subtasks, expressed through predicates in the form “ON/IN(x, y)”,
which correspond to actions like “Place x ON/IN y”. Some detailed information is provided in Ta-
ble 7. The primary objective is to complete all given subtasks within 250 timesteps, with each task
containing between 3 to 5 subtasks.

Observation Space The C-WAH framework provides two observation modalities: Symbolic Obser-
vation and Visual Observation. In Symbolic Observation—consistent with the original Watch-And-
Help setup—the agent has full access to all object-related information in the same room, including
each object’s name, location, state, and relational attributes. In Visual Observation, agents receive
egocentric RGB and depth images along with auxiliary observations. Detailed observations include:

• RGB image: An egocentric image from a forward-facing camera, with a resolution of 256
× 512 and a field of view of 60 degrees.

• Depth image: An image with the same camera intrinsic parameters as the RGB image.
• Oracle Perception: An image where each object ID is mapped to a color, sharing the

same camera intrinsic parameters as the RGB image.
• Agent position: The agent’s position within the simulation world.
• Messages: Communications sent by all agents.
• Held objects: Information about the objects currently held by the agent.
• Opponent held objects: Information about objects held by another agent, if visible.

Action Space The action space in C-WAH closely resembles that of the original Watch-And-Help
Challenge, with the addition of the send message action. The detailed action space includes:

• Walk towards: Move towards an object in the same room or towards a specific room.
• Turn left: Rotate left by 30 degrees.
• Turn right: Rotate right by 30 degrees.
• Grasp: Grasp an object, which can be successfully performed only when the agent is

close to the object.
• Open: Open a closed container, performable only when the agent is near the container.
• Close: Close an open container, performable only when the agent is near the container.
• Put: Place held objects into an open container or onto a surface, performable only when

the agent is near the target position.
• Send message: Communicate with others, with a limit of 500 characters per message.
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Hi, Alice. I find apple in 
the bedroom. 

Alice BELIEVE Bob 
BELIEVE apple IN bedroom
BELIEVE Alice HOLD banana
BELIEVE Alice AT livingroom

Hi,Bob. I’ holding a 
bread in the living room.

Alice BELIEVE 
Bob AT bedroom
Bob HOLD banana

Alice

Bob

Zero order beliefs

Alice’s View

First order beliefs

Bob

Communication

Figure 6: Examples of the transformation from unstructured natural language to structured beliefs.

D COBEL-WORLD DETAILS

D.1 BELIEF SYMBOLIC REPRESENTATION

Examples of Representing Beliefs. As illustrated in Figure 6, we provide several examples to
demonstrate how natural language dialogues and partial visual observations are transformed into
structured belief representations.

Prompt Templates. We list the belief rules construction prompts for the two agents Alice and Bob
in the benchmarks, as shown in Figure 7 and Figure 8, respectively.

Belief Rules. Figure 9 illustrates the belief rules of CoBel-World.

D.2 BAYESIAN BELIEF COLLABORATION

In this part, we list the prompts used in the Bayesian Belief Collaboration module on TDW-MAT
benchmark. Figure 11 and Figure 13 illustrate the prompts for zero-order belief update and pre-
diction, respectively. Figure 10 and Figure 12 illustrate the prompts for first-order belief update
and prediction, respectively. Figure 14, Figure 15, Figure 16 and Figure 17 depict the prompts for
adaptive collaboration, communication, planning and replanning, respectively.

E LLM USAGE DISCLOSURE

We hereby disclose the use of LLM in the preparation of this manuscript, in compliance with ICLR’s
submission policies. The LLM was utilized as an assistive tool for language expression refinement
during the writing process. Specifically, we leveraged the LLM to optimize the clarity, grammat-
ical accuracy, and writing style of our manuscript. The LLM did not participate in any aspect of
research ideation, experimental design or data analysis. All content processed with LLM assistance
has undergone thorough review, verification, and manual revision by the authors to ensure scientific
accuracy, originality, and consistency with the research findings. We confirm that no content gener-
ated by the LLM constitutes plagiarism, fabrication of facts, or other forms of scientific misconduct.
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Belief Rules Construction Prompt of Alice

Init Prompt: You are Alice, you and Bob are constructing beliefs rules to denote the zero
and first order belief of the world. You should first extract entity types and predicates in a
specific domain given a task description and the belief symbolic language below. After that
you should use the belief symbolic language to describe the possible belief types in this task
domain and send to bob for discussion.

Belief symbolic language: $BELIEF_LANGUAGE $

Task description: $TASK_DESCRIPTION$
Note that the zeroth-order belief denote my knowledge of the world, first-order belief denote
my knowledge of others belief.
DO NOT generate beliefs that go beyond the information specified in the task description.
Consider ONLY zero-order and first-order beliefs.
The belief rules should be in syntax format with entity represented with a "?" prefix, and
without any additional comment and analysis and explanation: You should output strictly in
the format of the following structure:

Entity and predicate reasoning:
Zero order belief rules:
First order belief rules:

Refine Prompt: You are Alice, you and Bob are constructing beliefs rules to denote the
zero and first order belief of the world. Given a task description and the belief symbolic
language below, you should refine the belief rules according to Bob’s suggestions.

Belief symbolic language: $BELIEF_LANGUAGE$
Task description: $TASK_DESCRIPTION$
previous content: $PREVIOUS_CONTENT$
Bob’s suggestions: $SUGGESTIONS$

DO NOT generate beliefs that go beyond the information specified in the task description.
Consider ONLY zeroth-order and first-order beliefs.
Note that the zeroth-order belief denote my knowledge of the world, first-order belief denote
my knowledge of others belief.
Now try to refine your previous output according to Bob’s suggestions. The belief rules
should be in syntax formatwith entity represented with a ? prefix, and without any additional
comment and analysis and explanation: You should output strictly in the format of the
following structure:

Reasoning:
Zero order belief rules:
First order belief rules:

Figure 7: Alice’s belief rules construction prompt
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Belief Rules Construction Prompt of Bob

Discuss Prompt: You are bob, you and Alice are constructing belief rules to denote the zero
and first order belief of the world. You are required to check the belief rules made by Alice
given the challenge description below. Give your reasoning progress in the reasoning:. And
then give your comments: Satisfied or Unsatisfied. If Unsatisfied, you should give your
suggestions to Alice on how to refine the construction.

These suggestions may include:
Missing logical relationships among key beliefs, such as omitting the agent’s belief about
its position.
Formatting errors, failing to comply with the prescribed format of the belief language.

Belief symbolic language: $BELIEF_LANGUAGE$ Task description: $TASK_DESCRIP-
TION$ Alice content: $ALICE_CONTENT$ Check if Alice’s construction satisfy the need.
Make deletion advice when occurring repeat syntagma. DO NOT provide suggestions that
go beyond the information specified in the task description.
Consider ONLY zeroth-order and first-order beliefs.
Note that the zeroth-order belief denote my knowledge of the world, first-order belief denote
my knowledge of others belief.

You should output strictly in the format of the following structure:

Reasoning:
Suggestions:
Satisfied:(yes or no)

Figure 8: Bob’s belief rules construction prompt

Belief Rules

zero-order belief rules:
?agent BELIEVE ?object IN ?room
?agent BELIEVE ?bed IN ?room
?agent BELIEVE ?container IN ?room
?agent BELIEVE ?agent HOLD ?object
?agent BELIEVE ?agent HOLD ?container
?agent BELIEVE ?container CONTAIN ?object
?agent BELIEVE ?room EXPLORED ?exploration_state
?agent BELIEVE ?agent AT ?room

first-order belief rules:
?agentA BELIEVE ?agentB BELIEVE ?object IN ?room
?agentA BELIEVE ?agentB BELIEVE ?bed IN ?room
?agentA BELIEVE ?agentB BELIEVE ?container IN ?room
?agentA BELIEVE ?agentB BELIEVE ?agent HOLD ?object
?agentA BELIEVE ?agentB BELIEVE ?agent HOLD ?container
?agentA BELIEVE ?agentB BELIEVE ?container CONTAIN ?object
?agentA BELIEVE ?agentB BELIEVE ?room EXPLORED ?exploration_-
state
?agentA BELIEVE ?agentB BELIEVE ?agent AT ?room

Figure 9: Illustration of belief rules.
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Prompt for First-order Beliefs Update

I am $AGENT_NAME$. My teammate $OPPO_NAME$ and I want to transport as many
target objects as possible to the bed with the help of containers within 3000 steps.

You are an expert in multi-agent theory-of-mind reasoning. Your task is to analyze,
from the perspective of $AGENT_NAME$, what $AGENT_NAME$ believes about what
$OPPO_NAME$ knows after the dialogue concludes. This constitutes $AGENT_NAME$’s
first-order belief about $OPPO_NAME$’s knowledge.

Given the dialogue history and belief rules below, perform the following steps:
1. Information Extraction Identify all information that $AGENT_NAME$ can infer from
the dialogue, including:
Statements made by others to $AGENT_NAME$,
Statements $AGENT_NAME$ themselves made (which reflect their prior knowledge).

2. First-Order Belief Representation:
Based solely on the above information and the provided belief rules, generate $AGENT_-
NAME$’s first-order beliefs about $OPPO_NAME$’s knowledge. Notice:
- Adhere strictly to the belief rules; do not introduce external assumptions.
- Replace all placeholders prefixed with “?” with concrete entities mentioned in the
dialogue.
- Represent all non-agent entities as <name> (id), e.g., <table> (712).
- Distinguish between private and shared knowledge.
- Beliefs must be expressed in the formal belief rules format—no natural language explana-
tions.

3. Plan Extraction:
Extract $OPPO_NAME$’s explicitly stated or unambiguously expressed plan for their next
action, as conveyed in the dialogue. A “plan” refers to an intended future action declared
by $OPPO_NAME$. Only include plans that are directly mentioned or clearly articulated;
do not infer, complete, or hypothesize based on partial or implicit cues. If no such plan is
present, state “None".

Constraints:
Do not generate any information not explicitly present or logically entailed by the dialogue.
All output must conform to the structure and syntax of the belief rules.
Following are provided information for you:

Dialogue History: $MESSAGE$
Belief Rules: $RULE$
Output Format: Extracted Information: [about what $AGENT_NAME$ knows]
First order beliefs: [first-order beliefs in belief rule format]
$OPPO_NAME$’s plan: [concise description of the next plan]

Figure 10: Prompt for the update of first-order beliefs.
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Prompt for Zero-Order Beliefs Update

I am $AGENT_NAME$. My teammate $OPPO_NAME$ and I want to transport as many
target objects as possible to the bed with the help of containers within 3000 steps.

You are an expert in multi-agent theory-of-mind reasoning. Your task is to analyze,
from the perspective of $AGENT_NAME$, what $AGENT_NAME$ knows after the
dialogue concludes—this includes information conveyed to $AGENT_NAME$ by others,
as well as information $AGENT_NAME$ themselves expressed (which reflects their prior
knowledge). This constitutes $AGENT_NAME$’s zero-order belief about collaborator’s
knowledge and task information.

Perform the following steps:

1. Information Extraction:
Extract all information that $AGENT_NAME$ possesses after the dialogue, based solely
on the dialogue content.

2. Zero-Order Belief Generation:
Using only the extracted information and the belief rules below, generate $AGENT_-
NAME$’s zero-order beliefs.
Notice:
- Adhere strictly to the belief rules; do not introduce external assumptions.
- Replace all placeholders prefixed with “?” with concrete entities mentioned in the
dialogue.
- Represent all non-agent entities as <name> (id), such as <table> (712).
- The exploration state of rooms MUST be exactly one of: part, all, or none.
- Beliefs must be expressed exclusively in the formal belief rule format—no natural
language explanations.

Constraints:
Do not generate any information not explicitly present or logically entailed by the dialogue.
All output must conform to the structure and syntax of the belief rules.
Following are provided information for you:

Dialogue History: $MESSAGE$

Belief Rules: $RULE$

Answer strictly in this format:

Extracted Information: [about what $AGENT_NAME$ knows]

Zero order beliefs: [zero-order beliefs in belief rules format]

Figure 11: Prompt for the zero-order belief update.
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Prompt for First-Order Beliefs Prediction

I am $AGENT_NAME$. My teammate $OPPO_NAME$ and I want to transport as many
target objects as possible to the bed with the help of containers within 3000 steps.

Your task is to simulate $OPPO_NAME$’s decision-making process in a theory-of-mind
reasoning style, which is grounded in first-order beliefs about what I $OPPO_NAME$
knows. This first-order beliefs captures $AGENT_NAME$’s understanding of observations,
actions, and knowledge of the environment.

First, perform belief-based reasoning: starting from explicit first-order belief, infer the pos-
sible beliefs $OPPO_NAME$ may hold about the locations of untransported target objects.
e.g., if $AGENT_NAME$ believes a room has been explored “none”, then $OPPO_NAME$
may reasonably believe that untransported target objects are likely present in that room. Pro-
vide this reasoning process and its conclusion after “reasoning:”. You may list at most three
concise belief-based justifications.
Second, based on this belief-based reasoning, generate the top three candidate plans that
$OPPO_NAME$ is most likely to execute to maximize transport efficiency. Each plan must
satisfy the following:
Composed of 1 to 3 atomic actions selected from the allowed set: 1) ‘go to’: move to a
specified room. 2) ’explore current room <room>(id)’: explore current room(is not fully
explored) for underlying target objects. 3) ‘go grasp’: go to grasp a specified target object.
4) ‘put’: Place an object into a specified container. 5) ’transport’: Transport holding objects
or containers to the bed and drop them on the bed.

Actions take several steps to finish. It may be costly to go to another room or transport to
the bed, use these actions sparingly. I can grasp containers and put objects into them to
hold more objects at a time. I can hold two items simultaneously (objects or containers). I
may grasp only one container at a time. A container can hold up to three objects, enabling
transport of up to four items per trip (three inside the container + one in the other hand).
Note that containers are discarded upon delivery to the bed. Room exploration states are
“none”, “part”, or “all”.

Notice: All entities (rooms, objects, containers) must be strictly represented as <name>(id),
e.g., <livingroom>(1000), <wicker_basket>(5388017).

Following are provided information for you:

Goal: $GOAL$

First-order Beliefs: $FIRST_ORDER_BELIEF$

Answer strictly in this format:
reasoning:
plans:
plan1:
plan2:
plan3:

Figure 12: Prompt for first-order beliefs prediction.
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Prompt for Zero-Order Beliefs Prediction

I am $AGENT_NAME$. My teammate $OPPO_NAME$ and I want to transport as many
target objects as possible to the bed with the help of containers within 3000 steps.

Your task is to simulate my ($AGENT_NAME$’s) decision-making process, grounded in
my zero-order belief—i.e., my direct knowledge of the environment, including observed
room exploration states and located objects.

First, perform belief-based reasoning: starting from my explicit zero-order belief, infer the
possible beliefs I may hold about the locations of untransported target objects. For example,
if I believe a room has been explored “none”, I may reasonably believe that untransported
target objects are likely present in that room. Provide this reasoning process and its conclu-
sion after “reasoning:”. You may list at most three concise belief-based justifications.
Second, based on this belief-based reasoning, generate the best plan I am most likely to
execute to maximize transport efficiency. The plan must satisfy the following:
Composed of 1 to 3 atomic actions selected from the allowed set: 1) ‘go to’: move to a
specified room. 2) ’explore current room <room>(id)’: explore current room(is not fully
explored) for underlying target objects. 3) ‘go grasp’: go to grasp a specified target object.
4) ‘put’: Place an object into a specified container. 5) ’transport’: Transport holding objects
or containers to the bed and drop them on the bed.

Actions take several steps to finish. It may be costly to go to another room or transport to
the bed, use these actions sparingly. I can grasp containers and put objects into them to
hold more objects at a time. I can hold two items simultaneously (objects or containers). I
may grasp only one container at a time. A container can hold up to three objects, enabling
transport of up to four items per trip (three inside the container + one in the other hand).
Note that containers are discarded upon delivery to the bed. Room exploration states are
“none”, “part”, or “all”.
Notice: All entities (rooms, objects, containers) must be strictly represented as <name>(id),
e.g., <livingroom>(1000), <wicker_basket>(5388017).

Following are provided information for you:

Goal: $GOAL$

Zero-order Beliefs: $ZERO_ORDER_BELIEF$

Answer strictly in this format:

reasoning:

plan:

Figure 13: Prompt for zero-order beliefs prediction.
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Prompt for Adaptive Collaboration

I am $AGENT_NAME$. My teammate $OPPO_NAME$ and I want to transport as many
target objects as possible to the bed with the help of containers within 3000 steps. I can
hold two things at a time, and they can be objects or containers. I can grasp containers and
put objects into them to hold more objects at a time. Note that a container can contain three
objects, and will be lost once transported to the bed. The room can be explored none/part/all.

Please answer the following questions:

1.Is there any potential miscoordination between my plan and $OPPO_NAME$’s plan, or
between my zero-order beliefs and my first-order beliefs about $OPPO_NAME$? Please
analyze the miscoordination in two aspects:: (1) Conflicting plans: where my intended ac-
tions and $OPPO_NAME$’s intended actions may conflict in space or resource usage. Such
as my plan is go to livingroom and explore it, while $OPPO_NAME$’s plans include go to
livingroom and grasp the target object there. This is a conflict because we may explore in
the same room at the same time which leads to a waste of time. (2) Belief misalignment:
where my zero-order belief (what I know) and my first-order belief about $OPPO_NAME$
(what I believe $OPPO_NAME$ knows) are inconsistent regarding critical environmental
states, potentially leading to inefficient or contradictory actions. .
For example, I know <kitchen>(2000) is explored “all”, but I believe $OPPO_NAME$
thinks <kitchen>(2000) is explored “none”. Consequently, $OPPO_NAME$ might waste
steps exploring an already fully explored room. Provide your analysis in at most three con-
cise reasons.
2. If the above analysis reveals heavy miscoordination that would significantly impair task
efficiency, answer Yes; otherwise, answer No. Minor or non-actionable belief discrepancies
that do not lead to conflicting behavior should be tolerated.
3. If your answer is Yes, list the specific pieces of information that are misaligned between
my zero-order belief and my first-order belief about $OPPO_NAME$. Itemize only the facts
from my zero-order belief that are in conflict with what I believe $OPPO_NAME$ knows.
For example: I know <apple>(12123) has been transported. Do not describe $OPPO_-
NAME$’s (believed) state.
4. If there is no heavy miscoordination, just answer NO.
Following are provided information for you:

My zero-order belief: $ZERO_ORDER_BELIEF$
My first-order belief about $OPPO_NAME$: $MY_FIRST_ORDER_BELIEF$
My plan: $MY_PLAN$

$OPPO_NAME$’s plans: $OPPO_PLANs$

Answer in this format:
reasons:
answer:
misaligned information:

Figure 14: Prompt for adaptive collaboration.
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Prompt for Communication Module

I am $AGENT_NAME$. My teammate $OPPO_NAME$ and I want to transport as many
target objects as possible to the bed with the help of containers within 3000 steps. I can hold
two things at a time, and they can be objects or containers. I can grasp containers and put
objects into them to hold more objects at a time. Note that a container can contain three
objects, and will be lost once transported to the bed.
Please help me generate a concise and clear message to inform $OPPO_NAME$ of the
misaligned information i know but he don’t know and inform $OPPO_NAME$ of my
subplan to achieve our shared goal collaboratively. The message should meet following
requirements:

1.The message has to be concise, reliable, and helpful for assisting $OPPO_NAME$ and me
to make an efficient and consistent action plan, and transport as many objects to the bed as
possible. Don’t generate repetitive messages. 2.The message must strictly contain two parts
of contents : 1) information only $AGENT_NAME$ know and 2) my plan
Here is an example of generated massage for you:
Example: Message:Hi $OPPO_NAME$, I’ ve explored all of the <kitchen>(2000) and
found <apple>(12123) there. I’m holding <banana>(12234). My subplan is to grasp
<apple>(12123) and transport holding things to the bed.

Just send what $AGENT_NAME$ know, don’t need to send what $OPPO_NAME$ knows.
Following are provided information for you:

Misaligned information: $MISALIGNED INFORMATION$
My subplan: $MY_PLAN$

Figure 15: Prompt for communication module.
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Prompt for Planning Module

I am $AGENT_NAME$. My teammate $OPPO_NAME$ and I want to transport as many
target objects as possible to the bed with the help of containers within 3000 steps. I can
hold two things at a time, and they can be objects or containers. I can grasp containers
and put objects into them to hold more objects at a time. Actions take several steps to fin-
ish. It may be costly to go to another room or transport to the bed, use these actions sparingly.

Assume that you are an expert decision maker. Given our shared goal, my current plan, my
previous actions, and my zero-order belief (i.e., my direct knowledge of the environment,
including observed objects and room exploration states), please: (1) Analyze whether my
current plan has been fully executed based on the previous actions and my zero-order belief;
(2) If the plan is complete, respond with "SUBPLAN DONE"; (3) If the plan is not yet
complete, select the best available next action from the provided action list to achieve the
goal as efficiently as possible.
Note: A container can hold up to three objects and is discarded upon transport to the bed. I
can only put objects into a container after I have grasped it. All entities must be denoted as
<name>(id), e.g., <table>(712).
Please provide up to three concise reasons to support your answer.
Following are provided information for you:

Goal: $GOAL$
My plan: $MY_PLAN$
Previous action: $PREVIOUS_ACTIONS$
My zero-order beliefs: $ZERO_ORDER_BELIEF$
Action list: $ACTION_LIST$

Answer strictly in this format: reasons: answer:

Figure 16: Prompt for planning module.
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Prompt for Replanning Module

I am $AGENT_NAME$. My teammate $OPPO_NAME$ and I want to transport as many
target objects as possible to the bed with the help of containers within 3000 steps.

Your task is to simulate my ($AGENT_NAME$’s) decision-making process, grounded in
my zero-order belief—i.e., my direct knowledge of the environment, including observed
room exploration states and located objects.

First, perform belief-based reasoning: starting from my explicit zero-order belief, infer the
possible beliefs I may hold about the locations of untransported target objects. For example,
if I believe a room has been explored “none”, I may reasonably believe that untransported
target objects are likely present in that room. Provide this reasoning process and its
conclusion after “reasoning:”. You may list at most three concise belief-based justifications.

Second, based on this belief-based reasoning and $OPPO_NAME$’s plan, generate the best
plan I should execute to transport target objects as efficiently as possible while actively
avoiding conflicts with $OPPO_NAME$’s actions. The plan should complement $OPPO_-
NAME$’s activities to maximize overall team efficiency (e.g., by exploring different rooms
or handling distinct objects). The generated plan must satisfy the following:
Composed of 1 to 3 atomic actions selected from the allowed set: 1) ‘go to’: move to a
specified room. 2) ’explore current room <room>(id)’: explore current room(is not fully
explored) for underlying target objects. 3) ‘go grasp’: go to grasp a specified target object.
4) ‘put’: Place an object into a specified container. 5) ’transport’: Transport holding objects
or containers to the bed and drop them on the bed.

Actions take several steps to finish. It may be costly to go to another room or transport to
the bed, use these actions sparingly. I can grasp containers and put objects into them to
hold more objects at a time. I can hold two items simultaneously (objects or containers). I
may grasp only one container at a time. A container can hold up to three objects, enabling
transport of up to four items per trip (three inside the container + one in the other hand).
Note that containers are discarded upon delivery to the bed. Room exploration states are
“none”, “part”, or “all”.
Notice: All entities (rooms, objects, containers) must be strictly represented as <name>(id),
e.g., <livingroom>(1000), <wicker_basket>(5388017).

Following are provided information for you:

Goal: $GOAL$

$OPPO_NAME$’s plan: $OPPO_PLAN$
Zero-order Beliefs: $ZERO_ORDER_BELIEF$

Answer strictly in this format:

reasoning:

plan:

Figure 17: Prompt for replanning module.
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