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ABSTRACT

Cities, as the essential environment of human life, encompass diverse physical
elements such as buildings, roads and vegetation, which continuously interact
with dynamic entities like people and vehicles. Crafting realistic, interactive 3D
urban environments is essential for nurturing AGI systems and constructing AI
agents capable of perceiving, decision-making, and acting like humans in real-
world environments. However, creating high-fidelity 3D urban environments usu-
ally entails extensive manual labor from designers, involving intricate detailing
and representation of complex urban elements. Therefore, accomplishing this au-
tomatically remains a longstanding challenge. Toward this problem, we propose
UrbanWorld, the first generative urban world model that can automatically create
a customized, realistic and interactive 3D urban world with flexible control con-
ditions. Specifically, we design a progressive diffusion-based rendering method
to produce 3D urban assets with high-quality textures. Moreover, we propose a
specialized urban multimodal large language model (Urban MLLM) trained on
realistic street-view image-text corpus to supervise and guide the generation pro-
cess. UrbanWorld incorporates four key stages in the generation pipeline: flexible
3D layout generation from OSM data or urban layout with semantic and height
maps, urban scene design with Urban MLLM, controllable urban asset rendering
via progressive 3D diffusion, and MLLM-assisted scene refinement. We conduct
extensive quantitative analysis on five visual metrics, demonstrating that Urban-
World achieves state-of-the-art generation realism. Next, we provide qualitative
results about the controllable generation capabilities of UrbanWorld using both
textual and image-based prompts. Lastly, we verify the interactive nature of these
environments by showcasing the agent perception and navigation within the cre-
ated environments. We contribute UrbanWorld as an open-source tool available at
https://github.com/Urban-World/UrbanWorld.

1 INTRODUCTION

Cities are the most complex human-centric environments, characterized by their intricate spatial
structures, heterogeneous components such as buildings, infrastructure, and public spaces, and dy-
namic interactions between these components and human activities. Creating near-realistic 3D urban
world environments is a fundamental technique for broad research and real applications across var-
ious domains such as Artificial General Intelligence (Zhang et al., 2024), AI agents (Yang et al.,
2024), embodied AI (Wang et al., 2024a), urban simulation (Xu et al., 2023) and metaverse (Allam
et al., 2022). Traditionally, achieving this involves expensive labor costs for human designers on de-
tailed asset modeling, texture mapping, and scene composition. With the advancement of generative
AI, there have emerged some automatic approaches for 3D scene generation based on volumetric
rendering(Lin et al., 2023; Xie et al., 2024) and diffusion models(Deng et al., 2023; Lu et al., 2024).
These approaches have revolutionized the paradigm of 3D scene generation, alleviating the high
costs of manual design. However, the crafted 3D scenes are limited to the video format and unable
to provide embodied and interactive environments. Regarding this issue, a recent series of methods
known as world models have emerged, preliminarily focusing on autonomous driving scenes (Hu
et al., 2023; Wang et al., 2023b). These models are shown to possess the capability of understanding
the scene dynamics and predicting future states, uplifting the interactivity of 3D scene generation.
However, there is still a large gap between the created urban environments and the real urban world
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in which humans live. To sum up, there is still a long way from the actual “urban world models”,
which we define as models able to create urban environments that are (1) realistic and interactive
(2) customizable and controllable (3) capable of supporting embodied agent learning. Table 1 pro-
vides a comprehensive review of existing 3D city generation methods from these key perspectives,
highlighting that no existing approach can fully satisfy these requirements.

Urban world models are of great significance in developing embodied intelligence and Artificial
General Intelligence (AGI). Firstly, it is promising to bridge the gap between virtual environments
and the real world, enabling embodied agents to interact with and learn from richly detailed, real-
istic urban environments. Secondly, by crafting synthetic 3D urban environments, researchers can
gain complete control over data generation, with full access to all generative parameters. Machine
perceptual systems can thus be trained on tasks that are not well suited to conduct in the real world
or require various environments. Finally, a sophisticated urban world model can simulate a wide
variety of environments, from bustling city centers to quiet residential neighborhoods, with realistic
visual appearances of physical infrastructures such as buildings, roads, and natural spaces. This
is crucial to avoid overfitting and creating agents with high generalization in diverse and dynamic
environments. However, there are no specialized urban world models for automatically crafting
interactive 3D urban environments, hindering the advancement of AI abilities toward general intel-
ligence through embodied learning in complex open-world environments.

Toward this issue, we propose UrbanWorld, a generative urban world model that can automatically
create realistic, controllable and embodied 3D urban environments from user instructions and urban
layout data in various format such as OpenStreetMap1 (OSM) and layouts with semantic and depth
maps (Deng et al., 2023; He & Aliaga, 2024). In detail, there are four key modules in the framework
of UrbanWorld. Firstly, UrbanWorld automatically generates untextured 3D layouts with the above-
mentioned input data and conducts detailed asset processing via Blender2. Then, UrbanWorld adopts
a fine-tuned urban-specific multimodal large language model (called Urban MLLM) to effectively
plan and design urban scenes following user instructions, generating detailed textual descriptions
of urban elements. Next, UrbanWorld integrates a 3D asset renderer based on texture diffusion
and refinement, flexibly controlled by textual and visual conditions. Finally, to further optimize
the visual appearance, it utilizes Urban MLLM to scrutinize the crafted 3D urban environment,
generating detailed suggestions for refinement and activate an additional iteration of rendering.

Our framework is highly flexible to support generating two typical types of 3D urban environments.
On the one hand, UrbanWorld can generate a highly accurate replica of the real urban environment
with real street-view imagery as the generation condition, which holds significant potential for stud-
ies of urban planning and geographic information systems. On the other hand, it can also generate
fully customized urban environments with textual descriptions as the generation condition. This
capability is valuable for simulating and exploring hypothetical urban scenarios, especially in areas
such as virtual city design, gaming, and emergency response planning. In the experimental part, we
begin by conducting a comprehensive quantitative evaluation using five visual metrics, validating the
state-of-the-art realism of UrbanWorld’s generated environments. We then showcase diverse gen-
eration results from various textual and image prompts, highlighting the superior controllability of
UrbanWorld. Finally, we emphasize the interactive nature of the generated 3D urban environments
by demonstrating agent perception and navigation within them. We contribute UrbanWorld as an
open platform to support the creation and manipulation of more advanced 3D urban environments,
facilitating the advancement of broad AI communities.

The contributions of this work can be summarized as follows:

• We present UrbanWorld, the first urban world model for automatically creating realistic, cus-
tomized and interactive embodied 3D urban environments with flexible controls.

• UrbanWorld demonstrates its superior generative ability to craft high-fidelity 3D urban environ-
ments, greatly enhancing the authenticity of interactions in the environment.

• We provide UrbanWorld as an open-source platform to develop 3D urban environments, which can
support a wide range of research including embodied intelligence and AI agents, further laying a
foundation for the advancement of AGI.

1https://www.openstreetmap.org/
2https://www.blender.org/
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Table 1: Comparison between existing works for 3D city generation and UrbanWorld from four
aspects: text-controllable, image-controllable, whether new assets can be created, and interactive.

Type Method Text-controllable Image-controllable Creating new assets Interactive

Neural Rendering

SceneDreamer (Chen et al., 2023) × ✓ ✓ ×
PersistentNature (Chai et al., 2023) × ✓ ✓ ×

Infinicity Lin et al. (2023) × ✓ ✓ ×
CityDreamer (Xie et al., 2024) × × ✓ ×

Diffusion CityGen (Deng et al., 2023) × × ✓ ×

3D Modeling Software
MetaUrban (Wu et al., 2024a) × × × ✓
SceneCraft (Hu et al., 2024) ✓ × × ✓
CityCraft (Deng et al., 2024) ✓ × × ✓

Comprehensive UrbanWorld ✓ ✓ ✓ ✓

2 RELATED WORKS

2.1 3D URBAN SCENE GENERATION

3D urban scene generation aims to create realistic 3D urban environments with sophisticated urban
planning and visual element design, usually requiring high human efforts such as complex asset
modeling, texture mapping, and scene composition. With the advancement of deep learning tech-
niques, recently there are three lines of work trying to achieve this in an automated way, including
neural rendering-based methods (Lin et al., 2023; Xie et al., 2024; Chen et al., 2023), diffusion-based
methods (Deng et al., 2023; Inoue et al., 2023; Wu et al., 2024b) and 3D modeling software-based
methods (Zhou et al., 2024; Hu et al., 2024; Wu et al., 2024a). An overview of the method com-
parison is shown in Table 1. Neural rendering-based methods implicitly represent the urban scene
and perform the volumetric rendering for the neural fields. For example, CityDreamer (Xie et al.,
2024) first separates the scene into buildings and backgrounds then introduces different types of
neural fields for asset rendering. These methods can produce a high-quality visual appearance while
potentially losing geometric fidelity. Diffusion-based methods utilize diffusion models to generate
city layouts or urban scenes. CityGen (Deng et al., 2023) provides an end-to-end pipeline to cre-
ate diverse 3D city layouts with Stable Diffusion. These methods are creative in generating scene
images or videos, but hard to obtain embodied 3D environments, limiting the practical usages. Re-
cently, some professional software script-based methods have been proposed, trying to develop an
automatic agentic workflow using LLMs to control the professional software for scene creation.
CityCraft (Deng et al., 2024) adopts LLMs in designing and organizing 3D urban environments
from off-the-shelf asset libraries. Such approaches are effective but only create urban environments
with existing 3D models, unable to flexibly create new assets when necessary. By comparison, our
model can freely create new 3D urban assets in a highly controllable way, allowing for crafting
diverse urban environments.

2.2 3D WORLD SIMULATOR

A persistent objective in AI research has been to develop machine agents capable of engaging with
various environments in 3D space like humans. Toward this goal, researchers have been devoted
to building various interactive world simulators in the format of videos (Bruce et al., 2024) or em-
bodied environment (Shen et al., 2022). Existing world simulation environments and platforms are
mostly for indoor scenes (Puig et al., 2018; Xia et al., 2018; Kolve et al., 2017; Xia et al., 2020).
Differently, Threedworld (Gan et al., 2020) paid attention to creating outdoor environments by re-
trieving and compositing objects from an existing asset library. When it comes to urban scenes
which is the most important open environment, existing works mostly focus on the generative world
model for autonomous driving capable of learning scene dynamics and understanding the geometry
of the physical world (Hu et al., 2023; Wang et al., 2023b; 2024b). However, these models can only
generate new scenes in the format of videos, hard to provide an embodied and interactive urban envi-
ronment for real use. UGI (Xu et al., 2023) conceptualized some relevant ideas toward urban world
simulation, proposing to develop an embodied urban environment for agent development, but still
lacks practical implementation. More recently, MetaUrban Wu et al. (2024a) developed a simulation
platform for embodied agents in the urban environment, while the provided environment is limited
to a fixed style without controllability. To address these challenges, we propose UrbanWorld, which
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Figure 1: Illustration of the whole framework of UrbanWorld, including four key components: (A)
Flexible 3D urban layout generation; (B) Urban MLLM-empowered scene design; (C) Diffusion-
based urban asset texture rendering; (D) MLLM-assisted scene refinement.

is expected to facilitate the construction of diverse embodied urban environments with controllable
and refined visual appearance, supporting agent development or simulation in various urban scenes.

3 METHODOLOGY

There are three main challenges to solve for building a real “urban world model”: efficient interactive
environment construction, elaborate urban scene planning and high-quality texture rendering. To-
wards these objectives, UrbanWorld follows a novel “map-design-render-refine” generation pipeline,
accomplished by the collaboration of a specialized urban MLLM and an urban asset rendering mod-
ule. In detail, there are four key stages in UrbanWorld: (1) Flexible 3D urban layout generation,
achieving automatic 2.5D-to-3D mapping based on various urban layout metadata such as globally
open-accessible OSM data and urban layouts with semantic and height maps, which can address
the first challenge. (2) Urban MLLM-empowered scene design, which exploits the superior urban
environment understanding ability of a fine-tuned urban MLLM to draft realistic urban scenes emu-
lating human designers for addressing the second challenge. (3) Controllable diffusion-based urban
asset texture renderer, achieving flexible urban asset rendering based on 3D diffusion supporting
both textual and visual prompts. (4) MLLM-assisted urban scene refinement, exploiting the urban
MLLM to conduct reflection to refine the generated urban environment, mimicking the iterative re-
vision in the standard operation process of human designers. The last two components contribute to
high-fidelity textures of 3D assets, effectively tackling the third challenge. The overview framework
of UrbanWorld is illustrated in Figure 1.

3.1 FLEXIBLE 3D URBAN LAYOUT GENERATION

UrbanWorld supports any type of 2.5D layout data as input to efficiently build the untextured 3D
urban environment, such as easily accessible OSM data and AI-generated urban layout data. These
2.5D layout data record the metadata of an urban area including the geographic locations and at-
tributes of diverse urban elements such as roads, buildings, vegetation, forests, and water. All urban
assets will be automatically separated as independent objects for subsequent element-wise render-
ing. In this step, UrbanWorld also records the object center location for further reorganization of
assets, making it match the real urban layout.
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Condition
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Design
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Figure 2: Illustration of the urban asset rendering method in UrbanWorld, mainly including two
stages: depth-aware UV texture generation with flexible control under textual and visual prompts
and UV position-aware texture refinement.

3.2 URBAN MLLM-EMPOWERED SCENE DESIGN

Aiming to effectively craft customized urban environments, UrbanWorld integrates an advanced
MLLM fine-tuned on extensive real-world urban imagery data, named Urban MLLM. In detail,
we collected approximately 300K urban street-view images from Google Maps and used GPT-4
to generate associated textual descriptions. These descriptions were then manually reviewed and
low-quality data were filtered out. Subsequently, we fine-tuned an advanced open-source MLLM,
VILA-1.5 (Lin et al., 2024) with the curated dataset to improve its understanding of urban environ-
ments. In the workflow of UrbanWorld, Urban MLLM is utilized to act as a human-like designer,
which automatically drafts high-quality and detailed urban scene descriptions, ensuring the crafted
urban environment are visually coherent and instruction-following. Specifically, taking a simple
textual instruction (e.g., “a teaching area in the university”) from users as input, UrbanWorld calls
Urban MLLM with carefully designed prompts and returns diverse detailed descriptions about vi-
sual appearance and materials for each asset. The produced asset descriptions will be used to control
the condition of the later texture rendering process.

3.3 CONTROLLABLE DIFFUSION-BASED URBAN ASSET TEXTURE RENDERING

Rendering a large-scale urban scene is challenging due to the existence of complex elements and
relations, whereby the scene-level rendering will inevitably result in texture mismatching and low-
resolution issues. Therefore, we adopt the element-wise rendering strategy to ensure the rendering
quality. Simultaneously, in order to speed up the rendering process, we merge some urban element
types and finally define four main categories: buildings, roads and paths, forest and vegetation, and
water. We implement the rendering with a controllable diffusion-based method consisting of two
stages: UV texture generation and texture refinement as shown in Figure 2.

After the 3D environment generation detailed in Section 3.1, we have obtained the untextured 3D
mesh of an urban region S and contained assets {S1, S2, ..., Si}. For each type of asset, UrbanWorld
takes the associated textual description ti from Urban MLLM or a reference image ri as prompts to
control the generation.

We first set a series of camera views vi = {vki }Nk=1 to capture multi-view appearances of the asset Si.
Next, we utilize the depth-aware ControlNet (Zhang et al., 2023) to control a 2D diffusion model F
to generate an image Ii showing the visual appearance of Si on different views, controlled by the
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Untextured Urban Scene Initial Textured Urban Scene Refined Urban Scene

Figure 3: Illustration of the evolution of created urban environments, including the untextured urban
scene, initial textured urban scene and refined urban scene.

condition ci ∈ {ti, ri, (ti, ri)}:
Ii = F (ci; di; z), (1)

where z is the latent embedding for the diffusion process, the depth map from different views di
is obtained from the rendering process di = P (Si, vi). Then we crop Ii into patches where each
represents a unique view {Iki }Nk=1 of the rendered asset. Then we conduct a reverse process P−1 of
rendering to back-project Ii into the UV texture space:

Uk
i = P−1(vki ; I

k
i ;Si), (2)

Subsequently, we merge the texture maps from different views into a single texture map Ui:

Ui =

n∑
k=1

Mk
i ⊙ Uk

i , (3)

where Mk
i denotes the corresponding mask in the UV space from the view vi.

Up to now, we have obtained the preliminary texture map for the asset Si, while in practice we found
that there are still some untextured areas on the object due to the discrete sampling of camera views,
especially for assets with many faces. Inspired by the inpainting capability of diffusion models,
we introduce an additional UV texture inpainting process to get more complete and natural texture.
However, such inpainting can not be directly achieved with general diffusion-based inpainting since
the inpainting should be restricted to follow the position relation in the UV texture space. Therefore,
we introduce a position map-guided building UV inpainting process, inspired by the inpainting
process of general 3D objects (Zeng et al., 2024).

To be specific, we add a UV position map encoder EV (·) to encode the position map Vi ∈ RH×W×3,
indicating the adjacency relation of the UV texture fragments, where EV is set to have the same
architecture of the image encoder in the diffusion model. Then we curate a set of paired-up UV
position maps and UV texture maps for urban assets with complex surfaces and train the position
encoder following the pipeline of ControlNet (Zhang et al., 2023). With the control of UV position
maps, it’s expected to achieve accurate and natural inpainting for UV texture maps. Denote U∗

i as
the inpainted UV texture map, the UV inpainting process is formulated as follows:

U∗
i = F (ci;Ui;EV (Vi)). (4)

With the above texture generation and completion, UrbanWorld can produce coherent and high-
fidelity textures for various urban elements. For better visual aesthetic of the rendering, we further
conduct image upscaling with ControlNet-tile to enhance the structure sharpness and realism of the
texture map, contributing to more detailed and realistic appearances of urban assets.

3.4 MLLM-ASSISTED URBAN SCENE REFINEMENT

After urban asset rendering, UrbanWorld automatically reorganizes the assets guided by the location
information extracted from the metadata of the urban layout, effectively recovering the original ur-
ban layout. Inspired by the standard operation process of human designing, where experts will take
an overview of the result and conduct iterative adjustments. To mimic such an effort, UrbanWorld
resorts to Urban MLLM again to scrutinize the crafted 3D urban environment, especially focusing on
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CityDreamer

CityGen

UrbanWorld (Ours)

Infinicity

Figure 4: Qualitative comparisons of generated 3D urban environments from Infinicity, CityGen,
CityDreamer and UrbanWorld. By comparison, our method can craft more diverse and realistic 3D
urban environments enabling dynamic interactions with humans (walking) and vehicles (driving).

the texture details. Specifically, we prompt Urban MLLM to identify the inconsistencies between the
generated result and the prompts for generation. Finally, Urban MLLM will provide sophisticated
suggestions for further refinement, including elements to be modified and refined design prompts.
Then the rendering module described in Section 3.3 will be activated and the involved elements will
be rendered under the refined text prompts and updated in the 3D environment. With such a refine-
ment process, UrbanWorld can further align the generated urban environment to user instructions.
Here we provide a visualization example in Figure 3, showing the evolution of the created urban en-
vironments happened in the running process of UrbanWorld. It can be seen that UrbanWorld works
in an iterative refinement manner to create high-fidelity urban environments, where the low-quality
textures will be automatically identified and refined with the powerful Urban MLLM.

4 EXPERIMENTS

In this section, we first introduce the experimental setup and implementation details (see Section
4.1), and then provide some quantitative evaluations of the created urban environments to demon-
strate the superiority of UrbanWorld (see Section 4.2). Finally, we present the generation results of
UrbanWorld for qualitative estimation (see Section 4.3).

4.1 IMPLEMENTATION DETAILS

UrbanWorld incorporates three key techniques: Blender as the professional 3D modeling software,
diffusion-based rendering and Urban MLLM-empowered scene design and refinement. Specifi-
cally, we use Blender-3.2.2 for Linux systems and the compatible Blosm addon to handle the OSM
transformation. In terms of diffusion-based rendering, we utilize Stable Diffusion-1.5 (Rombach
et al., 2022) as the fundamental diffusion backbone, combined with ControlNet-Depth (Zhang
et al., 2023) when generating multiple views of 3D assets. We also introduce IP-Adapter (Ye
et al., 2023) to support taking reference images as the additional generation condition. We use
ControlNet-inpainting (Zhang et al., 2023) as the diffusion controller in the UV texture refinement
and ContrlNet-tile (Zhang et al., 2023) in the realness enhancement stage. For the hyper-parameter
settings in the rendering part, we set the number of camera views N = 4, which can basically satisfy
the rendering needs of most urban assets. The number of inference steps in all diffusion processes
is set as 30 by default. The UV maps of 3D assets are unwrapped in the “smart projection” mode
operated in Blender. All experiments are conducted on a single NVIDIA Tesla A100 GPU.

7
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Table 2: Quantitative evaluation of existing works for 3D urban scene generation and UrbanWorld
on depth error, homogeneity index and realistic score.

Method FID (↓) KID (↓) DE (↓) HI (↓) PS (↑)
SGAM Shen et al. (2022) 453.81 0.522 0.575 0.872 5.6

PersistentNature Chai et al. (2023) 441.65 0.319 0.326 0.742 4.8
SceneDreamer (Chen et al., 2023) 389.90 0.284 0.152 0.817 6.2

CityDreamer (Xie et al., 2024) 418.38 0.210 0.147 0.830 6.0
UrbanWorld (text) 377.65 0.187 0.089 0.683 6.5

UrbanWorld (image) 368.72 0.154 0.082 0.665 6.7

Table 3: Study of the effectiveness of three key designs in UrbanWorld with text prompts as genera-
tion conditions: Urban MLLM-empowered scene design, texture enhancement and MLLM-assisted
scene refinement.

Method FID (↓) KID (↓) DE (↓) HI (↓) PS (↑)
UrbanWorld (text) 377.65 0.187 0.089 0.683 6.5

w/o Urban MLLM design 401.58 0.237 0.104 0.701 6.1
w/o texture enhancement 382.09 0.197 0.125 0.687 6.2

w/o scene refinement 393.73 0.202 0.096 0.690 6.3

4.2 QUANTITATIVE EVALUATIONS

To better demonstrate the superior generation performance of UrbanWorld, in this section, we pro-
vide quantitative results on five metrics: Frechét Inception Distance (FID), Kernel Inception Dis-
tance (KID), Depth error (DE), Homogeneity index (HI) and Preference score (PS). (more details
can be found in Appendix A.1).

We test two versions of our method including UrbanWorld (text) which takes textual prompts for
generation and UrbanWorld (image) which takes reference images as generation conditions. The
compared methods for urban scene generation include SGAM (Shen et al., 2022), PersistentNa-
ture (Chai et al., 2023), SceneDreamer (Deng et al., 2023) and Citydreamer Xie et al. (2024), rep-
resenting the most advanced performance of automatic 3D urban environment generation. We don’t
provide results from other methods such as CityGen (Deng et al., 2023), CityCraft (Deng et al.,
2024) and SceneCraft (Hu et al., 2024) because the source codes are not open up to now.

From the results presented in Table 2, we can observe that UrbanWorld outperforms on each quan-
titative metric compared with baselines. UrbanWorld with real street-view images as conditions
demonstrates improved performance compared to the version relying solely on textual conditions.
In detail, compared with the most competitive baseline, UrbanWorld has 5.4% and 26.7% improve-
ment on FID and KID, indicating better realism of generated results. Besides, UrbanWorld achieves
44.2% improvement on depth error, demonstrating the geometry-preserving ability of UrbanWorld.
By comparison, rendering methods such as SceneDreamer and CityDreamer can produce visually
appealing urban scenes, but commonly lose geometry consistency. In terms of the homogeneity
index, UrbanWorld has 10.4% improvement compared with baselines. Consistent with the obser-
vation on the qualitative results in Section 4.3, the generated scenes from existing methods exhibit
high homogeneity, limited to the style of training data. By comparison, UrbanWorld can produce
more diverse urban environments according to user instruction, effectively achieving customized
creation. This makes it possible to craft any type of 3D urban environment that adapts to the needs
of different urban environments. Lastly, the created urban environments from UrbanWorld obtain
higher preference of GPT-4 outperforming all compared methods on the preference score.

Effectiveness of three key designs. To further validate the effectiveness of key designs in Ur-
banWorld, we conduct ablation studies and show the results on UrbanWorld (text) and UrbanWorld
(image) in Table 3 and 4, respectively. We explore the influence of three designs on the performance,
including Urban MLLM-empowered urban scene design, texture enhancement and MLLM-assisted
scene refinement. The results indicate that all these techniques contribute to the final generation
performance. Specifically, the scene design from Urban MLLM contributes most to the quality
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Table 4: Study of the effectiveness of three key designs in UrbanWorld with real street-view im-
ages as generation conditions: Urban MLLM-empowered scene design, texture enhancement and
MLLM-assisted scene refinement.

Method FID (↓) KID (↓) DE (↓) HI (↓) PS (↑)
UrbanWorld (image) 368.72 0.154 0.082 0.665 6.7

w/o Urban MLLM design 373.21 0.158 0.104 0.701 6.5
w/o texture enhancement 384.10 0.172 0.125 0.687 6.5

w/o scene refinement 374.52 0.159 0.096 0.690 6.6

Neoclassical style Bauhaus style Postmodern styleModern style

Figure 5: Illustration of the controllable generation of diverse architecture styles when prompting
with reference images (upper left) in UrbanWorld.

Urban CBD area Urban park Railway stationResidential area

Figure 6: Illustration of the controllable generation of diverse urban functional scenes guided by
different textual prompts in UrbanWorld.

of generated urban environments, benefiting from the rich urban environment knowledge of Urban
MLLM. The texture completion and enhancement operation have the most notable effect on the
estimated depth error because better texture fidelity can help with geometric perception. Besides,
the final scene refinement process leads to a gain in all evaluation metrics, further promoting the
generation quality.

4.3 QUALITATIVE RESULTS

We present generation results of UrbanWorld produced with textual prompts in Figure 4, including
three representative urban functional spaces: residential areas, commercial blocks and parks. For in-
tuitive comparison, we also provide some generation samples from Infinicity (Lin et al., 2023), City-
Gen (Deng et al., 2023) and CityDreamer (Xie et al., 2024). The results of Infinicity and CityGen are
taken from the original paper because the codes are not open-source. It can be seen that scenes from
Infinicity are short of clear textures and well-maintained building structures. Scenes from CityGen
feature homogeneous styles without clear characteristics of urban functions. Similarly, the visual
appearance of urban elements (especially buildings) in the environments from CityDreamer lacks
diversity and is hard to distinguish. Besides, there are also clear geometric distortions of the build-
ing boundaries in CityDreamer. These issues will pose great challenges for the real interactions
between subjects and urban environments. For example, embodied agents are hard to be trained
to conduct urban navigation because the surrounding elements are too similar to recognize. By
comparison, the urban elements created by UrbanWorld possess high visual diversity, conveniently
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Agent Navigation

Perception

Perception

Navigation

RGB Depth map Semantic map

Visual observation trajectory

Figure 7: Illustration of the interactive nature of created environments from UrbanWorld, showcas-
ing two representative types of interactions: agent perception and navigation.

controlled by user instructions. Moreover, we explore generating realistic urban assets by prompt-
ing UrbanWorld with realistic images as prompts. Figure 5 presents generated urban buildings in
various styles guided by realistic images. We can observe that the generated asset possesses high
fidelity to the real ones, which is rarely reached by existing approaches. We further extend to gen-
erate large-scale urban environments, as illustrated in Figure 6, which presents four representative
urban functional spaces, each with a visually consistent and contextually appropriate appearance.
These results highlight the superior controllability of UrbanWorld which supports flexible prompts
as generation conditions.

4.4 INTERACTIVITY DEMONSTRATION

To demonstrate the interactive characteristics of 3D urban environments produced by UrbanWorld,
we provide a case study about how UrbanWorld provides information feedback and embodied ac-
tivity spaces for the agents. We focus on two representative interaction modes between agents and
urban environments: perception and navigation, following existing works about urban agents (Wu
et al., 2024a; Yang et al., 2024). As shown in Figure 8, the created urban environment can provide
multimodal observations for agents including RGB imagery, depth maps and semantic maps. Such
information can be utilized to enhance the perception ability of agents in various complex urban
environments, benefiting in accomplishing various embodied tasks such as navigation and object
manipulation. We also evaluate the agent’s navigation capabilities within the generated urban en-
vironment, where the task is to navigate to specified target coordinates in 3D environments. Here
we utilize the Rapidly-exploring Random Tree (RRT) algorithm for path planning using the start
coordinates of agents, target coordinates and obstacle coordinates in 3D space. We record the vi-
sual observation trajectory of the agent during navigation as shown in Figure 8, demonstrating the
effective interaction between agents and environments.

5 CONCLUSION

We propose UrbanWorld, the first generative urban world model to create realistic, customized and
interactive 3D urban environments with flexible control conditions in a fully automatic manner.
Integrating the powerful urban environment understanding ability of an urban MLLM and the con-
trollable generation ability of diffusion models, UrbanWorld can effectively craft high-fidelity and
customized urban environments outperforming existing 3D city generation methods. For practi-
cal usage, the created urban environments can provide high-fidelity data and interactive environ-
ments for developing embodied intelligence and AI agents. We have contributed UrbanWorld as an
open-source tool to benefit broad research communities, which we believe can pave a new way to
efficiently establish 3D urban world, accelerating the development of AGI.
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A APPENDIX

A.1 DETAILS OF THE METRICS FOR QUANTITATIVE EVALUATION

Frechét Inception Distance (FID) and Kernel Inception Distance (KID). Both metrics quantify
the similarity between the distribution of generated images and real images, where lower values in-
dicate better image quality of generated results. We compute FID and KID between frames sampled
from the generated scene and an evaluation set comprising 1000 real street-view images randomly
sampled from Google Maps. These metrics can effectively measure the realism of generated results.

Depth error (DE). Depth error is utilized to evaluate the 3D geometry accuracy, following the
implementation of EG3D (Chan et al., 2022) and CityDreamer (Xie et al., 2024). Specifically, we
use the pre-trained depth estimation model (Ranftl et al., 2020) to obtain the “ground truth” of depth
maps via density accumulation. DE is then calculated as the L2 distance between the normalized
predicted depth maps and the “ground truth”. The final result is averaged on the result from 100
captured frames of generated urban scenes.

Homogeneity index (HI). Realistic cities are featured by complex elements with diverse visual
appearances, indicating various functional uses of different urban areas. In order to capture this
key character, we propose to evaluate the homogeneity of generated scenes, mainly measuring the
variance of different urban scenes. To be specific, we first extract the visual feature of each generated
scene image with ResNet (He et al., 2016). The homogeneity index is then calculated as the averaged
cosine similarity of each pair of scenes in the feature space. The smaller value of the homogeneity
index means a higher diversity of generated urban environments.

Preference score (PS). Another widely used approach to evaluate the generated result is utilizing
powerful LLMs as the evaluator Wang et al. (2023a); Peng et al. (2024), here we prompt GPT-4
to score the snapshots taken from the generated 3D environment, mainly considering the texture
sophistication and geometric completeness (ranging from 1 to 10). A higher score indicates stronger
preference for the generated result.

A.2 DESIGNED PROMPTS FOR URBAN SCENE DESIGN USING URBAN MLLM

Urban Scene Generation

cat_name =

[’building ’,’path_roads ’,’forest ’,’vegetation ’,’water’,’ground ’]

user_prompts = "A modern residential area"

instruct_prompts = ’’’

You are an expert of urban scene design , now I want to generate a 3D

urban scene of {}, composed of following kinds of assets (building ,

forest , vegetation , water , path_road , ground).

Can you design and generate a caption for each asset (give five types of

captions for the building) (each caption within 50 tokens), making

the scene visually look harmonious and realistic.

Only describe the appearance features (must including ‘color ‘,

‘material ‘ (such as patterns , roughness , metalness), functional use

and ‘elements ‘ (must include detailed descriptions (color , position)

of the windows , doors for buildings), and don’t give too much other

information. Ensure the texts capable to control text -to-image

diffusion models like stable -diffusion v1.5.

Please use a dictionary to represent the output result {} without number.

’’’

des = ""

for i in range(len(cat_name)):

des += f"{cat_name[i]}: [Description of {cat_name[i]}]"

if i < len(cat_name) -1:

des += ", "

des = "{" + des + "}"

new_prompts = instruct_prompts.format(user_prompts , des)

1

Figure 8: Designed prompt template for urban scene design using Urban MLLM.
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