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ABSTRACT

Numerically solving partial differential equations (PDEs) often entails spatial and
temporal discretizations. Traditional methods (e.g., finite difference, finite el-
ement, smoothed-particle hydrodynamics) frequently adopt explicit spatial dis-
cretizations, such as grids, meshes, and point clouds, where each degree-of-
freedom corresponds to a location in space. While these explicit spatial correspon-
dences are intuitive to model and understand, these representations are not neces-
sarily optimal for accuracy, memory-usage, or adaptivity. In this work, we explore
implicit neural representation as an alternative spatial discretization, where spatial
information is implicitly stored in the neural network weights. With implicit neu-
ral spatial representation, PDE-constrained time-stepping translates into updating
neural network weights, which naturally integrates with commonly adopted opti-
mization time integrators. Our approach requires neither training data nor train-
ing/testing separation. Our method is the solver itself, just like the classical PDE
solver. We validate our approach on a variety of classic PDEs with examples in-
volving large elastic deformations, turbulent fluids, and multi-scale phenomena.
While slower to compute than traditional representations, our approach exhibits
higher accuracy, lower memory consumption, and dynamically adaptive alloca-
tion of degrees of freedom without complex remeshing.

1 INTRODUCTION

Many science and engineering problems can be formulated as spatiotemporal partial differential
equations (PDEs),

F(f ,∇f ,∇2f , . . . , ḟ , f̈ , . . .) = 0, f(x, t) : Ω× T → Rd . (1)

where Ω ∈ Rm and T ∈ R are the spatial and temporal domains, respectively. Examples include
the inviscid Navier-Stokes equations for fluid dynamics and the elastodynamics equation for solid
mechanics.

To numerically solve these PDEs, we oftentimes introduce temporal discretizations, {tn}Tn=0, where
T is the number of temporal discretization samples and ∆t = tn+1 − tn is the time step size. The
solution to Equation (1) then becomes a list of spatially dependent vector fields: {fn(x)}Tn=0.

Traditional approaches represent these spatially dependent vector fields using grids, meshes, or point
clouds. For example, the grid-based linear finite element method (Hughes, 2012) defines a shape
function N i on each grid node and represents the spatially dependent vector field as fn(x) =∑P

i=1 f
n
i N

i, where P is the number of spatial samples.

While widely adopted in scientific computing applications, these traditional spatial representations
are not without drawbacks:

1. Spatial discretization errors abound in fluid simulations as artificial numerical diffusion
(Lantz, 1971), dissipation (Fedkiw et al., 2001), and viscosity (Roache, 1998). These errors
also appear in solid simulations as inaccurate collision resolution (Müller et al., 2015) and
numerical fractures (Sadeghirad et al., 2011).

2. Memory usage spikes with the number of spatial samples P (Museth, 2013).
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Figure 1: 1D advection example: A Gaussian-shaped wave initially centered at x = −1.5 moves
rightward with a constant velocity of 0.25. From left to right, we show mean absolute error plot over
time and solutions at t = 0s, t = 3s and t = 12s, respectively. The solution from grid-based finite
difference method (green) tends to diffuse over time. PINN (yellow), trained within temporal range
0 ∼ 3s, fails to generalize for t = 12s. Our solution (blue) approximates the ground truth (grey) the
best over time. All three representations have the same memory footprint: our approach and PINN
(Raissi et al., 2019) both use α = 2 hidden layers of width β = 20, and the finite difference grid
resolution is 901.

3. Adaptive meshing (Narain et al., 2012) and data structures (Setaluri et al., 2014) can reduce
memory footprints but are often computationally expensive and challenging to implement.

We alleviate these limitations by exploring implicit neural representation (Park et al., 2019; Chen &
Zhang, 2019; Mescheder et al., 2019) as an alternative spatial representation for PDE solvers. Un-
like traditional representations that explicitly discretize the spatial vector via spatial primitives (e.g.,
points), neural spatial representations implicitly encode the field through neural network weights.
In other words, the field is parameterized by a neural network (typically multilayer perceptrons),
i.e., fn(x) = fθn(x) with θn being the network weights. As such, the memory usage for storing
the spatial field is independent of the number of spatial samples, but rather it is determined by the
number of neural network weights. We show that under the same memory constraint, implicit neural
representations indeed achieve higher accuracies than traditional discrete representations. Further-
more, implicit neural representations are adaptive by construction (Xie et al., 2021), allocating the
network weights to resolve field details at any spatial location without changing the network archi-
tecture.

Viewed from the lens of optimization-based time integrators, our PDE solver seeks neural network
weights that optimize an incremental potential over time (Kane et al., 2000b). Our solver does not
employ the so-called training/testing split commonly appearing in many neural-network-based PDE
approaches (Sanchez-Gonzalez et al., 2020; Li et al., 2020b). Our approach is the solver itself and
does not require training in the machine learning sense. As such, we avoid using the word “training”
in the exposition but rather use “optimizing”. We employ exactly the same “optimization” integrator
formulation as the classical solvers (e.g., finite element method (Bouaziz et al., 2014)).

We compare the proposed solver to grid, mesh, and point cloud representations on time-dependent
PDEs from various disciplines, and find that our approach trades wall-clock runtime in favor of three
benefits: lower discretization error, lower memory usage, and built-in adaptivity.

2 RELATED WORKS

Many prior works have explored representing continuous vector fields with neural networks. Here
we highlight two lines of work: implicit neural representation and physics informed neural network.

Implicit Neural Representation uses neural networks to parameterize spatially-dependent func-
tions. It has successfully captured the radiance fields (Mildenhall et al., 2020) and the signed
distance fields (Park et al., 2019) in computer vision and graphics settings. It has also captured
the solutions of strictly spatially dependent PDEs from elastostatics (Zehnder et al., 2021), elliptic
PDEs (Chiaramonte et al., 2013), and geometry processing (Yang et al., 2021). Chen et al. (2021),
Pan et al. (2022), and Chen et al. (2022) also explore neural networks as spatial representations for
dimension reduction. Dupont et al. (2022) develops a machine learning technique operating on data
presented as implicit neural representations. Memory consumptions of traditional representations,
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such as grids and point clouds, scale poorly with spatial resolutions. Adaptive discretizations can
reduce memory but their generations are expensive. By contrast, neural representations are adaptive
by construction and can use their representation capacities at arbitrary locations of interest without
memory increases or data structures alterations. We refer to the recent review by Xie et al. (2021)
for additional contexts.

Physics Informed Neural Network (PINN) is a powerful tool for solving PDEs. Traditional nu-
merical methods, such as finite difference and finite element methods, represent tensor fields with
well-studied polynomial basis functions (Hughes, 2012) constructed on meshes. Instead, PINN
represents tensor fields with neural networks and converts the PDE solution process into finding
network weights via PDE-based loss functions. Since the pioneering works by Raissi et al. (2019);
Sirignano & Spiliopoulos (2018); Lagaris et al. (1998); Dissanayake & Phan-Thien (1994), PINN
has been shown to excellently model forward simulation (Shin et al., 2020; Hennigh et al., 2021;
Lu et al., 2021a; Krishnapriyan et al., 2021), inverse design (Raissi et al., 2020; Mao et al., 2020;
Mishra & Molinaro, 2022), optimal control (Mowlavi & Nabi, 2021), and uncertain quantification
(Lye et al., 2020). PINN has found success in a wide range of application domains, including tur-
bulence (Hennigh et al., 2021), elasticity (Rao et al., 2020), acoustics (Sitzmann et al., 2020), and
topology optimization (Zehnder et al., 2021). Due to its mesh-free nature, PINN can robustly handle
high-dimensional PDEs. The recent review by Karniadakis et al. (2021) offers more details.

When it comes to using neural networks to represent vector fields, we face an important design
choice as which dimension of the vector field is represented through the network. In the case of
spatiotemporal vector fields, we have the choice of representing both the spatial and temporal di-
mensions via neural networks; we can also represent just the spatial dimension or just the temporal
dimension with a network.

We observe that the spatial variable x is oftentimes bounded, e.g., a fixed geometry with well-defined
boundaries. However, the temporal variable t can be unbounded, e.g., in a virtual reality application
where the user interacts with a physical environment indefinitely (Sun et al., 2018). Modeling the
additional temporal dimension also puts extra burden on the network. Motivated by these observa-
tions, we opt to treat the spatial and the temporal dimensions differently. In particular, we use the
neural network strictly as a spatial representation and do not consider the temporal dimension as an
input to the network. We then evolve this spatial representation by updating the network weights
θn (See Figure 2), potentially for an indefinite amount of time. Such an approach is different from
standard PINN that takes both the spatial dimension x and the temporal dimension t as an input to
the network (Raissi et al., 2019; Karniadakis et al., 2021) which cannot resolve PDE solution outside
a pre-defined temporal range (Kim et al., 2021) (See Figure 1).

Du & Zaki (2021); Bruna et al. (2022); Krishnapriyan et al. (2021) also explore evolution of neural
network weights over time, with the goal of resolving PINN’s limited time range as well as solving
high-dimensional problems that classical solvers often suffer. Our work differs from these works
by focusing on low-dimensional settings (1D-3D) that heavily rely on classical solvers (e.g., finite
element method). Our primary goal is to understand if we only replace classical solver’s spatial rep-
resentation with a neural network, while keeping the rest unchanged (e.g., time integrator, boundary
condition), what tradeoffs do we get?

Optimization Time Integrators. Since our approach only replaces the spatial representations of
traditional numerical solvers with neural networks while keeping the rest of the solver intact, it is
compatible with any classical time integration schemes (e.g., implicit Euler). In particular, we for-
mulate time integration as an energy minimization problem (Radovitzky & Ortiz, 1999; Kane et al.,
2000b; Marsden & West, 2001; Kharevych et al., 2006). These integrators find wide applications
in PDE solvers on traditional representations, such as grids (Batty et al., 2007), tetrahedral meshes
(Bouaziz et al., 2014), and point clouds (Gast et al., 2015). In the case of neural spatial representa-
tions, time integration translates into optimizing the neural network weights at every time step.

Machine Learning for PDEs is an emerging field with exciting techniques, such as graph neural
network (Sanchez-Gonzalez et al., 2020), neural operator (Li et al., 2020b;c), and DeepONet (Lu
et al., 2019). These techniques usually train on a dataset and are then validated on a test dataset.
However, due to the machine learning nature, these methods’s time-stepping schemes neither enforce
PDE constraints at test time (Pfaff et al., 2020) nor generalize to scenarios (e.g., initial conditions,
boundary conditions) drastically different from the training cases (Wang & Perdikaris, 2021). As a
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major point of departure, our approach does not employ any training data. There is not a so-called
training/inference separation in our approach. Our method is the solver itself, just like the classical
solvers (e.g., FEM). As such, we enjoy classical solver’s unparalleled generalizability and explicit
PDE constraints. See Table 1 for a comparision of these techniques. Relatedly, Wandel et al. (2020)
also proposes a data-free approach but still employs a training / testing split.

3 METHOD: TIME-STEPPING ON NEURAL SPATIAL REPRESENTATIONS

Our goal is to solve time-dependent PDEs on neural-network-based spatial representations. In Sec-
tion 3.1, we first discuss representing spatial vector fields with neural networks. Afterward, we will
describe our time-stepping technique that evolves from one neural spatial representation to another.

3.1 NEURAL NETWORKS AS SPATIAL REPRESENTATIONS

We parameterize each of the time-discretized spatial vector fields with a neural network: fn = fθn ,
where θn are the neural network weights at time tn. Specifically, the field quantity at an arbitrary
spatial location x ∈ Ω can be queried via network inference fθn(x).

Traditional representations explicitly discretize the spatial vector field using primitives such as
points, tetrahedra, or voxels. These primitives explicitly correspond to spatial locations due to their
compactly supported basis functions (Hughes, 2012). By contrast, neural spatial representations im-
plicitly encode the vector field via neural network weights. These weights do not directly correspond
to specific spatial locations. Instead, each weight affects the vector field globally. Such global sup-
port is also an attribute of spectral methods (Canuto et al., 2007a;b). Compared to spectral methods,
our approach does not need to know the required complexity ahead of time in order to determine
the ideal basis functions (Xie et al., 2021). Our neural representation automatically optimizes its
parameters to where field detail is present.

Whereas memory consumption of traditional explicit representations scales poorly with the number
of spatial samples, memory consumption for implicit neural representations is independent of the
number of spatial samples (Xie et al., 2021). Rather, memory use is determined by the number of
neural network weights.

Network Architecture Following the implicit neural representation literature, we adopt a mul-
tilayer perceptron (MLP) architecture with SIREN activation function for its accuracy and quick
convergence speed advantages (Sitzmann et al., 2020). Each MLP has a total of α hidden layers,
each layer of width β. The specific choice of these hyper-parameters will be described in Section 4.

Spatial Gradients Traditional spatial representations (e.g., the finite element method) compute
spatial gradients via basis functions. Higher-order gradients require higher-order basis functions.
By contrast, a neural spatial representation is C∞ by construction. We evaluate their gradients via
computation-graph-based auto-differentiation with respect to the input (not the weights).

3.2 TEMPORAL EVOLUTION

Given previous-time spatial vector fields {fn(x)}nk=0, optimization-based time integrators compute
the next time-step (tn+1) vector field by optimizing

fn+1 = argmin
fn+1

∑
x∈M⊂Ω

I(∆t, {fk}n+1
k=0 , {∇f

k}n+1
k=0 , {∇

2fk}n+1
k=0 , . . .) . (2)

Traditional time integrators, whether explicit and implicit, can be expressed in optimization forms
(Kharevych et al., 2006). Furthermore, this optimization formulation applies to any spatial represen-
tation, and has been explored thoroughly for traditional discretizations (Batty et al., 2007; Bouaziz
et al., 2014; Gast et al., 2015), which is defined over a finite number of the spatial integration sam-
plesM := {xj ∈ Ω | 1 ≤ j ≤ |M|}, e.g., grids or meshes. Applying this formulation to a neural
spatial representation, we optimize for

θn+1 = argmin
θn+1

∑
x∈M⊂Ω

I(∆t, {fθk}n+1
k=0 , {∇fθk}n+1

k=0 , {∇
2fθk}n+1

k=0 , . . .) (3)
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Eqn. (3)

force

spatial sample field value : network weights at step

Figure 2: Time integration. We represent the
field of interest using a neural network fθn ,
whose weights θn are updated at each timestep
via an optimization problem (Equation (3)). In
this case, the spatial domain Ω is the interior of
the initial object and the represented field f is the
deformation map. The governing PDE is the elas-
todynamics equation (see Section 4.3).

where {θk}nk=0 are the (fixed, not variable) neu-
ral network weights from previous time steps.
Figure 2 illustrates our time integration pro-
cess. The particular choice of the objective
function I depends on the PDE of interest. In
all the examples presented in this work, we
solve this time-integration optimization prob-
lem via Adam (Kingma & Ba, 2014), a first-
order stochastic gradient descent method.

Spatial Sampling Explicit spatial representa-
tions (e.g., tetrahedra mesh) are often tied to a
particular spatial sampling; remeshing is some-
times possible, but can also have drawbacks,
especially in higher dimensions (Alliez et al.,
2002; Narain et al., 2012). By contrast, im-
plicit spatial representations allow for arbitrary
spatial sampling by construction (Equation (3)).
Following Sitzmann et al. (2020), we dynamically sampleM during optimization. For every gradi-
ent descent iteration in every time step, we use a stochastic sample setM from the spatial domain Ω;
M corresponds to the “mini-batch” in stochastic gradient descent, with batch size |M|. By directly
drawing samples from the entire spatial domain Ω, our approach is reminiscent of mesh-free Monte
Carlo methods (Sawhney & Crane, 2020).

Boundary Condition PDEs are typically accompanied by spatial (e.g., Dirichlet or Neumann)
boundary conditions, which we formulate as additional penalty terms in the objective Equation (3),

θn+1 = argmin
θn+1

∑
x∈M⊂Ω

I(∆t, {fθk}n+1
k=0 , {∇fθk}n+1

k=0 , {∇
2fθk}n+1

k=0 , . . .)

+λ
∑

xb∈Mb⊂∂Ω

C(fθn+1 ,∇fθn+1 ,∇2fθn+1 , . . .) ,
(4)

where λ is the weighting factor and ∂Ω is the boundary of the spatial domain. The particular choice
of the boundary constraint function C depends on the problem of interest.

Initial Condition The neural network is initialized using the given initial condition, i.e., the field
value at time t = 0, by optimizing

θ0 = argmin
θ0

∑
x∈M⊂Ω

||fθ0(x)− f̂0(x)||22 , (5)

where f̂0 is the given initial condition. Similar to Equation (3), we solve this optimization problem
using Adam (Kingma & Ba, 2014) and stochastically sampleM at each gradient descent iteration.

4 EXPERIMENTS

In this section, we evaluate our method on three classic time-dependent PDEs: the advection equa-
tion, the inviscid Navier-Stokes equation and, the elastodynamics equation. For each problem, we
first discuss the continuous PDE and the specific objective function I for temporal evolution (recall
Equation (3)). Then we demonstrate the advantages of our approach by comparing with baselines
using discrete spatial representations (i.e. a grid, tetrahedral mesh, or point cloud). We refer readers
to Appendices B and C for other implementation details (e.g., initial and boundary conditions) and
additional results. The temporal evolutions of the PDEs are best illustrated by the supplementary
video.
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Figure 3: 2D Taylor-Green vortex simulation. Left: mean squared error of the velocity field
for 100 timesteps. Right: velocity magnitude of solutions from the ground truth, ours, and the
grid-based method at timestep n = 100. Under the same memory usage (for storing the spatial
representation), our solution has a significantly smaller error than the grid-based method.

4.1 ADVECTION EQUATION

Consider the classic 1D advection equation,
∂u

∂t
+ (a · ∇)u = 0 , (6)

where a is the advection velocity, and the vector field of interest is the advected quantity f = u. It
is well known that traditional spatial representations, such as grid-based finite differences, exhibit
numerical dissipation for the advection equation (Courant et al., 1952; Selle et al., 2008).

Time Integration We adopt the same time integration scheme in both the traditional representa-
tion and ours. Choosing the energy-preserving midpoint method (Mullen et al., 2009) yields the
time integration operator

I = ∥u
n+1(x)− un(x)

∆t
+ (a · ∇)(u

n+1(x) + un(x)

2
)∥22 . (7)

Results Figure 1 compares our results with those of grid-based finite differences and PINN (Raissi
et al., 2019), subject to equal memory usage of the three methods. A Gaussian-shaped wave moves
with constant velocity a = 0.25. Our approach uses α = 2 hidden layers of width β = 20, and
the finite difference grid resolution is 901. We set PINN to use the same network architecture (with
SIREN activation) as ours. For ours and grid-based methods, we set ∆t = 0.05. PINN does not
require ∆t but needs a pre-specified temporal range for training. For this temporal range, we use
[0, 3]. As shown in Figure 1, the solution from the grid-based method diffuses over time due to
its spatial discretization. While PINN can accurately capture the result up to t = 3s, it fails to
produce meaningful solutions beyond its trained temporal range (see t = 12s) (Kim et al., 2021).
By contrast, our solution does not suffer from numerical dissipation and agrees well with the ground
truth at all frames (see the error plot in Figure 1).

4.2 INVISCID NAVIER-STOKES EQUATIONS

In the incompressible and inviscid Navier-Stokes Equations

ρf (
∂u

∂t
+ u · ∇u) = −∇p+ ρfg,

∇ · u = 0,
(8)

the vector field of interest is the fluid velocity field f = u; p is the pressure, g is the external force,
and ρf is the fluid density. In our experiments, we consider ρf = 1 and g = 0. The pressure field p
is represented with another MLP network.

Time Integration We apply the Chorin-style operator splitting scheme (Chorin, 1968; Stam,
1999) to both the neural spatial and finite-difference grid representations. The scheme involves
three sequential steps: advection (adv), pressure projection (pro), and velocity correction (cor).

Advection uses a semi-Lagrangian method, encoded by the operator (Staniforth & Côté, 1991)

Iadv = ∥uadv
n+1(x)− un(xbacktrack)∥22 , (9)
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whose optimization yields the advected velocity uadv
n+1. The backtracked location is given by

xbacktrack = x − ∆tun(x). While traditional spatial representations compute the backtracked
velocity using interpolation (e.g., linear basis function), our approach requires no interpolation,
only direct evaluation via network inference at the location xbacktrack.

Pressure projection is encapsulated by the operator

Ipro = ∥∇2pn+1(x)−∇ · uadv
n+1(x)∥22. (10)

Plugging Ipro into the optimization solver, we obtain the pressure pn+1 that enforces incompress-
ibility. Note that the MLP that represents the velocity field uadv is kept fixed in this step.

Velocity correction is formulated by the operator

Icor = ∥un+1 − (uadv
n+1(x)−∇pn+1(x))∥22 , (11)

which adds the pressure gradient to the advected velocity yielding the incompressible velocity un+1.

Results We first test our method on the 2D Taylor-Green vortex with zero viscosity (Taylor &
Green, 1937; Brachet et al., 1983). The closed-form analytical solution is given by: u(x, t) =
(sinx cos y,− cosx sin y) for x ∈ [0, 2π] × [0, 2π]. To compare under the same memory usage
(for storing the velocity field), we use α = 3 hidden layers of width β = 32 for our MLP and set
grid resolution to 48 for the grid-based projection method. We set ∆t = 0.05 and execute both
methods for 100 timesteps. In Figure 3, we show the mean squared error of the solved velocity field
over time. This example demonstrates that our method excellently preserves a stationary solution.
Compared to the grid-based method, our method has less diffusion and achieves higher accuracy.

For discrete grid representation, efficiently capturing multi-scale details usually requires difficult-
to-implement adaptive data structures (Setaluri et al., 2014). Instead, implicit neural representations
are adaptive by construction (Xie et al., 2021) and enable us to capture more details under the
same memory storage. We setup an example where the initial velocity field is composed by two
Taylor-Green vortices of different scales (see Figure 8 for illustration). We compare our approach
with PINN and the grid-based projection method under the same memory constraint for storing the
spatial representations. Specifically, our approach and PINN uses a MLP with α = 3 hidden layers
of width β = 32 and the grid-based projection method uses resolution 48. We execute our approach
and the grid-based method for 50 timesteps with ∆t = 0.05, and train PINN with the same temporal
range of 2.5 seconds. Using the solved velocity field, we advect a density field to visualize the
amount of fine details captured by different representations. As shown in Figure 4, we are able
to capture the fine details of the smaller vortex and best approximate the reference solution. The
grid-based method (resolution 48) suffers from severe dissipation and fails to capture the vorticity.
PINN is unable to correctly capture this two-vortices field and we found its training loss remains
high (∼ 1e−3) after convergence. This is in agreement with previous findings (Chuang & Barba,
2022) that suggest PINN approaches have difficulty solving inviscid Navier-Stokes equations for
non-trivial examples involving turbulence.

4.3 ELASTODYNAMICS EQUATION

In the third experiment, we study the Elastodynamics equations

ρ0ϕ̈ = ∇ · P (F ) + ρ0b (12)

that describe the motions of deformable solids (Gonzalez & Stuart, 2008). The vector field of interest
is the deformation map f = ϕ. Here ρ0 is the density in the reference space, P is the first Piola-
Kirchhoff stress, F = ∇ϕ is the deformation gradient, ϕ̇ and ϕ̈ are the velocity and acceleration,
and b is the body force.

We assume a hyper-elasticity constitutive law, i.e., P = ∂Ψ
∂F , where Ψ is the energy density function.

In particular, we assume a variant of the stable Neo-Hookean energy (Smith et al., 2018)

Ψ =
λ

2
tr2(Σ− I) + µ(det(F )− 1)2, (13)

where λ and µ are the first and second lame parameters, Σ are the singular values of the deformation
gradient F , and det(F ) is the determinant of the deformation gradient F . When µ = 0, the elastic
energy recovers the As-Rigid-As-Possible energy (Sorkine & Alexa, 2007).
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Reference

Grid-based (resolution 48)

Ours

PINN

Figure 4: Two vortices of different scales. We show the advected density field after 2.5 sec-
onds from the reference (top-left), our method (top-right), the grid-based method of resolution 48
(bottom-left) and PINN (bottom-right). The reference is obtained by running the high-resolution
grid-based method (we use resolution 1024). Our MLP (α = 3, β = 32) has the same memory foot-
print as grids of resolution 48. PINN uses the same MLP network as ours. Under the same memory
constraint, our approach suffers from less dissipation, captures more vorticity, and best resembles
the reference solution, whose grids takes ∼ 450× memory compared to our network. See Figure 8
for the initial condition of this example.

Deformed

Undeformed

mesh-based (FEM)Ours point-cloud-based (MPM)
Figure 5: Elastic tension test. We compare the quasi-static simulation using our implicit neural rep-
resentation (left) with the mesh representation (middle), and the point cloud representation (right).
Our method handles large deformations matching the mesh-based finite element method (FEM),
while the point cloud based material point method (MPM) suffers from incorrect numerical fracture.

Time Integration We apply the implicit Euler time integration scheme (Gast et al., 2015; Kane
et al., 2000a) to the (1) tetrahedral finite element, (2) material point method, and (3) our neural
representation, using the operator

I =
1

2
ρ0(ϕ̇

n+1
− ϕ̇

n
)T (ϕ̇

n+1
− ϕ̇

n
)︸ ︷︷ ︸

kinematic energy

+Ψ(ϕn+1)︸ ︷︷ ︸
elastic
energy

− ρ0b
Tϕn+1︸ ︷︷ ︸

external force
potential

, (14)

where ϕ̇
n+1

= (ϕn+1 − ϕn)/∆t, ρ0 is the density, b is the external force. We can also incorporate
boundary conditions, e.g., positional and contact constraints, by introducing additional energy terms
(Bouaziz et al., 2014; Li et al., 2020a) (see Appendix B.4).

Results We first compare our implicit neural representation to the traditional tetraheral mesh rep-
resentation (Finite Element Method, FEM (Hughes, 2012; Reddy, 2019)) and the point cloud rep-
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0 sec 0.2 sec 0.6 sec 0.8 sec

mesh-based
(FEM)

Ours ...

...

force

force

Figure 6: When an elastic square collides with a circle, the finite element mesh (top) conforms
poorly at the interface compared to the neural representation (bottom), for equal memory usage.

0 sec 0.2 sec 0.4 sec

force

Figure 7: A bunny collides with the ground in 3D. Our neural representation (green, left) captures
more intricate geometry details and complex dynamics compared to the traditional tetrahedral mesh
representation (blue, right) under the same memory usage.

resentation (Material Point Method, MPM (Sulsky et al., 1995; Jiang et al., 2016)). We use α = 3
hidden layers of width β = 68 for our MLP, which takes the same memory as the FEM mesh (0.8K
vertices, 1.5K faces) and MPM point cloud (1.7K points). As shown in Figure 5 and Figure 11, our
method is capable of handling the large elastic deformations and matches the result of the traditional
mesh-based method (FEM), while the point-cloud-based method (MPM) suffers from incorrect nu-
merical fracture due to its meshless nature. To avoid these fractures, meshless methods require
sophisticated modifications of the underlying kernel and basis functions (Gray et al., 2001; Su et al.,
2022).

By virtue of its implicit nature, our representation is able to represent more intricate details com-
pared to the traditional explicit representations under the same memory usage. In Figure 6, we show
that our implicit neural representation allows the deformed square to gracefully fit the boundary of
the sphere during the non-trivial collision. In contrast, the traditional mesh-based representation
struggles to produce smooth result due to its insufficient mesh resolution. To alleviate such arti-
facts, the traditional mesh-based representation either needs to increase resolutions thusly inducing
higher memory cost or conducts complex remeshing (Narain et al., 2012). In Figure 7, our implicit
neural representation allows for more complex dynamics and fine geometry details compared to the
traditional tetrahedral mesh representation.

Note that we adopt the same collision detection and handling strategy for both the neural representa-
tion and the mesh-based representation (FEM). Specifically, we use a spring-like penalty force and
the corresponding energy to move the collided point out of its collision surface, similar to (McAdams
et al., 2011; Xian et al., 2019). Since our approach and FEM share the same time integration scheme
and the same collision handling method, the difference reported in Figure 6 and Figure 7 strictly
stems from the underlying spatial representations.

These advantages extend to other complex 3D simulations. Figure 2 and Figure 13 depict a cow and
statue deforming as they collide with the ground, exhibiting complex geometry, and rich contact-
induced deformations.
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5 DISCUSSION AND CONCLUSION

In this work, we explore implicit neural representations as spatial representations for numeri-
cally modeling time-dependent PDEs. This representation naturally integrates with widely adopted
optimization-based time integrators. PDE solvers with neural spatial representation offers improved
accuracy, reduced memory, and automatic adaptivity compared to traditional explicit representations
such as a mesh, grid, or point cloud.

While offering important benefits, neural-spatial-representation-based PDE time-stepping requires
longer wall-clock computation time than existing methods (see also Table 1 by Zehnder et al. (2021)
and Section 7 by Yang et al. (2021)). Optimizing neural networks weights takes longer than opti-
mizing grid values even if there are fewer number of neural network weights than the number of
grid nodes. For instance, for the bunny example (Figure 7), our neural network optimization takes
around 30 minutes per timestep while the corresponding FEM simulation takes less than 1 minute.
Future work therefore lies in exploring advanced training techniques that reduce training time (Liu
et al., 2020; Martel et al., 2021; Takikawa et al., 2021). In particular, Müller et al. (2022) offer a
promising direction where they show that we can reduce implicit neural representation training time
from hours to seconds via advanced data structures and optimized implementation.

Our work demonstrates the effectiveness of neural spatial representations in solving time-dependent
PDEs and observes empirical convergence under refinement (see Figure 12). Future work should
consider theoretical analysis (Mishra & Molinaro, 2022) on convergence and stability. More chal-
lenging physical phenomena, such as turbulence (Wilcox et al., 1998), intricate contacts (Johnson &
Johnson, 1987), and thin shells (Pfaff et al., 2020), are also important future directions. Currently,
our work enforces “soft” boundary conditions. Enforcing “hard” boundary conditions on a neural
architecture is another exciting direction (Lu et al., 2021b).
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A COMPARISON OF DIFFERENT PDE SOLVERS

In the table below, we compare other ML-PDE solvers including MeshGraphNet (Pfaff et al. (2020)),
GraphNetworkSim (Sanchez-Gonzalez et al. (2020)), DeepOnet (Lu et al. (2019)), Fourier Neural
Operator (Li et al. (2020b)).

Table 1: Comparison with other ML-PDE solvers.

Methods
Require training data
(from classical solvers
or real-world data)

Generalize to out-
of-distribution
initial/boundary
conditions,
material parameters,
and time spans

Enforce PDE
constraints

MeshGraphNet Yes Limited None
GraphNetworkSim Yes Limited None
DeepOnet Yes Limited Good
Fourier Neural Operator Yes Limited Good
Ours No Good Good
Classical solvers (e.g., FEM) No Very good Very good

B IMPLEMENTATION DETAILS

B.1 OPTIMIZATION

We solve our time-integration optimization problem (Equation (3)) with the Adam optimizer
(Kingma & Ba, 2014). For all examples in our experiments, we set an initial learning rate lr0
and reduce it by a factor of 0.1 if the loss value does not decrease for iterp iterations. We stop the
optimization process when the learning rate is smaller than lrmin or until it reaches a maximum of
itermax iterations. Specific values of these hyper-parameters are described for each example below.
We implement our method using PyTorch library and performed our experiments on an NVIDIA
GeForce RTX 3090 GPU.

Algorithm 1: Temporal Evolution

Input: network weights θ0, time step size ∆t, time integrator I , spatial domain Ω
1 n← 0;
2 while true do
3 θn+1 ← θn;
4 while not converged do // network training with Adam optimizer
5 randomly sampleM⊂ Ω;
6 θn+1 ← θn+1 − α∇

∑
x∈M

I(∆t, {fθk}n+1
k=0 , {∇fθk}n+1

k=0 , . . .); // eq. (3)

7 end while
8 n← n+ 1;
9 end while

B.2 ADVECTION EQUATION

For our advection example in Figure 1, the 1D spatial domain is Ω = [−2, 2]. We consider the
Dirichlet boundary condition, i.e., the advected quantity at boundaries equals zero. Hence we set
the boundary constraint term in Equation (4) as

C = ||un+1(x)||22, (15)

with the weighting factor λ = 1. The initial condition for this example is

û0(x) = e− (x− µ)2

2σ2
, (16)

16



Under review as a conference paper at ICLR 2023

1.0

0.0

0.5

Initial velocity field Initial density field

Figure 8: Initial condition for the example in Figure 4. Left: velocity field (Equation (19)). Right:
density field (Equation (20)).

with µ = −1.5 and σ = 0.1. We set the optimization hyper-parameters lr0 = 1e−4, lrmin = 1e−8,
iterp = 500 and itermax = 20000. For each gradient descent iteration, we randomly sample |M| =
5000 points within the spatial domain [−2, 2]. For this example, our method takes∼ 80s to compute
per timestep, while the grid-based method (using the same memory) takes ∼ 4e−3s.

B.3 INVISCID NAVIER-STOKES EQUATIONS

For our 2D fluid examples, the spatial domain is Ω = [−1, 1] × [−1, 1]. We consider solid bound-
ary conditions, i.e., the fluid cannot go through the boundaries. Recall that we adopt the operator
splitting scheme. Therefore, the boundary constraint terms for the three sequential steps are

Cadv = ||un+1
adv⊥(x)||

2
2

Cpro = ||∇⊥p
n+1(x)||22

Ccor = ||un+1
⊥ (x)||22

(17)

where ⊥ indicates the perpendicular direction against the boundary. The weighting factor λ = 1.

2D Taylor-Green vortex Standard 2D Taylor-Green is originally defined in domain [0, 2π] ×
[0, 2π]. We translate and scale the domain to [−1, 1]× [−1, 1] such that the input range fits our MLP
with the SIREN activation (Sitzmann et al., 2020). Therefore, the initial condition for the velocity
field becomes

û0(x) = (
1

π
sin[π(x+ 1)] cos[π(y + 1)],− 1

π
cos[π(x+ 1)] sin[π[y + 1]]). (18)

After the simulation, we convert it back to domain [0, 2π] × [0, 2π] for evaluation and comparison.
We set the optimization hyper-parameters lr0 = 1e−5, lrmin = 1e−8, iterp = 500 and itermax =
20000. The size of sample set |M| = 2562. For this example, our method takes ∼ 10min to
compute per timestep, while the grid-based method (using the same memory) takes ∼ 0.03s.

Two vortices of different scale For the example shown in Figure 4, the initial condition for the
velocity field is

û0(x) =


(sin[2π(x+ 1)] cos[2π(y + 1)],− cos[2π(x+ 1)] sin[2π(y + 1)]) x ∈ [−1, 0]2
(sin[8π(x− 7

4 )] cos[8π(y −
7
4 )],− cos[8π(x− 7

4 )] sin[8π(y −
7
4 )]) x ∈ [ 74 , 1]

2

(0, 0) otherwise.
(19)

The density field that we advect is initialized as

d̂0(x) =

{
1 ||2x+ 1|| ≤ 0.5 or ||8x+ 7|| ≤ 0.5

0 otherwise.
(20)

Figure 8 visually illustrates the above initial conditions. After the simulation, we convert it back to
domain [0, 2π] × [0, 2π] for evaluation and comparison. We set the optimization hyper-parameters
lr0 = 1e−5, lrmin = 1e−8, iterp = 500 and itermax = 20000. The size of sample set |M| = 1282.
For this example, our method takes ∼ 10min to compute per timestep.
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Table 2: Experiment setup for the elasticity examples. ρ0 is the density. λ and µ are the first and
second lame parameters. α and β are the number of hidden layers and the dimension of the hidden
features. lr0 and itermax are the initial learning rate and the maximum number of iterations. tavg is
average training time per time step. Note that the density ρ0 and timestep size dt are reported as
N/A for the quasistatic example Stretch (2D) (Figure 5).

Example Dim |M| dt ρ0 λ µ α β lr0 itermax tavg(s)
Collision (2D) (Figure 6) 2 1002 0.1 1e1 2e1 1e3 3 68 1e−5 1e4 1.38e2
Stretch (2D) (Figure 5) 2 1002 N/A N/A 1e0 1e3 3 68 1e−4 5e4 2.30e3
Bunny (Figure 7) 3 203 0.1 1e0 1e2 1e3 3 66 1e−5 2e4 1.70e3
Spot (Figure 2) 3 203 0.1 1e0 1e2 1e3 3 66 1e−3 5e3 1.74e3
Lucy (Figure 13) 3 203 0.1 1e0 1e3 1e3 3 128 1e−4 2e4 1.16e3

Undeformed Stretched Compressed

Figure 9: Elasticity patch test. Quasistatic simulation
in 2D (undeformed, stretched, compressed).

Undeformed Twisted

Figure 10: Twisting test. Quasistatic
simulation in 3D. The right end is
twisted 45 degrees.

B.4 ELASTODYNAMICS EQUATION

Initial and Boundary Conditions For our 2D elasticity examples in Figure 5, Figure 9 and Fig-
ure 6, the 2D spatial domain is Ω = [−1, 1]× [−1, 1]. For our 3D elasticity examples in Figure 12,
the 3D spatial domain is Ω = [−1, 1] × [−1, 1] × [−1, 1]. For our 2D and 3D examples involving
nonregular geometry (Figure 7, Figure 2 and Figure 13), the spatial domain is the interior of the
shape, including the boundary. The initial condition for all the elasticity examples is

ϕ̂0(x) = (0, 0) (2D),

ϕ̂0(x) = (0, 0, 0) (3D)
(21)

The boundary constraint for elasticity examples involves positional constraints or collision con-
straints. Positional constraints, or Dirichlet boundary conditions, can be realized by defining the
position of the constraint set ∂Ω as the desired goal positions ϕ∂Ω:

Ipos = ∥ϕn+1
∂Ω − ϕ∂Ω∥22. (22)

Collision constraints can be handled by adding unilateral constraints dynamically and viewing the
collision penalty force as external force. Specifically, for a colliding point qc, we first find the closest
surface point bc with normal nc, and define our spring-like collision penalty force as:

f col = kcol((bc − qc)
⊤nc)nc. (23)

where kcol is the ratio for the collision penalty force.

The corresponding collision energy can be defined as the work exerted by the collision force:

Icol = ρ0f
T
colϕ

n+1. (24)

Experiment Setup For all the 2D comparison under the same memory usage, we use α = 3
hidden layers of width β = 68 with SIREN activation function (Sitzmann et al., 2020) for our MLP,
which takes the same memory (57 KB) as the FEM mesh (0.8K vertices, 1.5K faces) and MPM
point cloud (1.7K points) in use. We initialize the 2D deformation field of the network to be zero
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Ours mesh-based (FEM)Ground Truth
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Figure 11: Error of the elastic tension test. We visualize the L2 position error e of our result and
the low-resolution FEM result (0.8K vertices) in Fig. 5 with respect to high-resolution FEM ground
truth (3.2K vertices). Under the same memory footprint (for storing the spatial representation), our
method (∥e∥∞ = 8.89e-2) is closer to the high-resolution ground truth than the mesh-based method
(∥e∥∞ = 1.99e-1).
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Figure 12: Sampling convergence test. Quasi-static elasticity simulation using different number
of samples. We trained the implicit neural representation using different number of samples and
visualized the result using samples |M| = 503 (left). We further compute the error with respect
to |M| = 503 when using different number of samples (right). As we increase the number of
the training samples in use, the deformation field converges to the result trained on the highest
resolution.

using |M| = 10002 uniform and random samples. Then we train the network using |M| = 1002

uniform and random samples at each training iteration. We use Bartels (Levin, 2020) and Taichi (Hu
et al., 2019) to perform the FEM and MPM simulation, respectively. We run our FEM and MPM
comparison on CPU using a MacBook Pro with Apple M2 processor and 24GB of RAM.

For the 3D comparison under the same memory usage, for the bunny example (Figure 7), we use α =
3 hidden layers of width β = 66 with SIREN activation function for our MLP, which takes the same
memory (53 KB) as the FEM mesh (0.5K vertices, 1.5K tetrahedra) in use. For the statue example
(Figure 13), we use α = 3 hidden layers of width β = 128 with SIREN activation function for our
MLP, which takes the same memory (197 KB) as the FEM mesh (2.0K vertices, 7.0K tetrahedra) in
use. We initialize the 3D deformation field of the network to be zero using |M| = 1003 uniform and
random samples. Then we train the network using |M| = 203 uniform and random samples at each
training iteration. Here for simplicity we use the mesh vertices as the uniform samples. We further
report all the parameters and experiment setup in Table 2. In addition, we set the hyper-parameters
iterp = 800 and lrmin = 1e−8 for all elasticity examples.

For sampling of the shapes involving nonregular geometry, for simplicity we choose to use a triangle
or tetrahedral mesh and perform sampling within it. An ideal alternative would be adopting the
implicit representation of the surface and performing rejection sampling based on it.

For rendering, we simply sample sufficient number of points from the undeformed shape and eval-
uate the trained model at time t on the sample positions to predict their deformation. Here we only
sample the surface of the shape in 3D cases. Then we render the shape as a dense point cloud.

C ADDITIONAL RESULTS

C.1 ELASTODYNAMICS EQUATION

We validate the physical plausibility of our method using a small 2D patch test (Figure 9) and a 3D
twisting example (Figure 10). We show that our implicit neural representation can exhibit volume-
preserving property under both stretching, compression and twisting.
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0 sec 0.2 sec 0.4 sec 0.6 sec 0.8 sec 1.0 secTetrehedral Mesh

force

Figure 13: The statue collides with the ground and deforms. Our implicit neural representa-
tion (green, right) is capable of capturing more fine geometry details compared to the traditional
tetrahedral mesh representation (blue, left) under the same memory footprint.

We demonstrate qualitative and quatitative convergence of our method when increasing the num-
ber of training samples in use. In Figure 12, we compare the quasi-static stretching results vi-
sualized using |M| = 503 uniform samples when using different number of training samples
(|M| = 53, 103, 203, 303, 403, 503), and report the error with respect to the high-resolution trained
result (trained and visualized both on |M| = 503).

Finally, we provide an additional example for elasticity involving complex contact-induced defor-
mations in Figure 13. Our implicit neural representation is able to maintain more intricate geometry
details compared to the traditional tetrahedral mesh representation under the same memory usage.

D QUANTITATIVE RESULTS

We present the quantitative results (error, runtime and memory usage) for each of our tested exam-
ples in separate tables.

Table 3: Quantitative results for 1D advection example (Figure 1). Error: mean absolute error
over total 240 time steps, compared to the ground truth analytical solution. Time: runtime for total
240 time steps. Memory: memory usage for storing the spatial representations.

Methods Error Time Memory

Ours 0.0030 5.33h 3.520KB
Grid 0.0146 1.13s 3.520KB
PINN 0.0564 9.73m 3.598KB

Table 4: Quantitative results for 2D Taylor-Green fluid example (Figure 3). Error: mean squared
error of velocity field over total 100 time steps, compared to the ground truth analytical solution.
Time: runtime for total 100 time steps. Memory: memory usage for storing the spatial representa-
tions.

Methods Error Time Memory

Ours 3.35e-4 14.02h 25.887KB
Grid-based 4.83e-3 2.91s 27.00KB

Table 5: Quantitative results for two-vortices fluid example (Figure 4). Error: mean absolute
error of kinetic energy over total 50 time steps, compared to the reference solution (obtained by high
resolution grid-based method). Kinetic energy is computed using 10242 uniform samples. Time:
runtime for total 50 time steps. Memory: memory usage for storing the spatial representations.

Methods Error Time Memory

Ours 2.24e2 10.81h 25.887KB
Grid-based 1.07e4 1.78s 27.00KB
PINN 1.92e4 2.2h 26.137KB
PINN-seq 3.21e4 20.83h 26.137KB
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Table 6: Quantitative results for 2d tension example (Figure 5 and Figure 11). Error: Infinity
norm of L2 distance w.r.t. high-resolution ground truth. Time: Total runtime until convergence.
Memory: memory usage for storing the spatial representations.

Methods Error Time Memory

Ours 8.82e-2 38.33m 56.32KB
Mesh-based 1.99e-1 22.04s 54.00KB

Table 7: Elastic square collides with circle (Figure 6). Error: Infinity norm of L2 intersection
distance w.r.t. the circle boundary. Time: Average runtime for 1 time step. Memory: memory usage
for storing the spatial representations.

Error Time MemoryMethods 0.2s 0.4s 0.6s 0.8s

Ours 1.62e-2 1.10e-2 1.04e-2 1.06e-2 2.30m 56.32KB
Mesh-based 3.45e-2 1.39e-2 5.47e-2 4.23e-2 9.82s 54.00KB
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