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ABSTRACT

Recently there has been a surge of interest in extending the success of large
language models (LLMs) to graph modality, such as molecules. As LLMs are
predominantly trained with 1D text data, most existing approaches adopt a graph
neural network to represent a molecule as a series of node tokens and feed these
tokens to LLMs for molecule-language alignment. Despite achieving some suc-
cesses, existing approaches have overlooked the hierarchical structures that are
inherent in molecules. Specifically, in molecular graphs, the high-order structural
information contains rich semantics of molecular functional groups, which en-
code crucial biochemical functionalities of the molecules. We establish a simple
benchmark showing that neglecting the hierarchical information in graph tokeniza-
tion will lead to subpar molecule-language alignment and severe hallucination in
generated outputs. To address this problem, we propose a novel strategy called
HIerarchical GrapH Tokenization (HIGHT). HIGHT employs a hierarchical graph
tokenizer that extracts and encodes the hierarchy of node, motif, and graph levels
of informative tokens to improve the graph perception of LLMs. HIGHT also
adopts an augmented molecule-language supervised fine-tuning dataset, enriched
with the hierarchical graph information, to further enhance the molecule-language
alignment. Extensive experiments on 14 molecule-centric benchmarks confirm the
effectiveness of HIGHT in reducing hallucination by 40%, as well as significant
improvements in various molecule-language downstream tasks.

1 INTRODUCTION

Large language models (LLMs) have demonstrated impressive capabilities in understanding and
processing natural languages (Radford et al., 2019; OpenAI, 2022; Touvron et al., 2023a; Bubeck
et al., 2023). Recently, there has been a surge of interest in extending the capabilities of LLMs to
graph modality (Jin et al., 2023; Li et al., 2023d; Wei et al., 2024; Mao et al., 2024; Fan et al., 2024)
such as social networks (Tang et al., 2023; Chen et al., 2024) and molecular graphs (Liu et al., 2023d;
Zhao et al., 2023; Cao et al., 2023; Li et al., 2024). Inspired by the success of large vision-language
models (Zhang et al., 2024; Zhu et al., 2023; Liu et al., 2023a), existing large graph-language models
(LGLMs) predominantly adopt a graph neural network (GNN) (Kipf & Welling, 2017; Hamilton
et al., 2017; Xu et al., 2019) to tokenize graph information as a series of node embeddings (or node
tokens), and then leverage an adapter such as a Multi-layer perceptron (MLP) or a Q-former (Li et al.,
2023b) to transform the node tokens into those compatible with LLMs (Fan et al., 2024). To facilitate
the alignment of graph and language modalities, LGLMs will undergo a graph-language instruction
tuning stage with the graph and the corresponding caption data, so as to realize the graph-language
alignment (Jin et al., 2023; Li et al., 2023d; Fan et al., 2024).

Despite achieving certain success, the graph tokenization in existing LGLMs neglects the essential
hierarchical structures that are inherent in graph data (Ying et al., 2018). Especially, in molecular
graphs, the high-order structural information, such as motifs or functional groups, contains rich
semantics of the biochemical functionalities of the molecules (Milo et al., 2002; Bohacek et al., 1996;
Sterling & Irwin, 2015). For example, the existence of the hydroxide functional group (“-OH”) in
small molecules often indicates a higher water solubility. Therefore, the perception of functional
groups in a molecule is essential for LLMs to understand the molecules. Intuitively, feeding LLMs
with only node tokens makes the molecule understanding harder as LLMs have to learn to combine
atoms in a functional group during the instruction tuning phase. However, atoms are usually treated
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Text TokenizerNode Motif
"Can you tell me more 
about this molecule?"

This molecule is a cyclohexadienecarboxylic acid having the 
C=C bonds at the 1- and 3-positions…                              
This molecule has 1 carboxylic acids group, and 
2 side-chain hydroxyls groups… 🤖
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(a) Overview of the HIGHT framework.
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(b) Summary of performance.

Figure 1: Illustration of HIGHT. (a) Given a molecule (i.e., PubChem ID 3, 5,6-Dihydroxycyclohexa-
1,3-diene-1-carboxylic acid), HIGHT detects the motifs and incorporates the “supernodes” for each
motif (The whole graph is also considered as a “super motif”.). Then, HIGHT tokenizes the molecule
into both node-level (i.e., atoms) and motif-level (i.e., functional groups) tokens. The hierarchical
view enables LLMs to align the molecular structures and the language descriptions of the molecule
better. (b) Therefore, HIGHT significantly reduces the hallucination of LGLMs and improves the
downstream performance across various molecule-centric tasks. All metrics are transformed a bit
such that a higher number means a better downstream task performance.

as separate tokens in LGLMs and there is often a lack of supervision signal to prompt about the
combinations of specific motifs. Consequently, neglecting the hierarchical information will lead to
subpar graph-language alignment and severe hallucination. To demonstrate the issue, we construct a
simple benchmark called MotifHallu that asks LLMs about the existence of common functional
groups. Surprisingly, we find that existing LGLMs consistently answer “Yes” for any functional
groups, as demonstrated in Sec. 3.2. It then raises a challenging research question:

Is there a way to incorporate the intrinsic hierarchical graph information into LLMs?

In this paper, we study the problem with a focus on molecular data, and introduce a new graph-
language alignment strategy called HIerarchical GrapH Tokenization (HIGHT). As shown in Fig. 1,
HIGHT includes a hierarchical graph tokenizer, as well as a hierarchical molecular instruction tuning
dataset to facilitate a better alignment of molecule and language modalities. Inspired by the success
of hierarchical GNNs in molecular representation learning (ZHANG et al., 2021; Zang et al., 2023;
Inae et al., 2023; Luong & Singh, 2023), we transform the original molecular graph into a hierarchical
graph with motif and graph nodes added in. Then, we employ a Vector Quantized-Variational
AutoEncoder (VQVAE) to obtain atom-level, motif-level, and graph-level tokens separately with
the self-supervised tasks (Zang et al., 2023). To retain more original structural information, we
further attach Laplacian positional encodings to the tokens. After that, we adopt a multi-level adapter
consisting of three adapters processing atom-level, motif-level, and graph-level tokens, respectively,
before feeding them into the LLMs. In addition, to facilitate the use of hierarchical information
encoded by the tokens, we augment the original molecular instruction tuning dataset with motif
descriptions. Our contributions can be summarized as follows:

• To the best of our knowledge, we are the first to propose incorporating the hierarchical graph
information into LGLMs with new architectures and instruction tuning dataset HiPubChem.

• To facilitate the graph-language alignment study on molecular graphs, we also propose the first
hallucination benchmark MotifHallu based on the existence of common functional groups.

• We conduct extensive experiments with 14 real-world molecular and reaction comprehension bench-
marks. The results show that HIGHT significantly reduces the hallucination on MotifHallu by
up to 40% and consistently improves the downstream molecule-language performances.

2 PRELIMINARIES

We begin by introducing preliminary concepts and related works of LGLMs.
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Large Graph-Language Models. As LLMs have demonstrated great capabilities across a wide
range of natural language tasks, there has been an increasing interest in extending LLMs to broader
applications where the text data are associated with the structure information (i.e., graphs) (Jin et al.,
2023; Li et al., 2023d; Wei et al., 2024; Mao et al., 2024; Fan et al., 2024). A graph can be denoted
as G = (V, E) with a set of n nodes v ∈ V and a set of m edges (u, v) ∈ E . Each node u has node
attributes as xu ∈ Rd and each edge (u, v) has edge attributes eu,v ∈ Rde . A number of LGLMs have
been developed to process graph-text associated dataset D = {G, c}, where c = [c1, ..., clc ] refers to
the caption of the graph G. For node-centric tasks, ci will associate with the nodes (Tang et al., 2023),
while in this paper we focus on graph-centric tasks, i.e., molecules and molecular captions (Liu et al.,
2023d). Usually, an l-layer GNN is employed to encode a graph as:

h(l)
u = COMBINE(h(l−1)

u ,AGG({(h(l−1)
u ,h(l−1)

v , euv)|v ∈ N (u)})), (1)

where h
(l)
u ∈ Rh refers to the node embedding of node u after l layers of GNN, AGG(·) is the

aggregation function (e.g., mean) among the information from neighbors of node u, and COMBINE
is the operator for combining information of node u with its neighbors N (u) (e.g., concatenation).
Then, after l message passing iterations, the graph-level embedding can be obtained as:

hG = READOUT
(
{h(l)

u |u ∈ V}
)
, (2)

where READOUT(·) is a pooling operator (e.g., mean pooling) among all the node embeddings. With
the representations of the nodes and graphs, LGLMs can fuse the graph and language information
in various ways, such as transforming into natural languages describing the graphs (Fatemi et al.,
2024), or neural prompts within the LLMs (Tian et al., 2024). In addition, the embeddings can also
be leveraged to postprocess the LLM outputs (Liu et al., 2024a). Orthogonal to different fusion
mechanisms, in this work, we will focus on transforming graph embeddings into input tokens of
LLMs to demonstrate the benefits of hierarchical graph modeling, which can be formulated as (Tang
et al., 2023; Chen et al., 2024; Liu et al., 2023d; Zhao et al., 2023; Cao et al., 2023; Li et al., 2024):

pθ(a|q,h) = Πla
i=1pθ(ai|q, fn(h),a<i), (3)

where the LGLM is required to approximate pθ to output the desired answer a given the question q,
and the graph tokens h adapted with adapter fn : Rh → Rhe that projects the graph tokens to the
embedding space of LLMs. In addition, one could also incorporate the 1D sequence of molecules
such as SMILES (Weininger, 1988) into q and a to facilitate the alignment.

Molecular Foundation Models. More specifically, this work focuses on one of the most popular
graph-language alignment tasks, i.e., molecule-language alignment (Liu et al., 2024c; Pei et al.,
2024). In fact, there is a separate line of works aiming to develop language models for molecules
and proteins – the language of lives, from 1D sequences such as SMILES (Irwin et al., 2022), 2D
molecular graphs (Wang et al., 2022), 3D geometric conformations (Liu et al., 2022; Zhou et al.,
2023), to scientific text (Beltagy et al., 2019) and multimodal molecule-text data (Liu et al., 2023b;
Luo et al., 2023a; Christofidellis et al., 2023; Liu et al., 2024b; Su et al., 2022; Zeng et al., 2022).
The adopted backbones range from encoder-decoder architectures such as MolT5 (Edwards et al.,
2022) and Galactica (Taylor et al., 2022), to auto-regressive language modeling (Luo et al., 2023b;
Liu et al., 2023c). Inspired by the success of large vision-language models (Li et al., 2023b; Zhu
et al., 2023; Liu et al., 2023a), the community further seeks for developing molecular foundation
models built upon existing molecular language models with more sophisticated graph information
fusion modules. For example, Liu et al. (2023d); Zhao et al. (2023) develop advanced cross-modal
adapters and generalized position embeddings to promote a better graph-language alignment of
encoder-decoder based molecular foundation models. Liang et al. (2023); Cao et al. (2023); Li et al.
(2024) develop cross-modal adapters for decoder only language models such as Llama (Touvron
et al., 2023a). Orthogonal to the aforementioned works, we focus more on what information one
shall extract from the graph for better graph-language alignment. We choose to build our methods
upon decoder only language models, with the hope to build a versatile agent that can perceive graph
information beyond the language, image, and audio modalities (Xi et al., 2023).

Hierarchical Graph Representation Learning. The hierarchical nature has been widely and
explicitly incorporated in learning high-quality graph representations (Ying et al., 2018). Especially
in molecular graphs, the high-order structural information naturally captures the existence of motifs
and functional groups. Therefore, the hierarchy of node-motif-graph has been widely applied in
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Large Language Model

No, the hydroxide group 
consists of -OH, but…🤖

O N H … C O "Is there a hydroxide 
in this molecule?"

…

Node Tokens

(a) Node-centric tokenization.

Large Language Model

Yes, the hydroxide group 
is present in the molecule🤖

O N H … =O -OH "Is there a hydroxide 
in this molecule?"

…

Node Tokens Motif Tokens

(b) HIGHT tokenization.

Figure 2: Illustration of hallucination caused by node-centric tokenization. With only node-level
tokens (i.e., discrete atom embeddings), LLMs have to identify and connect the nodes within a specific
functional group in order to align useful molecular structures in a molecule to the corresponding
language descriptions. Yet, due to the arbitrary order of atoms and position biases in LLMs, it is
harder to distinguish each functional group, which further leads to hallucination and subpar alignment.

self-supervised molecular representation learning (ZHANG et al., 2021; Zang et al., 2023; Inae et al.,
2023; Luong & Singh, 2023). Nevertheless, it remains unclear how to properly incorporate the
hierarchical graph information in graph instruction tuning with LLMs.

3 GRAPH TOKENIZATION FOR GRAPH-LANGUAGE ALIGNMENT

Existing LGLMs predominantly tokenize a graph into a series of node embeddings (or node tokens).
Despite achieving some success, we find that node-centric tokenization can hardly express motif-level
information and will lead to issues such as hallucination as demonstrated in this section.

3.1 NODE-CENTRIC TOKENIZATION

Specifically, most existing LGLMs directly take the node tokens from GNNs as inputs to LLMs (Cao
et al., 2023):

pθ(a|q,h) = Πla
i=1pθ(ai|q, fn(h1), ..., fn(hn),a<i), (4)

where h1, ...,hn are node embeddings from a GNN typically pretrained through self-supervised
learning on large-scale molecular datasets such as ZINC250k (Sterling & Irwin, 2015), fn is the
corresponding adapter to align the node tokens to the LLM tokens. There are various options
for tokenizing a molecule, given that a simple supervised trained GNN could produce meaningful
tokens (Liu et al., 2023e). In this work, we consider a state-of-the-art node-centric tokenizer from
Mole-BERT (Xia et al., 2023) that pretrains a VQVAE (van den Oord et al., 2017) with masked
atoms modeling. It constructs a codebook Z to discretize atoms:

zu = argmin
i

||hu − ei||2, (5)

where zu ∈ Z is the quantized index of atom u, and ev is the codebook embedding of the i-th entry.
The codebook is trained through a reconstruction loss with respect to some attribute vi of atom i:

Lr =
1

n

n∑
i=1

(1− vT
i v̂i

||vi|| · ||v̂i||
)γ +

1

n

n∑
i=1

||sg[hi]− ezi ||22 +
β

2

n∑
i=1

||sg[ezi ]− hi||22, (6)

where sg[·] is the stop-gradient operator in straight-through estimator (Bengio et al., 2013), v̂i is
the reconstructed attribute of atom i with a decoder, and β is a hyperparamter. In Mole-BERT, the
attribute is simply the type of atom masked during training. Mole-BERT also manually partitions
the codebook into groups of common atoms such as carbon, nitrogen, and oxygen in order to avoid
codebook conflicts (Xia et al., 2023).

Intuitively, the trained atom tokens encode some contextual information, such as the neighbors
of the atoms. However, node-centric tokenization makes the molecule-language alignment more
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challenging, as LLMs have to additionally find the specific nodes to align the corresponding texts
during the instruction tuning process. It often encounters the underspecification issue during the
alignment. For example, in molecules, motifs or functional groups usually capture rich semantics,
and often share many common atoms such as carbon, nitrogen, and oxygen (Bohacek et al., 1996). As
shown in Fig. 2, both the carboxylic acid (“R-COOH”) and the hydroperoxide (“R-OOH”) functional
groups all contain two oxygen atoms and a hydrogen atom. For a molecule with hydroperoxide
attached to a scaffold with carbon atoms, it would be hard for LLMs to distinguish which functional
group is present in the molecule. Furthermore, due to the loss of positional information in the
node-centric tokenization (Liang et al., 2023; Cao et al., 2023), the limited expressivity of GNNs (Xu
et al., 2019) and the positional biases of auto-regressive LLMs (Lu et al., 2022), it is more challenging
for the inner LLM to relate the node-level information within a motif, which will lead to more serious
performance degeneration of the graph-language alignment.

3.2 MOTIF HALLUCINATION

To understand the issue of node-centric tokenization more clearly, we construct a simple benchmark
called MotifHallu, which measures the hallucination of common functional groups by LGLMs.
Specifically, we consider the 38 common functional groups in RDKit1 and leverage RDKit (Landrum,
2016) to detect the existence of the functional groups within a molecule. We leverage 3, 300
molecules from ChEBI-20 test split (Edwards et al., 2021), and adopt the query style as for large
vision-language models (Li et al., 2023c), which queries the existence of the specific functional group
in the molecule:

Is there a <functional group name> in the molecule?

Then, we detect whether the LGLM gives outputs meaning “Yes” or “No” following the practice
in (Li et al., 2023c). For each molecule, we construct questions with positive answers for all kinds of
functional groups detected in the molecule, and questions with negative answers for randomly sampled
6 functional groups from the 38 common functional groups in RDKit. Therefore, MotifHallu
consists of 23, 924 query answer pairs. While it is easy to scale up MotifHallu by automatically
considering more molecules and a broader scope of functional groups, we find that the current scale
is already sufficient to demonstrate the hallucination phenomena in LGLMs.

4 HIERARCHICAL GRAPH TOKENIZATION

To mitigate the aforementioned issue, we propose a new strategy called HIerarchical GrapH
Tokenization (HIGHT), which contains a hierarchical graph tokenizer that augments the input
graph modality, as well as a hierarchical molecular instruction tuning dataset that augments the input
language modality, to facilitate the alignment of molecule and language modalities.

4.1 HIERARCHICAL GRAPH TOKENIZER

Inspired by the success of hierarchical GNNs in self-supervised molecular representation learn-
ing (ZHANG et al., 2021; Zang et al., 2023), we transform the original molecular graph G into a
hierarchical graph G′ with motif and graph nodes added in. Specifically, we leverage the Breaking of
Retrosynthetically Interesting Chemical Substructures (BRICS) algorithm (Degen et al., 2008) to
detect a set of k motifs in G, denoted as M = {M(1), ...,M(k),M(k+1)}, where M(k+1) = G is
the original molecule, without loss of generality. Furthermore, we denote the set of nodes and edges
in M(i) as V(i)

m and E(i)
m , respectively. Then, we augment the original molecular graph G as G′ with

augmented nodes V ′ and edges E ′:

V ′ = V ∪ {v(1)m , ..., v(k+1)
m }, E ′ = E ∪ (∪k+1

i=1 E
(i)
ma), (7)

where v
(i)
m is the motif super nodes added to the original molecule, and E(i)

ma = ∪
u∈V(i)

m
{(u, v(i)m )}

are the augmented edges connecting to the motif super node from nodes within the corresponding
motif. We employ separate VQVAEs for atoms and motifs to learn meaningful code embeddings

1https://github.com/rdkit/rdkit/blob/master/Data/FunctionalGroups.txt
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with several self-supervised learning tasks. The reconstructed attributes in Eq. 4 include atom types
at the atom-level and the number of atoms at the motif-level, etc., following (Zang et al., 2023).

Meanwhile, merely feeding the motif tokens with node tokens to LLMs still can not help distinguish
the motifs from nodes properly. Therefore, we propose to further attach positional encodings p to
all of the tokens. We choose to use Laplacian positional embeddings (Dwivedi et al., 2020) while
one could easily extend it with other variants (Ying et al., 2021). Since motif (and graph) tokens
pose different semantic meanings from atom tokens, we adopt separate adapters for different types of
tokens. Denote the motif tokens as h(i)

m for motif M(i), generation with HIGHT tokenizer is as:

pθ(a|q,h,hm) =

la∏
i=1

pθ(ai|q, fn(h1), ..., fn(hn),

fm(h(1)
m ), ..., fm(h(k)

m ), fg(h
(k+1)
m ),a<i),

(8)

where fm(·) and fg(·) are the adapters for BRICS motifs and the original molecules, respectively.

4.2 HIERARCHICAL GRAPH INSTRUCTION TUNING DATASET

Although HIGHT tokenizer properly extracts the hierarchical information from the input graph
modality, it remains challenging to properly align the language information to the corresponding
graph information, without the appearance of the respective captions in the texts. For example, if
the caption does not contain any information about the water solubility of the hydroxide functional
group (“-OH”), LGLMs will never know that “-OH” motif corresponds to the water solubility of
the molecule, despite that HIGHT tokenizer extracts the “-OH” token. In fact, the commonly used
molecular instruction tuning curated from PubChem (Kim et al., 2022) in existing LGLMs (Liu et al.,
2023d; Cao et al., 2023; Li et al., 2024), contains surprisingly little information about motifs. Some
samples are given in Appendix B.2.

To this end, we propose HiPubChem, which augments the molecular instruction tuning dataset
with captions of the functional groups. We consider both the positive and negative appearances of
motifs when augmenting the instructions. For the positive case, we directly append the caption of all
functional groups detected with RDKit:

This molecule has <#> of <functional group name> groups.

where <#> refers to the detected number of the functional group in the molecule, and <functional
group name> refers to the name of the functional group as listed in Appendix B.2. In addition,
we also include a brief introduction of the corresponding functional groups to provide fine-grained
information for molecule-language alignment. For the negative case, we randomly sample kneg that
do not appear in the molecule:

This molecule has no <functional group name> groups.

Despite the simple augmentation strategy, we find that HiPubChem significantly reduces the halluci-
nation issue and improves the molecule-language alignment performance.

4.3 HIERARCHICAL GRAPH INSTRUCTION TUNING

For the training of HIGHT, we use a two-stage instruction tuning as (Cao et al., 2023).

Stage 1 Alignment Pretraining. We curate a new molecule-text paired dataset from PubChem
following the pipeline of (Liu et al., 2023b). We set the cutoff date by Jan. 2024, and filter out
unmatched pairs and low-quality data, which results in 295k molecule-text pairs. Furthermore, we
construct the HiPubChem-295k dataset based on the curated PubChem-295k dataset. The alignment
pretraining stage mainly warms up the adapter to properly project the graph tokens with the LLM
embedding space. To avoid feature distortion, both the LLM and the GNN encoder are frozen.

Stage 2 Task-specific Instruction Tunning. With a properly trained adapter, we further leverage the
task-specific instruction tuning datasets from MoleculeNet (Wu et al., 2017), ChEBI-20 (Mendez
et al., 2019), and Mol-Instructions (Fang et al., 2024). More details of the instruction tuning

6
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datasets are given in Appendix B. In Stage 2, we still keep the GNN encoder frozen, while tuning
both the adapter and the LLM. The LLM is tuned using low-rank adaptation (i.e., LoRA) (Hu et al.,
2022) following the common practice.

5 EXPERIMENTAL EVALUATION

We conduct extensive experiments to evaluate HIGHT, comparing with previous node-centric to-
kenization, across 14 real-world tasks including property prediction, molecular description, and
chemical reaction prediction. We briefly introduce the setups, and leave the details in Appendix C.

5.1 EXPERIMENTAL SETTINGS

We follow the common practice (Cao et al., 2023; Fang et al., 2024) to conduct our experiments.

Architecture. The GNN backbone used for producing graph tokens is a 5-layer GIN (Xu et al., 2019)
with a hidden dimension of 300. The adapter is implemented as a single-layer MLP. The base LLM
adopts the vicuna-v-1.3-7B (Chiang et al., 2023). The scale of parameters is around 6.9B.

Baselines. We incorporate both the specialist molecular foundation/pretrained models, as well as
LLM-based generalist models. The specialist models include expert models pretrained on large-scale
molecular datasets and then finetuned on task-specific datasets such as KV-PLM (Zeng et al., 2022),
GraphCL (You et al., 2020) and GraphMVP (Liu et al., 2022). The specialist models also include
molecule-specialized foundation models that are trained with tremendous molecule-centric datasets
such as MolT5-based methods (Edwards et al., 2022), Galactica (Taylor et al., 2022), MoMu (Su
et al., 2022), MolFM (Luo et al., 2023a), Uni-Mol (Zhou et al., 2023), MolXPT (Liu et al., 2023c),
GIT-Mol (Liu et al., 2024b), and BioMedGPT (Luo et al., 2023b). We adopt the results from previous
works (Fang et al., 2024; Cao et al., 2023) when available.

For LLM-based generalist models, we consider LLMs such as ChatGPT (OpenAI, 2022), Llama (Tou-
vron et al., 2023a) as well as instruction tuned LLMs such as Alpaca (Dubois et al., 2023), Baize (Xu
et al., 2023), ChatGLM (Zeng et al., 2023) and Vicuna (Chiang et al., 2023). We also consider
parameter-efficient finetuned LLMs using the backbone of llama2 (Touvron et al., 2023b) as done
by Mol-Instructions (Fang et al., 2024). For the node-centric based tokenization, we imple-
ment the baseline mainly based on InstructMol (Cao et al., 2023) with a VQVAE tokenizer from
Mole-BERT (Xia et al., 2023). HIGHT is implemented based on the same architecture with only the
tokenizer replaced. We use the suffix “-G” to refer to LLMs with only 2D graph input while using
“-GS” to refer to LLMs with both 2D graph and 1D selfies input (Krenn et al., 2019; Fang et al., 2024;
Cao et al., 2023). We do not include the baselines with “-GS” for tasks other than MotifHallu as
we find that incorporating the 1D input does not always bring improvements in the experiments.

Training and evaluation. We apply the same optimization protocol to tune LGLMs with node-centric
and HIGHT tokenizers for fair comparisons. We train both models with stage 1 by 5 epochs and stage
2 by 5 to 50 epochs as recommended by (Cao et al., 2023).

5.2 MOTIF HALLUCINATION

METHOD F1 (pos) ↑ F1 (neg) ↑ Acc ↑ Yes Ratio

Node-centric Tokenization
InstructMol-G 95.7 9.5 19.9 94.5
InstructMol-GS 97.1 10.6 20.9 94.4

Hierarchical Tokenization
HIGHT-G 85.5 48.2 39.1 74.7
HIGHT-GS 84.5 42.7 35.1 73.1

Ablation variants of HIGHT
HIGHT-G w/o HiPubChem 96.6 12.5 21.6 96.6
HIGHT-GS w/o HiPubChem 98.2 6.5 19.4 93.3

Table 1: Results of motif hallucinations on MotifHallu.

We first evaluate motif hallucination
results of the LGLMs with node-
centric and with HIGHT tokenization
with MotifHallu. All the evalu-
ated models only undergo the stage
1 instruction tuning to ensure a fair
comparison. We have not included the
other generalist baselines as we find
they consistently answer “Yes”. In ad-
dition, in order to avoid the drawbacks
that LGLMs may output answers that
do not follow the instructions, we compare the loss values by feeding the answers of “Yes” and
“No”, and take the one with a lower autoregressive language modeling loss as the answer. Following
the practice in LVLMs, we present the F1 scores, accuracies, and the ratio that the model answers
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METHOD BACE ↑ BBBP ↑ HIV ↑ SIDER ↑ ClinTox MUV ↑ Tox21 ↑ CYP450 ↑
# MOLECULES 1,513 2,039 41,127 1,427 1,478 93,087 7,831 16,896
# TASKS 1 1 1 27 2 17 12 5

Specialist Models
KV-PLM (Zeng et al., 2022) 78.5 70.5 71.8 59.8 84.3 61.7 49.2 59.2
GraphCL (You et al., 2020) 75.3 69.7 78.5 60.5 76.0 69.8 73.9 -
GraphMVP-C (Liu et al., 2022) 81.2 72.4 77.0 60.6 84.5 74.4 77.1 -
MoleculeSTM-G (Liu et al., 2023b) 80.8 70.0 76.9 61.0 92.5 73.4 76.9 -
MoMu (Su et al., 2022) 76.7 70.5 75.9 60.5 79.9 60.5 57.8 58.0
MolFM (Luo et al., 2023a) 83.9 72.9 78.8 64.2 79.7 76.0 77.2 -
Uni-Mol (Zhou et al., 2023) 85.7 72.9 80.8 65.9 91.9 82.1 78.1 -
Galactica-1.3B (Taylor et al., 2022) 57.6 60.4 72.4 54.0 58.9 57.2 60.6 46.9
Galactica-6.7B (Taylor et al., 2022) 58.4 53.5 72.2 55.9 78.4 - 63.9 -
Galactica-30B (Taylor et al., 2022) 72.7 59.6 75.9 61.3 82.2 - 68.5 -
Galactica-120B (Taylor et al., 2022) 61.7 66.1 74.5 63.2 82.6 - 68.9 -
GIMLET (Zhao et al., 2023) 69.6 59.4 66.2 - - 64.4 61.2 71.3

LLM Based Generalist Models
LLama-2-7b-chat (4-shot) (Touvron et al., 2023b) 76.9 54.2 67.8 - - 46.9 62.0 57.6
LLama-2-13b-chat (4-shot) (Touvron et al., 2023b) 74.7 52.8 72.4 - - 47.9 57.5 55.6
InstructMol-G 64.3 48.7 50.2 51.0 50.0 50.0 59.0 59.1
HIGHT-G 77.1 61.8 63.3 58.8 55.3 51.1 67.4 80.5

Table 2: ROC-AUC Results of molecular property prediction tasks (classification) on MoleculeNet (Wu et al.,
2017). Evaluation on InstructMol and HIGHT adopt the likelihood of the tokens of “Yes” and “No”. Most of the
instruction tuning datasets are from GIMLET (Zhao et al., 2023). SIDER and ClinTox are converted following
the MoleculeNet task description.

“Yes” (Li et al., 2023c). Given the severe imbalance of positive and negative samples in natural
molecules, we separately report the F1 scores for positive and negative classes.

The results are given in Table 1, which show that the LGLMs with node-centric tokenization
consistently answer with “Yes” despite the absence of the corresponding functional groups. In
contrast, HIGHT significantly improves the worst class hallucinations up to 40% in terms of F1
scores, and the overall accuracies up to 30%, thereby reducing the hallucination of LGLMs to the
functional groups that do not exist in the molecule.

We also conduct simple ablation studies by additionally incorporating the 1D sequence inputs with
SELFIES following the literature (Fang et al., 2024; Cao et al., 2023). Contrary to previous results
that additionally feeding the 1D sequence always improves the performance of LGLMs, We find that
the additional 1D sequence may increase the degree of the hallucination. We suspect that it could be
caused by the extremely long sequences of the SELFIES (Krenn et al., 2019) that may distract the
attention signals of LLMs. Nevertheless, HIGHT suffers less from the distraction and performs better.

In addition, we also evaluate HIGHT without the tuning of HiPubChem. Aligned with our discussion
in Sec. 3.2, HIGHT without HiPubChem will still suffer the hallucination, due to the low quality
of the instruction tuning data. Interestingly, simply incorporating the hierarchical information at
the architecture level can already help with the perception of graph information in LGLMs, which
improves the robustness against hallucination, aligned with our discussion as in Sec. 4.1 (?).

5.3 MOLECULAR PROPERTY PREDICTION

METHOD HOMO ↓ LUMO ↓ ∆ϵ ↓ AVG ↓
LLM Based Generalist Models
Alpaca† (Dubois et al., 2023) - - - 322.109
Baize† (Xu et al., 2023) - - - 261.343
LLama2-7B (Touvron et al., 2023b) (5-shot ICL) 0.7367 0.8641 0.5152 0.7510
Vicuna-13B (Chiang et al., 2023) (5-shot ICL) 0.7135 3.6807 1.5407 1.9783
Mol-Instruction (Fang et al., 2024) 0.0210 0.0210 0.0203 0.0210
InstructMol-G 0.0111 0.0133 0.0147 0.0130

HIGHT-G 0.0078 0.0086 0.0095 0.0086

Table 3: Results of molecular property prediction tasks (regression) on QM9. We
report the result in MAE. †: few-shot in-context learning (ICL) results from (Fang
et al., 2024). ∆ϵ refers to the HOMO-LUMO energy gap.

In molecular property
prediction, we leverage
8 datasets BACE, BBBP,
HIV, SIDER, ClinTox,
MUV, and Tox21 from
MoleculeNet, and
CYP450 from GIM-
LET (Zhao et al., 2023)
to evaluate the classi-
fication performance
with ROC-AUC. We
also adopt the regression-
based property prediction dataset from (Fang et al., 2024), where we evaluate several quantum
chemistry measures such as HUMO, LUMO, and HUMO-LUMO gap (Ramakrishnan et al., 2014).
The evaluation metric used to evaluate the regression based molecular property prediction is Mean
Absolute Error (MAE). All the datasets are converted into instruction formats following previous
works (Fang et al., 2024; Cao et al., 2023).
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MODEL BLEU-2↑ BLEU-4↑ ROUGE-1↑ ROUGE-2↑ ROUGE-L↑ METEOR↑

Specialist Models
MoT5-base (Edwards et al., 2022) 0.540 0.457 0.634 0.485 0.568 0.569
MoMu (MolT5-base) (Su et al., 2022) 0.549 0.462 - - - 0.576
MolFM (MolT5-base) (Luo et al., 2023a) 0.585 0.498 0.653 0.508 0.594 0.607
MolXPT (Liu et al., 2023c) 0.594 0.505 0.660 0.511 0.597 0.626
GIT-Mol-graph (Liu et al., 2024b) 0.290 0.210 0.540 0.445 0.512 0.491
GIT-Mol-SMILES (Liu et al., 2024b) 0.264 0.176 0.477 0.374 0.451 0.430
GIT-Mol-(graph+SMILES) (Liu et al., 2024b) 0.352 0.263 0.575 0.485 0.560 0.430
Text+Chem T5-augm-base (Christofidellis et al., 2023) 0.625 0.542 0.682 0.543 0.622 0.648
Retrieval Based LLMs
GPT-3.5-turbo (10-shot MolReGPT) (Li et al., 2023a) 0.565 0.482 0.623 0.450 0.543 0.585
GPT-4-0314 (10-shot MolReGPT) (Li et al., 2023a) 0.607 0.525 0.634 0.476 0.562 0.610

LLM Based Generalist Models
GPT-3.5-turbo (zero-shot) (Li et al., 2023a) 0.103 0.050 0.261 0.088 0.204 0.161
BioMedGPT-10B (Luo et al., 2023b) 0.234 0.141 0.386 0.206 0.332 0.308
Mol-Instruction (Fang et al., 2024) 0.249 0.171 0.331 0.203 0.289 0.271
InstructMol-G 0.481 0.381 0.554 0.379 0.488 0.503

HIGHT-G 0.504 0.405 0.570 0.397 0.502 0.524

Table 4: Results of molecular description generation task on the test split of ChEBI-20.

The results of molecular property prediction are given in Table 2 and Table 3 for classification and
regression, respectively. We can find that, no matter for classification or regression-based molecular
property prediction, HIGHT always significantly boosts the performance. The improvements brought
by HIGHT serve as strong evidence verifying our discussion in Sec. 4 about the importance of
hierarchical information for graph-language alignment. Remarkably, in CYP450 (Zhao et al., 2023),
HIGHT significantly outperforms the state-of-the-art specialist model, demonstrating the advances
of LGLM with hierarchical graph tokenization. Interestingly, Llama-2 (Touvron et al., 2023b) can
match the state-of-the-art performance in HIV in a few-shot setting, while performing significantly
worse in other datasets, for which we suspect there might exist some data contamination.

5.4 MOLECULAR DESCRIPTION GENERATION

For the task of molecular description generation or molecular captioning, we adopt the widely
used benchmark ChEBI-20 (Edwards et al., 2021). Given the molecules, ChEBI-20 evaluates
the linguistic distances of the generated molecule captions of molecular characteristics such as
structure, properties, biological activities etc.. Following the common practice, we report the metrics
of BLEU (Papineni et al., 2002), ROUGE (Lin, 2004) and Meteor (Banerjee & Lavie, 2005). The
LGLMs are trained using the ChEBI-20 train split and evaluated using the test split. The final is
selected according to the best training loss.

The results are given in Table 4. We can find that HIGHT consistently brings significant improvements
over LGLMs with node-centric tokenization. Nevertheless, compared to the specialist models such
as MoT5 (Edwards et al., 2022) that are pretrained on a significant amount of molecule-text related
corpus, there remains a gap for generalist LGLMs even with HIGHT. The gap calls for interesting
future investigations on how to incorporate HIGHT into the pretraining of the LGLMs properly.

5.5 CHEMICAL REACTION PREDICTION

For chemical reaction prediction tasks, we incorporate three tasks from Mol-Instructions (Fang
et al., 2024), i.e., reagent prediction, forward reaction prediction, and retrosynthesis prediction, which
are crucial for AI-aided drug discovery. Reagent prediction aims to predict the suitable reagents for a
particular chemical reaction. Forward reaction prediction aims to predict the products of a chemical
reaction, given the reactants and the reagents. Retrosynthesis prediction aims to predict the suitable
reactants given a target product. The inputs and outputs for chemical reaction related tasks adopt the
SELFIES (Krenn et al., 2019) as recommended by (Fang et al., 2024). In terms of the evaluation
metrics, we incorporate both linguistic distance metrics such as BLEU (Papineni et al., 2002) and
Levenshtein (Yujian & Bo, 2007), as well as molecular similarity measures such as similarity of the
molecular fingerprints by RDKit (Landrum, 2016).

The results are given in Table 5. It can be found that across all tasks in chemical reaction prediction,
LGLMs with HIGHT consistently and significantly improve the performances compared to the node-
centric tokenization. Meanwhile, LGLMs with HIGHT achieve state-of-the-art results in several tasks
and metrics, compared to other generalist models that even incorporate a stronger LLM backbone
such as Mol-Instruction, and additional information of SELFIES.
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MODEL EXACT↑ BLEU↑ LEVENSHTEIN↓ RDK FTS↑ MACCS FTS↑ MORGAN FTS↑ VALIDITY↑

Reagent Prediction
Alpaca† (Dubois et al., 2023) 0.000 0.026 29.037 0.029 0.016 0.001 0.186
Baize† (Xu et al., 2023) 0.000 0.051 30.628 0.022 0.018 0.004 0.099
ChatGLM† (Zeng et al., 2023) 0.000 0.019 29.169 0.017 0.006 0.002 0.074
LLama† (Touvron et al., 2023a) 0.000 0.003 28.040 0.037 0.001 0.001 0.001
Vicuna† (Chiang et al., 2023) 0.000 0.010 27.948 0.038 0.002 0.001 0.007
Mol-Instruction (Fang et al., 2024) 0.044 0.224 23.167 0.237 0.364 0.213 1.000
LLama-7b∗ (Touvron et al., 2023a)(LoRA) 0.000 0.283 53.510 0.136 0.294 0.106 1.000
InstructMol-G 0.031 0.429 31.447 0.389 0.249 0.220 1.000

HIGHT-G 0.050 0.462 28.970 0.441 0.314 0.275 1.000

Forward Reaction Prediction
Alpaca† (Dubois et al., 2023) 0.000 0.065 41.989 0.004 0.024 0.008 0.138
Baize† (Xu et al., 2023) 0.000 0.044 41.500 0.004 0.025 0.009 0.097
ChatGLM† (Zeng et al., 2023) 0.000 0.183 40.008 0.050 0.100 0.044 0.108
LLama† (Touvron et al., 2023a) 0.000 0.020 42.002 0.001 0.002 0.001 0.039
Vicuna† (Chiang et al., 2023) 0.000 0.057 41.690 0.007 0.016 0.006 0.059
Mol-Instruction (Fang et al., 2024) 0.045 0.654 27.262 0.313 0.509 0.262 1.000
LLama-7b∗ (Touvron et al., 2023a)(LoRA) 0.012 0.804 29.947 0.499 0.649 0.407 1.000
InstructMol-G 0.031 0.853 24.790 0.512 0.362 0.303 0.993

HIGHT-G 0.037 0.869 23.759 0.590 0.394 0.340 0.993

Retrosynthesis
Alpaca† (Dubois et al., 2023) 0.000 0.063 46.915 0.005 0.023 0.007 0.160
Baize† (Xu et al., 2023) 0.000 0.095 44.714 0.025 0.050 0.023 0.112
ChatGLM† (Zeng et al., 2023) 0.000 0.117 48.365 0.056 0.075 0.043 0.046
LLama† (Touvron et al., 2023a) 0.000 0.036 46.844 0.018 0.029 0.017 0.010
Vicuna† (Chiang et al., 2023) 0.000 0.057 46.877 0.025 0.030 0.021 0.017
Mol-Instruction (Fang et al., 2024) 0.009 0.705 31.227 0.283 0.487 0.230 1.000
LLama-7b∗ (Touvron et al., 2023a)(LoRA) 0.000 0.283 53.510 0.136 0.294 0.106 1.000
InstructMol-G 0.001 0.835 31.359 0.447 0.277 0.241 0.996

HIGHT-G 0.008 0.863 28.912 0.564 0.340 0.309 1.000

Table 5: Results of chemical reaction tasks. These tasks encompass reagent prediction, forward reaction
prediction, and retrosynthesis. †: few-shot ICL results from Fang et al. (2024). ∗: use task-specific instruction
data to finetune.

5.6 ABLATION STUDIES

To better understand the effectiveness of distinct components in HIGHT, we conduct additional
ablation studies that train InstructMol (Cao et al., 2023) with HiPubChem, or with the laplacian
positional encodings in molecular captioning tasks. The results are given in Table 6. We can find
that, merely incorporating positional encoding or hierarchical instruction tuning is not sufficient to
achieve the same performance as HIGHT. On the contrary, without a proper architecture design as
HIGHT, LGLMs with previous node-centric tokenization with HiPubChem will confuse LLMs and
even lead to degenerated downstream task performances.

METHODS BLEU-2↑ BLEU-4↑ ROUGE-1↑ ROUGE-2↑ ROUGE-L↑ METEOR↑

InstructMol+G 0.481 0.381 0.554 0.379 0.488 0.503
+Positional Encoding 0.488 0.388 0.556 0.383 0.491 0.508
+HiPubChem 0.473 0.372 0.547 0.371 0.481 0.495

HIGHT-G 0.504 0.405 0.570 0.397 0.502 0.524

Table 6: Abaltion study in Molecule Description Generation task.

6 CONCLUSIONS

This paper presents HIGHT, a novel hierarchical graph tokenization technique, which enhances the
synergy between molecules and language. By incorporating the hierarchical graph information,
HIGHT improves the graph-language alignment performance, reducing hallucinations and boosting
accuracy in molecular tasks, as validated through comprehensive benchmarking. Nevertheless, the
current concentration on molecular graphs requires further verification for wider applicability to
other forms of graph data, such as that originated from social networks. Despite the limitation,
HIGHT represents a significant step forward in advancing LLMs’ graph comprehension capability,
and highlighting paths for future research in this direction.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Satanjeev Banerjee and Alon Lavie. METEOR: An automatic metric for MT evaluation with improved
correlation with human judgments. In Proceedings of the ACL Workshop on Intrinsic and Extrinsic
Evaluation Measures for Machine Translation and/or Summarization, pp. 65–72, 2005. (Cited on
pages 9 and 24)

Iz Beltagy, Kyle Lo, and Arman Cohan. SciBERT: A pretrained language model for scientific text. In
Conference on Empirical Methods in Natural Language Processing, pp. 3615–3620, 2019. (Cited
on pages 3 and 24)

Yoshua Bengio, Nicholas Léonard, and Aaron C. Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation. arXiv preprint, arXiv:1308.3432, 2013.
(Cited on page 4)

Regine S. Bohacek, Colin McMartin, and Wayne C. Guida. The art and practice of structure-based
drug design: A molecular modeling perspective. Medicinal Research Reviews, 16(1):3–50, 1996.
(Cited on pages 1, 5 and 20)

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar,
Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott M. Lundberg, Harsha Nori, Hamid Palangi, Marco Túlio
Ribeiro, and Yi Zhang. Sparks of artificial general intelligence: Early experiments with GPT-4.
arXiv preprint, arXiv:2303.12712, 2023. (Cited on page 1)

He Cao, Zijing Liu, Xingyu Lu, Yuan Yao, and Yu Li. Instructmol: Multi-modal integration for
building a versatile and reliable molecular assistant in drug discovery, 2023. (Cited on pages 1, 3,
4, 5, 6, 7, 8, 10 and 18)

Runjin Chen, Tong Zhao, Ajay Jaiswal, Neil Shah, and Zhangyang Wang. Llaga: Large language and
graph assistant. arXiv preprint, arXiv:2402.08170, 2024. (Cited on pages 1 and 3)

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna: An
open-source chatbot impressing gpt-4 with 90%* chatgpt quality, 2023. URL https://lmsys.
org/blog/2023-03-30-vicuna/. (Cited on pages 7, 8, 10 and 22)

Dimitrios Christofidellis, Giorgio Giannone, Jannis Born, Ole Winther, Teodoro Laino, and Matteo
Manica. Unifying molecular and textual representations via multi-task language modelling. In
International Conference on Machine Learning, volume 202, pp. 6140–6157, 2023. (Cited on
pages 3 and 9)

Jörg Degen, Christof Wegscheid-Gerlach, Andrea Zaliani, and Matthias Rarey. On the art of compiling
and using ’drug-like’ chemical fragment spaces. ChemMedChem, 3:1503–1507, 2008. (Cited on
page 5)

Yann Dubois, Xuechen Li, Rohan Taori, Tianyi Zhang, Ishaan Gulrajani, Jimmy Ba, Carlos Guestrin,
Percy Liang, and Tatsunori B. Hashimoto. Alpacafarm: A simulation framework for methods that
learn from human feedback, 2023. (Cited on pages 7, 8 and 10)

Joseph L. Durant, Burton A. Leland, Douglas R. Henry, and James G. Nourse. Reoptimization of
mdl keys for use in drug discovery. Journal of chemical information and computer sciences, 42 6:
1273–80, 2002. (Cited on page 24)

Vijay Prakash Dwivedi, Chaitanya K Joshi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and
Xavier Bresson. Benchmarking graph neural networks. arXiv preprint arXiv:2003.00982, 2020.
(Cited on page 6)

Carl Edwards, ChengXiang Zhai, and Heng Ji. Text2mol: Cross-modal molecule retrieval with
natural language queries. In Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing, pp. 595–607, 2021. (Cited on pages 5, 9, 21, 22 and 24)

Carl Edwards, Tuan Manh Lai, Kevin Ros, Garrett Honke, Kyunghyun Cho, and Heng Ji. Transla-
tion between molecules and natural language. In Conference on Empirical Methods in Natural
Language Processing, pp. 375–413, 2022. (Cited on pages 3, 7 and 9)

11

https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Wenqi Fan, Shijie Wang, Jiani Huang, Zhikai Chen, Yu Song, Wenzhuo Tang, Haitao Mao, Hui Liu,
Xiaorui Liu, Dawei Yin, and Qing Li. Graph machine learning in the era of large language models
(llms). arXiv preprint, arXiv:2404.14928, 2024. (Cited on pages 1 and 3)

Yin Fang, Xiaozhuan Liang, Ningyu Zhang, Kangwei Liu, Rui Huang, Zhuo Chen, Xiaohui Fan, and
Huajun Chen. Mol-instructions: A large-scale biomolecular instruction dataset for large language
models. In International Conference on Learning Representations, 2024. (Cited on pages 6, 7, 8,
9, 10, 20 and 24)

Bahare Fatemi, Jonathan Halcrow, and Bryan Perozzi. Talk like a graph: Encoding graphs for large
language models. In International Conference on Learning Representations, 2024. (Cited on page
3)

William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Advances in Neural Information Processing Systems, pp. 1024–1034, 2017. (Cited on
page 1)

Janna Hastings, Gareth Owen, Adriano Dekker, Marcus Ennis, Namrata Kale, Venkatesh Muthukr-
ishnan, Steve Turner, Neil Swainston, Pedro Mendes, and Christoph Steinbeck. Chebi in 2016:
Improved services and an expanding collection of metabolites. Nucleic Acids Research, 44:D1214
– D1219, 2015. (Cited on pages 18 and 21)

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International Conference
on Learning Representations, 2022. (Cited on pages 7 and 22)

Eric Inae, Gang Liu, and Meng Jiang. Motif-aware attribute masking for molecular graph pre-training.
In NeurIPS 2023 Workshop: New Frontiers in Graph Learning, 2023. (Cited on pages 2 and 4)

Ross Irwin, Spyridon Dimitriadis, Jiazhen He, and Esben Jannik Bjerrum. Chemformer: a pre-trained
transformer for computational chemistry. Machine Learning Science Technology, 3(1):15022,
2022. (Cited on page 3)

Bowen Jin, Gang Liu, Chi Han, Meng Jiang, Heng Ji, and Jiawei Han. Large language models on
graphs: A comprehensive survey. arXiv preprint, arXiv:2312.02783, 2023. (Cited on pages 1
and 3)

Sunghwan Kim, Jie Chen, Tiejun Cheng, Asta Gindulyte, Jia He, Siqian He, Qingliang Li, Benjamin A
Shoemaker, Paul A Thiessen, Bo Yu, Leonid Zaslavsky, Jian Zhang, and Evan E Bolton. PubChem
2023 update. Nucleic Acids Research, 51(D1):D1373–D1380, 10 2022. (Cited on pages 6 and 18)

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In International Conference on Learning Representations, 2017. (Cited on page 1)

Mario Krenn, Florian Hase, AkshatKumar Nigam, Pascal Friederich, and Alán Aspuru-Guzik. Self-
referencing embedded strings (selfies): A 100% robust molecular string representation. Machine
Learning: Science and Technology, 1, 2019. (Cited on pages 7, 8, 9 and 20)

Greg Landrum. Rdkit: Open-source cheminformatics software, 2016. URL https://github.
com/rdkit/rdkit/releases/tag/Release_2016_09_4. (Cited on pages 5, 9, 22
and 24)

Jiatong Li, Yunqing Liu, Wenqi Fan, Xiao-Yong Wei, Hui Liu, Jiliang Tang, and Qing Li. Empowering
molecule discovery for molecule-caption translation with large language models: A chatgpt
perspective. arXiv preprint arXiv:2306.06615, 2023a. (Cited on page 9)

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. BLIP-2: Bootstrapping language-image
pre-training with frozen image encoders and large language models. In International Conference
on Machine Learning, pp. 19730–19742, 2023b. (Cited on pages 1 and 3)

Sihang Li, Zhiyuan Liu, Yanchen Luo, Xiang Wang, Xiangnan He, Kenji Kawaguchi, Tat-Seng
Chua, and Qi Tian. Towards 3d molecule-text interpretation in language models. In International
Conference on Learning Representations, 2024. (Cited on pages 1, 3 and 6)

12

https://github.com/rdkit/rdkit/releases/tag/Release_2016_09_4
https://github.com/rdkit/rdkit/releases/tag/Release_2016_09_4


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Wayne Xin Zhao, and Ji-Rong Wen. Evaluating object
hallucination in large vision-language models. arXiv preprint, arXiv:2305.10355, 2023c. (Cited
on pages 5, 8, 22 and 24)

Yuhan Li, Zhixun Li, Peisong Wang, Jia Li, Xiangguo Sun, Hongtao Cheng, and Jeffrey Xu Yu.
A survey of graph meets large language model: Progress and future directions. arXiv preprint,
arXiv:2311.12399, 2023d. (Cited on pages 1 and 3)

Youwei Liang, Ruiyi Zhang, li Zhang, and Pengtao Xie. Drugchat: Towards enabling chatgpt-like
capabilities on drug molecule graphs. arXiv preprint, arXiv:2309.03907, 2023. (Cited on pages 3
and 5)

Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. In Text Summarization
Branches Out, pp. 74–81, 2004. (Cited on pages 9 and 24)

Hao Liu, Jiarui Feng, Lecheng Kong, Ningyue Liang, Dacheng Tao, Yixin Chen, and Muhan Zhang.
One for all: Towards training one graph model for all classification tasks. In International
Conference on Learning Representations, 2024a. (Cited on page 3)

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In NeurIPS,
2023a. (Cited on pages 1 and 3)

Pengfei Liu, Yiming Ren, Jun Tao, and Zhixiang Ren. Git-mol: A multi-modal large language
model for molecular science with graph, image, and text. Computers in Biology and Medicine, pp.
108073, 2024b. (Cited on pages 3, 7 and 9)

Pengfei Liu, Jun Tao, and Zhixiang Ren. Scientific language modeling: A quantitative review of
large language models in molecular science. arXiv preprint, arXiv:2402.04119, 2024c. (Cited on
page 3)

Shengchao Liu, Hanchen Wang, Weiyang Liu, Joan Lasenby, Hongyu Guo, and Jian Tang. Pre-
training molecular graph representation with 3d geometry. In International Conference on Learning
Representations, 2022. (Cited on pages 3, 7 and 8)

Shengchao Liu, Weili Nie, Chengpeng Wang, Jiarui Lu, Zhuoran Qiao, Ling Liu, Jian Tang, Chaowei
Xiao, and Anima Anandkumar. Multi-modal molecule structure-text model for text-based retrieval
and editing. Nature Machine Intelligence, 5(12):1447–1457, 2023b. (Cited on pages 3, 6, 8 and
18)

Zequn Liu, Wei Zhang, Yingce Xia, Lijun Wu, Shufang Xie, Tao Qin, Ming Zhang, and Tie-Yan
Liu. MolXPT: Wrapping molecules with text for generative pre-training. In Annual Meeting of
the Association for Computational Linguistics, pp. 1606–1616. Association for Computational
Linguistics, 2023c. (Cited on pages 3, 7 and 9)

Zhiyuan Liu, Sihang Li, Yanchen Luo, Hao Fei, Yixin Cao, Kenji Kawaguchi, Xiang Wang, and
Tat-Seng Chua. MolCA: Molecular graph-language modeling with cross-modal projector and
uni-modal adapter. In Conference on Empirical Methods in Natural Language Processing, 2023d.
(Cited on pages 1, 3, 6 and 18)

Zhiyuan Liu, Yaorui Shi, An Zhang, Enzhi Zhang, Kenji Kawaguchi, Xiang Wang, and Tat-Seng
Chua. Rethinking tokenizer and decoder in masked graph modeling for molecules. In Advances in
Neural Information Processing Systems, 2023e. (Cited on page 4)

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel, and Pontus Stenetorp. Fantastically ordered
prompts and where to find them: Overcoming few-shot prompt order sensitivity. In Proceedings of
the 60th Annual Meeting of the Association for Computational Linguistics, pp. 8086–8098, 2022.
(Cited on page 5)

Yizhen Luo, Kai Yang, Massimo Hong, Xing Yi Liu, and Zaiqing Nie. Molfm: A multimodal
molecular foundation model, 2023a. (Cited on pages 3, 7, 8 and 9)

Yizhen Luo, Jiahuan Zhang, Siqi Fan, Kai Yang, Yushuai Wu, Mu Qiao, and Zaiqing Nie. Biomedgpt:
Open multimodal generative pre-trained transformer for biomedicine, 2023b. (Cited on pages 3, 7
and 9)

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Kha-Dinh Luong and Ambuj Singh. Fragment-based pretraining and finetuning on molecular graphs.
In Thirty-seventh Conference on Neural Information Processing Systems, 2023. (Cited on pages 2
and 4)

Haitao Mao, Zhikai Chen, Wenzhuo Tang, Jianan Zhao, Yao Ma, Tong Zhao, Neil Shah, Mikhail
Galkin, and Jiliang Tang. Graph foundation models. arXiv preprint, arXiv:2402.02216, 2024.
(Cited on pages 1 and 3)

David Mendez, Anna Gaulton, A. Patrícia Bento, Jon Chambers, Marleen De Veij, Eloy Felix,
María P. Magariños, Juan F. Mosquera, Prudence Mutowo-Meullenet, Michal Nowotka, María
Gordillo-Marañón, Fiona M. I. Hunter, Laura Junco, Grace Mugumbate, Milagros Rodríguez-
López, Francis Atkinson, Nicolas Bosc, Chris J. Radoux, Aldo Segura-Cabrera, Anne Hersey, and
Andrew R. Leach. Chembl: towards direct deposition of bioassay data. Nucleic Acids Research,
47(Database-Issue):D930–D940, 2019. (Cited on page 6)

Ron Milo, Shai S. Shen-Orr, Shalev Itzkovitz, Nadav Kashtan, Dmitri B. Chklovskii, and Uri Alon.
Network motifs: simple building blocks of complex networks. Science, 298 5594:824–7, 2002.
(Cited on page 1)

OpenAI. Chatgpt. https://chat.openai.com/chat/, 2022. (Cited on pages 1 and 7)

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. In Annual Meeting of the Association for Computational
Linguistics, 2002. (Cited on pages 9 and 24)

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep
learning library. In Advances in Neural Information Processing Systems, pp. 8024–8035, 2019.
(Cited on page 24)

Qizhi Pei, Lijun Wu, Kaiyuan Gao, Jinhua Zhu, Yue Wang, Zun Wang, Tao Qin, and Rui Yan.
Leveraging biomolecule and natural language through multi-modal learning: A survey. arXiv
preprint, arXiv:2403.01528, 2024. (Cited on page 3)

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners, 2019. (Cited on page 1)

Raghunathan Ramakrishnan, Pavlo O. Dral, Pavlo O. Dral, Matthias Rupp, and O. Anatole von
Lilienfeld. Quantum chemistry structures and properties of 134 kilo molecules. Scientific Data, 1,
2014. (Cited on page 8)

Nadine Schneider, Roger A. Sayle, and Gregory A. Landrum. Get your atoms in order - an open-
source implementation of a novel and robust molecular canonicalization algorithm. Journal of
chemical information and modeling, 55 10:2111–20, 2015. (Cited on page 24)

Teague Sterling and John J. Irwin. Zinc 15 – ligand discovery for everyone. Journal of Chemical
Information and Modeling, 55(11):2324–2337, 2015. (Cited on pages 1 and 4)

Bing Su, Dazhao Du, Zhao-Qing Yang, Yujie Zhou, Jiangmeng Li, Anyi Rao, Haoran Sun, Zhiwu Lu,
and Ji rong Wen. A molecular multimodal foundation model associating molecule graphs with
natural language. arXiv preprint arXiv:2209.05481, 2022. (Cited on pages 3, 7, 8 and 9)

Jiabin Tang, Yuhao Yang, Wei Wei, Lei Shi, Lixin Su, Suqi Cheng, Dawei Yin, and Chao Huang.
Graphgpt: Graph instruction tuning for large language models. arXiv preprint, arXiv:2310.13023,
2023. (Cited on pages 1 and 3)

Ross Taylor, Marcin Kardas, Guillem Cucurull, Thomas Scialom, Anthony S. Hartshorn, Elvis
Saravia, Andrew Poulton, Viktor Kerkez, and Robert Stojnic. Galactica: A large language model
for science. arXiv preprint, arXiv:2211.09085, 2022. (Cited on pages 3, 7 and 8)

14

https://chat.openai.com/chat/


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Yijun Tian, Huan Song, Zichen Wang, Haozhu Wang, Ziqing Hu, Fang Wang, Nitesh V. Chawla,
and Panpan Xu. Graph neural prompting with large language models. In Thirty-Eighth AAAI
Conference on Artificial Intelligence, pp. 19080–19088, 2024. (Cited on page 3)

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurélien Rodriguez, Armand
Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation language
models. arXiv preprint, arXiv:2302.13971, 2023a. (Cited on pages 1, 3, 7 and 10)

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian
Canton-Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin
Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar
Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel Kloumann,
Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana
Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra, Igor
Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan
Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh Tang,
Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang,
Angela Fan, Melanie Kambadur, Sharan Narang, Aurélien Rodriguez, Robert Stojnic, Sergey
Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models. arXiv
preprint, arXiv:2307.09288, 2023b. (Cited on pages 7, 8 and 9)

Aäron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural discrete representation learning.
In Advances in Neural Information Processing Systems, pp. 6306–6315, 2017. (Cited on page 4)

Yuyang Wang, Jianren Wang, Zhonglin Cao, and Amir Barati Farimani. Molecular contrastive
learning of representations via graph neural networks. Nature Machine Intelligence, 4(3):279–287,
2022. (Cited on page 3)

Lanning Wei, Jun Gao, Huan Zhao, and Quanming Yao. Towards versatile graph learning approach:
from the perspective of large language models. arXiv preprint, arXiv:2402.11641, 2024. (Cited
on pages 1 and 3)

David Weininger. Smiles, a chemical language and information system. 1. introduction to method-
ology and encoding rules. Journal of Chemical Information and Computer Sciences, 28:31–36,
1988. (Cited on page 3)

Zhenqin Wu, Bharath Ramsundar, Evan N. Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S.
Pappu, Karl Leswing, and Vijay S. Pande. Moleculenet: A benchmark for molecular machine
learning. arXiv preprint arXiv:1703.00564, 2017. (Cited on pages 6, 8, 20 and 24)

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen Ding, Boyang Hong, Ming Zhang, Junzhe
Wang, Senjie Jin, Enyu Zhou, Rui Zheng, Xiaoran Fan, Xiao Wang, Limao Xiong, Yuhao Zhou,
Weiran Wang, Changhao Jiang, Yicheng Zou, Xiangyang Liu, Zhangyue Yin, Shihan Dou, Rongx-
iang Weng, Wensen Cheng, Qi Zhang, Wenjuan Qin, Yongyan Zheng, Xipeng Qiu, Xuanjing
Huang, and Tao Gui. The rise and potential of large language model based agents: A survey, 2023.
(Cited on page 3)

Jun Xia, Chengshuai Zhao, Bozhen Hu, Zhangyang Gao, Cheng Tan, Yue Liu, Siyuan Li, and Stan Z.
Li. Mole-BERT: Rethinking pre-training graph neural networks for molecules. In International
Conference on Learning Representations, 2023. (Cited on pages 4, 7 and 22)

Canwen Xu, Daya Guo, Nan Duan, and Julian McAuley. Baize: An open-source chat model with
parameter-efficient tuning on self-chat data. arXiv preprint, arXiv:2304.01196, 2023. (Cited on
pages 7, 8 and 10)

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019. (Cited on pages 1, 5,
7 and 22)

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and
Tie-Yan Liu. Do transformers really perform badly for graph representation? In Advances in
Neural Information Processing Systems, 2021. (Cited on page 6)

Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, and Jure Leskovec.
Hierarchical graph representation learning with differentiable pooling. In Advances in Neural
Information Processing Systems, 2018. (Cited on pages 1 and 3)

Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen. Graph
contrastive learning with augmentations. In Advances in Neural Information Processing Systems,
pp. 5812–5823, 2020. (Cited on pages 7 and 8)

Li Yujian and Liu Bo. A normalized levenshtein distance metric. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 29(6):1091–1095, 2007. (Cited on pages 9 and 24)

Xuan Zang, Xianbing Zhao, and Buzhou Tang. Hierarchical molecular graph self-supervised learning
for property prediction. Communications Chemistry, 6(1):34, 2023. (Cited on pages 2, 4, 5, 6 and
22)

Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang, Hanyu Lai, Ming Ding, Zhuoyi Yang, Yifan Xu,
Wendi Zheng, Xiao Xia, Weng Lam Tam, Zixuan Ma, Yufei Xue, Jidong Zhai, Wenguang Chen,
Zhiyuan Liu, Peng Zhang, Yuxiao Dong, and Jie Tang. GLM-130b: An open bilingual pre-trained
model. In International Conference on Learning Representations, 2023. (Cited on pages 7 and 10)

Zheni Zeng, Yuan Yao, Zhiyuan Liu, and Maosong Sun. A deep-learning system bridging molecule
structure and biomedical text with comprehension comparable to human professionals. Nature
communications, 13(862), 2022. (Cited on pages 3, 7 and 8)

Jingyi Zhang, Jiaxing Huang, Sheng Jin, and Shijian Lu. Vision-language models for vision tasks: A
survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024. (Cited on page 1)

ZAIXI ZHANG, Qi Liu, Hao Wang, Chengqiang Lu, and Chee-Kong Lee. Motif-based graph
self-supervised learning for molecular property prediction. In Advances in Neural Information
Processing Systems, pp. 15870–15882, 2021. (Cited on pages 2, 4 and 5)

Haiteng Zhao, Shengchao Liu, Chang Ma, Hannan Xu, Jie Fu, Zhi-Hong Deng, Lingpeng Kong, and
Qi Liu. GIMLET: A unified graph-text model for instruction-based molecule zero-shot learning.
In Neural Information Processing Systems, 2023. (Cited on pages 1, 3, 8, 9 and 19)

Gengmo Zhou, Zhifeng Gao, Qiankun Ding, Hang Zheng, Hongteng Xu, Zhewei Wei, Linfeng Zhang,
and Guolin Ke. Uni-mol: A universal 3d molecular representation learning framework. In The
Eleventh International Conference on Learning Representations, 2023. (Cited on pages 3, 7 and
8)

Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. Minigpt-4: En-
hancing vision-language understanding with advanced large language models. arXiv preprint
arXiv:2304.10592, 2023. (Cited on pages 1 and 3)

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Appendix of HIGHT

CONTENTS

A Broader Impacts 18

B Details of Instruction Tuning Datasets 18

B.1 Details of the PubChem Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

B.2 Details of HiPubChem Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

B.3 Details of Property Prediction Dataset . . . . . . . . . . . . . . . . . . . . . . . . 20

B.4 Details of Reaction Prediction Dataset . . . . . . . . . . . . . . . . . . . . . . . . 20

B.5 Details of Molecular Description Dataset . . . . . . . . . . . . . . . . . . . . . . . 21

B.6 Details of MotifHallu Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

C Details of Experiments 22

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A BROADER IMPACTS

This paper mainly focuses on how to best represent graph information for LLMs to understand better
about the graphs. We demonstrate the effectiveness of our method on molecule-centric tasks which
could facilitate the broader use of LLMs for tasks like AI-aided drug discovery and human-machine
interactions in biomedicine. Besides, this paper does not raise any ethical concerns. This study does
not involve any human subjects, practices to data set releases, potentially harmful insights, method-
ologies and applications, potential conflicts of interest and sponsorship, discrimination/bias/fairness
concerns, privacy and security issues, legal compliance, and research integrity issues.

B DETAILS OF INSTRUCTION TUNING DATASETS

We provide a summary of the datasets for instruction tuning and evaluation in this paper as in Table 7.
Meanwhile, we also list the data sources and the corresponding licenses of the sources for each task
and dataset. Then, we will elaborate more on the details of the datasets in the following subsections.

Table 7: Summary of datasets involved in our paper.

Datasets Train Test Content

PubChem 295,228 N/A Molecules and the associated descriptions from PubChem.
HiPubChem 295,228 N/A Molecules and the associated descriptions from PubChem

and about functional groups in the molecule.
MoleculeNet-HIV 32,901 4,113 Question answering about the ability of the molecule to

inhibit HIV replication.
MoleculeNet-BACE 1,210 152 Question answering about the ability of the molecule to

bind to the BACE1 protein
MoleculeNet-BBBP 1,631 204 Question answering about the ability of the molecule to

diffuse across the brain blood barrier.
MoleculeNet-SIDER 1,141 143 Question answering about the ability of the side effects.
MoleculeNet-ClinTox 1,188 148 Question answering about the toxicology.
MoleculeNet-MUV 74,469 9,309 Question answering about PubChem bioAssay
MoleculeNet-Tox21 6,877 860 Question answering about Toxicology in the 21st century
CYP45- 13,516 1,690 Question answering about CYP PubChem BioAssay CYP

1A2, 2C9, 2C19, 2D6, 3A4 inhibition.
Property Prediction (Regres-
sion)

360,113 1,987 Question answering about the quantum mechanics proper-
ties of the molecule.

Forward Reaction Prediction 124,384 1,000 Question answering about the products of a chemical re-
action, given specific reactants and reagents.

Reagent Prediction 124,384 1,000 Question answering about suitable catalysts, solvents, or
ancillary substances required for a specific chemical reac-
tion.

Retrosynthesis Prediction 128,684 1,000 Question answering about the reactants and reagents of a
chemical reaction, given specific products.

ChEBI-20 26,407 3,300 Molecules and the associated Chemical Entities of Biolog-
ical Interest (ChEBI) (Hastings et al., 2015) annotations.

MotifHallu N/A 23,924 Question answering about existing functional groups in
the molecule.

B.1 DETAILS OF THE PUBCHEM DATASET

PubChem2 is one of the largest public molecule database (Kim et al., 2022), and has been widely
adopted by the alignment training of LGLMs (Liu et al., 2023d;b; Cao et al., 2023). Our construction
of PubChem predominantly follows Liu et al. (2023b). We will briefly describe the main steps and
interested readers may refer the details to (Liu et al., 2023b):

2https://pubchem.ncbi.nlm.nih.gov
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Table 8: Summary of data resources and licenses of datasets involved in our paper.
Tasks/Datasets Data Sources License URL License Note
PubChem, HiPubChem PubChem https://www.nlm.nih.

gov/web_policies.html
Works produced by the U.S. gov-
ernment are not subject to copyright
protection in the United States. Any
such works found on National Li-
brary of Medicine (NLM) Web sites
may be freely used or reproduced
without permission in the U.S.

Reaction Prediction USPTO https://www.uspto.gov/
learning-and-resources/
open-data-and-mobility

It can be freely used, reused, and
redistributed by anyone.

Property Prediction MoleculeNet https://opensource.org/
license/mit/

Permission is hereby granted, free
of charge, to any person obtaining
a copy of this software and associ-
ated documentation files (the “Soft-
ware”), to deal in the Software with-
out restriction, including without
limitation the rights to use, copy,
modify, merge, publish, distribute,
sublicense, and/or sell copies of the
Software, and to permit persons to
whom the Software is furnished to
do so.

Property Prediction CYP450 https://www.nlm.nih.
gov/web_policies.html

The data is from Zhao et al. (2023)
that curates PubChem BioAssay
CYP 1A2, 2C9, 2C19, 2D6, 3A4
inhibition. Thus it shares the same
license as PubChem.

Molecular Description,
MotifHallu

ChEBI https://creativecommons.
org/licenses/by/4.0/

You are free to: Share — copy
and redistribute the material in any
medium or format. Adapt — remix,
transform, and build upon the mate-
rial for any purpose, even commer-
cially.

• We curate the data from PubChem using the official API and set the data cutoff date as 12
Jan. 2024. It downloads both the molecular structure (e.g., SMILES, 2D molecular graphs)
in SDF format, and the text descriptions.

• Then, we will filter out molecules that do not have descriptions or can not match via the
PubChem ID. In the descriptions, the molecule names are replaced with “This molecule”, in
order to facilitate LLMs to understand the instructions.

Finally, the curation generates 295k molecule-text pairs that we term as PubChem-295k. PubChem-
295k will be mainly used for the stage 1 alignment training.

Table 9: Examples of PubChem and HiPubChem datasets.
PubChem HiPubChem
SMILES: CC(=O)OC(CC(=O)[O-])C[N+](C)(C)C
This molecule is an O-acylcarnitine having acetyl as the acyl substituent.
It has a role as a human metabolite. It is functionally related to an acetic
acid. It is a conjugate base of an O-acetylcarnitinium.

This molecule has 1 carboxylic acids functional group. This molecule
has no methyl amide, or amide, or nitro or thiols groups. This molecule
is an O-acylcarnitine having acetyl as the acyl substituent. It has a role
as a human metabolite. It is functionally related to an acetic acid. It is a
conjugate base of an O-acetylcarnitinium.

SMILES: CCN(CC)CCOC(=O)C(Cc1cccc2ccccc12)CC1CCCO1
This molecule is a member of naphthalenes. This molecule has 0 functional groups. This molecule is a member of

naphthalenes.
SMILES: Cc1c2[nH]c(c1CCC(=O)O)Cc1[nH]c(c(CCC(=O)O)c1C)Cc1[nH]c(c(CCC(=O)O)c1C)Cc1[nH]c(c(C)c1CCC(=O)O)C2
This molecule is a coproporphyrinogen. It has a role as an Escherichia
coli metabolite and a mouse metabolite. It is a conjugate acid of a
coproporphyrinogen III(4-).

This molecule has 1 carboxylic acids functional groups. This molecule
has no methyl amide, or diazo, or cyano or thiols groups. This molecule
is a coproporphyrinogen. It has a role as an Escherichia coli metabolite
and a mouse metabolite. It is a conjugate acid of a coproporphyrinogen
III(4-).

B.2 DETAILS OF HIPUBCHEM DATASET

HiPubChem augments the molecular instruction tuning dataset with captions of the functional
groups. We consider both the positive and negative appearances of motifs when augmenting the
instructions. For the positive case, we directly append the caption of all functional groups detected
with RDKit:
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This molecule has <#> of <functional group name> groups.

For the negative case, we randomly sample kneg that do not appear in the molecule:

This molecule has no <functional group name> groups.

Despite the simple augmentation strategy, we find that HiPubChem significantly reduces the halluci-
nation issue, and improves the molecule-language alignment performance.

For comparison, we provide examples of PubChem and HiPubChem in Table 9.

B.3 DETAILS OF PROPERTY PREDICTION DATASET

The task of molecular property prediction mainly aims to predict certain biochemical or physical
properties of molecules. Usually, these properties have a close relation with the molecular substruc-
tures (i.e., functional groups) (Bohacek et al., 1996). In this work, we consider the scenarios of both
binary classification based and the regression based molecular property prediction, and the datasets
are mainly derived from MoleculeNet (Wu et al., 2017).

For the classification, we consider three subtasks, HIV, BACE, and BBBP. The HIV subtask mainly
evaluates whether the molecule is able to impede the replication of the HIV virus. The BACE subtask
mainly evaluates the binding capability of a molecule to the BACE1 protein. The BBBP subtask
mainly evaluates the capability of a molecule to passively diffuse across the human brain blood barrier.
For task-specific instruction tuning, we convert those classification based datasets into instructions.
Examples are given in Table 10.

Table 10: Examples of the property prediction (classification) datasets.
Dataset Question Answer

HIV SMILES: N=C1OC2(c3ccccc3)C3=C(OC(=NC)N2C)C(=O)OC3(c2ccccc2)N1C
Please help me evaluate whether the given molecule can impede the replication of the HIV virus. No

BACE SMILES: CN(C(=O)CCc1cc2ccccc2nc1N)C1CCCCC1
Can the given molecule bind to the BACE1 protein? Yes

BBBP SMILES: Cc1c[nH+][o+]c(C([NH])CC(C)C(C)(C)N(C(C)(C)C)C(C)(N)N)c1[O-]
Can the given molecule passively diffuse across the brain blood barrier? Yes

Table 11: Examples of the property prediction (regression) datasets.
Question Answer

SELFIES: [O][=C][O][C][C][C][C][Ring1][=Branch1][C][Ring1][Ring2]
Can you give me the energy difference between the HOMO and LUMO orbitals of this molecule? 0.2756
SELFIES: [C][C][C][=Branch1][C][=O][N][Branch1][C][C][C][=Branch1][C][=O][N]
What is the lowest unoccupied molecular orbital (LUMO) energy of this molecule? -0.0064
SELFIES: [C][C][=C][O][C][=C][Ring1][Branch1][C][Branch1][C][C][C]
Please provide the highest occupied molecular orbital (HOMO) energy of this molecule. -0.2132

For regression, we adopt the instruction tuning data from Mol-Instructions (Fang et al., 2024).
The regression based property prediction focuses on predicting the quantum mechanics properties of
the molecules. The 1D sequence information in this task is given by SELFIES (Krenn et al., 2019).
The original data is sourced from the QM9 subset of the MolculeNet (Wu et al., 2017). There are three
subtasks: (i) Highest occupied molecular orbital (HOMO) energy prediction; (ii) Lowest occupied
molecular orbital (LUMO) energy prediction; (iii) and HUMO-LUMO gap energy prediction. Some
examples of the regression based property prediction dataset are given in Table 11.

B.4 DETAILS OF REACTION PREDICTION DATASET

We adopt three chemical reaction related tasks from Mol-Instructions (Fang et al., 2024):
Forward reaction prediction, reagent prediction, and retrosynthesis prediction. The input and output
contain 1D sequence information given by SELFIES (Krenn et al., 2019). Some examples of the
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Mol-Instructions datasets are given in Table 12, where the SELFIES represented molecules
are denoted as “<SELFIES>” for clarity.

Table 12: Examples of the chemical reaction datasets.
Task Examples

Forward Reaction Prediction Question: With the provided reactants and reagents, propose a potential product.<SELFIES>
Answer: <SELFIES>

Reagent Prediction Question: Please suggest some possible reagents that could have been used in the following chemical
reaction. The reaction is <SELFIES>
Answer: <SELFIES>

Retrosynthesis Prediction Question: Please suggest potential reactants for the given product. The product is: <SELFIES>
Answer: <SELFIES>

The task of forward reaction prediction aims to predict the possible products of a chemical reaction.
The input includes the SELFIES sequences of the reactant and reagent of the chemical reaction. And
the model needs to predict the SELFIES of the products. The original data is sourced from USPTO 3,
which consists of chemical reactions of organic molecules extracted from American patents and
patent applications.

The task of reagent reaction prediction aims to predict the suitable catalysts, solvents, and ancillary
substances with respect to a chemical reaction. The input includes the SELFIES sequences of the
chemical reaction. The original data is sourced from USPTO 4, as the other tasks.

The task of retrosynthesis prediction aims to reverse engineer a particular compound by predicting
the potential reactants or reagents that are required to synthesis the compound. The input includes the
SELFIES sequences of the target product. The original data is sourced from USPTO 5, similar to the
other tasks.

B.5 DETAILS OF MOLECULAR DESCRIPTION DATASET

For the molecular description task, we adopt a widely used dataset ChEBI-20 (Edwards et al.,
2021). Based on the molecules from PubChem, Edwards et al. (2021) collected the Chemical Entities
of Biological Interest (ChEBI) (Hastings et al., 2015) annotations of the molecules, which are the
descriptions of molecules. We transform the task into the instructions, and present some samples
in Table 13. The authors collect 33, 010 molecule-text pairs and split them into training (80%),
validation (10%), and testing (10%) subsets. We mainly adopt the original training split to tune the
model and evaluate the tuned model on the original test split.

Table 13: Examples of the molecular descrioption datasets.
Question Answer

SMILES: C1=CC=C(C=C1)[As](=O)(O)[O-]
Could you give me a brief overview of this molecule? The molecule is the organoarsonic acid anion formed by

loss of a single proton from the arsonic acid grouping in
phenylarsonic acid. It is a conjugate base of a phenylar-
sonic acid.

SMILES: CCCCCCCCCCCC(=O)OC(=O)CCCCCCCCCCC
Could you provide a description of this molecule? The molecule is an acyclic carboxylic anhydride resulting

from the formal condensation of the carboxy groups of
two molecules of dodecanoic acid. It derives from a dode-
canoic acid.

SMILES: CCCCNC=O
Please give me some details about this molecule. The molecule is a member of the class of formamides that

is formamide substituted by a butyl group at the N atom.
It has a role as a human metabolite. It derives from a
formamide.

3https://developer.uspto.gov/data
4https://developer.uspto.gov/data
5https://developer.uspto.gov/data
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B.6 DETAILS OF MOTIFHALLU DATASET

The MotifHallu is mainly used to measure the hallucination of common functional groups by
LGLMs. For the construction of MotifHallu, we consider the common functional groups in
RDKit6 as shown in Table 14. There are 39 common functional groups, while we neglect the one
with the name of “???”.

Then, we leverage RDKit (Landrum, 2016) to detect the existence of the left 38 valid functional
groups within a molecule. We consider 3, 300 molecules from ChEBI-20 test split (Edwards et al.,
2021), and adopt the query style as for large vision-language models (Li et al., 2023c) that queries
the existence of specific functional group one by one:

Is there a <functional group name> in the molecule?

Examples of MotifHallu are given in Table 15.

During the evaluation, we detect whether the LGLM gives outputs meaning “Yes” or “No” following
the practice in (Li et al., 2023c). For each molecule, we construct questions with positive answers
for all kinds of functional groups detected in the molecule, and questions with negative answers
for randomly sampled 6 functional groups from the 38 common functional groups in RDKit. The
construction finally yields 23, 924 query answer pairs about the existence of functional groups in the
molecule. While it is easy to scale up MotifHallu by automatically considering more molecules
and a broader scope of functional groups, we find that the current scale is already sufficient to
demonstrate the hallucination phenomena in LGLMs.

C DETAILS OF EXPERIMENTS

Implementation of graph tokenizer. We implement the GNN tokenizer/encoder based on the
same GNN backbone, which is a 5-layer GIN (Xu et al., 2019). The hidden dimension is 300. For
the node-centric tokenization, we employ the VQVAE GNN tokenizer from Mole-BERT (Xia et al.,
2023) and adopt self-supervised learning tasks from the official Mole-BERT implementation.7 For
HIGHT, we train the VQVAE with the self-supervised learning tasks from (Zang et al., 2023) based
on the official implementation.8 Meanwhile, we set the hyperparameters of GNN tokenizer training
the same as those recommended by (Xia et al., 2023; Zang et al., 2023).

After training the tokenizer, we adopt the GNN encoder within the tokenizer instead of the codebook
embeddings as we empirically find that the GNN embeddings perform better than that using the
VQVAE codebook embeddings.

Implementation of LGLMs. For the cross-modal adapters, we implement it as a single-layer MLP
with an input dimension of 300 as our main focus is the tokenization. For HIGHT, we adopt three
distinct adapters to handle the node-level, motif-level and graph-level embeddings. Meanwhile, we
also adopt a Laplacian position encodings with respect to the supernode-augmented graphs. The
dimension of the Laplacian position encoding is set to 8, therefore the input dimensions of the
adapters in HIGHT will be 308.

For the LoRA adapters, we use a LoRA rank of 128 and a scaling value α of 256 (Hu et al., 2022) for
all methods and tasks.

For the base LLM, we mainly adopt vicuna-v-1.3-7B (Chiang et al., 2023). The overall scale
of parameters is around 6.9B.

Implementation of instruction tuning. In stage 1 instruction tuning, we train all methods based on
PubChem-295k dataset. The training goes 5 epochs, with a batch size of 64 (distributed to 4 GPUs)
by default. If there is an OOM issue, we will decrease the batch size a little bit to 40. The learning
rate is set to 2× 10−3 for all methods.

6https://github.com/rdkit/rdkit/blob/master/Data/FunctionalGroups.txt
7https://github.com/junxia97/Mole-BERT
8https://github.com/ZangXuan/HiMol
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Table 14: List of functional groups from RDKit used to construct MotifHallu. The functional group with
the name “???” is neglected.

Chemical Representation SMARTS Name

-NC(=O)CH3 *-[N;D2]-[C;D3](=O)-[C;D1;H3] methyl amide
-C(=O)O *-C(=O)[O;D1] carboxylic acids

-C(=O)OMe *-C(=O)[O;D2]-[C;D1;H3] carbonyl methyl ester
-C(=O)H *-C(=O)-[C;D1] terminal aldehyde
-C(=O)N *-C(=O)-[N;D1] amide

-C(=O)CH3 *-C(=O)-[C;D1;H3] carbonyl methyl
-N=C=O *-[N;D2]=[C;D2]=[O;D1] isocyanate
-N=C=S *-[N;D2]=[C;D2]=[S;D1] isothiocyanate

Nitrogen containing groups

-NO2 *-[N;D3](=[O;D1])[O;D1] nitro
-N=O *-[N;R0]=[O;D1] nitroso
=N-O *=[N;R0]-[O;D1] oximes

=NCH3 *=[N;R0]-[C;D1;H3] Imines
-N=CH2 *-[N;R0]=[C;D1;H2] Imines

-N=NCH3 *-[N;D2]=[N;D2]-[C;D1;H3] terminal azo
-N=N *-[N;D2]=[N;D1] hydrazines
-N#N *-[N;D2]#[N;D1] diazo
-C#N *-[C;D2]#[N;D1] cyano

S containing groups

-SO2NH2 *-[S;D4](=[O;D1])(=[O;D1])-[N;D1] primary sulfonamide
-NHSO2CH3 *-[N;D2]-[S;D4](=[O;D1])(=[O;D1])-[C;D1;H3] methyl sulfonamide

-SO3H *-[S;D4](=O)(=O)-[O;D1] sulfonic acid
-SO3CH3 *-[S;D4](=O)(=O)-[O;D2]-[C;D1;H3] methyl ester sulfonyl
-SO2CH3 *-[S;D4](=O)(=O)-[C;D1;H3] methyl sulfonyl
-SO2Cl *-[S;D4](=O)(=O)-[Cl] sulfonyl chloride
-SOCH3 *-[S;D3](=O)-[C;D1] methyl sulfinyl
-SCH3 *-[S;D2]-[C;D1;H3] methylthio

-S *-[S;D1] thiols
=S *=[S;D1] thiocarbonyls

Miscellaneous fragments

-X *-[#9,#17,#35,#53] halogens
-tBu *-[C;D4]([C;D1])([C;D1])-[C;D1] t-butyl
-CF3 *-[C;D4](F)(F)F trifluoromethyl

-C#CH *-[C;D2]#[C;D1;H] acetylenes
-cPropyl *-[C;D3]1-[C;D2]-[C;D2]1 cyclopropyl

Teeny groups

-OEt *-[O;D2]-[C;D2]-[C;D1;H3] ethoxy
-OMe *-[O;D2]-[C;D1;H3] methoxy

-O *-[O;D1] side-chain hydroxyls
=O *=[O;D1] side-chain aldehydes or ketones
-N *-[N;D1] primary amines
=N *=[N;D1] ???
#N *#[N;D1] nitriles

For classification-based property prediction, the training goes 20 epochs, with a batch size of 128
(distributed to 4 GPUs) by default. If there is an OOM issue, we will decrease the batch size a little
bit to 64. The learning rate is set to 8× 10−5 for all methods.

For regression-based property prediction, the training goes 5 epochs, with a batch size of 64 (dis-
tributed to 4 GPUs) by default. The learning rate is set to 2× 10−5 for all methods.
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Table 15: Examples of the MotifHallu dataset.
Question Answer

SMILES: COC1=CC=CC2=C1C(=CN2)C/C(=N/OS(=O)(=O)[O-])/S[C@H]3[C@@H]([C@H]([C@@H]([C@H](O3)CO)O)O)O
Is there a methyl ester sulfonyl group in the molecule? No
SMILES: CN(C)C(=O)C(CCN1CCC(CC1)(C2=CC=C(C=C2)Cl)O)(C3=CC=CC=C3)C4=CC=CC=C4
Is there a carbonyl methyl ester group in the molecule? Yes
SMILES: CN(C)C(=O)C(CCN1CCC(CC1)(C2=CC=C(C=C2)Cl)O)(C3=CC=CC=C3)C4=CC=CC=C4
Is there a terminal aldehyde group in the molecule? No

For molecular description, the training goes 50 epochs, with a batch size of 64 (distributed to 4 GPUs)
by default. If there is an OOM issue, we will decrease the batch size a little bit to 32. The learning
rate is set to 8× 10−5 for all methods.

For forward reaction prediction, the training goes 5 epochs, with a batch size of 64 (distributed to 4
GPUs) by default. The learning rate is set to 2× 10−5 for all methods.

For reagent prediction, the training goes 5 epochs, with a batch size of 64 (distributed to 4 GPUs) by
default. The learning rate is set to 2× 10−5 for all methods.

For retrosynthesis prediction, the training goes 5 epochs, with a batch size of 64 (distributed to 4
GPUs) by default. The learning rate is set to 2× 10−5 for all methods.

Training and evaluation. Throughout the paper, we use a max token length of 2048. Meanwhile,
we adopt an AdamW optimizer with a warmup ratio of 3% for optimizing all models. We select the
final model according to the best training loss.

For the evaluation of classification-based property prediction, we adopt the ROC-AUC following the
common practice (Wu et al., 2017).

For the evaluation of regression-based property prediction, we adopt the Mean Absolute Error (MAE)
following the common practice (Fang et al., 2024).

For the evaluation of molecular description, we adopt BLEU-2, BLEU-4, ROUGE-1, ROUGE-2,
ROUGE-L, and METEOR following the common practice (Papineni et al., 2002; Lin, 2004; Edwards
et al., 2021). To improve the reliability of the evaluation, the metrics are computed based on the
tokenizer scibert_scivocab_uncased of SciBERT (Beltagy et al., 2019).

We follow the common practice to evaluate models for the tasks of chemical reaction predictions (Fang
et al., 2024). We adopt linguistic metrics such as BLEU (Papineni et al., 2002), ROUGE-L (Lin,
2004), METEOR (Banerjee & Lavie, 2005) and Levenshtein scores (Yujian & Bo, 2007). Meanwhile,
we also validate the validity of the generated molecular sequences with RDKit (Landrum, 2016). In
addition, several molecular similarity measures are also leveraged. Specifically, we present the MAE
of the RDKit, MACCS, and Morgan fingerprints to assess the semantic similarity of the generated
compounds and the ground truth ones (Durant et al., 2002; Schneider et al., 2015).

As for the MotifHallu, in order to avoid the drawbacks that LGLMs may output answers that
do not follow the instructions, we compare the loss values by feeding the answers of “Yes” and
“No”, and take the one with a lower autoregressive language modeling loss as the answer. Following
the practice in LVLMs, we present the F1 scores, accuracies, and the ratio that the model answers
“Yes” (Li et al., 2023c). Given the severe imbalance of positive and negative samples, we separately
report the F1 scores for positive and negative classes.

Software and hardware. We implement our methods with PyTorch 11.3 (Paszke et al., 2019). We
run experiments on Linux Servers with NVIDIA V100 and NVIDIA A100 (40G) graphics cards with
CUDA 11.7.
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