
Conditioned Score-Based Models
for Learning Collision-Free Trajectory Generation

João Carvalho, Mark Baeirl, Julen Urain, Jan Peters
Intelligent Autonomous Systems, Technische Universität Darmstadt

joao@robot-learning.de

Abstract

Planning a motion in a cluttered environment is a recurring task autonomous
agents need to solve. This paper presents a first attempt to learn generative models
for collision-free trajectory generation based on conditioned score-based models.
Given multiple navigation tasks, environment maps and collision-free trajectories
pre-computed with a sample-based planner, using a signed distance function loss we
learn a vision encoder of the map and use its embedding to learn a conditioned score-
based model for trajectory generation. A novelty of our method is to integrate in a
temporal U-net architecture conditioning variables such as the latent representation
of the environment and task features, using a cross-attention mechanism. We
validate our approach in a simulated 2D planar navigation toy task, where a robot
needs to plan a path that avoids obstacles in a scene.

1 Introduction

Figure 1: A planar robot task in-
cludes moving from a start to a goal
position, while avoiding obstacles.

Recent advances in new architectures and training methods of
diffusion and score-based models (SBMs) have shown impres-
sive results in image and text-to-image generation [24, 4, 23, 10,
20]. One field where these models are still not fully explored is
robotics [7, 27]. Due to the multimodality and dimensionality
of sensory data, e.g. inputs from vision or robot trajectories,
it can be worth to study diffusion models as components of
intelligent robots.

Figure 1 pictures an autonomous robot cleaning a house floor.
One crucial task is to plan collision-free motions (paths) be-
tween two locations. With access to an environment map,
sampling-based methods, such as variants of Probabilistic Road Maps (PRM) [9] and Rapidly
exploring Random Trees (RRT) [13], are commonly used. By replanning over multiple scenarios, the
robot observes data that is often unstructured, such as point clouds of tables, chairs or shelves. It is
therefore natural to reuse this collected information if it needs to replan in a new situation. To speed
up planning, several methods have proposed neural motion planners that encode environment and
motion information using neural networks, which are afterwards used as priors for planners [17, 19].

In this work, we leverage recent developments in SBMs and Signed Distance Fields (SDFs) [16] to
build a generative model for collision-free trajectory generation, conditioned on an environment map
and task relevant features. We summarize our contributions as: (1) learn an environment encoder
based on an SDF loss to encode geometrical properties; (2) introduce a conditioning model for
planning - the Conditional Temporal U-Net - extending the work of Janner et al. [7] with ideas
from Rombach et al. [23]; (3) learn a generative SBM of collision-free trajectories given a new
environment and task; (4) show first results in a simulated 2D navigation task.

NeurIPS 2022 Workshop on Score-Based Methods.

mailto:joao@robot-learning.de

Score-Based Models for robotics Few works have explored using score-based and diffusion models
in robotics. Janner et al. [7] presented the Diffuser, a diffusion model for trajectory planning based on
temporal convolutions, which enforces temporal ordering and locality. We use their Temporal U-Net
architecture as a component in our work. Wang et al. [31] used diffusion as regularizers and policies
for step-based offline reinforcement learning (RL). In robotics, Urain et al. [27] used diffusion to
learn cost functions for jointly optimizing motion and grasping poses.

Motion planning We consider two methods for motion planning: sampled-based and optimization-
based. Both strategies can be augmented with better sampling distributions learned from previous
data to guide and speed up planning. Sampling-based motion planning includes classical algorithms
such as PRM [9], RRT [13] and RRT* [12]. Several works have proposed learning conditional
sampling distributions using the environment and task information as context variables, e.g. in [6]
the environment is given as an occupancy map. Similar to our work, Deep Sampling-based Motion
Planner (DeepSMP) [17] learns an autoencoder given a point cloud. Instead, we learn an encoder
trained on an SDF loss, which has two advantages - there is no need to learn a decoder for recon-
struction; and we get access to the environment’s SDF and its gradient, which can be used as an extra
cost for planning. Other works [17, 19, 18, 30] learn a conditioned one-step neural planner, and to
sample different solutions they add dropout to ensure stochasticity. Contrarily, we learn a trajectory
distribution model to easily introduce the notion of smoothness, which is important in robot motions.
Optimization-based motion planning includes methods that optimize a trajectory either via gradient
optimizers or stochastic optimization, e.g. Covariant Hamiltonian Optimization for Motion Planning
(CHOMP) [21], Stochastic Trajectory Optimization for Motion Planning (STOMP) [8] or Gaussian
Process Motion Planner (GPMP) [15]. These methods often use an uninformed initial distribution
at the start of optimization. In CHOMP a straight trajectory connects the initial and final points,
STOMP uses a distribution, whose mean is a straight line, but has high entropy in the middle of the
trajectory, and decreasing entropy towards the initial and final points, GPMP uses a Gaussian Process
Prior. Learning better initial distributions can thus speed up these methods, as shown in [28]. Our
conditioned SBM can be used a prior distribution for both sampling and optimization-based planners.

2 Background

2.1 Motion Planning as Inference

Let s ∈ S ⊆ Rd encode the state of a robot (agent) and its environment. In motion planning, a trajec-
tory is represented in discrete-time with horizon H as a sequence of states τ ≜ (s1, . . . , sH) ∈ RH×d.
It is common to optimize τ given a context C, which can include an occupancy map, obstacle
locations, start and final positions, etc. Optimization-based motion planning formulates the prob-
lem as trajectory optimization τ ∗ = argminτ

∑
i ci(τ , C), where ci are different costs related

to trajectory smoothness, obstacle avoidance or goal reaching [28]. The connection between tra-
jectory optimization and probabilistic inference is well established [1, 26, 14]. Following the
notation in [7], the probability of a trajectory (a random variable) factorizes (up to a normaliz-
ing constant) as p̃(τ |C) ∝ p(τ |C)h(τ |C), where p(τ |C) is a prior distribution (that will be will
be learned from data) and h(τ |C) is a task-specific distribution, e.g. a delta distribution for the
starting state of the trajectory. Trajectory optimization computes the maximum-a-posteriori solution
τ ∗ = argmaxτ log p̃(τ |C). On the other hand, in inference we sample from p̃(τ |C), which allows
to get multiple solutions. Langevin dynamics [32] is a common approach to sample from p̃, for which
we need ∇τ log p̃(τ |C) = ∇τ log p(τ |C) +∇τh(τ |C). We propose to approximate the gradient of
the log-prior distribution on trajectories with a conditioned SBM sθ(τ , c) ≈ ∇τ log p(τ |C) .

2.2 Score-Based Models as Trajectory Generative Models

Several generative modelling techniques, such as Generative Adversarial Networks (GANs) [3],
Variational Auto Encoders (VAEs) [11] and Normalizing Flows (NFs) [22], are trained to maximize
the data log-likelihood. Sampling is done by applying deterministic transformations to a random
variate from a simple distribution. Instead, SBMs are implicit models [5, 29, 24], which perturb the
data with diffusion and learn to reconstruct it by denoising using the score-function - the gradient
of the log-probability w.r.t. the input. Sampling is done by iteratively transforming a sample from a
simple distribution following the (parametrized) score-function sθ(τt, t) ≈ ∇τt

log p(τt, t), where

2

3x64x64

Context
Encoder Vision

Encoder

 Shallow
SDF Network

Task g

SDF

Attention

Temporal U-Net

Conditional Score ModelVision Model

Inference

Pretrain
and freezeEnv. E

Figure 2: Architecture of our approach. A vision encoder is learned using an SDF loss. The SDF
network is shallow to force the encoder to learn the geometric properties of the environment. The task
and vision embeddings are concatenated as inputs to a context encoder, used to condition the SBM.
The score-model is implemented as a temporal U-Net conditioned with a cross-attention mechanism.

t ∈ [0, 1] is the time of the denoising step. The goal is to move an initial noisy sample τ1 to a
sample from the data distribution τ0. SBMs can be trained with Denoising Score Matching (DSM)
by minimizing

Lscore(θ) = Eτ∼p(τ),t∼U(0,T)

[
λ(t)Eτt∼p(τt|τ ,t)

[
∥sθ(τt, t)−∇τt

log p(τt|τ , t)∥2
]]

, (1)

where p(τt|τ , t) = N
(
τt; τ , σ

2(t)I
)

is the density of the perturbed trajectory at time t,
λ(t) = (a2t − 1)/(2 log a) and σ(t) =

√
λ(t). Due to space constraints, for more details we refer

the reader to [25]. In [7] a discrete-time denoising diffusion probabilistic model is used instead [4].

3 Conditioned Score-Based Generator for Collision-Free Trajectories

Given a dataset of environments E, task features g (e.g. initial and final positions) and trajecto-
ries D = {(τ i, Ei, gi)}Ni=1, we model a conditional distribution p(τ |c). The environment E is
given as an occupancy map, which is transformed into latent features with a vision encoder fϕ(E)
parametrized by ϕ. We create a context embedding c = cθ(fϕ(E), g), which is used as a condition-
ing variable for the SBM. We propose to learn an implicit representation of p(τ |c) by modelling a
conditioned score function sθ(τt, t, c) ≈ ∇τt log p(τt, t|c), implemented as a conditional temporal
U-Net. The network architecture uses the Diffuser from [7] as an unconditional model, and we intro-
duce conditioning by using a cross-attention mechanism at the end of each temporal residual block of
the U-Net, similar to [23]. We experimented with other types of conditioning, e.g. concatenating the
context embedding, trajectory and time, but found that cross-attention produced better results.

Learning the vision encoder and score models The overall architecture is depicted in Fig. 2.
Extra details can be found in App. B. The vision model takes as input an image E (black-and-white
occupancy map), and produces latent features fϕ(E). With access to the distribution of environments
and ground-truth signed distance values sdfgt(E,x) for a point x ∈ R2, we pretrain the vision
encoder, a CNN with parameters ϕ, by minimizing an SDF L1-loss

Lvision + sdf(ϕ, ξ) = EE∼p(E),x∼p(x|E) [|SDFgt(E,x)− ˆSDFξ(fϕ(E),x)|] , (2)

where ˆsdfξ is the learned SDF. We use a shallow SDF network, to enforce the vision encoder to
represent as much of the environment features. The latent representation f could also be learned with
a VAE, but this model would be larger (due to the decoder) and would not give access to the SDF,
which we use for ranking samples. With a pretrained vision model, the conditioned SBM is trained
by sampling a batch of environments, tasks and trajectories, and minimizing the score loss with DSM

Lscore(θ) = Eτ ,E,g∼DEt

[
λ(t)Eτt

[
∥sθ(τt, t, cθ(fϕ(E), g))−∇τt

log p(τt|τ , t)∥2
]]

. (3)

Following [25, 23], the context encoder cθ and the conditioned SBM sθ are jointly trained. We
experimented with other types of architectures, such as learning jointly the vision features and the
score-model, but found it to be more difficult to train. Also, our solution is modular, allowing to use
other types of pre-trained modules needed for robotics without retraining everything, e.g. one could
use dense object features to create movements conditioned on a particular object.

3

RRT* Trajectories Sampled Trajectories Signed Distance Field

−10−1

−10−2

0

10−2

10−1

100

Figure 3: This figure shows a sample from the validation set of the RECTANGLES AND CIRCLES
environments. The environment is 64 × 64 image, where white is where an obstacle is present.
The left figure shows trajectories generated with RRT* for different goal positions (top right area).
Thinner trajectories in the center are sampled with the conditioned SBM. Thicker trajectories are the
ones considered after ranking. The right plot shows the learned SDF and the selected trajectories.

Trajectory generation and ranking Given a new environment and task we compute the context
vector c. To generate trajectories we solve a reserve SDE by using the learned SBM and the Euler-
Maruyama solver. In practice, we sample a noisy trajectory τ1 ∼ N

(
0, 0.5(a2 − 1)I

)
and iteratively

run τt−∆t = τt + a2tsθ(τt, t, c)∆t + at
√
∆tz, where ∆t is a time discretization (in our case

∆t = 1/500), a = 1.1 and z ∼ N (0, I). In a real world scenario we are able to execute only one
trajectory. Therefore, we propose a simple heuristic metric to select and rank trajectories – discard the
ones if any point along them has a negative SDF, which means collision with an obstacle. Afterwards,
we select the trajectory that has the shortest path. Even though this does not guarantee the optimal
trajectory is found, it can be a good first heuristic prior for motion optimization methods.

4 2D Planar Navigation Experiments

Our simulated setup includes an image of an environment and a robot located at an initial position
(lower left) that needs to move to a final position (upper right) while avoiding obstacles (Fig. 3). The
datasets consist of an image that describes a 2D environment, different tasks for each environment
where tasks are different start and end points, and RRT* generated collision-free trajectories. The
training set has 50k environments, each having 10 random tasks and one RRT* demonstration. To
train the trajectory generator, we used an horizon of 32 steps, hence τ ∈ R32×2. The validation set
corresponds to 5% of the total data. For each environment an SDF for the obstacles is created as well.

Fig. 3 shows the results in the validation set of the RECTANGLES AND CIRCLES dataset. The left
plot shows the trajectories generated with RRT*, for different goal positions. Thinner trajectories in
the center plot are sampled with our learned conditioned SBM, and thicker trajectories are the ones
considered after ranking. The right plot shows the learned SDF. Notice how these trajectories traverse
regions with positive SDF values. In the center plot some of the green trajectories cross the obstacle,
which can be partially explained by errors in the learned SDF. Nevertheless, these trajectories are
discarded by our heuristic. As a quantitative measure, we evaluated our method across all validation
environments and obtained around 90% of collision free trajectories. More experiments can be seen
in Figures A.1 and A.2, where we observe that the model produces diverse (multimodal) trajectories.

5 Conclusion and Future Work

In this work we presented an architecture for a conditional generative score-based model, with
applications to collision-free trajectory generation for planar navigation. To encode a conditional
distribution, we augmented a temporal U-Net model with a conditioning mechanism based on cross-
attention. As contextual variables we use task features and a latent encoding of an environment
map, which is trained with a signed distance function loss. First experiments of our method in
a simulated 2D planar navigation task show promising results to encode collision-free trajectory
generation. In future work, we will incorporate our learned model as a prior to speed up sample-and
optimization-based planners and extend our approach to robots arms with more degrees of freedom.
We believe that due to the modelling power of score-based methods, they can be used as learned
components of intelligent robotic systems.

4

Acknowledgments and Disclosure of Funding

This work was funded by the German Federal Ministry of Education and Research (project IKIDA,
01IS20045). Authors are with the Institute for Intelligent Autonomous Systems (IAS) of the Technis-
che Universität Darmstadt (TU Darmstadt). Jan Peters is affiliated with the German Research Center
for AI (DFKI), Research Department: Systems AI for Robot Learning, Hessian.AI and the Cen-
tre for Cognitive Science of TU Darmstadt. Emails: {joao,julen,jan}@robot-learning.de,
mark.baierl@stud.tu-darmstadt.de

References
[1] Hagai Attias. Planning by probabilistic inference. In Christopher M. Bishop and Brendan J.

Frey, editors, Proceedings of the Ninth International Workshop on Artificial Intelligence and
Statistics, volume R4 of Proceedings of Machine Learning Research, pages 9–16. PMLR, 03–06
Jan 2003. URL https://proceedings.mlr.press/r4/attias03a.html. Reissued by
PMLR on 01 April 2021.

[2] Brian Curless and Marc Levoy. A volumetric method for building complex models from range
images. In Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive
Techniques, SIGGRAPH ’96, page 303–312, New York, NY, USA, 1996. Association for
Computing Machinery. ISBN 0897917464. doi: 10.1145/237170.237269. URL https:
//doi.org/10.1145/237170.237269.

[3] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Z. Ghahramani, M. Welling,
C. Cortes, N. Lawrence, and K.Q. Weinberger, editors, Advances in Neural Information Pro-
cessing Systems, volume 27. Curran Associates, Inc., 2014. URL https://proceedings.
neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf.

[4] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In
Proceedings of the 34th International Conference on Neural Information Processing Systems,
NIPS’20, Red Hook, NY, USA, 2020. Curran Associates Inc. ISBN 9781713829546.

[5] Aapo Hyvärinen. Estimation of non-normalized statistical models by score matching. Journal
of Machine Learning Research, 6(24):695–709, 2005. URL http://jmlr.org/papers/v6/
hyvarinen05a.html.

[6] Brian Ichter, James Harrison, and Marco Pavone. Learning sampling distributions for robot
motion planning, 2017. URL https://arxiv.org/abs/1709.05448.

[7] Michael Janner, Yilun Du, Joshua Tenenbaum, and Sergey Levine. Planning with diffusion for
flexible behavior synthesis. In International Conference on Machine Learning, 2022.

[8] M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and S. Schaal. Stomp: Stochastic trajec-
tory optimization for motion planning. In IEEE International Conference on Robotics and
Automation (ICRA), Shanghai, China, May 9-13, 2011. URL http://www-clmc.usc.edu/
publications/K/kalakrishnan-ICRA2011.pdf. clmc.

[9] L.E. Kavraki, P. Svestka, J.-C. Latombe, and M.H. Overmars. Probabilistic roadmaps for
path planning in high-dimensional configuration spaces. IEEE Transactions on Robotics and
Automation, 12(4):566–580, 1996. doi: 10.1109/70.508439.

[10] Gwanghyun Kim, Taesung Kwon, and Jong Chul Ye. Diffusionclip: Text-guided diffusion
models for robust image manipulation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages 2426–2435, June 2022.

[11] Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In Yoshua Bengio
and Yann LeCun, editors, 2nd International Conference on Learning Representations, ICLR
2014, Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings, 2014. URL
http://arxiv.org/abs/1312.6114.

5

https://proceedings.mlr.press/r4/attias03a.html
https://doi.org/10.1145/237170.237269
https://doi.org/10.1145/237170.237269
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
http://jmlr.org/papers/v6/hyvarinen05a.html
http://jmlr.org/papers/v6/hyvarinen05a.html
https://arxiv.org/abs/1709.05448
http://www-clmc.usc.edu/publications/K/kalakrishnan-ICRA2011.pdf
http://www-clmc.usc.edu/publications/K/kalakrishnan-ICRA2011.pdf
http://arxiv.org/abs/1312.6114

[12] J.J. Kuffner and S.M. LaValle. Rrt-connect: An efficient approach to single-query path planning.
In Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics
and Automation. Symposia Proceedings (Cat. No.00CH37065), volume 2, pages 995–1001
vol.2, 2000. doi: 10.1109/ROBOT.2000.844730.

[13] Steven M. Lavalle. Rapidly-exploring random trees: A new tool for path planning, 1998.

[14] Sergey Levine. Reinforcement learning and control as probabilistic inference: Tutorial and
review, 2018. URL https://arxiv.org/abs/1805.00909.

[15] Mustafa Mukadam, Jing Dong, Xinyan Yan, Frank Dellaert, and Byron Boots. Continuous-time
gaussian process motion planning via probabilistic inference. The International Journal of
Robotics Research, 37(11):1319–1340, sep 2018. doi: 10.1177/0278364918790369. URL
https://doi.org/10.1177%2F0278364918790369.

[16] Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Lovegrove.
Deepsdf: Learning continuous signed distance functions for shape representation. In The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), June 2019.

[17] Ahmed Hussain Qureshi and Michael C. Yip. Deeply informed neural sampling for robot
motion planning. In 2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems, IROS 2018, Madrid, Spain, October 1-5, 2018, pages 6582–6588. IEEE, 2018. doi:
10.1109/IROS.2018.8593772. URL https://doi.org/10.1109/IROS.2018.8593772.

[18] Ahmed Hussain Qureshi, Anthony Simeonov, Mayur J. Bency, and Michael C. Yip. Motion
planning networks. In International Conference on Robotics and Automation, ICRA 2019,
Montreal, QC, Canada, May 20-24, 2019, pages 2118–2124. IEEE, 2019. doi: 10.1109/ICRA.
2019.8793889. URL https://doi.org/10.1109/ICRA.2019.8793889.

[19] Ahmed Hussain Qureshi, Jiangeng Dong, Austin Choe, and Michael C. Yip. Neural manipula-
tion planning on constraint manifolds. IEEE Robotics Autom. Lett., 5(4):6089–6096, 2020. doi:
10.1109/LRA.2020.3010220. URL https://doi.org/10.1109/LRA.2020.3010220.

[20] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical
text-conditional image generation with clip latents, 2022. URL https://arxiv.org/abs/
2204.06125.

[21] Nathan Ratliff, Matt Zucker, J. Andrew Bagnell, and Siddhartha Srinivasa. Chomp: Gradient
optimization techniques for efficient motion planning. In 2009 IEEE International Conference
on Robotics and Automation, pages 489–494, 2009. doi: 10.1109/ROBOT.2009.5152817.

[22] Danilo Jimenez Rezende and Shakir Mohamed. Variational inference with normalizing flows. In
Francis R. Bach and David M. Blei, editors, Proceedings of the 32nd International Conference
on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015, volume 37 of JMLR Workshop
and Conference Proceedings, pages 1530–1538. JMLR.org, 2015. URL http://proceedings.
mlr.press/v37/rezende15.html.

[23] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer.
High-resolution image synthesis with latent diffusion models, 2021.

[24] Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the
data distribution. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Flo-
rence d’Alché-Buc, Emily B. Fox, and Roman Garnett, editors, Advances in Neural
Information Processing Systems 32: Annual Conference on Neural Information Pro-
cessing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada,
pages 11895–11907, 2019. URL https://proceedings.neurips.cc/paper/2019/hash/
3001ef257407d5a371a96dcd947c7d93-Abstract.html.

[25] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and
Ben Poole. Score-based generative modeling through stochastic differential equations. In
International Conference on Learning Representations, 2021. URL https://openreview.
net/forum?id=PxTIG12RRHS.

6

https://arxiv.org/abs/1805.00909
https://doi.org/10.1177%2F0278364918790369
https://doi.org/10.1109/IROS.2018.8593772
https://doi.org/10.1109/ICRA.2019.8793889
https://doi.org/10.1109/LRA.2020.3010220
https://arxiv.org/abs/2204.06125
https://arxiv.org/abs/2204.06125
http://proceedings.mlr.press/v37/rezende15.html
http://proceedings.mlr.press/v37/rezende15.html
https://proceedings.neurips.cc/paper/2019/hash/3001ef257407d5a371a96dcd947c7d93-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/3001ef257407d5a371a96dcd947c7d93-Abstract.html
https://openreview.net/forum?id=PxTIG12RRHS
https://openreview.net/forum?id=PxTIG12RRHS

[26] Marc Toussaint. Robot trajectory optimization using approximate inference. In Proceedings of
the 26th Annual International Conference on Machine Learning, ICML ’09, page 1049–1056,
New York, NY, USA, 2009. Association for Computing Machinery. ISBN 9781605585161. doi:
10.1145/1553374.1553508. URL https://doi.org/10.1145/1553374.1553508.

[27] Julen Urain, Niklas Funk, Jan Peters, and Georgia Chalvatzaki. Se(3)-diffusionfields: Learning
smooth cost functions for joint grasp and motion optimization through diffusion, 2022. URL
https://arxiv.org/abs/2209.03855.

[28] Julen Urain, An T. Le, Alexander Lambert, Georgia Chalvatzaki, Byron Boots, and Jan Peters.
Learning implicit priors for motion optimization, 2022. URL https://arxiv.org/abs/
2204.05369.

[29] Pascal Vincent. A connection between score matching and denoising autoencoders. Neural
Computation, 23(7):1661–1674, 2011. doi: 10.1162/NECO_a_00142.

[30] Jiankun Wang, Wenzheng Chi, Chenming Li, Chaoqun Wang, and Max Q.-H. Meng. Neural
rrt*: Learning-based optimal path planning. IEEE Transactions on Automation Science and
Engineering, 17(4):1748–1758, 2020. doi: 10.1109/TASE.2020.2976560.

[31] Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies as an expressive
policy class for offline reinforcement learning, 2022. URL https://arxiv.org/abs/2208.
06193.

[32] Max Welling and Yee Whye Teh. Bayesian learning via stochastic gradient langevin dynam-
ics. In Proceedings of the 28th International Conference on International Conference on
Machine Learning, ICML’11, page 681–688, Madison, WI, USA, 2011. Omnipress. ISBN
9781450306195.

7

https://doi.org/10.1145/1553374.1553508
https://arxiv.org/abs/2209.03855
https://arxiv.org/abs/2204.05369
https://arxiv.org/abs/2204.05369
https://arxiv.org/abs/2208.06193
https://arxiv.org/abs/2208.06193

A Additional Results

RRT* Trajectories Sampled Trajectories Signed Distance Field

−10−1

−10−2

0

10−2

10−1

100

−10−1

−10−2

0

10−2

10−1

100

−10−1

−10−2

0

10−2

10−1

100

−10−1

−10−2

0

10−2

10−1

100

−10−1

−10−2

0

10−2

10−1

100

−10−1

−10−2

0

10−2

10−1

100

Figure A.1: This figure shows a sample from the validation set of the RECTANGLES AND CIRCLES
environments. The environment is depicted as black-and-white 64× 64 image, where white is where
an obstacle is present. The leftmost figure shows the trajectories generated with RRT*, for different
goal positions. Thinner trajectories in the center plot are sampled with our learned conditioned SBM.
Thicker trajectories are the ones considered after ranking. The rightmost plot shows the learned SDF
and the selected trajectories.

8

RRT* Trajectories Sampled Trajectories Signed Distance Field

−10−1

−10−2

0

10−2

10−1

100

−10−1

−10−2

0

10−2

10−1

100

−10−1

−10−2

0

10−2

10−1

−10−1

−10−2

0

10−2

10−1

−10−1

−10−2

0

10−2

10−1

100

−10−1

−10−2

0

10−2

10−1

100

Figure A.2: This figure shows a sample from the validation set of the SQUARES environments. The
environment is depicted as black-and-white 64 × 64 image, where white is where an obstacle is
present. The leftmost figure shows the trajectories generated with RRT*, for different goal positions.
Thinner trajectories in the center plot are sampled with our learned conditioned SBM. Thicker
trajectories are the ones considered after ranking. The rightmost plot shows the learned SDF and the
selected trajectories.

9

B Details on the Model Architecture

The temporal U-Net architecture and dimensions are the same as in the original work [7]. Table 1
details the other components of the model. More details on the architecture, training, hyperparameters,
etc., can be found in the accompanying code upon publication.

Table 1: Vision Encoder. Conv2d:=(out channels, kernel size, stride, padding)
Vision Encoder

Layer Dimensions

Input 3x64x64
Conv2d (32, 5, 2, 2), ReLU
Conv2d (32, 5, 2, 2), ReLU
Conv2d (64 , 5, 2, 2), ReLU
Conv2d (128, 5, 2, 2), ReLU
Conv2d (256, 5, 2, 2), ReLU
Flatten -
Linear 256, ReLU
Linear 128, ReLU
Output 128

Shallow SDF
Layer Dimensions

Input 128 (vision encoder) + 2 (point in 2D space)
Linear 128, ReLU
Linear 128, ReLU
Output 128

Context Encoder
Layer Dimensions

Input 128 (vision encoder) + 4 (task features)
Linear 128, ReLU
Output 128

Cross Attention
Parameter Dimensions

attention heads 2
attention dim 64

C Background on Deep Signed Distance Functions

Given an environment consisting of free-space and obstacles, Signed Distance Functions (SDFs) are
continuous mappings that compute the distance from a point in space to the closest obstacle surface
SDF(x) ∈ R [2]. In our current approach x ∈ R2, but in general it is a point in 3D. If SDF(x) < 0,
the point lies inside of the obstacle, SDF(x) > 0 it lies outside, and if SDF(x) = 0 it lies on the
surface. To generalize to multiple shapes, deep SDFs [16] use deep neural networks to learn both
the latent representation zS of a shape S and encode the distance function, ˆSDFξ(zS ,x) ≈ SDFS(x).
They use an auto-decoder network to learn the latent shape embedding, and jointly train this network
and the SDF network to learn the geometric details of an object. Note that the SDF network should
be responsible for learning only a metric, and the latent embedding should encode the geometrical
properties of the object. We leverage this idea to learn a geometry encoding of our 2D environments.

10

	Introduction
	Background
	Motion Planning as Inference
	Score-Based Models as Trajectory Generative Models

	Conditioned Score-Based Generator for Collision-Free Trajectories
	2D Planar Navigation Experiments
	Conclusion and Future Work
	Additional Results
	Details on the Model Architecture
	Background on Deep Signed Distance Functions

