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Abstract001

Preference optimization is a crucial aspect of002
generative models, ensuring that the generated003
content aligns with users’ preferences. While004
previous research has focused on optimizing005
for average preferences, text-to-image tasks re-006
quire a personalized approach due to the diver-007
sity of individual preferences. In this study, we008
propose a two-stage framework for personal-009
ized preference optimization in text-to-image010
generation. The first stage, personalized im-011
age aesthetic assessment (PIAA), learns user012
preferences from a small amount of user image013
rating data. The second stage, prompt opti-014
mization, optimizes the text-to-image model’s015
prompt to generate images that receive high016
scores from the learned preference model. We017
employ Large Language Models (LLMs) for018
the prompt optimization process. Through ex-019
tensive experimentation with various configu-020
rations in the PIAA and prompt optimization021
stages, we demonstrate that our approach can022
generate novel images that align with individ-023
ual user preferences, even with limited user024
data. Our research lays the foundation for fu-025
ture work on personalized content generation.026

1 Introduction027

As generative models continue to advance rapidly,028

the demand for personalized content creation has029

surged. Existing methods incorporate human pref-030

erences to create broadly appealing images but031

mainly cater to generalized aesthetics (Kirstain032

et al., 2023; Xu et al., 2023; Hao et al., 2023; Wu033

et al., 2023). The inherently emotional and artistic034

nature of text-to-image (T2I) generation highlights035

the need for personalization in creative outputs,036

as personal aesthetic preferences are increasingly037

important.038

In recent developments, ‘personalization’ in text-039

to-image generation has often referred to gener-040

ating images that reflect the user’s input content041

(Ruiz et al., 2023; Shi et al., 2024). However, in this042

paper, we define personalization as understanding 043

and generating images that match the user’s unique 044

preferences. To achieve this, we train a preference 045

score network with real-world data to simulate user 046

preferences, and employ a large language model 047

(LLM) as an optimizer to refine prompts for the 048

T2I model. 049

Overall, our novel T2I generation approach uses 050

minimal user-provided image ratings to generate 051

outputs that meets personal tastes. By focusing on 052

personalized aesthetic modeling, we aim to bridge 053

the gap between general image generation and per- 054

sonalized artistic expression, enhancing user satis- 055

faction and advancing T2I generation by address- 056

ing diverse aesthetic inclinations. Experiments and 057

ablation studies demonstrate that our framework ef- 058

fectively enhances user preference scores, showing 059

the potential of LLMs in solving personalization op- 060

timization through advanced learning techniques. 061

2 Related Works 062

The advancement of text-to-image (T2I) generation 063

models has emphasized the importance of prefer- 064

ence optimization to enhance user satisfaction. Pre- 065

vious approaches such as ImageReward (Xu et al., 066

2023) and Pick-a-Pic (Kirstain et al., 2023) have 067

incorporated human preferences to create appeal- 068

ing images, primarily focusing on generalized user 069

preferences. For instance, Pick-a-Pic collected a 070

large dataset of user preferences, enabling the train- 071

ing of the PickScore function, which predicts hu- 072

man preferences with remarkable accuracy. How- 073

ever, these methods often cater to a broad audi- 074

ence rather than individual preferences. Similarly, 075

Pavlichenko and Ustalov, 2023 explored human-in- 076

the-loop methods for optimizing prompts but did 077

not focus on individual personalization. 078

LLMs as optimizers offer a promising approach 079

to optimizing user-specific aesthetic preferences 080

in T2I generation. Foundational concepts intro- 081
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Figure 1: Overall framework. The gray dotted line
indicates ablation choices.

duced by Brown et al., 2020 and Gao et al., 2020082

highlighted the potential of pre-trained language083

models to adapt to new tasks with minimal data.084

Previous works (Pryzant et al., 2023; Yang et al.,085

2023; Yuksekgonul et al., 2024) demonstrate that086

an LLM can be used as a general optimizer. Use of087

LLMs in dynamically refining prompts to ensure088

personalized outputs. Additionally, works such as089

Yang et al., 2022 and Liu et al., 2023 provided in-090

sights into integrating detailed user feedback for091

better personalization. This integration of LLMs as092

optimizers and real-world user data for training a093

preference score network has shown effectiveness094

in enhancing personalized aesthetic modeling in095

T2I generation.096

3 Method097

We focus on personalized image generation, which098

we define as the optimization problem to generate099

an image that maximizes user’s preference score.100

To solve this optimization problem, we first need101

a score function that provides a consistent and per-102

sonalized score for images based on real-world hu-103

Figure 2: Relations between the prompt (P ), image (I),
and preference score are such that each prompt must
pass through the intermediate image stage to determine
the corresponding score.

man data. We simulate each user’s score function 104

by training a small score model using the Person- 105

alized Image Aesthetics Assessment (PIAA)(Ren 106

et al., 2017; Yang et al., 2022) method and the Sim- 107

ulacra Aesthetic Captions (SAC) dataset (Pressman 108

et al., 2022). Second, we need an optimizer that 109

maximizes the user’s score function. For this, we 110

use an LLM as an optimizer. To connect the LLM’s 111

output text to the user’s score function, which only 112

accepts images as input, we use a text-to-image 113

model. Each component of our method is explained 114

in detail below. 115

3.1 PIAA 116

The Personalized Image Aesthetic Assessment 117

(PIAA) (Ren et al., 2017; Yang et al., 2022) ap- 118

proach aims to model individual aesthetic prefer- 119

ences. PIAA databases typically contain images an- 120

notated by multiple subjects with various objective 121

and subjective attributes, as well as desensitized 122

subject information such as personality traits and 123

experience levels. This comprehensive annotation 124

allows for a nuanced understanding of aesthetic 125

preferences. PIAA models often incorporate sub- 126

ject information as a prior, enhancing the prediction 127

of personalized aesthetic preferences by leveraging 128

detailed user feedback. The inclusion of such de- 129

tailed information has been shown to significantly 130

improve the performance of PIAA models com- 131

pared to those without it. 132

3.2 Prompt Optimization Method 133

As illustrated in Figure 1, our framework aims 134

to maximize the virtual user’s score by iteratively 135

modifying the prompts fed into the text-to-image 136

model. This necessitates the prompt optimizer to 137

determine the mapping function between prompts 138
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and the user’s preference score. However, there139

are two significant challenges. First, as shown in140

Figure 2, the prompt and score are not directly con-141

nected, as there is an intermediate image space be-142

tween them. Second, the personalized score space143

can be sparse due to the nature of personal prefer-144

ences. These characteristics make it difficult for the145

prompt optimizer to discern the overall structure of146

the mapping function. To address this, we come up147

with various methods.148

Multi-prompt Optimization To enhance the149

prompt optimizer’s understanding of the preference150

score function, we utilize N prompts. Specifically,151

the initial prompt is fed into the prompt optimizer,152

which then generates N diverse prompts. In this153

initial process, the prompt optimizer aims to cre-154

ate diverse prompts to approximate the landscape155

of the score function. Subsequently, the prompt156

optimizer works to maximize the scores for all N157

prompts.158

Comprehensive Feedback Integration To en-159

hance the prompt optimizer’s performance, we pro-160

pose incorporating additional information beyond161

the previously generated prompt scores. First, we162

introduce a text feedback model, implemented by163

an LLM, which is conditioned on (image, score)164

pairs to capture user preferences and provide di-165

rectional guidance for score improvement. Second,166

we include the image output from the text-to-image167

model to better understand the overall image struc-168

ture. Finally, we utilize the prompt optimizer’s169

history of generated prompts, paired with their cor-170

responding scores and sorted for easy reference.171

The impact of these additional information sources172

is evaluated through ablation studies.173

4 Experiments174

If our framework can optimize personal prefer-175

ences, it should also work for general preferences.176

To validate the effectiveness of our framework,177

we first conduct optimization for general prefer-178

ences, where the virtual human’s preferences are179

non-specific and general. Following this, we per-180

form optimization for personal preferences.181

4.1 Dataset182

For the general preference optimization, we uti-183

lized prompts from the DiffusionDB dataset (Wang184

et al., 2022), which contains diverse text-to-image185

prompts and their corresponding AI-generated im-186

ages, providing a robust foundation for training and187

evaluating generative models. For personal pref- 188

erence optimization, the Simulacra Aesthetic Cap- 189

tions (SAC) dataset (Pressman et al., 2022). The 190

SAC dataset includes over 238,000 synthetic im- 191

ages generated from user-submitted prompts, rated 192

on aesthetic value, which helps in refining and vali- 193

dating personalized aesthetic models by leveraging 194

a large volume of user feedback. These datasets 195

collectively enable comprehensive evaluation and 196

optimization of both general and personal prefer- 197

ences in text-to-image generation models. 198

4.2 Evaluation Metric 199

For evaluating our personalized image generation 200

framework, we employ several metrics that assess 201

the effectiveness of both general and personal pref- 202

erence optimization. For personal preference opti- 203

mization, we consider the maximum score (max) 204

as the highest preference score assigned by the 205

user to any generated image. We also calculate 206

the improvement from the initial to the maximum 207

score (max - init) and the number of iterations re- 208

quired to achieve the maximum score (K*), reflect- 209

ing the efficiency of the optimization process. Ad- 210

ditionally, we measure the similarity between the 211

highest-scoring generated image and the most sim- 212

ilar previously high-rated image (max sim), given 213

by maxi∈Ihigh sim(i, i∗). Lastly, we evaluate the 214

score assigned to the image most similar to the 215

highest-rated generated image among all previously 216

evaluated images (score of most sim), defined as 217

score(iMS), iMS = argmaxi∈I sim(i, i∗). 218

For general preference optimization, we track 219

the highest score achieved by any generated image 220

(max), the improvement from the initial score to 221

this maximum (max - init), and the number of iter- 222

ations required to reach the maximum score (K*). 223

These metrics provide a comprehensive assessment 224

of our framework’s ability to enhance user satis- 225

faction and align generated images with individual 226

user preferences effectively. 227

4.3 Results 228

General Preference Optimization Table 2 229

shows the results for general preference optimiza- 230

tion. Without any ablations, the maximum score 231

achieved was 6.50, with an improvement of 1.78 232

from the initial score. It took an average of 5.33 233

iterations to reach this maximum score. Adding 234

the score and prompt information (s+p) resulted in 235

a lower maximum score of 5.93. Further adding 236

feedback (s+p+f) and images (s+p+f+I) did not sub- 237
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Table 1: Results of personal preference optimization. K∗ represents the number of iterations to reach the maximum
score. s, p, f , and I denote score, prompt, feedback, and images, respectively. Details on the evaluation metrics are
provided in Section 4.2.

Ablations max max - init K∗ max sim score of the most sim

s+ p 6.78 0.88 5.83 0.67 5.50
s+ p+ f 7.20 1.19 4.33 0.76 5.00
s+ p+ f + I 6.88 1.37 5.66 0.78 7.17

Table 2: General preference optimization results.

Ablations max max - init K∗

none 6.50 1.78 5.33
s+ p 5.93 1.21 5.62
s+ p+ f 5.88 1.16 5.51
s+ p+ f + I 5.92 1.20 5.66

Table 3: PIAA results

Method SROCC MSE MAE

MAML 0.44 9.79 2.67
FineTune 0.45 11.14 2.78
kNN 0.12 9.01 2.53

MAML 0.42 9.56 2.63
FineTune 0.43 12.71 2.94
kNN 0.27 7.88 2.34

stantially change the results compared to the s+p238

ablation. These results suggest that for optimiz-239

ing general preferences, the additional information240

beyond scores and prompts does not provide signif-241

icant benefits.242

PIAA Table 3 presents the results for the person-243

alized image aesthetic assessment (PIAA) models.244

The MAML and FineTune approaches performed245

comparably, achieving Spearman rank order cor-246

relation coefficients (SROCC) of 0.44 and 0.45247

respectively. The kNN method had a much lower248

SROCC of 0.12. In terms of mean squared error249

(MSE) and mean absolute error (MAE), the kNN250

approach had the lowest errors of 9.01 and 2.53251

respectively. These results indicate that the MAML252

and FineTune methods are better at ranking images253

according to personal preferences, while the kNN254

method makes predictions with smaller absolute255

errors.256

Personalized Preference Optimization The per-257

sonalized preference optimization results are258

shown in Table 1. Using just the score and prompt 259

information (s+p), a maximum score of 6.78 was 260

reached, with an improvement of 0.88 over the 261

initial score. Adding feedback (s+p+f) increased 262

the maximum score to 7.20 and the improvement 263

to 1.19, while reducing the number of iterations 264

needed to 4.33. Further adding images (s+p+f+I) 265

resulted in a maximum score of 6.88, an improve- 266

ment of 1.37, and 5.66 iterations. The similarity 267

metrics provide additional insights. The highest 268

similarity of 0.78 between the optimized image 269

and a previous highly rated image was achieved 270

with all information included (s+p+f+I). However, 271

the score of the most similar previous image was 272

highest at 7.17 when using all information types. 273

These results suggest that incorporating feedback 274

and images helps the model generate novel highly 275

rated images that still share similarities with the 276

user’s previous preferences. 277

5 Conclusion 278

We propose an optimization framework specifically 279

focused on personal preference through in-context 280

learning. To simulate real-world personal prefer- 281

ences, we utilized the PIAA method to train the per- 282

sonal model. For preference optimization, we in- 283

troduced several novel techniques, including multi- 284

prompt optimization and comprehensive feedback 285

integration, to enhance the optimization process. 286

Our results demonstrate that the proposed frame- 287

work effectively optimizes personal preferences 288

using in-context learning, which is a training-free 289

approach, indicating its potential for real-world 290

applications. 291

6 Limitations 292

Our experiments use a virtual human model to ap- 293

proximate real human responses. However, this 294

approximation introduces discrepancies, making 295

it uncertain whether the framework will perform 296

effectively in real-world scenarios. Also, the score 297
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improvements achieved through optimization are298

not particularly substantial. There are two main rea-299

sons for this. First, the problem itself is inherently300

difficult to solve. Human preferences are complex,301

making it challenging to accurately model their302

structure. Second, the method’s capability may not303

be sufficient for addressing this challenging prob-304

lem. In-context learning may be less effective for305

such complex tasks compared to fine-tuning using306

gradient-based methods. Since the LLM is trained307

primarily on textual data, it may not fully capture308

preferences that are difficult to express in text.309
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