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Abstract

Existing work has shown that ol-level perfor-
mance can be achieved with limited data distil-
lation, but most existing methods focus on uni-
directional supervised fine-tuning (SFT), over-
looking the intricate interplay between diverse
reasoning patterns. In this paper, we construct
rl1k, a high-quality reverse reasoning dataset
derived by inverting 1,000 forward examples
from s1k (Muennighoff et al., 2025), and ex-
amine how SFT and Direct Preference Opti-
mization (DPO) affect alignment under bidirec-
tional reasoning objectives. SFT on rlk yields
a 5.4% accuracy improvement over slk across
evaluated benchmarks. However, naively mix-
ing forward and reverse data during SFT weak-
ens the directional distinction. Although DPO
can partially recover this distinction, it also
suppresses less preferred reasoning paths by
shifting the probability mass toward irrelevant
outputs. These findings suggest that mixed rea-
soning data introduce conflicting supervision
signals, underscoring the need for robust and
direction-aware alignment strategies.

1 Introduction

Recent studies show that Large Language Models
(LLMs) can achieve strong reasoning performance
by distilling knowledge from a small set of high-
quality examples. Methods like s1 (Muennighoff
et al., 2025) and LIMO (Ye et al., 2025) demon-
strate that with just 817 to 1,000 curated samples,
a 32B model can match or surpass larger systems.
However, these approaches focus mainly on single-
direction reasoning—solving problems step by step
from question to answer. As shown in Figure 1, a
model may learn to compute the kinetic energy of
a gas molecule from its temperature, but not the
reverse: inferring temperature from energy.

This narrow focus overlooks a core aspect of
human cognition: the inherently bidirectional na-
ture of reasoning. Humans commonly engage in
backward reasoning, particularly in goal-directed

problem solving (Newell and Simon, 1972; Hawes
et al., 2012). Rather than reasoning solely from
premises to conclusions, people often begin with a
desired outcome and work backward through inter-
mediate steps to reach known facts (Senn and Sacra-
mento, 2015). Motivated by this cognitive insight,
recent studies have begun to explore reverse or
backward reasoning in LLM. MathGenie (Li et al.,
2024) utilizes reverse derivation paths to improve
robustness on math word problems. Iterative Ques-
tion Composing (Cobbe et al., 2024) constructs in-
termediate subquestions that align with goal-driven,
backward-style planning. In optimization model-
ing, OptiBench (Yang et al., 2024; Chang et al.,
2024) promotes reflective and Socratic-style re-
formulations that partially embody reverse reason-
ing principles. While promising, these approaches
remain constrained to short-context reasoning or
domain-specific tasks. This leaves open the broader
question of whether backward supervision can en-
hance long chain-of-thought (CoT) reasoning and
generalize across diverse scenarios.

To investigate this, we construct a high-quality
dataset, r1k, by systematically inverting 1,000 for-
ward reasoning examples from s1k (Muennighoff
et al., 2025). Reverse questions and reasoning
paths are generated with cost-efficient DeepSeek-
R1 model (Team, 2024), without the need for ex-
pensive data collection, cleaning, or selection pro-
cedures. Fine-tuning on r1k yields an approximate
5.4% improvement over slk.

To further study the interaction between mixed
data, we conducted extensive experiments on their
combined effects. We observe that SFT on re-
verse data improves performance, whereas mixing
forward and reverse examples leads to degrada-
tion. Mechanistic analysis shows that this reduces
the model’s ability to distinguish reasoning paths.
While Direct Preference Optimization (DPO) partly
alleviates this, it still suffers from suboptimal ini-
tialization and tends to shift reverse reasoning prob-



Tearcher model Generates x,. and y,.

Original Question x¢

Compute the mean translational kinetic
energy of a single ideal gas molecule in eV.

Student model
e
At what temperature (in Kelvin) does the mean translational LSf t= (e :: Vr)
kinetic energy of an ideal gas molecule equal 0.038 eV? (x>, f)l >y
B DPO

)
-

— Forward Reasoning y,

slk dataset (1) Identify the Goal (2) Recall Relevant
Physics Concepts (3)... Answer: 0.0385 eV

Reverse Reasoning y,.

(1) Convert energy from eV to J (2) Solve for temperature
(3)... The temperature is approximately 294 K.

X Yr| o | X Y
Xy Yr X, yf

(4 Analyse learning dynamics

Figure 1: We begin with the s1k dataset (z s,y ) and generate reverse questions x,., along with their corresponding
reverse CoTs and answers y,.. We then fine-tune student models using cross-entropy loss under three settings as
comparison: forward-only data, reverse-only data, and a mixture of both. To enhance directional consistency, we
apply DPO to encourage directionally aligned responses while suppressing misaligned ones. Concurrently, we track
the log probability of ¢ and y,- across multiple fine-tuning stages to investigate the models’ learning dynamics.

ability toward irrelevant outputs. These findings
underscore the need for improved alignment strate-
gies to support robust reasoning.

2 Related work

Data-Efficient Reasoning in LLLMs: sl (Muen-
nighoff et al., 2025), LIMO (Ye et al., 2025) and
LIMA (Zhou et al., 2023) demonstrate that train-
ing on a small set of high-quality examples en-
ables more effective performance, suggesting that
massive datasets may not always be necessary to
achieve competitive results. This perspective is
further supported by methods such as iterative re-
finement (Madaan et al., 2023) and self-rewarding
feedback (Huang et al., 2023), which demonstrate
that reusing or distilling informative examples can
improve model performance without relying on
large-scale data. Complementary findings from
data pruning and selection studies (Ivison et al.,
2025; Deng et al., 2025; Agarwal et al., 2024) re-
veal that indiscriminate scaling often yields dimin-
ishing returns, highlighting the value of targeted
data curation in reasoning-intensive tasks.
Learning Dynamics of LLM Fine-Tuning: Neu-
ral Tangent Kernel (NTK) theory (Jacot et al., 2018;
Arora et al., 2019) provides a framework for ana-
lyzing the influence of individual training examples
during LLM fine-tuning. A gradient-based decom-
position was later proposed (Ren and Sutherland,
2024), approximating the change in model confi-
dence for an output y on input x, after training on
a single example (2, ¥y, ) as:

Alogmi(y | o) = —1 Ar(x0) Ki(2o, 2u) G 2w, Yu)

where K is the empirical NTK, G; the gradient,
and A, a scaling factor tied to model certainty. This
perspective helps explain interference, hallucina-
tion, and memorization (Pruthi et al., 2020). It also

explains the diversity collapse (Dang et al., 2025),
where correctness optimization concentrates the
probability mass on a single reasoning path, lim-
iting diversity. These insights inspire a learning-
dynamics perspective on how mixed reasoning data
shapes model behavior in multi-stage fine-tuning.

3 Methodology

3.1 Reverse Data Construction and Alignment

We begin with a forward reasoning dataset Dy, =
{(:Ugf), yj(f)) 1000 consisting of 1,000 high-quality
examples from the s1k dataset. Each example in-
cludes a question zy and its corresponding CoT
and answer y; generated by Deepseek-R1 (R1).
Based on each slk’s question and final answer,
we leverage R1 to construct the reverse dataset
Dok = {(:cs«i), y,(i))}}gqo. For each forward exam-
ple (xf,ys), we prompt the model to generate a
reverse question x, that naturally elicits the orig-
inal reasoning in reverse. Conditioned on x,., we
prompt R1 to generate the corresponding reverse
reasoning chain and answer y,. We merge the
above two datasets to obtain D = Dy U D,qp,
which serves to investigate how bidirectional super-
vision influences model behavior and alignment.
We fine-tune the Qwen-2.5 (A et al., 2024) 7B
and 14B models using the standard cross-entropy
objective, where the input is the question x and the
target output y is the concatenation of the CoT and
the final answer with special separation tokens.
Although SFT introduces forward and reverse
reasoning, it does not equip LLMs with the ability
to switch between two directions. To better align
model responses with question directionality, we
apply DPO following SFT. For this, we construct
preference pairs of the form (z,y ™,y ™), where
is the question, y* is the preferred response, and
y~ is the response of reverse question. Specifically,



for each example (z¢,y¢) € Dsii, We treat the
forward output as the preferred response, i.e., y ™ =
Yy, and the corresponding reverse output as the
rejected response, y~ = y,. In contrast, for each
example (z,,y,) € D1k, We assign yT =y, as
the preferred response and y~ = yy as the rejected
one. Each pair of preferences (z,y™", y ™) is used to
optimize the DPO objective(Rafailov et al., 2023),
which encourages the model to prefer y™ over y~.

3.2 Analysis of the Pitfalls of Mixed Data

To investigate the fine-tuning behavior during both
the SFT and DPO stages, we construct a small
probe training set consisting of 100 examples: 50
forward instances Dy and their corresponding 50
reverse counterparts D,. The union of the two
forms a mixed test dataset D,,, = Dy U D,..
Throughout both the SFT and DPO stages, we
monitor model behavior by recording intermedi-
ate checkpoints and evaluating the average log-
probability (ALP) per token for both y* and y~:
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here, N denotes the number of examples in the
probe testing set, and \y;t\ the length of each evalu-
ated output, capped at 1000 tokens. This evaluation
window is typically sufficient to capture the diver-
gence between y* and . Since the responses are
long-form sequences, we normalize log-probability
by sequence length to ensure fair comparison. Mo-
tivated by recent theoretical analyses of learning
dynamics in LLMs (Ren and Sutherland, 2024), we
track the margin:

ALP(y

A =ALP(y") — ALP(y™),

which serves as an empirical proxy for A log 7 (y |
Z,) in the NTK formulation, with ALP reflecting
model certainty A;(z,), forward-reverse pairs indi-
cating input similarity K;(x,, =, ), and training su-
pervision contributing gradient signals G (., yu,)-

4 Experiments

We conducted experiments on the DeepSeek-R1’s
s1k dataset, which consistently outperformed the
Gemini-based variant. As the s1k has already been
curated with quantity, diversity, and difficulty, we

did not apply an additional filtering process. We
fine-tune Qwen2.5-Instruct models (7B and 14B)
in two stages on 8 A800-80GB GPUs. First, we ap-
plied SFT with LoRA (rank = 256, a = 512). Then,
we performed DPO using the trl library (von
Werra et al., 2022), with DeepSpeed ZeRO-3 (Ja-
cobs et al., 2023) and Flash Attention (Shah et al.,
2024) to reduce memory usage. We employ open-
source Im-eval-harness (Gao et al., 2021), with
gpt-4o0-mini to evaluate the accuracy.

4.1 Impact of Reverse and Mixed Data

To evaluate the effect of reverse data construction
and bidirectional supervision, we conducted fine-
tuning experiments on different training datasets.
As shown in Table 1, we compare the distilla-
tion performance of models trained on the Dy,
D, 1k, and D across three challenging benchmarks:
AIME?24-NoFigures (Mathematical Association of
America, 2024), Math 500 (Lightman et al., 2023),
and GPQA (Clark et al., 2022) benchmarks.

Table 1: Effect of Reverse Data (D,.1x) and Mixed Train-
ing Sets (D and Dy 55) on downstream performance.
Here, Dy 51, consists of 500 forward examples paired
with their corresponding reverse data. In the same set-
ting experiment, the best results are shown in bold.

Data Model AIME Math GPQA Average
Dsik 7B 16.7% 77.0% 34.0% 42.6%
Dr1x(Ours) 7B 20.0% 77.4% 42.4% 46.6%
Do.sk 7B 133% 71.8% 358% 40.3%
D 7B 6.7% 56.0% 31.8% 31.5%
Dsik 14B  20.0% 832% 48.4% 50.6%
Dr1x(Ours) 14B  33.3% 86.0% 53.0% 57.4%
D 14B  30.0% 81.6% 49.1% 53.6%

Under the same distillation pipeline, models
trained on our reverse dataset D,.1;, achieve an av-
erage improvement of 5.4% compared to those
trained on the original Dgy;. However, combin-
ing forward and reverse examples leads to a sig-
nificant drop in performance. As the size of the
mixed dataset increases from Dy 5, to D, the degra-
dation becomes more pronounced, suggesting that
mixed-direction reasoning data introduce interfer-
ence between reasoning modes and hinder effective
learning.

4.2 Impact of Directional Preference

Our DPO experiments use a temperature-weighting
hyperparameter of 5 = 0.6, with the SFT-trained
model fixed as the reference model. We apply DPO
fine-tuning to four SFT-based models: three 7B
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Figure 2: D denotes the training dataset, and 7 denotes the testing dataset. We report the Average Log Probability
(ALP) for both the preferred responses (y*) and the less preferred responses (y ™) in Figures (a) and (b), respectively.

Figure (c) shows the difference ALP(y™) — ALP(y™).

models individually trained on Dy, D,1x, and D,
and a 14B model trained on D. All DPO models
are further fine-tuned using preference pairs from
D, where each pair consists of two responses 3™
and y—, generated from the opposite question.

Table 2: Effect of DPO on SFT-Based Models. | and 1
indicate performance decrease and increase respectively;
parentheses show relative change from the SFT baseline.

Based Model AIME Math GPQA Average
Ds1k (7B)  13.3%] 71.8%| 35.9%| 40.3% ({2.3%)
Drk(7B)  16.7%] 75.4%) 39.4%) 43.8% ({2.8%)
D (7B) 16.7%1 64.2%1 34.8%71 38.6% (1 7.1%)
D (14B)  40.0%1T 81.2%] 46.4%] 55.9% (12.3%)

Table 2 shows that applying DPO with mixed
preference data on the Dy, (7B) and D,1; (7B)
reference models leads to a performance decline.
For the model initially fine-tuned on the mixed
dataset D, DPO achieves some performance im-
provements, but its overall performance remains
inferior to SFT trained on D,.1}.

4.3 Analysis of the Pitfalls of Mixed Data

We analyze the in-distribution pairs (Dy,7y),
(D, Tr), and (Dy,, Trn), where D and T denote
the training and testing datasets respectively. SFT
is run for 12 epochs with evaluation every 2 epochs,
and DPO for 7 epochs with evaluation after each.
Changes in the ALP of y T reflect the learned strat-
egy, while y~ indicates hallucination. We also
consider the out-of-distribution pairs (Dy, 7,.) and
(D,, Ty), where variations in the ALP of y* mea-
sure the generalization capability to handle reverse
question, whereas y~ indicate the likelihood of
generating irrelevant or off-target responses.
Figure 2(a) shows that under out-of-distribution
scenarios, models trained on the D, exhibit lower

hallucination rates y~ and better generalization.
For in distribution settings, (a) demonstrates that
the likelihood of 4™ increase significantly, but this
improvement is accompanied by a corresponding
rise in hallucinations y~. Figure 2(b) reveals that
mixed-data training D,,, induces a stronger increase
in hallucinations, while the likelihood of preferred
responses fails to reach the levels achieved by train-
ing solely on D, and Dy. Even though the sub-
sequent DPO improves preference alignment by
suppressing the probability of 4~ to irrelevant re-
sponses, this suppression is limited.

Figure 2(c) shows that models trained on D and
D, maintain a gap between y+ and y~, whereas
the model trained on mixed data D,,, produces only
a narrow margin (0.05-0.1). This suggests that
SFT on mixed data weakens LLM’s ability to dis-
criminate the learned strategies and hallucination.
Although DPO slightly separates y+ and 3, the
effect remains limited. We hypothesize that the
conflicting signals from D,, lead the model to op-
timize in competing directions, hindering the for-
mation of coherent preferences. This phenomenon
also helps explain why models trained on smaller
but higher-quality datasets, such as LIMO or slk,
can outperform larger ones: consistent supervision
leads to more effective optimization.

5 Conclusion

We constructed a high-quality reverse reasoning
dataset rlk and demonstrated its effectiveness in
improving reasoning ability. We further investi-
gate the effects of mixed data during multi-stage
fine-tuning, underscoring the need for improved
alignment strategies to support robust reasoning.



6 Limitations

This work explores the integration of reverse rea-
soning data in multi-stage fine-tuning, but several
limitations remain. Our reverse dataset D,y is
constructed by automated prompting without hu-
man validation, which may introduce subtle errors
or inconsistencies in reasoning quality. Addition-
ally, the DPO formulation assumes a strict direc-
tional preference between forward and reverse out-
puts, potentially oversimplifying cases where both
reasoning directions offer complementary insights.
Furthermore, while this study adopts a standard
SFT + DPO pipeline, alternative alignment strate-
gies may offer more robust solutions to conflicting
supervision in mixed data settings.
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