Addressing Domain Shift in Low-Resource Neuroimaging: Glioma Segmentation for Sub-Saharan MRI

Accurate segmentation of gliomas from magnetic resonance imaging (MRI) is central to clinical diagnosis and treatment planning. Yet, performance degrades when models trained on high-resource datasets are applied to Sub-Saharan African (SSA) scans, which often suffer from heterogeneous acquisition protocols, reduced resolution, and limited annotations. This domain gap has reinforced inequities in neuro-oncology outcomes, as robust automated tools remain largely unavailable in low-resource regions where they are most needed [1].

We propose a domain-adaptive transformer framework that integrates intensity harmonization with architectural refinements for improved robustness in SSA neuroimaging. Our method builds on a SegFormer-based volumetric backbone [2], augmented with a wavelet-convolutional input stem for frequency-aware encoding and dual attention modules for joint spatial—channel refinement [3]. The decoder incorporates radiomics-guided stratification [4] to enhance tumor boundary detection under low-contrast conditions. To mitigate domain shift, we apply histogram matching [5] between SSA and high-quality BraTS 2023 adult glioma scans [6], followed by pretraining on BraTS 2023 and fine-tuning on BraTS-Africa [1]. This pipeline requires only 12M parameters and achieves $2.3 \times$ faster inference than comparable CNN approaches, making it suitable for deployment in resource-constrained healthcare environments.

Datasets: The BraTS 2023 adult glioma dataset [6] comprises 1,251 cases with multi-parametric MRI (T1w, T1w-CE, T2w, FLAIR) and expert-verified annotations of tumor subregions. BraTS-Africa [1] extends this benchmark to low-resource settings with 60 labeled and 35 validation cases from SSA institutions, reflecting real-world challenges such as lower field strength, acquisition variability, and reduced image contrast.

Result: On BraTS-Africa, our approach achieves mean Dice of 0.842 (vs. 0.589 for SSA-only training and 0.681 for direct BraTS 2023 transfer), representing a 43% improvement. Ablation studies reveal that histogram matching contributes +0.089 Dice while pretraining adds +0.164, with the largest gains observed for enhancing tumors, the most clinically relevant yet challenging subregion under low-contrast conditions. Our method outperforms recent domain adaptation baselines including CORAL [7] (+0.133 Dice) and adversarial training [8] (+0.147 Dice).

This work demonstrates that thoughtful domain adaptation can achieve clinically meaningful performance for glioma segmentation in Sub-Saharan African populations, addressing a critical gap in equitable healthcare AI. Future directions include expanding to multi-institutional SSA datasets and investigating generalization across other neurological conditions prevalent in underrepresented populations.

References

- [1] Amod, K., Abdollahi, B., Davatzikos, C., et al.: The BraTS-Africa Dataset: Expanding the Brain Tumor Segmentation BraTS Data to Capture African Populations. arXiv preprint arXiv:2401.06288 (2024).
- [2] Isensee, F., Jaeger, P.F., Kohl, S.A.A., et al. nnU-Net: Self-adapting framework for U-Net-based segmentation. Nat. Methods 18, 203–211 (2021).
- [3] Xie, E., Wang, W., Yu, Z., Anandkumar, A., et al. SegFormer: Simple and efficient design for semantic segmentation with transformers. NeurIPS (2021).
- [4] Nyúl, L.G., Udupa, J.K. Standardizing MR image intensity scales. Magn. Reson. Med. 42(6), 1072–1081 (1999).
- [5] van Griethuysen, J.J., et al. Computational radiomics system to decode radiographic phenotype. Cancer Res. 77(21), e104–e107 (2017).
- [6] Azmat, S., Raza, S.E.A., Reyes, M., et al.: RSNA-ASNR-MICCAI BraTS 2023: Benchmarking brain tumor segmentation and outcome prediction in adult glioma. arXiv preprint arXiv:2401.04322 (2024).
- [7] Sun, B., Saenko, K. Deep CORAL: Correlation Alignment for Deep Domain Adaptation. ECCV Workshops (2016). Also available as arXiv:1607.01719.
- [8] Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F., Marchand, M., Lempitsky, V. Domain-Adversarial Training of Neural Networks. Journal of Machine Learning Research 17(59):1–35 (2016).