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Abstract

Vision-and-Language Navigation (VLN) agents are
tasked with navigating an unseen environment using nat-
ural language instructions. In this work, we study if visual
representations of sub-goals implied by the instructions can
serve as navigational cues and lead to increased navigation
performance. To synthesize these visual representations
or “imaginations”, we leverage a text-to-image diffusion
model on landmark references contained in segmented in-
structions. These imaginations are provided to VLN agents
as an added modality to act as landmark cues and an auxil-
iary loss is added to explicitly encourage relating these with
their corresponding referring expressions. Our findings re-
veal an increase in success rate (SR) of ∼1 point and up to
∼0.5 points in success scaled by inverse path length (SPL)
across agents. These results suggest that the proposed ap-
proach reinforces visual understanding compared to relying
on language instructions alone. Code and data for our work
can be found at https://www.akhilperincherry.
com/VLN-Imagine-website/.

1. Introduction
In this work, we examine whether providing visual imagery
corresponding to described landmarks improves the per-
formance of agents following natural language navigation
instructions. Consider the natural language navigation in-
struction presented in Figure 1 which asks an agent to “Go
straight, take a left at the pool table to enter the kitchen.
Walk to the bedroom and stop”. This instruction provides
unconditional action directives like “go straight” but also
frequently conditions the given directions on visual land-
marks in the scene such as the pool table, kitchen, and bed-
room. Standard approaches to vision-and-language navi-
gation tasks rely on learned cross-modal alignment mecha-
nisms to implicitly associate these noun phrases with their
visual referents during navigation. However, text-to-image
generation models have improved to the point that produc-
ing imagery matching the semantics of these visual refer-
ences prior to navigation is plausible. We show three such

Figure 1. Illustration of visual imaginations. (Top) A natural
language instruction specifying sub-goals pool table, kitchen, and
bedroom. (Bottom) Visual imaginations of landmarks pool table,
kitchen and bedroom referenced by the sub-goals in the instruc-
tion. In our work, we study if these visual imaginations generated
using text-to-image models can improve performance in VLN.

generations for our running example in Figure 1. Draw-
ing an analogy to the substantial work in cognitive science
on the impact of mental imagery on task performance, we
refer to these generated images as visual imaginations and
study whether providing them in addition to corresponding
language-based instructions can improve the performance
of vision-and-language navigation agents.

But why might we believe visual imaginations could be
beneficial? In short – text-to-image models have broad
knowledge, and learning to perform semantic matching in
the image domain may be an easier task than language
grounding. Associating noun phrases and their visual refer-
ents is a sub-task in vision-and-language navigation (VLN)
that most works address through extensive pretraining of
model components on web-scale image caption datasets –
e.g., by initializing image and language encoders with CLIP
[34] models. While this provides a useful warm-start, it is
unclear how well the remaining cross-modal components
that drive navigation retain these capabilities after down-
stream VLN training. Downstream datasets may cover only
a small portion of relevant objects and visual grounding re-
mains a weakness in many existing VLN models [43, 47].
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Directly synthesizing visual imaginations using off-the-
shelf text-to-image models offers alternative training and in-
ference mechanisms. Synthesized images have known cor-
respondences to noun phrases in instructions that can be
leveraged to reinforce visual grounding during downstream
task training through auxiliary losses. Further, matching a
visual imagination with environment observations reduces
to an image-to-image matching task – offering the poten-
tial to use visual imaginations as a convenient pivot be-
tween language and vision. This may prove especially ef-
fective for out-of-distribution landmarks that have limited
or no support during downstream task training. For ex-
ample, novel instructions referencing “butterfly sculptures”
or “Pulp Fiction posters” are unlikely to be well-grounded
in the training set but produce semantically relevant visual
imaginations that could then be matched to observations.

Though we do not imply any direct connections, our
work is also inspired by cognitive science studies which
indicate mental imagery can serve as valuable cues in ad-
dition to linguistic stimuli. Several works supporting dual-
coding theory [29–31] find that concrete imagery tends to
be more effective for certain types of concept learning com-
pared to linguistic stimuli alone. Further, findings from hu-
man and animal studies [23, 36, 38, 39] suggest that imag-
ining snapshots of the environment or potential trajectories
before navigating can improve decision making.

To investigate our key question, we augment agents with
visual imaginations for the popular Room-2-Room (R2R)
[4] and REVERIE [33] tasks. We propose a VLN agent ag-
nostic procedure to incorporate visual imaginations as ad-
ditional inputs and introduce a text-imagination alignment
loss to explicitly encourage visual grounding during train-
ing. We generate visual imaginations for key noun phrases
in instructions that refer to visual landmarks using an off-
the-shelf text-to-image generation model [32].

Applying our technique to two existing models, HAMT
[8] and DUET [9], we find modest improvements – R2R
validation unseen success increases by roughly 1.0 and
0.6 points respectively. This translates to an improvement
of 2 points in success on the test set for our modified
DUET model. On REVERIE validation unseen, we im-
prove DUET performance by 1.3 points success and 0.82
points grounding success. Our results suggest that including
explicit visual depictions of referred objects can improve
performance on vision-and-language navigation tasks.

Contributions. We summarize our contributions as:

– We develop a pipeline for generating visual imagina-
tions from navigation instructions and synthesize the
R2R-Imagine dataset to enable studying the impact of
text-to-image models on VLN agents.

– We propose an agent-agnostic method to incorporate
visual imaginations into existing VLN agents and show

improved performance for HAMT [8] and DUET [9]
across R2R and REVERIE.

– We provide ablations of modeling decisions to charac-
terize the design space for adding visual imaginations.

2. Related Work

Vision-and-Language Navigation (VLN). Navigating
agents that can operate in novel environments using free-
form natural language lends itself as personal assistants,
field-robots and search-and-rescue agents. Development of
VLN agents has been facilitated by photorealistic simula-
tors such as Matterport3D [7] and paired language-action
datasets such as Room-2-Room (R2R) [4] and REVERIE
[33]. R2R provides fine-grained instructions conveying
low-level directives such as “Go left, then right at the hall”.
REVERIE specifies coarse-grained instructions conveying
broad high-level goals such as “Adjust the picture by the
lamp in the hall”. Progress in VLN has broadly ranged
from architectural improvements and data scaling tech-
niques. Architectural improvements include evolution from
recurrent systems [4] to transformer architectures [8, 9, 17].
HAMT [8] uses a hierarchical transformer architecture to
encode spatial and temporal information. DUET [9] main-
tains a topological map and performs coarse and fine scale
encoding over it. Data scaling techniques include augment-
ing environments [14, 40] using an action-to-text speaker
model [12] to generate synthetic instructions, and scal-
ing environments [19, 41] with additional scenes such as
HM3D [35] and Gibson [42] in Habitat [37]. Recently,
zero-shot or learned integrations of pretrained large lan-
guage models for VLN [45, 46] is showing promising per-
formance. However, running large models in-the-loop in-
curs high computational costs.

Closely related to our work, ADAPT [27] augments
VLN agents with visual observations related to an instruc-
tion. Language-observation pairs are stored from the train-
ing set and multiple pairs of matching object/location nouns
from instructions are retrieved at test time using CLIP [34]
scores. Fundamentally, the ADAPT image base is limited
to training environments whereas our imaginations cover
an open distribution. Therefore, our method can be more
representative of the instruction and visualize novel ob-
jects/locations. For instance, a sub-instruction of “walk
into the kitchen with blue walls” would retrieve images of
kitchens from the training environment using ADAPT, but
our imaginations would convey a kitchen with blue walls.

Another adjacent work, LAD [26] leverages layout
dreamer and goal dreamer modules optimized around a
topological graph to navigate via coarse-grained instruc-
tions. The capability of our method contrasts with LAD
inthree primary ways: 1) method generality; Our method is
performant across models and datasets, whereas LAD is a
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full architecture constructed around a particular topological
graph in coarse-grained settings, 2) sequential imagination:
we imagine a sequence of landmarks along a path to in-
form sequential decision-making, whereas LAD imagines
just the goal, and 3) we perform early fusion of imagina-
tions and language whereas LAD employs late fusion.

Image generation in VLN. Several techniques have pro-
posed generative models to predict future visual observa-
tions or entire environments in VLN [21, 24, 25]. Path-
dreamer [21] developed a GAN-based model to predict
panoramic observations after a navigation action in VLN,
conditioned on prior visual observations. Agents utilizing
these predicted observations in a fixed-horizon search with
a learned trajectory-instruction alignment heuristic achieve
non-trivial success compared to simple baselines, but fall
short of planning on actual observations and standard VLN
models. Unlike our approach, Pathdreamer does not con-
dition on instruction text or explore training agents on gen-
erated imagery. Similarly, PanoGen [24] uses a diffusion
model to also generate panorama observations, but condi-
tions on image captions while doing so as a form of vi-
sual dataset augmentation – replacing Matterport3D obser-
vations with synthetic generations with matching semantics.
In contrast to our approach, this data augmentation does not
provide additional inputs to the VLN models, is not condi-
tioned on instructions, and is not active at inference time.

Related to our work is VLN-Sig [25], which adapts VLN
agents to predict quantized features of future visual obser-
vations given the instruction and observation history. This
supports additional pretraining tasks and an auxiliary loss
during downstream VLN finetuning for predicting next-step
image semantics. Unlike our approach, VLN-Sig relies on
the trained VLN agent to predict future image properties
and focuses more on next-step prediction. In contrast, we
leverage broad vision-and-language knowledge from text-
to-image models and focus generating instruction-referred
visual landmarks to improve agent performance.

Image generation in robot control. Taking a wider view,
several methods for controlling embodied agents have lever-
aged text-conditioned generative techniques to provide goal
specifications in the form of images or videos. For table-
top object rearrangement tasks, many works use text-to-
image models to synthesize goals or sub-goals in response
to natural language commands, see [6, 13, 20] for a non-
exhaustive sample. Others produce denser conditioning,
leveraging text-to-video models to generate entire potential
robot trajectories [5, 11]. While similar in motivation to
our approach, these techniques focus on tabletop manipu-
lation settings which introduce difficult physical challenges
but significantly limit the problem to constrained spaces that
remain largely observed throughout operation. As such,
sub-goals are often edits to existing observations rather than
generations of yet-to-be-seen landmarks as in our approach.

3. Methodology

Our proposed methodology consists of two components
– (1) a visual imagination generation pipeline and (2)
a model-agnostic approach to integrating visual imagina-
tions into existing Vision-and-Language Navigation (VLN)
agents. Before defining these, we start with establishing rel-
evant notation for the VLN task.
Problem definition. In the standard VLN task [4], an agent
is prompted with a natural language navigation instruction
and must make a sequence of actions to navigate along the
described trajectory based on visual observations. We de-
note the L-word instruction as W = (w1, w2, · · · , wL)
and the visual observation at time step t as a panoramic
observation Ot consisting of K single view images Ot =
(It1, · · · , ItK). Following prior work, we consider K = 36
corresponding to images from 12 headings and 3 pitches.
Amongst the single view images, a subset At ⊂ Ot cor-
respond to navigable directions. Given the instruction W
and history of observations O≤t until time t, the agent se-
lects an action at ∈ At ∪ {stop} and accordingly either
moves or terminates the episode. Generally, the VLN agent
is parameterized as a policy network πθ(at | W,O≤t) with
parameters θ learned via general pretraining and a combina-
tion of imitation learning and reinforcement learning [8, 9].

3.1. Generating Visual Imaginations
To generate visual imaginations of potential landmarks, we
consider the structure of navigation instructions. Typically,
these consist of a sequence of sub-instructions describing
intermediate navigation steps, which may or may not re-
fer to visual landmarks. For instance, a sub-instruction “go
past the couch” implies a visual landmark while “go straight
then left” does not. We use FG-R2R [15] to segment in-
structions, resulting in an average of 3.66 sub-instructions
per instruction for the R2R[4] training set. For a given in-
struction W decomposed into m segments, we denote these
as sub-instructions S = (S0, · · · , Sm).
Sub-instruction filtering scheme. As sub-instructions may
not always contain references to visual landmarks, we filter
sub-instructions prior to image generation. First, we ignore
any sub-instruction that lacks a noun phrase using Spacy
[2] and then noun phrases are further filtered by a manual
blacklist to avoid uninformative landmark generation. For
example, we exclude detected noun phrases rooted on non-
visual terms like counts (‘one’), directions (‘left’), or am-
biguous object pronouns (“it”) as these lack specificity to
produce meaningful visual landmarks. After filtering, we
denote the remaining sub-instructions S ′ ⊂ S.
Visual imagination generation. The filtered sub-
instructions are passed through a text conditioned diffusion
model as illustrated in Fig. 3. We use SDXL [32] as the
diffusion model with positive and negative prompts cho-
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Figure 2. An overview of our approach. (Left) Imaginations generated using valid sub-instructions from an instruction as determined by
our filtering scheme are first passed to a pre-trained ViT to obtain feature vectors. A type embedding tIm for imagination modality is
then added to the features which are encoded using a 3 layer MLP to obtain imagination embeddings hi. (Right) To integrate imagination
modality to a VLN agent, the imagination embeddings hi are concatenated with instruction embeddings ti that are encoded using a text
encoder fT (W ). The concatenated imagination-text embeddings are passed to the VLN agent’s cross-modal encoder fX along with visual
embeddings to predict a distribution over the agent’s action space.

Figure 3. Example instruction segmentation, filtering, and image
generation. Instructions are segmented to sub-instructions lever-
aging FG-R2R [15] and then filtered to remove phrases referring
to uninformative nouns (e.g., “right”). We produce visual imagi-
nations using SDXL [32] for remaining sub-instructions.

sen to steer generation towards indoor real-estate environ-
ments akin to typical environments in Matterport3D [7]. For
example, providing “indoor” and “real estate” as positives
prompts and “humans” and “collage” as negatives. See the
supplementary for a full list. For a given instruction, we
denote the generated images for valid sub-instructions as
Z = { Zi | Si ∈ S ′ }. We colloquially refer to these gener-
ated images as imaginations and generate them for the entire
R2R dataset. The resulting R2R-Imagine dataset consists of
over 41k synthesized imaginations. This amounts to an av-
erage of 2.96 imaginations per instruction.

3.2. Integration with Existing Models
We consider augmentation with visual imagination to be a
model agnostic approach and integrate it in two prior mod-
els – HAMT [8] and DUET [9]. Our integration approach
consists of an imagination encoder, an alignment-promoting
auxiliary loss, and a finetuning regimen (Fig. 2). With-
out loss of generality, we consider a decomposition of any
VLN agent into an instruction encoder fT (W ), an obser-
vation/history encoder fO(O≤t), and a cross-modal policy
network fX(fT (W ), fO(O≤t)) that combines the encoder
outputs to predict a distribution over actions. Note that these
may be fairly complex mechanisms and include explicit his-

tory encoding modules separate from encoding the current
observation; however, this abstraction is sufficient here.
Imagination encoder and integration. Given an instruc-
tion W with corresponding imaginations Z , we indepen-
dently encode each imagination Zi using a pretrained vi-
sion transformer (ViT) [10] to produce a d-dim embedding
vector. These are further transformed by a three-layer MLP
such that the ith imagination embedding can be written as

hi = MLP( ViT(Zi) + tIm ) (1)

where tIm is the type embedding for imagination modal-
ity. As we consider visual imaginations to be prox-
ies for sub-instructions, the full set of imagination em-
beddings H are concatenated to the text encodings such
that our general VLN agent structure now computes
fX( [fT (W ),H], fO(O≤t) ) where [·, ·] denotes a concate-
nation. Taking the DUET model as an example, the imag-
ination embeddings are concatenated to the instruction en-
coding prior to being passed to the coarse-scale and fine-
scale cross-modal encoders.
Auxiliary alignment loss. We add an auxiliary loss to align
the representations of imaginations and their corresponding
sub-instruction’s noun phrases. For a given sub-instruction
Si, we denote the mean embedding vector for noun phrase
tokens in Si from the text encoder fT as S̄i. To align repre-
sentations, we compute a cosine similarity loss between the
corresponding imagination Zi encoded as hi and S̄i. This
is averaged over all NIm imagination-subinstruction pairs
(Zi, Si) in a batch,

Lcos =
1

NIm

∑
(Zi,Si)∈B

(
1− hi · S̄i

∥hi∥∥S̄i∥

)
. (2)

During finetuning, we combine this auxiliary loss Lcos with
the losses from the base agent with a scaling factor λ such
that the overall loss is Lbase + λLcos.
Finetuning regimen. We start with fully-trained check-
points of prior models as our initial weights. Depending
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Table 1. Comparison of our approach with selected prior work on the R2R dataset. Methods that use additional visual data beyond MP3D
[7] are annotated with † and are not directly comparable with other approaches. Note that BEVBert* additionally uses panoramic depth
images. Adding our visual imagination approach to HAMT and DUET base models (gray rows) leads to improved success rate (SR) and
success weighted by inverse path length (SPL) metrics on the val-unseen split. For DUET, this effect also persists on the test set. We
highlight these improvements over base models using bold numbers.

Methods
Validation Seen Validation Unseen Test Unseen

TL NE↓ SR↑ SPL↑ TL NE↓ SR↑ SPL↑ TL NE↓ SR↑ SPL↑

PREVALENT [14] 10.32 3.67 69 65 10.19 4.71 58 53 10.51 5.30 54 51
RecBERT [16] 11.13 2.90 72 68 12.01 3.93 63 57 12.35 4.09 63 57
ADAPT [27] 10.97 2.54 76 72 12.21 3.77 64 58 12.99 3.79 65 59
BEVBert* [3] 13.56 2.17 81 74 14.55 2.81 75 64 15.87 3.13 73 62
MARVAL [19]† 10.60 2.99 73 69 10.15 4.06 65 61 10.22 4.18 62 58
ScaleVLN [41]† 11.90 2.16 87 80 12.40 2.34 87 79 14.27 2.73 83 77

HAMT [8] 11.15 2.51 75.61 72.18 11.46 3.62 66.24 61.51 12.27 3.93 65 60
HAMT-Imagine (ours) 11.30 2.36 77.16 73.72 11.81 3.58 67.26 62.02 12.66 3.89 65 60

DUET [9] 12.33 2.28 78.84 72.88 13.94 3.31 71.52 60.41 14.73 3.65 69 59
DUET-Imagine (ours) 12.93 2.19 79.9 73.75 14.35 3.19 72.12 60.48 15.35 3.52 71 60

on the base method, these parameters may be the result
of multi-stage pretraining and finetuning regimens – e.g.,
leveraging synthetic PREVALENT [14] data as prescribed
in [8]. The imagination encoder is integrated to the base
model and finetuned with the R2R-Imagine dataset. To
mitigate catastrophic forgetting, we perform our training
in three stages. First, we train only the newly introduced
imagination encoder MLP along with type embeddings
tIm with the remaining parameters frozen. Then, all the
modules are trained jointly with a decreased learning rate
for the base model. Finally, all the parameters are trained at
a common learning rate. See supplementary materials for
details on learning rates and schedules.

4. Experiments
Using the R2R dataset, we evaluate the impact of vi-
sual imaginations on our agent’s navigation ability, per-
form ablation studies to explore the design space, and il-
lustrate qualitative impacts of visual imaginations. Using
the REVERIE dataset, we study the generalizability of our
technique to a fine-grained instruction setting.

4.1. Experimental setup
R2R dataset. R2R [4] is constructed using Matterport3D
[7] simulator. It consists of 90 indoor environments with
10,567 panoramas (each panorama consists of 36 single-
view images) which act as nodes in a navigation graph.
There are 7,189 trajectories each with 3 instructions and a
corresponding ground truth trajectory. The dataset is split
into train (4675 trajectories), val-seen (340 trajectories),

val-unseen (783 trajectories), and test (1391 trajectories).
The train and val-seen split share environments while val-
unseen and test have different environments.
R2R-Imagine dataset. The curation process of R2R-
Imagine is prescribed in section 3.1. The number of imagi-
nation images are 41,558 for train, 3,055 for val-seen, 6,857
for val-unseen, and 12,412 for test. Our imaginations have
a resolution of 1024x1024 and a single imagination gener-
ation on a single H100 GPU takes 3.2 seconds on average.
We intend to release the dataset upon acceptance.
REVERIE dataset. REVERIE [33] is constructed using
Matterport3D and consists of high-level goals instead of
finer grained step-by-step instructions. These instructions
generally convey the target object and its location. The
agent has to rely more on exploration relative to R2R. To
be successful, agents must reach and identify the referent
object. To synthesize imaginations for REVERIE, we treat
the entire instruction as a single sub-instruction and follow
the same recipe used for R2R.
Evaluation metrics. We employ standard VLN metrics
[18]. Success rate (SR) is the ratio of instruction-trajectories
where the agent stops within a 3 meter radius from the goal
and success normalized by inverse path length (SPL) helps
distinguish successful episodes with shorter path lengths
from longer path lengths. Navigation error (NE) is the dis-
tance between an agent’s final position and the goal in me-
ters. Trajectory length (TL) is the length of an agent’s tra-
versed path in meters. REVERIE [33] additionally defines
grounding metrics Remote Grounding Success (RGS) and
RGS penalized by path length (RGSPL).
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Table 2. Performance comparison of our approach on REVERIE
with baseline. We observe improvements of our method across all
metrics on DUET when provided coarse-grained instructions.

SR↑ SPL↑ RGS↑ RGSPL↑
DUET 46.98 33.73 32.15 23.03
DUET-Imagine (ours) 48.28 33.76 32.97 23.25

HAMT and DUET base models. We apply our approach
to two baseline representative architectures – HAMT [8]
and DUET [9]. HAMT is hierarchical and transformer-
based; instructions, observations, and trajectory history are
encoded separately using unimodal transformers and then
combined in a single cross-modal transformer to predict ac-
tions. DUET incrementally forms a topographic map of
the environment over time and uses dual fine- and coarse-
grained cross-modal attention mechanisms to associate lan-
guage embeddings with the local observation and global to-
pographic features. The results are then fused to predict ac-
tions. For both base models, we inject visual imaginations
via concatenation with the text embeddings (Sec. 3.2). We
use provided checkpoints for pretrained models.
Implementation details. We follow base agent [8, 9] set-
tings unless specified otherwise. We use a standard off-the-
shelf pretrained ViT-B/16 [10] to encode imaginations for
both HAMT and DUET. Our VLN-Imagine agents are fine-
tuned for 100k iterations in three stages as noted in sec-
tion 3.2. The finetuning process is carried out using a Tesla
V100 GPU with a batch size of 8 and takes ∼ 1.5 days for
each agent. For combining the proposed auxiliary loss func-
tion with the base model losses, we empirically set λ=0.5.

4.2. Results
Our experiments demonstrate that providing generated im-
ages of instruction landmarks (imaginations) improves
the performance of vision-and-language navigation models
(Tab. 1). We highlight our key findings below.
VLN agents perform better with imaginations. VLN
agents equipped with imaginations perform better than
VLN agents without by 0.6-1.0 SR and up to 0.5 SPL on
R2R val-unseen (Tab. 1). This improvement coincides
with lower navigation error (NE) across both models and
all dataset splits. We contextualize these results relative to
agent architectures that are representative of the VLN liter-
ature. We additionally report a distinct family of techniques
that scale training environments to boost performance by re-
ducing overfitting – MARVAL [19] and ScaleVLN [41]. We
consider approaches of this class orthogonal to our study
and instead use visual data only from Matterport3D [7].
Imaginations are useful in coarse-grained instruction
navigation. Our method is performant when natural lan-
guage instructions convey high-level objectives (REVERIE,

Table 3. Role of imaginations; HAMT-Imagine. Null imaginations
refers to testing with no imaginations, wrong imaginations refers
to testing with imaginations sampled from different instructions.
We observe aligned imaginations are important to navigation per-
formance. In addition, results with no imaginations are better than
baseline implying a regularization effect during training.

SR↑ SPL↑
Baseline (HAMT) 66.24 61.51
Null imaginations 66.92 61.89
Wrong imaginations 66.24 61.02
Correct imaginations (ours) 67.26 62.02

Table 4. Sequential vs. goal imagination; HAMT-Imagine. We
study the effect of providing just the imagination belonging to the
final valid sub-instruction relative to full valid imaginations. We
observe providing just the goal imagination improves performance
significantly compared to baseline but shows lower performance
relative to providing full imaginations.

SR↑ SPL↑
Baseline (HAMT) 66.24 61.51
Goal imagination 66.79 61.58
Full imaginations (ours) 67.26 62.02

Tab. 2); navigation performance improves by 1.3 SR and
grounding performance improves by 0.82 RGS. We hypoth-
esize that imaginations not only aid in reaching the goal
but also in identifying and grounding the target concept
amongst others objects in the scene.
VLN agents benefit from both imagination training and
inference. When nullifying imaginations at test-time,
VLN-Imagine agents still surpass baseline performance, but
to a lesser extent (Tab. 3). We implement this nullifica-
tion by setting the imagination attention masks to zero in
the cross-modal encoder. We hypothesize that imagination-
based training provides a regularizing effect on the overall
VLN agent during fine-tuning, revealing a research avenue
for strong and performant test-time model inference. We
further find that imaginations must be aligned with the in-
struction to provide maximal benefit; when fed with imag-
inations randomly-sampled from the R2R-Imagine dataset,
VLN-Imagine agents perform worse than baseline (Tab. 3).
Sequential imagination outperforms goal imagination.
Sequential refers to imaginations generated over multiple
sub-instructions (our method). Goal imagination refers to
imagining just the final non-filtered sub-instruction. We
show these results in Tab. 4 – while goal imagination out-
performs the baseline by 0.5 SR, sequential imagination
outperforms the baseline by 1.0 SR. Goal imagination may
be particularly useful in guiding the agent to stop at the des-
tination. While distinct from our setting, such goal imagi-
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Table 5. Comparison between ViT models. We train both HAMT-
Imagine and DUET-Imagine agents with a ViT finetuned in-the-
loop with HAMT and an off-the-shelf pretrained ViT. We observe
no consistent effects across the both agents.

ViT fine-tuned ViT off-the-shelf
SR↑ SPL↑ SR↑ SPL↑

HAMT-Imagine 67.31 61.5 67.26 62.02
DUET-Imagine 72.58 60.29 72.12 60.48

Table 6. Loss ablation. We study the effect of negative samples
in our alignment loss by comparing our approach of using cosine
loss with InfoNCE [28] loss. In addition, we train the agent with
no auxiliary loss represented by “No loss”. We do not observe a
significant difference between contrastive and cosine losses.

SR↑ SPL↑
No loss 66.75 61.60
LInfoNCE 67.18 61.84
Lcos (ours) 67.26 62.02

nation has parallels to ImageNav [22], a visual navigation
task that conveys goals solely using exemplar images.

General-purpose vision encoders are sufficient imagina-
tion encoders. We compare encoding imaginations with
off-the-shelf ViT [10] vs. ViT fine-tuned on R2R navigation
episodes [8]. We find comparable performance (Tab. 5) and
choose to employ off-the-shelf ViT in our final model. This
is motivated to maximize generality and to avoid potential
issues relating to catastrophic forgetting. For example, gen-
eralization of frozen ViT is demonstrated in Zeng et al. [44].

Aligning imaginations to instructions benefits VLN-
imagine agents. Aligning the imagination embedding to
the instruction embedding as an auxiliary loss leads to a
0.5 SR and a 0.4 SPL increase over no auxiliary loss (Tab.
6). We also consider formulating this loss as contrastive –
do negative samples enable a stronger alignment and thus
better downstream performance? We find that an InfoNCE
loss [28] yields no significant difference relative to our co-
sine similarity loss (Eq. 2). We construct negative sam-
ples using mean noun phrase embeddings from imagina-
tions of other instructions in the batch. The overall loss is
Lbase + λLInfoNCE where we set λ to 0.2 empirically.

Imaginations correctly represent noun phrases in a sub-
instruction. To evaluate fidelity of our imaginations, we
run an open-vocabulary object detector (LangSAM [1]) on
our imaginations to test if the noun phrases contained in
the corresponding sub-instruction from R2R are detected
successfully. We see in Tab. 7 that at least one noun
phrase is detected in our imaginations for 98.78% of sub-
instructions and all noun phrases are detected for 94.99%

Table 7. Open vocabulary object detection accuracy (%) of imag-
inations to noun phrases from sub-instructions. Our imaginations
represent the noun phrases with a high accuracy. In val-seen, in
98.43% of sub-instructions, at least 1 noun phrase is detected and
in 94.51% of sub-instructions, all noun phrases are detected.

Sub-instructions Noun Phrase Detection (%)

≥1 detected All detected

Val-seen 2985 98.43 94.51
Val-unseen 6700 98.99 95.34
Test 12075 98.93 95.12

of sub-instructions. We conclude our imaginations provide
a high coverage of relevant concepts across splits.

4.3. Qualitative visualizations
In this section, we provide a qualitative investigation of how
imaginations may be used as a pivot between language to-
kens and visual observations from the environment by ex-
amining the attention patterns in HAMT-Imagine.

For a given instruction, we randomly select an imagina-
tion / sub-instruction pair and examine the agent’s trajectory
to identify the first occurrence of the reference object. We
then examine the attention distributions between language
tokens, the visual imagination, and the panoramic obser-
vation. As there are many attention heads across multiple
layers in the cross-modal encoder, we structure our study
by focusing on those attention heads where sub-instruction
tokens are attended to most strongly by their corresponding
visual imagination and then examine how the visual imagi-
nation attends to observations.

We then visualize sub-instruction and imagination pairs
along with their top attended language tokens and visual
observations in Fig. 4. By construction, these are time steps
where the referent is visible and the visual imagination is
attending to the appropriate noun phrase. As such, our ex-
amples primarily demonstrate how the imagination learns
to associate with the visual observations. We focus on this
aspect as our auxiliary loss already explicitly encourages
alignment between visual imaginations and sub-instruction.

From the examples in Fig. 4, we make two remarks.
Imaginations attend most strongly to observations of match-
ing semantic concepts. In row 1, the imagination and the re-
trieved observations all depict a cheetah (either a painting or
floor mat). Imagination attention scores mirror the proper
disambiguation of concepts. In row 2, the sub-instruction
(and thus the imagination) refer to a unicycle. While both a
bicycle and unicycle are observed during execution, atten-
tion scores are maximized by the observations containing
the unicycle. These patterns do not directly imply a causal
relation between the attention scores and eventual decision
making of the VLN agent. Rather, they illustrate how imag-
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Figure 4. Qualitative examples showing imaginations as pivots between language and observation images. The first column contains
sub-instruction from a random instruction from R2R, the second column contains the imagination generated using the sub-instruction.
The third and fourth columns show highest attended language tokens and observation images from an attention head in HAMT’s cross-
modal transformer at a time step the associated observations are first visible. In the second example (row 2), the sub-instruction references
“unicycle” which is captured in the imagination along with neighboring nouns “easel” and “door”. We observe that in a head where top
attending language tokens to the imagination query are references to nouns associated with the sub-instruction, its top attended observations
to the imagination query are images of the same concept (“unicycle”). In this example, the imagination of a unicycle is being used to
associate language tokens belonging to “unicycle” to observations of unicycle hinting at the utility of imaginations in navigation.

inations can serve as a pivot between language and obser-
vations and afford disambiguation of related concepts.

5. Conclusion

In this work, we show that visual representations of in-
structions, or visual imaginations, play an additive role in
training superior navigating agents for vision-and-language
navigation (VLN) tasks. We generate a sequence of visual
imaginations depicting sub-instruction landmarks using a
text-to-image diffusion model. Our approach is model-
agnostic and we integrate these imaginations into VLN
agents using an imagination encoder, an auxiliary loss, and
a fine-tuning training step. We apply this approach to two
representative VLN agents across two datasets and observe
performance improvements of around 1 SR and 0.5 SPL.

Limitations. Generating and encoding imaginations in-
creases the computational cost of running VLN agents. This
is particularly relevant when running agents on-device for
real-world robotic deployments. However, we note that this
process is performed upfront, unlike techniques that depend
on step-wise observations like novel view synthesis (NVS).

Stepping more broadly, by design, our imaginations are not
grounded in the environment. Personalized reasoning, such
as the unique naming of objects and locations, cannot be
directly imagined in our framework. Life-long learning of
persistent groundings is an open question not just in gener-
ating imaginations, but in the VLN space at large.

Future directions. A natural question that arises from our
research is the exact complementary nature of the roles
played by visual imaginations and language instructions.
This is a rich area for future work. Similar studies relat-
ing language and visual observations have been conducted
in [48] and [47]. Our paper demonstrated the fundamental
utility of imagination in VLN agents. Beyond this lies inter-
esting extensions, such as how imagination can help bridge
the simulation-to-reality (Sim2Real) gap for VLN agents
and whether imaginations can unlock the performance of
VLN world models through image-image reasoning.
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